169 research outputs found

    Uncertainty Modeling in The Assessment of Climate Change Impacts on Water Resources Management

    Get PDF
    Climate change has significant impacts on water resource systems. The objective of this study is to assess climate change impacts on water resource management. The methodology includes (a) the assessment of uncertainty introduced by choice of precipitation downscaling methods; (b) uncertainty assessment and quantification of the impact of climate change on projected streamflow; and (c) uncertainty in and impact of climate change on the management of reservoirs used for hydropower production. The assessment is conducted for two future time periods (2036 to 2065 and 2066 to 2095). The study area, Campbell River basin, British Columbia, Canada, consists of three reservoirs (Strathcona, Ladore and John Hart). A new multisite statistical downscaling method based on beta regression (BR) is developed for generating synthetic precipitation series, which can preserve temporal and spatial dependence along with other historical statistics (e.g. mean, standard deviation). To account for different uncertainty sources, four global climate models (GCMs), three greenhouse gas emission scenarios (RCPs), six downscaling models (DSMs), are considered, and the differences in projected variables of interest are analyzed. For streamflow generation a hydrologic model is used. The results show that the downscaling models contribute the highest amount of uncertainty to future streamflow predictions when compared to the contributions by GCMs or RCPs. It is also observed that the summer (June, July & August) and fall (September, October & December) flows into Strathcona dam (British Columbia) will decrease, while winter (December, January & February) flows will increase in both future time periods. In addition, the flow magnitude becomes more uncertain for higher return period flooding events in the Campbell River system under climate change than the low return period flooding events. To assess the climate change impacts on reservoir operation, in this study a system dynamics model is used for reservoir flow simulation. Results from system dynamics model show that as the inflow decreases in summer and fall, it also affects reservoir release and power production. It is projected that power production from downstream reservoirs (LDR & JHT) will decrease more drastically than the upstream reservoir (SCA) in both future time periods considered in this study

    Application of a K-Nearest Neighbour weather generator for simulation of historical and future climate variables in the Upper Thames River basin

    Get PDF
    Climate change has the potential to significantly alter the hydrologic cycle, changing the frequency and intensity of precipitation events in an area. It is necessary to quantify these effects to effectively manage water resources in the future. Atmosphere-Ocean coupled Global Circulation Models (AOGCMs), often used in climate change research, have spatial resolutions that are too large to capture the local climate characteristics of a watershed. As a result, several downscaling tools have been developed, including stochastic weather generators. A methodology for the simulation of historical and future climate data using a nonparametric K-Nearest Neighbour block resampling weather generator with perturbation is presented (KnnCAD Version 4). The proposed approach is illustrated using a case study of the Upper Thames River basin in Ontario, Canada. KnnCAD V4 is shown to effectively reproduce the historical climate and can produce future climate change scenarios based on AOGCM data

    Monthly river flow simulation with a joint conditional density estimation network

    Get PDF
    River flow synthesizing and downscaling are required for the analysis of risks associated with water resources management plans and for regional impact studies of climate change. This paper presents a probabilistic model that synthesizes and downscales monthly river flow by estimating the joint distribution of flows of two adjacent months conditional on covariates. The covariates may consist of lagged and aggregated flow variables (synthesizing), exogenous climatic variables (downscaling), or combinations of these two types. The joint distribution is constructed by connecting two marginal distributions in terms of copulas. The relationship between covariates and distribution parameters is approximated by an artificial neural network, which is calibrated using the principle of maximum likelihood. Outputs of the neural network yield parameters of the joint distribution. From the estimated joint distribution, a conditional distribution of river flow of current month given the estimation of the previous month can be derived. Depending on the different types of covariate information, this conditional distribution may serve as the ‘‘engine’’ for synthesizing or downscaling river flow sequences. The idea of the proposed model is illustrated using three case studies. The first case deals with synthetic data and shows that the model is capable of fitting a nonstationary joint distribution. Second, the model is utilized to synthesize monthly river flow at four sample stations on the main stream of the Colorado River. Results reveal that the model reproduces essential evaluation statistics fairly well. Third, a simple illustrative example for river flow downscaling is presented. Analysis indicates that the model can be a viable option to downscale monthly river flow as well

    Long-term-robust adaptation strategies for reservoir operation considering magnitude and timing of climate change: application to Diyala River Basin in Iraq

