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ABSTRACT 

ESSAYS ON THE QUANTIFICATION AND PROPAGATION OF UNCERTAINTY 

IN CLIMATE CHANGE IMPACT ASSESSMENTS FOR WATER RESOURCE 

SYSTEMS 

MAY 2014 

SCOTT STEINSCHNEIDER, B.A., TUFTS UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Casey Brown 

 

Sustainable water resources planning and management under climate change requires a 

proper treatment of uncertainties that emerge in an impacts analysis. A primary source of 

this uncertainty originates from the difficulties in projecting how anthropogenic 

greenhouse gas emissions will evolve over time and influence the climate system at 

regional and local scales. However, other sources of uncertainty, such as errors in 

modeling hydrologic response to climate and the influences of internal climate 

variability, compound the effects of climate change uncertainty and further obscure our 

understanding of water resources performance under future climate conditions. This work 

presents an approach to quantify the interactions, propagation, and relative contributions 

of different sources of uncertainty in a water resources impacts assessment under climate 

change. Hydrologic modeling uncertainty is addressed using Bayesian methods that can 

quantify both parametric and structural errors. Hydrologic uncertainties are propagated 
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through an ensemble of climate projections to explore their joint uncertainty. A new 

stochastic weather generator is presented to develop a wide ensemble of climate 

projections that can extend beyond the limited range of change often afforded by global 

climate models and better explore climate risks. The weather generator also enables the 

development of multiple realizations of the same mean climate conditions, allowing an 

exploration of the effects of internal climate variability. The uncertainties from mean 

climate changes, internal climate variability, and hydrologic modeling errors are then 

integrated in two climate change analyses of a flood control facility and a multi-purpose 

surface reservoir system, respectively, to explore their separate and combined effect on 

future system performance. The primary goal of this work is to present methods that can 

better estimate the precision associated with future projections of water resource system 

performance under climate change, and through this provide information that can guide 

the development of adaptation strategies that are robust to these uncertainties.  
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CHAPTER 1 

INTRODUCTION 

 

Water resources planning and management, as traditionally practiced, has long relied on 

the assumption that hydroclimatic variables of interest follow a time-invariant probability 

distribution (i.e. they are stationary). This assumption has enabled engineers to plan for 

the future by testing the expected benefits and costs associated with different projects and 

management plans under historic hydroclimatic conditions and choosing those that best 

achieve a set of objectives. Over the last two decades, however, the validity of the 

stationary assumption has been strongly challenged [Solomon et al., 2007], with some 

arguing that enough evidence has been presented to preclude the use of stationarity as a 

justifiable, default assumption for water resource planning [Milly, 2008].  

 

The water resources community has largely accepted that nonstationarity needs to be 

considered in planning considerations moving forward, and many have also recognized 

that significant uncertainty in future projections may hinder a clear understanding of how 

climate change will impact local hydrology and water resources. Over the past decade 

there has been an increasing emphasis in the literature on better accounting of climate 

change uncertainty in long-term planning efforts, with recent work emphasizing the need 

for risk-based approaches. Risk-based planning methods attempt to provide probabilistic 

information about potential impacts using scenario ensembles and relative scenario 

probabilities [Brekke et al., 2009], allowing decision-makers to choose a level of 

acceptable risk and discount impacts that do not exceed that threshold. The goal of these 
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planning efforts is often to identify robust decisions - those that provide an adequate level 

of performance across a range of climate change uncertainty - provided that some of that 

uncertainty can be characterized with probabilistic information drawn from climate 

information sources (e.g. climate projections). 

 

There are several sources of uncertainty that need to be accounted for in risk-based 

approaches to water resources planning under climate change. The primary source of 

uncertainty stems from the difficulties in projecting how anthropogenic greenhouse gas 

emissions will evolve over time and influence the climate system at regional and local 

scales. Most studies adopting risk-based approaches have relied on downscaled future 

climate projections from global circulation models (GCMs) to provide an ensemble of 

climate scenarios and then use the relative frequencies of those downscaled projections to 

inform the probability analysis of future change [Dessai and Hulme, 2007; Brekke et al., 

2009; Lempert and Groves, 2010]. One potential issue with this approach is that the 

scenarios generated from climate models may not adequately characterize the true 

uncertainty surrounding future climate [Stainforth et al. 2007a, Stainforth et al. 2007b], 

especially in hydrologic applications that depend on variables like precipitation that 

GCMs reproduce poorly. To circumvent this issue, Brown et al. [2012] introduced the 

methodology of Decision-Scaling, a risk-based planning approach that employs climate 

scenarios that are independent of and extend beyond the range of GCM projections to 

identify system vulnerabilities. Future climate projections produced by GCMs, as well as 

other climate information sources, can then be used to develop probabilistic estimates of 

future change in order to estimate risk. By separating the identification of system 
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vulnerabilities from the assessment of likelihoods of future change, this method is 

arguably less sensitive to climate model uncertainties because it can identify system 

vulnerabilities potentially unrealized under downscaled GCM projections that may be 

inadequate for exploring certain types of climate change. The Decision-Scaling approach 

has recently been successfully tested in a comprehensive study of climate risk and 

adaptation planning for the Great Lakes water system [Moody and Brown, 2013]. 

However, the literature on this topic is relatively young, and limited tools have been 

investigated for the production of altered climate time series over which to conduct the 

vulnerability assessment. This presents an opportunity to develop improved climate 

generation tools that can be used to extend the approach of Decision-Scaling to systems 

that are sensitive to a wide range of nuanced changes in climate variability at multiple 

temporal scales, an opportunity taken up in the second chapter of this dissertation.  

 

In addition to the uncertainty surrounding future climate, there is also significant 

uncertainty surrounding the ability to estimate the hydrologic response of a local 

watershed. This uncertainty should not be ignored when considering the adequacy of 

water resource systems under future climate change. Over the past decade, there have 

been significant efforts to explore the integrated uncertainty of future river flows 

stemming from both climate and hydrologic model uncertainties. Arnell [1999] presented 

the first such study, separately exploring how a small subset of different GCMs, climate 

sensitivities to greenhouse gas concentrations, hydroclimatic model structures, and 

hydrologic model parameters influenced the projections of future continental runoff 

across Europe. This study, and a few others that have followed [Prudhomme and Davies, 
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2009; Kay et al. 2009], explored these uncertainties in isolation without investigating 

their integrated effects. This shortcoming has been partly resolved in other work. For 

instance, Wilby and Harris [2006] presented a comprehensive evaluation of the separate 

and integrated effects of various uncertainties of low river flows in England, including: 1) 

four different GCMs, 2) two downscaling techniques, 3) two emission scenarios, 4) two 

hydrologic model structures, and 5) two hydrologic parameter sets. Chen et al. [2011] 

extended this work by including more samples of several of these uncertainty sources and 

also included the effect of internal climate variability by considering multiple GCM 

initial conditions. 

 

The results of the studies above generally conclude that GCM structure, followed by 

downscaling technique and internal climate variability, can have a substantial influence 

on the outcome of a water resources impact assessment. The influence of hydrologic 

uncertainties, on the other hand, is generally much smaller, particularly for hydrologic 

parameterization error. The insignificant effects often associated with hydrologic 

modeling uncertainty can in part be attributed to the limited sampling schemes used to 

explore this uncertainty source. While a small set of hydrologic model structures and 

parameter sets can provide some insight regarding this source of error, it is difficult to 

determine whether such a small sample size can adequately quantify the full uncertainty 

inherent to the hydrologic modeling process. In fact, the efforts mentioned above have 

largely ignored the recent advancements in methods used to formally quantify hydrologic 

model uncertainty. These include Pseudo-Bayesian and formal Bayesian techniques that 

account for both predictive and parameter uncertainties [Beven and Binley, 1992; Beven 
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and Freer, 2001; Bates and Campbell, 2001; Marshall et al., 2004; Stedinger et al., 2008; 

Schoups and Vrugt, 2010], as well as other methods that separate out input and response 

data errors from the analysis [Kavetski et al., 2006a, 2006b; Thyer et al., 2009; Renard et 

al., 2010] and address structural model uncertainty through Bayesian model averaging or 

other such techniques [Duan et al., 2007; Marshall et al., 2007].  

 

There have been a handful of studies that have extended some of these more advanced 

methods to the integrated hydrologic and climate uncertainty problem. Cameron et al. 

[2000] was the first, using a Psuedo-Bayesian technique (the GLUE methodology [Beven 

and Binley, 1992]) to develop a more complete understanding of the influence hydrologic 

parameter uncertainty on flood response under climate change. This study was extended 

in Cameron et al. [2006] to include more GCM scenarios. A more formal Bayesian 

technique was used in Kwon et al. [2011] and was again applied in a flood frequency 

analysis under climate change. All of these studies found a more substantial influence 

from hydrologic uncertainty on impact results than those studies that only explore a 

handful of hydrologic model parameter sets. Yet even these more advanced studies failed 

to fully account for structural hydrologic uncertainties, as quantified by the model’s 

predictive error, despite the fact that prediction error can often dominate total model 

uncertainty [Stedinger et al. 2008].  

 

To date, the author has only been able to identify one study that estimated the joint 

effects of parametric and predictive hydrologic uncertainties in a climate change analysis 

using a formalized statistical approach [Khan and Coulibaly, 2010]. This study quantified 
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hydrologic uncertainty using a formal Bayesian analysis and compared it to the mean 

hydrologic model results under an ensemble of climate projections composed of two 

GCMs, two emissions scenarios, and two downscaling techniques. The results showed 

that the integrated predictive and parametric error associated with the hydrologic model 

encompassed the spread of mean hydrologic projections under all the individual climate 

ensemble members, suggesting that the fully integrated uncertainty stemming from the 

hydrologic modeling process can be highly significant in impacts assessments. However, 

this work made highly simplifying assumptions to facilitate the quantification of 

predictive hydrologic model error (i.e. an independent, homoscedastic, Gaussian error 

model). Furthermore, the fully integrated hydrologic model uncertainty was only 

propagated through the mean of an ensemble of climate change projections, rather than 

separately through each ensemble member. This approach artificially deflates the true 

uncertainty in future hydrologic model projections because hydrologic model error 

should be integrated with the range of uncertainties stemming from GCMs and 

downscaling techniques. The third chapter of this dissertation seeks to build upon this 

study to develop a more comprehensive and accurate assessment of the interactions 

between hydrologic and climate change uncertainties for use in water resources studies.  

 

To this point the discussion has focused on the progress and gaps of previous work 

exploring integrated uncertainty assessments in hydrologic impacts studies under climate 

change. Yet, there is an even more disparate gap in the literature exploring the 

propagation of these integrated climatic and hydrologic uncertainties through a water 

resource systems analysis in order to delimit how they influence planning decisions. Most 
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studies that have attempted to account for hydrologic modeling uncertainty in water 

resources planning mainly focus on short-term (daily-seasonal) decision-making 

timescales [Georgakakos et al., 1998; Faber and Stedinger, 2001; Yao and Georgakakos, 

2001; Alemu et al., 2011] and do not utilize the most recent advances in hydrologic 

modeling uncertainty methods referenced above. One notable exception is the work 

presented in Ajami et al. [2008]. In this study, hydrologic model uncertainty was 

quantified using the IBUNE method [Ajami et al., 2007] and propagated through a long-

term planning study to assess the range of reliability, resilience, and vulnerability realized 

by a water supply system under different management rules. This study did not, however, 

consider planning uncertainties related to climate change. To the author’s knowledge, 

there have been no attempts to formally quantify hydrologic model uncertainty, couple it 

with an analysis of climate change uncertainty, and assess their integrated impact on 

long-term water resource planning decisions. The fourth and fifth chapters of this 

dissertation address this research question, with the fourth chapter focused on flood 

control operations and the fifth chapter exploring the same issue in a long-term planning 

effort of a multi-objective water system.  

 
 

The primary contribution of this dissertation is to present a series of tools and methods 

for revealing whether a water resource system or adaptations thereof are robust under 

integrated uncertainties from long-term climate change, internal climate variability, and 

hydrologic modeling capabilities. What follows are four separate chapters that present the 

methods explored to improve the current state of the science of integrated climate change 

uncertainty analyses for water resource systems.  
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CHAPTER 2 

A SEMIPARAMETRIC MULTIVARIATE, MULTI-SITE WEATHER 

GENERATOR WITH LOW-FREQUENCY VARIAIBLITY FOR USE IN 

CLIMATE RISK ASSESSMENTS 

 

2.1. Abstract 

A multivariate, multi-site daily weather generator is presented for use in decision-centric 

vulnerability assessments under climate change. The tool is envisioned useful for a wide 

range of socioeconomic and biophysical systems sensitive to different aspects of climate 

variability and change. The proposed stochastic model has several components, including 

1) a wavelet decomposition coupled to an autoregressive model to account for structured, 

low-frequency climate oscillations, 2) a Markov Chain and k-nearest-neighbor (KNN) 

resampling scheme to simulate spatially-distributed, multivariate weather variables over a 

region, and 3) a quantile mapping procedure to enforce long-term distributional shifts in 

weather variables that result from prescribed climate changes. The Markov Chain is used 

to better represent wet and dry spell statistics while the KNN bootstrap resampler 

preserves the covariance structure between the weather variables and across space. The 

wavelet-based autoregressive model is applied to annual climate over the region and used 

to modulate the Markov Chain and KNN resampling, embedding appropriate low-

frequency structure within the daily weather generation process. Parameters can be 

altered in any of the components of the proposed model to enable the generation of 

realistic time series of climate variables that exhibit changes to both lower-order and 

higher-order statistics at long-term (inter-annual), mid-term (seasonal), and short-term 

(daily) timescales. The tool can be coupled with impact models in a bottom-up risk 



9 
 

assessment to efficiently and exhaustively explore the potential climate changes under 

which a system is most vulnerable. An application of the weather generator is presented 

for the Connecticut River basin to demonstrate the tool’s ability to generate a wide range 

of possible climate sequences over an extensive spatial domain. 

 

2.2. Introduction 

The reluctance of the global community to mitigate greenhouse gas emissions and the 

legacy of past emissions already produced spurs the need for climate change adaptation. 

Recently, bottom-up or “decision-centric” approaches to identifying robust climate 

change adaptations have become more popular in the literature [Jones, 2001; Johnson and 

Weaver, 2009; Lempert and Groves, 2010; Prudhomme et al., 2010; Wilby and Dessai, 

2010; Brown et al., 2011; Brown and Wilby, 2012]. These approaches focus on a system 

of interest (e.g. agricultural lands, an ecosystem, a reservoir, etc.) and systematically 

identify its vulnerabilities to climate; this contrasts “scenario-led” methods that limit the 

analysis to a set of climate model projections that may or may not reveal a system’s 

climate sensitivities. A critical step in decision-centric methods involves testing the 

performance of a system over a range of plausible climate changes to identify harmful 

climate states that could cause the system to fail. As the literature on this topic is 

relatively young, limited tools have been investigated for the production of altered 

climate time series over which to conduct the vulnerability assessment. This study 

presents a new stochastic weather generator specifically designed to aid in these 

assessments. The model can be used to generate time series of weather expressing various 

changes in the climate at multiple temporal scales. Such time series may be especially 
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useful for exploring changes that are expected to occur, such as increasing intensity and 

decreasing frequency of precipitation consistent with the acceleration of the hydrologic 

cycle, or changes to low-frequency climate variability, that are not well simulated in 

current global climate model projections.  