    Get PDF
    2020 Spring.Includes bibliographical references.Vulnerability assessment due to climate change impacts is of paramount importance for reservoir operation to achieve the goals of water resources management. This requires accurate forcing and basin data to build a valid hydrology model and assessment of the sensitivity of model results to the forcing data and uncertainty of model parameters. The first objective of this study is to construct the model and identify its sensitivity to the model parameters and uncertainty of the forcing data. The second objective is to develop a Parametric Regional Weather Generator (RP-WG) for use in areas with limited data availability that mimics observed characteristics. The third objective is to propose and assess a decision-making framework to evaluate pre-specified reservoir operation plans, determine the theoretical optimal plan, and identify the anticipated best timeframe for implementation by considering all possible climate scenarios. To construct the model, the Variable Infiltration Capacity (VIC) platform was selected to simulate the characteristics of the Diyala River Basin (DRB) in Iraq. Several methods were used to obtain the forcing data and they were validated using the Kling–Gupta efficiency (KGE) metric. Variables considered include precipitation, temperature, and wind speed. Model sensitivity and uncertainty were examined by the Generalized Likelihood Uncertainty Estimation (GLUE) and the Differential Evolution Adaptive Metropolis (DREAM) techniques. The proposed RP-WG was based on (1) a First-order, Two-state Markov Chain to simulate precipitation occurrences; (2) use of Wilks' technique to produce correlated weather variables at multiple sites with conservation of spatial, temporal, and cross correlations; and (3) the capability to produce a wide range of synthetic climate scenarios. A probabilistic decision-making framework under nonstationary hydroclimatic conditions was proposed with four stages: (1) climate exposure generation (2) supply scenario calculations, (3) demand scenario calculations, and (4) multi-objective performance assessment. The framework incorporated a new metric called Maximum Allowable Time to examine the timeframe for robust adaptations. Three synthetic pre-suggested plans were examined to avoid undesirable long-term climate change impacts, while the theoretical-optimal plan was identified by the Non-dominated Sorting Genetic Algorithm II. The multiplicative random cascade and Schaake Shuffle techniques were used to determine daily precipitation data, while a set of correction equations was developed to adjust the daily temperature and wind speed. The depth of the second soil layer caused most sensitivity in the VIC model, and the uncertainty intervals demonstrated the validity of the VIC model to generate reasonable forecasts. The daily VIC outputs were calibrated with a KGE average of 0.743, and they were free from non-normality, heteroscedasticity, and auto-correlation. Results of the PR-WG evaluation show that it exhibited high values of the KGE, preserved the statistical properties of the observed variables, and conserved the spatial, temporal, and cross correlations among the weather variables at all sites. Finally, risk assessment results show that current operational rules are robust for flood protection but vulnerable in drought periods. This implies that the project managers should pay special attention to the drought and spur new technologies to counteract. Precipitation changes were dominant in flood and drought management, and temperature and wind speed changes effects were significant during drought. The results demonstrated the framework's effectiveness to quantify detrimental climate change effects in magnitude and timing with the ability to provide a long-term guide (and timeframe) to avert the negative impacts

    Multimodel regression-sampling algorithm for generating rich monthly streamflow scenarios

    Get PDF
    This paper presents a multimodel regression-sampling algorithm (MRS) for monthly streamflow simulation. MRS is motivated from the acknowledgment that typical nonparametric models tend to simulate sequences exhibiting too close a resemblance to historical records and parametric models have limitations in capturing complex distributional and dependence characteristics, such as multimodality and nonlinear autocorrelation. The aim of MRS is to generate streamflow sequences with rich scenarios while properly capturing complex distributional and dependence characteristics. The basic assumptions of MRS include: (1) streamflow of a given month depends on a feature vector consisting of streamflow of the previous month and the dynamic aggregated flow of the past 12 months and (2) streamflow can be multiplicatively decomposed into a deterministic expectation term and a random residual term. Given a current feature vector, MRS first relates the conditional expectation to the feature vector through an ensemble average of multiple regression models. To infer the conditional distribution of the residual, MRS adopts the k-nearest neighbor concept. More precisely, the conditional distribution is estimated by a gamma kernel smoothed density of historical residuals inside the k-neighborhood of the given feature vector. Rather than obtaining the residuals from the averaged model only, MRS retains all residuals from all the original regression models. In other words, MRS perceives that the original residuals put together would better represent the covariance structure between streamflow and the feature vector. By doing so, the benefit is that a kernel smoothed density of the residual with reliable accuracy can be estimated, which is hardly possible in a single-model framework. It is the smoothed density that ensures the generation of sequences with rich scenarios unseen in historical record. We evaluated MRS at selected stream gauges and compared with several existing models. Results show that (1) compared with typical nonparametric models, MRS is more apt at generating sequences with richer scenarios and (2) in contrast to parametric models, MRS can reproduce complex distributional and dependence characteristics. Since MRS is flexible at incorporating different covariates, it can be tailored for other potential applications, such as hydrologic forecasting, downscaling, as well as postprocessing deterministic forecasts into probabilistic ones
    • …
    corecore