 

Bottom-up or vulnerability-based approaches to climate change adaptation form a 

relatively new area of research that attempts to appraise possible adaptations of a system 

to climate stressors by first identifying the climate vulnerabilities of that system over a 

wide range of potential climate changes. After system vulnerabilities are identified, 

different adaptation strategies can be evaluated over threatening climate states in order to 

identify robust adaptation measures. The likelihood of harmful climate conditions can 

also be assessed using available climate information, including the most up-to-date 

climate modeling results (e.g. global circulation model (GCM) projections). By detaching 

the identification of system vulnerabilities from climate projections produced by GCMs, 

bottom-up approaches differ from more traditional top-down approaches that depend on a 

limited number of internally consistent climate scenarios to explore the range of potential 

climate change impacts [Christensen et al., 2004; Wiley and Palmer, 2008]. It has been 

argued that bottom-up methods are better equipped to provide more decision-relevant 

information useful in identifying robust adaptation measures under deep future 

uncertainty [Lempert et al., 1996]. In part, this is because bottom-up approaches can 

better explore a full range of plausible climate changes, whereas GCM projections 

provide only a limited view and do not delimit the possible range (although they are often 

interpreted to do so) [see Stainforth et al., 2007; Deser et al., 2012]. 
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Despite the growing interest in decision-centric approaches, technical methods for 

actually conducting the vulnerability assessment (i.e. generating perturbed climate 

sequences over which to test system vulnerability) are relatively underdeveloped. To 

date, only a handful of methods have been utilized. The most popular approach has been 

to apply simple change factors to the historic record of precipitation and temperature, 

effectively testing system sensitivities to mean climate shifts [Johnson and Weaver, 2009; 

Gober et al., 2010; Lempert and Groves, 2010; Brown et al., 2012]. Other studies have 

explored more detailed changes, including shifts in intra-annual climate [Prudhomme et 

al., 2010] and high-order statistics (e.g. variance, serial correlation) of annual 

hydroclimate data [Moody and Brown, 2013]. While all of these approaches were 

appropriate for their specific application, these methods exhibit limited ability to perturb 

the entire distribution of climate variables or alter their behavior at multiple temporal 

scales. For instance, none of the methods mentioned are equipped to simulate climates 

exhibiting shifts in both long-term (decadal) precipitation persistence and extreme daily 

precipitation amounts. Yet both of these changes are possible under climate change 

[Timmermann et al., 1999; Collins, 2000; IPCC, 2007] and may be important in a climate 

sensitivity analysis for a particular system (e.g. a reservoir jointly managed for flood risk 

reduction and water supply). Thus, there is a need for more generalized and 

comprehensive tools to conduct climate vulnerability assessments for systems sensitive to 

different climate variables across multiple temporal scales.  
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We propose stochastic weather generators as one possible tool that can fulfill this need. 

Stochastic weather generators are computer algorithms that produce long series of 

synthetic daily weather data. The parameters of the model are conditioned on existing 

meteorological records to ensure the characteristics of historic weather emerge in the 

daily stochastic process. Weather generators are a popular tool for extending 

meteorological records [Richardson, 1985], supplementing weather data in a region of 

data sparsity [Hutchinson, 1995], disaggregating seasonal hydroclimatic forecasts [Wilks, 

2002], and downscaling coarse, long-term climate projections to fine-resolution, daily 

weather for impact studies [Wilks, 1992; Kilsby et al., 2007; Groves et al., 2008; Fatichi 

et al. 2011; Fatichi et al. 2013]. Their use for climate sensitivity analysis of impact 

models has also been tested, particularly in the agricultural sector [Semenov and Porter, 

1995; Mearns et al., 1996; Riha et al. 1996; Dubrovsky et al. 2000; Confalonieri, 2012]. 

These sensitivity studies systematically change parameters in the model to produce new 

sequences of weather variables (e.g. precipitation) that exhibit a wide range of change in 

their characteristics (e.g. average amount, frequency, intensity, duration, etc.). By 

incrementally manipulating one or more parameters in the model, many climate scenarios 

can be simulated that exhaustively explore potential futures that exhibit slight differences 

in nuanced climate characteristics, such as the intensity and frequency of daily 

precipitation, the serial correlation of extreme heat days, or the recurrence of long-term 

droughts. Previous bottom-up climate impact assessments, which have relied heavily on 

simple change factors to generate new climate sequences, have not been able to test 

system vulnerabilities over such a wide range of plausible climate changes. To the 

authors’ knowledge, only one study has used a weather generator to investigate a 
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system’s climate sensitivity in the context of a decision-centric climate change analysis 

[Jones, 2000], and this study only examined changes in mean temperature and 

precipitation. The potential of weather generators for driving vulnerability assessments in 

bottom-up climate change studies has not yet been adequately explored, particular with 

respects to nuanced aspects of climate variability.  

 

While the use of stochastic weather generators for bottom-up risk assessments is very 

attractive in theory, there are many challenges that arise in practical application. As 

mentioned earlier, socioeconomic and biophysical systems are often vulnerable not only 

to changes in mean climate, but also to changes in nuanced climate variability. Therefore, 

the chosen weather generator should be able to easily perturb any of these climate 

characteristics, which not all models in the literature can easily accomplish [Wilks and 

Wilby, 1999]. Additionally, impact models often require sequences of several weather 

variables at multiple locations that exhibit a realistic covariance structure between 

variables and across sites. The production of spatially distributed, correlated weather 

variables continues to challenge certain approaches to stochastic weather generation 

[Beersma and Buishand, 2003]. Weather variables can also exhibit long-term persistence 

[Hurst, 1951; Koutsoyiannis, 2003] on timescales up to decades that can significantly 

impact system performance, requiring that the chosen weather generator be capable of 

replicating (and possibly altering in a bottom-up analysis) structured low-frequency 

climate variability.  
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The literature is rich with examples of stochastic weather generators that can address 

some subset of the challenges listed above. Both parametric and non-parametric models 

have been proposed to maintain correlation structures between variables and across sites 

[Wilks, 1998; Wilks, 1999; Rajagopalan and Lall, 1999; Buishand and Brandsma, 2001; 

Wilby et al., 2003, Apipattanavis et al., 2007]. Some have argued that non-parametric 

models may be more capable than their parametric counterparts to reproduce the spatial 

covariance structure of multivariate weather variables [Buishand and Brandsma, 2001], 

but the ability to specify distributional shifts in weather variables is often more 

straightforward using parametric approaches [Wilks and Wilby, 1999]. Several models 

have also been proposed to preserve low-frequency variability observed in the historic 

record [Hansen and Mavromatis, 2001; Dubrovsky et al., 2004; Wang and Nathan, 2007; 

Chen et al., 2010; Fatichi et al. 2011; Kim et al., 2011], but these approaches have not 

been generalized to multi-site applications. After a substantial literature review, the 

authors were only able to identify one stochastic weather generator in the literature with 

the ability to specify distributional shifts in weather variables while simultaneously 

maintaining low frequency climate variability and inter-variable and inter-site 

correlations [Srikanthan and Pegram, 2009], and the simulation of multi-decadal climate 

persistence may still be difficult with this model formulation. In the context of 

vulnerability-based climate change assessments, a new model is required that can 

simultaneously simulate weather variables exhibiting accurate correlations between 

variables and across sites, appropriate long-term persistence at inter-annual and inter-

decadal time scales, and shifted distributional characteristics hypothesized under climate 

change. 
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This study presents a stochastic weather generator with greater ability to support bottom-

up vulnerability assessments under climate change for a wide range of socioeconomic 

and biophysical systems sensitive to different aspects of climate variability and change. 

The proposed stochastic model addresses all of the challenges mentioned above with 

several components, including 1) a wavelet decomposition coupled to an autoregressive 

model to account for structured, low-frequency climate oscillations, 2) a Markov Chain 

and k-nearest-neighbor (KNN) resampling scheme to simulate spatially-distributed, 

multivariate weather variables over a region, and 3) a quantile mapping procedure to 

enforce long-term distributional shifts in weather variables under climate change. 

Parameters that govern each model component can be altered to perturb various statistics 

of the climate system at different temporal scales. The tool can be coupled with impact 

models in a decision-centric risk assessment to determine the potential climate changes 

under which a system is most vulnerable. This allows the analyst to evaluate system 

performance over a wide range of possible climate changes to identify risk or to 

investigate specific climate change effects that are of concern (e.g. less frequent but more 

intense rainfall). An application of the weather generator is presented for the Connecticut 

River basin to demonstrate the tool’s ability to generate a wide range of possible climate 

sequences over an extensive spatial domain. The remainder of the paper proceeds as 

follows. The proposed weather generator is presented in section 2.3. The model is 

evaluated in section 2.4, and section 2.5 demonstrates the ability of the model to produce 

various climate sequences for use in a bottom-up climate change analysis. The article 

then concludes with a discussion in section 2.6.  
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2.3. The Weather Generator 

A flexible weather generator is desired that can accurately reproduce various 

characteristics of the historic climate regime while introducing the capacity to alter many 

of these characteristics in a decision-centric climate change analysis. The model 

considered in this work couples an autoregressive wavelet decomposition [Kwon et al., 

2007] for extracting and simulating low-frequency structure in annual climate with a 

multivariate weather generator [Apipattanavis et al., 2007] that effectively captures daily 

weather characteristics, including dry and wet spell statistics, cross-correlations between 

weather variables, and spatial correlations across multiple sites. The two models are 

linked by conditioning the daily weather generator on simulations of annual climate 

produced by the autoregressive wavelet decomposition. Time series of weather variables 

produced by the coupled modeling approach are then altered in a third step used to 

enforce distributional shifts in the climate. For precipitation, a quantile mapping 

procedure is utilized to implement this change. Long-term shifts in other variables are 

enforced using simpler additive and scaling methods. A flow diagram of the overall 

modeling framework is given in Figure 2.1. The various sub-models and algorithms used 

are described in detail below.  
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Figure 2.1. Schematic flowchart of the daily weather generation process conditional on 

annual simulations of climate and subject to post-process distributional adjustments. 

 

2.3.1. Wavelet Auto-Regressive Model for the Preservation of Low-Frequency 

Structure 

Most daily weather generators produce weather simulations that tend to be over-dispersed 

at inter-annual timescales and fail to reproduce observed low-frequency persistence. 

Several studies have proposed methods to correct for over-dispersion in weather 

simulations [Hansen and Mavromatis, 2001; Dubrovsky et al., 2004; Wang and Nathan, 

2007; Chen et al., 2010; Fatichi et al. 2011; Kim et al., 2011]. This study utilizes a 

relatively new approach put forth in Kwon et al. [2007] that extracts low-frequency 

signals in climate data using wavelet decomposition and then stochastically simulates 

each signal using autoregressive time series models. By simulating each signal 
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separately, the Wavelet Autoregressive Model (WARM) can better reproduce a time 

series of climate exhibiting a similar spectral signature to the observed data. In our 

methodology, the WARM approach is applied to annual, area-averaged precipitation over 

the region of interest. Each year of generated annual precipitation is then used to inform a 

single-year simulation of the daily weather generator (described below), embedding 

appropriate low-frequency structure within the daily weather generation process.  

 

Let xxxx~ represent a time series of annual, area-averaged precipitation for a region. The 

WARM approach decomposes this series into H orthogonal component series, hzzzz , that 

represent different low-frequency signals, as well as a residual noise component εεεε.  
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A simulation of xxxx~ is generated with time series models of each low-frequency component 

and the residual noise. Following Kwon et al. [2007], we consider linear autoregressive 

(AR) models for each term: 
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Here, hρ  is the order of the AR model for the hth low-frequency component, ρ  is the 

model order for the residual noise term, e and ξ are independently and identically 

distributed white noise processes, and vh,α and uβ are the AR model coefficients. Wavelet 

decomposition is used to generate the low-frequency components and residual noise term 

in equation 2.2. The wavelet transform is an analysis tool that enables the decomposition 

of a signal into orthogonal components in both the time and frequency domain [Torrence 

and Compo, 1998]. In-depth details on the implementation of the wavelet transform and 

its use in the WARM approach can be found in the Appendix. Time series models can be 

fit to each low-frequency component and the residual noise term using well-documented 

model fitting procedures [Box and Jenkins, 1970]. A simulated time series of annual 

precipitation, xxxx
~~ , can then be generated by summing the simulations of each component.  

 

The daily weather generator (presented in section 2.3.2) must be conditioned on the 

annual climate simulations produced using WARM to embed appropriate low-frequency 

structure within the daily weather generation process. To achieve this, the WARM 

simulation is used to generate a new climate dataset for each simulation year that is 

composed of a weighted resampling of historic years. The daily weather generator is then 

iteratively fit to each new dataset for a given simulation year and run for 365 days. The 

methodology for conditioning the daily weather generator on WARM simulations 

proceeds as follows:  
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1. Generate a simulation of annual precipitation of length Ta using the WARM procedure.  

2. For simulation year ta, calculate the Euclidean distances ( )2~~~ xxxxdddd −=
at

x between the 

WARM simulated area-averaged precipitation value, 
at

x
~~ , and the vector of annual, 

historic, area-averaged precipitation, xxxx~ .  

3. Order the distances from smallest to largest and assign weights to the k smallest 

distances using a discrete kernel function given as: 
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Here, j indexes the first k ordered distances j
d . These weights, which are greatest for the 

nearest neighbor and smallest for the k
th neighbor, sum to 1 and thus form a discrete 

probability mass function. We follow the heuristic approach suggested by Lall and 

Sharma [1996] and set k equal to the square root of the number of years of historic data.  

4. Sample with replacement 100 of the k-nearest neighbors based on the kernel weights 

from step 3. Determine the associated years of the 100 selected neighbors. Gather all of 

the daily data from the 100 selected years into a new dataset to be associated with 

simulation year ta. We note that data may be repeated in this new dataset because years 

can be sampled more than once.  
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5. Build the daily weather generator using this conditional dataset and run it over the 

length of one year.  

6. Repeat steps 1-5 for all Ta years of the annual WARM simulation.  

 

2.3.2. Semiparametric Multivariate and Multisite Weather Generating Algorithm 

The daily weather generation process utilized in this study is based on the methods 

proposed in Apipattanavis et al. [2007]. That study coupled a Markov Chain and KNN 

resampling scheme to simulate spatially-distributed, correlated, multivariate weather 

variables over a region. The Markov Chain is used to better represent wet and dry spell 

statistics while the KNN bootstrap resampler preserves the covariance structure between 

the weather variables and across space. Since the details of the method can be found in 

Apipattanavis et al. [2007], only a brief overview will be provided here.  

 

Assume a simulated, daily time series of R weather variables 

{ }Ttxxx
l

tR

l

t

l

t

l ,...,2,1|,...,, ,,2,1 ==XXXX  is desired at L different locations, where l

tix ,  represents 

the ith weather variable (e.g. precipitation) at time t and location l, and T is the length of 

the simulation. A weather generation scheme is designed to simulate area-averaged 

weather variables, XXXX , that can then be immediately disaggregated to individual locations. 

The weather generation approach is based on the common practice of first simulating 

precipitation occurrence, St, as a chain-dependent process. A three-state (extremely wet 

(St=2), wet (St=1) or dry (St=0)) Markov Chain of order 1 is used to simulate the 

occurrence of area-averaged precipitation across the L locations. The number of states 
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and chain order can be chosen to maximize performance while maintaining model 

parsimony using quantitative criteria such as Akaike’s information criterion [Akaike, 

1974], though this study simply follows the chain structure suggested in Apipattanavis et 

al. [2007]. Nine transition probabilities (p00, p01, p02, p10, p11, p12, p20, p21, p22) for the three-

state Markov Chain are fit to the area-averaged precipitation occurrence time series by 

month using the method of maximum likelihood. Here, pab denotes the probability of 

precipitation state b occurring given the occurrence of state a on the previous day. A 

threshold of 0.3 mm is chosen to distinguish between wet and dry days at the area-

averaged scale, while the 80th percentile of area-averaged precipitation (by month) is used 

as the threshold for extremely wet conditions. Again, these values are taken directly from 

Apipattanavis et al. [2007]. 

 

Area-averaged precipitation occurrence can be simulated from the fitted Markov Chain 

using standard procedures well documented in the previous weather generation literature. 

After simulating the occurrence of area-averaged precipitation states, a vector of weather 

variables XXXX  must be simulated and then disaggregated to each of the L locations. A KNN 

resampling algorithm of lag-1 is used to generate the values for all the weather variables. 

This algorithm follows a six-step process: 

1. Let 1-tXXXX be a vector of area-averaged weather variables already simulated for day t-1. 

Also assume, without loss of generality, that the Markov Chain had simulated day t-1 and 

day t as wet days.  
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2. Partition the historic record to find all pairs of days in a 7-day window centered on day 

t (if day t is January 15th, then the window includes all historic days from January 12th 

through January 18th) that have the same sequence of area-averaged precipitation states 

simulated by the Markov Chain for day t-1 and day t (in this case, two wet days in a row). 

Assume there are Q such pairs, each containing two days of area-averaged weather, 1
qXXXX

and 2
qXXXX . 

3. Calculate the weighted Euclidean distance, qd , between the simulated, area-averaged 

vector of weather variables, 1-tXXXX , and each of the Q vectors of historic, area-averaged 

variables:  

 

   ∑
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Here, 1, −tix denotes the ith area-averaged weather variable already simulated for time t-1, 

1

,qix  denotes the same area-averaged weather variable on the first day of the qth historic 

pair sampled in step 2, ix is the mean of the ith area-averaged weather variable across all 

time steps, and wi denotes the weight. In this study each weight wi is set equal to the 

inverse of the standard deviation of the ith weather variable, though there are methods in 

the literature for selecting weights in KNN resampling procedures to produce optimal 

forecasts [Karlsson and Yakowitz, 1987]. By centering each variable in the distance 
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equation about its mean and dividing by its standard deviation, we standardize values and 

give near-equal importance to each variable in the nearest-neighbor calculation. Prior to 

normalization, transformations may be required for non-Gaussian weather variables. 

4. Order the distances dq from smallest to largest. The k smallest distances are assigned 

weights using the same discrete kernel function presented in equation 2.3. Again, we 

follow the heuristic approach suggested by Lall and Sharma [1996] and set Qk = .  

5. Sample one of the k-nearest neighbors based on the weights developed in step 4 and 

record the historic date associated with that selected neighbor. Then, use vectors of 

weather variables lXXXX  on the successive day to the recorded date for each of the L 

locations to simulate the multivariate, multisite weather for day t.  

6. Repeat steps 1-5 for all T days of the simulation.  

To begin the algorithm and generate initial values for all weather variables, data for a 

random day from the simulation starting month is selected from the historic record that is 

consistent with the first precipitation state simulated by the Markov Chain.   

 

2.3.3. Quantile Mapping Technique to Enforce Long-Term Climate Changes 

By just using the coupled models of sections 2.3.1 and 2.3.2, it is not feasible to generate 

weather outside of the range of historic variability, nor is it possible to change the 

distribution of those variables. In the context of a vulnerability assessment, this capability 

is critically important, particularly for precipitation, which often dominates system 

performance. The approach developed here incorporates a quantile mapping method to 



25 
 

alter the distribution of daily precipitation. Alterations to other weather variables are 

treated more simply using standard additive or multiplicative factors.  

 

Let lm

pX
,ˆ  be daily, non-zero precipitation values for month m and location l simulated 

from the daily weather generator. Assume the simulated precipitation amounts can be 

modeled by a theoretical cumulative distribution function )|( 0ˆ , ηηηηxF lm
pX

with parameters η. 

A “target” cumulative distribution function, )|( 0

*
ˆ ,

****ηηηηxF lm
pX

F��
� �P� � p|η��, is introduced 

that represents the projected distribution of future precipitation under a climate change. 

For simplicity we assume that lm
pX

F ,ˆ and *
ˆ ,lm

pX
F arise from the same distribution but differ 

between their parameter sets, η and η*. The parameter set η* can be altered to control 

how the distribution of future precipitation differs from the historic observations. Many 

possible changes in precipitation characteristics are possible through adjustments to η*, 

including shifts in the mean, standard deviation, or extremes. For example, assume 

historic and projected precipitation for month m follow two-parameter Gamma 

distributions with shape and scale parameters η = {κ, θ} and η*
 = {κ

*, θ*}. The parameter 

set η can be estimated by fitting a Gamma distribution to lm

pX
,ˆ . Then, a new mean *µ and 

variance 
*2σ can be specified for the target Gamma distribution, and the parameter set η* 

can be inferred using the relationships between the parameters and the first two moments, 

*** θκµ ×=  and 
*2**2 θκσ ×= . If changes in the first two moments do not sufficiently 

account for particular shifts in higher order statistics that are of interest, the target 

parameter set η* can be further tailored to better impose this change. Once the parameter 
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set η* of the target distribution is specified, a quantile mapping procedure can be used to 

alter the distribution lm
pX

F ,ˆ of simulated non-zero precipitation to match that specified by 

*
ˆ ,lm

pX
F (Figure 2.2). To do this, we first determine the exceedance probability of the t

th 

value of synthesized precipitation for month m, lm

tpx
,

,
ˆ , from the cdf lm

pX
F ,ˆ . Then, the target 

cdf *
ˆ ,lm

pX
F is used to map this exceedance probability to a new precipitation amount, 

*,

, )ˆ( lm

tpx , that is consistent with the specified distribution for climate-altered monthly 

precipitation: 

))ˆ(()ˆ( ,
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lm
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This procedure is repeated for each non-zero precipitation amount synthesized by the 

weather generator.  

 

2.4. Model Evaluation 

To evaluate the performance of the proposed weather generator, we apply it to daily 

weather data distributed across the Connecticut River basin in the New England region of 

the United States. Daily precipitation and maximum and minimum temperature are the 

variables included in the analysis. The data are available between January 1, 1949 and 

December 31, 2010 as gridded observations with a spatial resolution of approximately 

144 km2 [Maurer et al., 2002]. The Connecticut River basin drains over 31,000 square 

kilometers and contains a large number (260) of grid cells, enabling an evaluation of the 
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multi-site performance of the approach. The spatial extent of the proposed model 

application is quite large, and so adequate performance of the model at this spatial scale 

greatly supports its use for vulnerability assessments of large, spatially expansive 

systems. For evaluation, the model is run 50 separate times, each 62 years long (the 

length of the historic record). We examine the reproduction of multiple characteristics of 

each weather variable at several different time scales. 

 

Figure 2.2. The quantile mapping procedure to adjust daily, non-zero precipitation values. 

a) A sample of an original time series of April precipitation simulated by the weather 

generator. The blue point represents a sample precipitation value to be adjusted. b) The 

cdf for the fitted gamma distribution to the original simulation of April precipitation 

(black), as well as the target cdf used to make the adjustments (red). The rectangle 

delimits an inset, shown in detail in (c). Here, the precipitation value represented by the 

blue point in (a) is mapped to a new precipitation value via four steps. The new, adjusted 

precipitation time series, including the adjusted point (blue), is shown in (d). 
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Figure 2.3 shows the mean, standard deviation, and skew of non-zero daily precipitation 

amounts, daily maximum temperature, and daily minimum temperature for all 

combinations of months and grid cells. The median values of these statistics are taken 

over the 50 different simulations for comparison against the historic statistics. The results 

suggest good performance for all variables and statistics except for the skew of daily 

precipitation, which tends to be underestimated in the simulations for some grid cells.  

 

Figure 2.3. Daily performance statistics for all grid cells and months, including the mean, 

standard deviation, and skew of precipitation, maximum temperature, and minimum 

temperature. Median values across the 50 different simulations are shown against the 

observed values. 
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Correlations of a given variable across sites and cross-correlations between different 

variables for a given site are shown in Figure 2.4. Again, median values across the 50 

simulations are shown. Both types of correlation are very well preserved, as is expected 

given the resampling techniques used to generate the daily weather sequences. The 

simulations also capture the average number of dry and wet days across all sites and 

months rather well (Figure 2.5). There is a slight underestimation of the average lengths 

of wet and dry spells, particularly for those grid cells with larger spell lengths, but this 

underestimation is slight (less than a day).  

 

Figure 2.4. Inter-site correlations for daily precipitation, maximum temperature, and 

minimum temperature, as well as cross correlations between each pair of variables. 

Median values across the 50 different simulations are shown against the observed values 

for all grid cells. Correlations are taken across the entire simulation/observed record. 

 

 



30 
 

 

Figure 2.5. Average number of dry and wet days per month, as well as the average dry 

and wet spell length per month, across all grid cells. Median values across the 50 

different simulations are shown against the observed values. 

 

The spread of lag-1 autocorrelations across the 50 different simulations are shown in 

Figure 2.6. For each variable, the distribution of this statistic is shown for the average 

autocorrelation across all sites. There is a negative bias in the lag-1 autocorrelations for 

daily precipitation, although this bias is slight. Similarly, the simulations tend to 

consistently underestimate the autocorrelation in the temperature fields, but again this 

bias is actually rather small in magnitude. The slight underestimation of serial correlation 

for all variables could likely be improved by increasing the order of the Markov Chain, 

but no such correction was made here.  
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Figure 2.6. Distributions of lag 1 serial correlation values for precipitation and maximum 

and minimum temperature across the 50 model simulations. The average serial 

correlation across all grid cells is shown. Observed values are shown by the red triangles. 

All serial correlations are taken across the entire simulation/observed record.   

 

To explore the reproduction of extremes, Figure 2.7 shows the distribution of 10-year and 

20-year maximum annual precipitation events, as well as the average number of extreme 

heat days, across the 50 simulations. The precipitation extreme value estimates were 

developed for each grid cell by fitting a Generalized Extreme Value (GEV) distribution 

to the time series of annual maximum precipitation at that location. The temperature 

extremes were taken as the average number of days per year above 32°C. The 

distributions for the average of these statistics across all locations are shown for the 

ensemble of 50 simulations.  The model tends to underestimate the magnitude of extreme 

rainfall events, although the spread of model simulations contains the observed value for 

the 10-year event and nearly reaches the observed value for the 20-year event. For 

temperature extremes, the model again shows a slight negative bias, although the range of 

simulations does contain the observed value. Overall, there is a moderate negative bias in 
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the extremes, an effect that can often emerge in weather generators that rely on data 

resampling [Lee et al. 2012].  

 

Figure 2.7. Distributions of the 10-year and 20-year precipitation event, as well as the 

average number of extreme heat days per year (>32°C), across the 50 model simulations. 

The average of each extreme event across all grid cells is shown. Estimated from the 

observed data are shown by the red triangles. All precipitation extreme value estimates 

are derived from a fitted GEV distribution. 

 

Statistical comparisons for annual precipitation totals and temperature averages are 

shown in Figure 2.8. The mean precipitation and temperature fields are well preserved at 

the annual timescale. The standard deviation of precipitation is adequately captured for 

all but a few grid cells. The standard deviation of both temperature fields tends to be 

under-simulated, particularly for those grid cells exhibiting greater annual temperature 

variability. The skew for all three variables is not well captured by the model, although 

we note that there is significant uncertainty in the observed skew values due to the small 

number of annual observations available for its calculation. For precipitation and 

maximum temperature, the skew is overestimated for those grid cells with small skew 
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values and underestimated for those grid cells with larger skew values. This particular 

model discrepancy may be due to the fact that basin-averaged climate fields are being 

used to drive the model over a large and somewhat heterogeneous region.  

 

Figure 2.8. Annual performance statistics for all grid cells, including the mean, standard 

deviation, and skew of cumulative precipitation, maximum temperature, and minimum 

temperature. Median values across the 50 different simulations are shown against the 

observed values. 

 

Finally, the power spectra of annual precipitation values are examined in Figure 2.9. One 

low-frequency component (H=1) with significant periods between 1-4 years was modeled 

in the WARM approach. The mean simulated power spectrum across the 50 simulations 
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matches that seen for the observations reasonably well. Most importantly, the mean 

simulated spectra become statistically insignificant at around the same period length (~4 

years) as in the observations. Furthermore, the observed spectra are completely within the 

95% uncertainty bounds.  

 

Figure 2.9. Power spectra for annual precipitation. The observed spectra (black solid) are 

compared against the mean power spectra (dashed blue) of the 50 simulations, along with 

range bounded by the 2.5th and 97.5th percentiles of the power spectra for the ensemble 

(grey). Also shown is the 95% significance level (red dotted) developed from a red noise 

background process. The power spectra of the observations and simulations become 

statistically significant if they rise above the red dotted line. 

 

Overall, the performance of the model for most statistics is either good or adequate, with 

only some moderate discrepancies in the higher-order statistics. This is promising given 

that the model is being applied to a very large region subject to various changes in 



35 
 

topography, which can often be quite challenging for weather generation procedures. 

Furthermore, we note that these performance statistics are comparable to those seen in the 

weather generator presented in Srikanthan and Pegram [2009], which is the only other 

weather generator in the literature with the ability to specify distributional shifts in 

weather variables while simultaneously maintaining low-frequency climate variability 

and inter-variable and inter-site correlations.  

 

2.5. Model Demonstration for a Climate Stress Test 

The daily weather generator was specifically designed to facilitate a decision-centric 

climate risk assessment of systems sensitive to several components of the climate at 

various temporal scales. In the modeling framework presented here an emphasis was 

placed on altering precipitation patterns in the climate system because this variable often 

dominates the performance of biophysical and socioeconomic systems. Several 

parameters can be adjusted in the model to vary different components of precipitation 

(see Table 2.1). These include the parameters for the target distribution in the quantile 

mapping scheme, the transition probabilities of the Markov Chain, the coefficients of the 

AR model for low-frequency components, and the standard deviation of white noise for 

those AR models. By changing these parameters, shifts in daily precipitation amounts, 

daily persistence, inter-annual persistence, and inter-annual variability can be 

implemented in a bottom-up climate change assessment. The exact outcome of some of 

these perturbations will be known a priori, such as with the quantile mapping procedure, 

while outcomes from other perturbations can only be approximated prior to the 

simulation due to the stochastic formulation of the model. This is the case for changes in 
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annual persistence forced by alterations to the parameters of the WARM model. 

Furthermore, scaling factors and delta shifts can be applied to other climate fields (e.g. 

daily temperatures, wind speeds, etc.) to explore other system sensitivities to potential 

climate changes. Many of these changes, including those related to the quantile mapping, 

delta shifts, and transition probabilities, can be implemented differently by month, 

allowing for seasonal climate changes to be explored. 

Table 2.1. Model parameters that can be altered to perturb the climate system at various 

temporal scales. 

Climate 
Field 

Model 
Component 

Parameter Effect 
Timing 

Daily Seasonal Inter-Annual 

P
re

ci
p
it

at
io

n
 

Quantile 
Mapping 

Target 
Distribution 
Parameters 

(η*) 

Change 
distribution of 

daily 
precipitation by 

month 

X X  

Daily 
Weather 

Generator 

Transition 
Probabilities 

(pab) 

Alter daily 
persistence of 

daily 
precipitation by 

month 

X X  

WARM 

Coefficients 
of the AR 

model ( hα
) 

Adjust 
persistence of 
low-frequency 

signals  

  X 

WARM 

Standard 
deviation of 
AR white 
noise (σe) 

Adjust 
magnitude of 

low-frequency 
signals 

  X 

T
em

p
er

at
u

re
 

Daily 
Weather 

Generator 

Delta Shifts 
(δt) 

Shift daily 
temperature by 

month 
X X  
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To demonstrate how this model could be used in a decision-centric climate risk 

assessment, the weather generator is used to generate several sequences of weather 

representing various types of climate change for the Connecticut River basin. Five types 

of climate change are examined here, including alterations to the mean of daily 

precipitation, the coefficient of variation of daily precipitation, the daily persistence of 

precipitation, the magnitude of low-frequency variability, and the level of persistence in 

that low-frequency variability. All adjustments are applied as step changes in the model 

rather than trended changes. The model parameters being changed and the magnitude of 

their perturbation are given in Table 2.2. Various combinations of these changes are 

presented below in order to illustrate the types of climate change that can be explored 

with the tool, as well as the potential, unintended consequences that may arise in other 

variables from the imposed parameter changes.  

 

Figure 2.10a,b shows the changes to the distribution of non-zero daily precipitation at one 

grid cell in April caused by increasing the mean and coefficient of variation, respectively, 

for that month by 30% in the quantile mapping procedure. All other components of the 

climate system were kept unchanged from their historic, fitted values. Comparisons are 

made against a baseline model run with no changes imposed. When the mean value is 

increased in the quantile mapping approach, the entire distribution of daily precipitation 

values is shifted upwards (Figure 2.10a). These values are shifted in such a way to ensure 

that the variability of precipitation (i.e. the coefficient of variation) does not change. 

Correlations between precipitation and maximum temperature are examined to determine 

whether mean changes under the quantile mapping procedure degrade relationships 
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between precipitation and other variables (Figure 2.10d). For mean changes, these 

relationships appear well preserved. The distribution of daily April precipitation looks 

quite different when the mean is kept constant but the coefficient of variation is increased 

(Figure 2.10b). Here, the distribution is stretched to increase the highest events (>0.85 

non-exceedance level) while lowering all of the remaining, smaller precipitation values in 

order to maintain the same mean value. This stretching of the distribution causes 

distortions in the correlations between precipitation and temperature, producing a 

negative bias in the correlation values across most grid cells (Figure 2.10e).  

 

Figure 2.10c shows the average number of dry days per month across all grid cells for a 

model run under baseline transition probabilities in the Markov Chain and a run with 

increased persistence in dry days. As expected, the run with a greater persistence in dry 

days exhibits an increased number of these events. Unlike the results from the quantile 

mapping procedure, however, the change in this statistic for each grid cell can only be 

determined after imposing the alternative model parameterization and exploring the 

resulting climate sequence, because daily precipitation persistence is being modeled (and 

altered) at the basin-average scale. We also note that alterations to daily precipitation 

persistence can change the distribution of certain temperature statistics that depend on the 

occurrence of precipitation. For instance, increases in dry day persistence also lead to 

more extreme heat days (>32°C) across most grid cells (Figure 2.10f).  
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Figure 2.10. Intended (first row) and unintended (second row) changes to various weather 

characteristics due to forced changes in model parameters, including the mean of daily 

precipitation (first column), the coefficient of variation (CV) (second column), and 

transition probabilities in the Markov Chain (third column). Comparisons are made 

between a model run with the change imposed and a baseline run without any parameter 

changes. a,b) Baseline (black solid) and adjusted (red dashed) empirical distributions of 

non-zero April precipitation for a single grid cell. c) The average number of dry days per 

month across all grid cells. d,e) The cross correlation between non-zero precipitation and 

maximum temperature at each grid cell. f) The average number of extreme heat days 

(>32°C) per year across all grid cells.      
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Table 2.2. Climate changes included in the stress test. All adjustments are applied as step 

changes in the model rather than trended changes.  

Climate Change 
Model Parameter 

Adjusted 

Size of Adjustment 
(All values show the size 

of the change above 
baseline values)  

Mean precipitation 
Mean of daily 

precipitation ( )*µ  
+/-30% 

Precipitation variability 

Coefficient of variation 
of daily precipitation 









*

*

µ
σ

 

+30% 

Daily precipitation 
persistence 

Transition probabilities 
p0,1 and p0,0 

-0.2 (p0,1) 
+0.2 (p0,0) 

Magnitude of low-
frequency variability 

Standard deviation of 
white noise for all AR 

models (σe, σξ) 
+/-30% 

Persistence of low-
frequency variability 

Lag-1 coefficient for low-
frequency component 

(α1) 
-0.2 

 

Finally, we present a sample of model runs exhibiting changes to the magnitude, 

variability, and frequency of annual precipitation. The model runs are compared against 

an ensemble of GCM projections to demonstrate how the weather generator can produce 

a much wider range of potential climate changes than the limited view afforded by the 

GCMs. Figure 2.11 shows the mean, coefficient of variation, and lag-1 autocorrelation 

coefficient for annual precipitation averaged over the entire Connecticut River basin. The 

statistics from several climate scenarios are presented, including those from the observed 

record, 234 downscaled GCM projections for the 2050-2099 period, and many different 

weather generator runs. The GCM projections were gathered from the World Climate 

Research Programm’s (WCRP’s) Coupled Model Intercomparison Project phase 5 

(CMIP5) multi-model dataset and were downscaled using the bias-correction spatial 



41 
 

disaggregation technique [Wood et al., 2004; Reclamation, 2013]. Three, 20-member 

ensembles of weather generator runs, each 62-years long, are presented. The first set is 

run under baseline conditions, while the second set is run with a 30% reduction in mean 

precipitation and a 30% increase in the standard deviation of annual precipitation. The 

final ensemble is run with a 30% increase in mean precipitation, a 30% reduction in the 

standard deviation of annual precipitation, and a significant decrease in the lag-1 

autocorrelation of annual precipitation.  

 

Several conclusions emerge from the results in Figure 2.11. First, the ensemble of 2050-

2099 GCM runs shows an increase in mean precipitation over the historic average, with a 

mean increase of 110% and a range of 100% and 122%.  These projections show a slight 

decline in the average coefficient of variation, but this change is largely driven by an 

increase in the mean with little change in the standard deviation. Also, the projections 

exhibit much lower serial correlation values than that seen in the observed record, with 

only a handful of scenarios showing comparable levels of persistence. The historic (1950-

2000) time period from these projections (not shown) exhibit the same low level of 

persistence as the future scenarios, suggesting that the downscaled GCM projections may 

not exhibit realistic, higher order climate characteristics over an aggregate region. 

Importantly, the magnitude, variability, and persistence of annual precipitation under 

these future GCM projections only exhibit a limited range of possible outcomes. This 

narrow view of possible future climate outcomes limits the utility of these projections in a 

climate change risk analysis, in which all climate possibilities, particularly high-impact, 

low-probability events, are important to the discovery and quantification of risk. 
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Figure 2.11. The mean, coefficient of variation, and lag-1 serial correlation coefficient of 

annual precipitation. Statistics for several climate scenarios are show, including 1) the 

observed record (red), 2) future (brown) BCSD downscaled GCM projections from the 

CMIP5 archive, 3) 20 baseline weather generator simulations (blue), 4) 20 simulations 

with a decreased mean and increased standard deviation (green), and 5) 20 simulations 

with an increased mean, decreased standard deviation, and decreased autocorrelation 

(magenta). The observed lag-1 serial correlation is 0.19. 

 

In contrast, the 20-member ensemble of weather generator runs under baseline conditions 

exhibit climate characteristics that are directly comparable to the observed record. The 

magnitude, variability, and lag-1 autocorrelation of annual precipitation are all relatively 

unbiased. Furthermore, the ensemble of runs presents a range of plausible climates that 
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could occur even without climate change, providing an analyst with climate sequences 

that could be used to test the robustness of a system to internal climate variability.    

 

A much wider range of possible future outcomes can be explored using the proposed 

weather generator. Figure 2.11 exhibits two possible combinations of change simulated 

by the model, including a set of climate sequences with significantly less but more 

variable annual precipitation, as well as a set of climate sequences with more annual 

precipitation, but with depressed variability and persistence. These two sets of changes 

are just a sample of what could be simulated by the weather generator, but their 

expansive range across climate change space demonstrates how the model could be used 

to explore a wide range of possible climate outcomes under climate change. This affords 

analysts more flexibility in how they examine the weaknesses of a system of interest and 

enables a more thorough exploration of climate risk. Given the tendency of planners and 

managers to underestimate the possibility of potential hazards, we feel that there are 

significant advantages to exploring system weaknesses over a wide range of possible 

climate outcomes, an analysis made possible by the proposed weather generator.  

 

2.6. Discussion 

2.6.1. Model Limitations 

It is important to recognize the limitations of any tool when trying to infer insight from 

model results. While the weather generator presented in this study was designed to 

simulation multiple forms of climate variability at several different time scales, there are 

certain components of climate variability that are still challenging for the model to 
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account for or modulate. For one, a resampling algorithm drives the model, so at the daily 

time scale the tool implicitly assumes that the spatial correlation structure of the weather 

variables is stationary. This may not be the case under future climate changes, yet such a 

change cannot be simulated with this model. At inter-annual timescales, the tool currently 

simulates low-frequency variability based on an annual precipitation time series and 

ignores any signal in the annual temperature data. Also, it may be difficult to estimate 

robust parameters for certain low-frequency signals in the WARM model if the length of 

the annual precipitation time series is not sufficiently long. One approach to circumvent 

both of these issues would be to replace the annual precipitation time series with an 

alternative climate proxy that relates to both precipitation and temperature (such as an 

ENSO index) for which there is more data available through climate reconstructions 

[Kwon et al., 2009]. This requires, however, that a significant climate proxy with a long 

record can be found for the region of interest. Additionally, if monotonic trends, as 

opposed to quasi-oscillatory variability, are present in the annual data, then the WARM 

approach may identify spurious low-frequency components [Kwon et al. 2007]. Such 

trends, if identified, should be removed from the data before building the WARM model, 

but distinguishing trends from low-frequency oscillations is not straightforward. Finally, 

this model is data intensive, and therefore may be difficult to use in data-sparse regions. 

Despite these limitations, however, this tool does provide a step forward in the simulation 

of climate across multiple temporal and spatial scales for use in vulnerability assessments 

of human and ecological systems.  
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2.6.2. Determining Scenario Plausibility, Selecting the Scenario Range, and Linking 

to Climate Science 

The model presented here was designed to support decision-centric climate change 

studies by enabling an analyst to test a system under a wide range of plausible climate 

scenarios and identify potential climate hazards. However, the analyst faces two 

immediate questions when trying to conduct this “climate stress test”: 1) what constitutes 

a plausible climate change? and 2) how large should the range of climate changes be? 

Finding limitations on how far the climate can be perturbed before the scenario should be 

considered implausible is a difficult task. Expert opinion may be useful in defining these 

bounds, as may very large simulation ensembles of simpler (computationally faster) 

climate models [Piani et al. 2005]. However, the plausibility of each climate change 

scenario may not be critical when identifying system hazards as long as implausible 

changes are discounted or disregarded later in the analysis when developing estimates of 

climate risk [Brown et al., 2012]. The important factor is to determine how far the climate 

must change before the system no longer functions properly so that the analyst is aware 

of the potential climate hazards. Therefore, a promising strategy in bottom-up approaches 

may be to identify those climate variables and time scales that influence the performance 

of the system and then extend the range of climate changes for those variables wide 

enough to stress the system to failure. When those failures emerge judgments can be 

made regarding the plausibility of the conditions causing them; they need not be made 

earlier. In practice, there may be computational challenges for exploring so many 

scenarios, but with parallel computing capabilities the cost of an additional simulation 

run is often rather small. Also, adaptive sampling techniques may be utilized to reduce 
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the number of simulations needed to discover performance thresholds in climate change 

space. 

 

Once performance thresholds in climate change space are identified, information on the 

likelihood of harmful climate states can be used to estimate climate risks facing the 

system. If certain scenarios used in the stress test are truly implausible, then the 

likelihood assessment should reveal this and discount these scenarios when estimating 

climate risk. Downscaled GCM projections are a logical starting place to garner this 

likelihood information, and recently there have been significant efforts in the climate 

science community to develop formal probability distributions of global and regional 

climate variables from these projections. These approaches utilize initial condition 

ensembles [Stainforth et al., 2005], perturbed physics ensembles [Rougier et al., 2009], 

multi-model ensembles [Tebaldi et al., 2005], or combinations thereof [Sexton et al., 

2012] to develop pdfs of response variables. Expert opinion can also be very valuable in 

forming these likelihood estimates, as can data from the paleo-record. In addition, 

imprecise probabilities could be utilized to express uncertainty regarding the estimated 

values (Rinderknecht et al., 2012). Potentially, more reliable probability estimates may be 

developed for discrete thresholds (i.e. the likelihood of climate change beyond a 

threshold associated with system failure), rather than continuous probabilities across the 

entire climate space. In all of these cases, the probabilities of change should likely be 

considered subjective, but they can still be coupled with the results of the vulnerability 

assessment to quantitatively appraise the robustness of different adaptation measures 

across the range of climate change space [Moody and Brown, 2013]. More research is 
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needed to explore approaches for gathering this probabilistic information and coupling it 

with the results of an extensive vulnerability assessment.  

 

2.7. Conclusion 

The most recent scientific knowledge suggests that the impacts of climate change on 

socioeconomic and biophysical systems could be very significant, yet they remain highly 

uncertain. Recently, decision-analytic approaches have been proposed to better handle 

this uncertainty and frame adaptation studies under climate change in terms more relevant 

for decision-makers. These approaches, often bottom-up by design, require an 

understanding of system sensitivities to various changes in the climate system to better 

identify vulnerabilities and develop an understanding of potential risks to the system. 

However, technical methods for conducting these vulnerability assessments are relatively 

underdeveloped in the literature. This study presented a stochastic weather generator that 

can help facilitate the discovery of system vulnerabilities to several components of the 

climate system. When coupled with impact models, the weather generator enables a more 

complete identification of system vulnerabilities that can help inform risk management 

strategies and the selection of robust adaptation measures.  

 

The tool is designed to work not only for specific sites but also for systems that cover 

large spatial extents, such as trans-state river basins or ecosystems. However, future work 

is needed to explore how spatially expansive the model can be made before its skill 

degrades. Future studies will also utilize the weather generator tool to conduct stress tests 
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on various socioeconomic and biophysical systems in order to appraise potential 

improvements from available adaptation measures.  

 

As climatic records continue to show increasing nonstationary in their probabilistic 

behavior, decision makers across a range of fields will seek actionable information that 

directly informs a choice between measures they can take to safeguard their system from 

further shifts in the climate. The high degree of uncertainty that surrounds these changes 

hinders the utility of a traditional predict-then-act framework for adaptation decision 

making. A shift in philosophy may be needed to provide the information truly needed to 

adapt our society to potential environmental changes that we cannot foresee. This study 

hopefully adds to a developing body of literature exploring new methods to analyze and 

present climate change adaptation information that can help better inform decision 

makers as they navigate an uncertain future.  
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CHAPTER 3 

TOWARDS A STATISTICAL FRAMEWORK TO QUANTIFY THE 

UNCERTAINTIES OF HYDROLOGIC RESPONSE UNDER CLIMATE 

CHANGE 

 

3.1. Abstract  

The cascade of uncertainty that underscores climate impact assessments of regional 

hydrology undermines their value for long-term water resources planning and 

management. This study presents a statistical framework that quantifies and propagates 

the uncertainties of hydrologic model response through projections of future streamflow 

under climate change. Different sources of hydrologic model uncertainty are accounted 

for using Bayesian modeling. The distribution of model residuals is formally 

characterized to quantify predictive skill, and Markov chain Monte Carlo sampling is 

used to infer the posterior distributions of both hydrologic and error model parameters. 

Parameter and residual error uncertainties are integrated to develop reliable prediction 

intervals for streamflow estimates. The Bayesian hydrologic modeling framework is then 

extended to a climate change impacts assessment. Ensembles of baseline and future 

climate are downscaled from global circulation models and used to drive simulations of 

streamflow over parameters drawn from the posterior space. Time series of streamflow 

statistics are calculated from baseline and future ensembles of simulated flows. 

Uncertainties in hydrologic model response, sampling error, and the range of future 

climate projections are integrated to help determine the level of confidence associated 

with hydrologic alteration between baseline and future climate regimes. A case study is 

conducted on the White River in Vermont, USA. Results indicate that the framework can 
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be used to present a reliable depiction of the range of hydrologic alterations that may 

occur in the future.  

 

3.2. Introduction 

The threat of nonstationary hydrology has motivated significant research efforts 

investigating the potential impacts of climate change on regional hydrology and 

implications for local water resource systems. Despite these efforts, uncertainty in both 

future climate conditions and regional hydrologic response confounds the interpretation 

of results and diminishes their utility in water resources planning [Lopez et al., 2009]. A 

systematic approach is required to account for the uncertainty in hydrologic impact 

assessments so that decision-makers can consider adaptation strategies contextualized by 

the uncertainty in design statistics critical to the decision-making process. In this paper 

we propose a statistical framework that quantifies several sources of uncertainty in long-

range projections of hydrologic alteration, including uncertainties in future climate, 

hydrologic model predictive skill, model parameterization, and sampling error of 

estimated hydrologic statistics. These uncertainties are integrated to develop a 

probabilistic description of potential alterations to regional hydrology useful for water 

resources planning.  

 

In the vast majority of studies, hydrologic alteration under climate change is assessed 

using future climate scenarios, as simulated by global circulation models (GCMs), that 

are downscaled to a location of interest and used to force a regional hydrologic model. 



51 
 

The simulated hydrologic response is then compared to a baseline response based on 

historic climate data, and measures of hydrologic alteration are computed [Gleick, 1986]. 

There are multiple sources of uncertainty that degrade this process, including those 

associated with the GCMs (i.e. inaccuracy at sub-continental scales, inconsistencies 

across models, parameterization, uncertain boundary conditions, difficulty in assessing 

predictive skill), the ambiguity between different downscaling techniques, and the 

hydrologic model (i.e. model structure, input and output data used for calibration, 

parameterization)  [Wood, 1997]. GCM accuracy and consistency, along with the choice 

of downscaling methodology, are considered to be the primary sources of uncertainty and 

have garnered significant research attention [Raisanen and Palmer, 2001; Palmer and 

Raisanen, 2002; Piani et al., 2005; Stainforth et al., 2005, Fowler et al., 2007; Stainforth 

et al., 2007a; Lopez et al., 2009]. Errors associated with the hydrologic model, however, 

have received less emphasis in studies considering hydrologic alteration under climate 

change. In the majority of climate change impact assessments, hydrologic simulations of 

future climate are treated largely as deterministic output that can be used to directly 

identify hydrologic alterations [Chao, 1999; Hamlet and Lettenmaier, 1999; Lettenmaier 

et al., 1999; Nijssen et al., 2001]. Some studies have explored the impacts of hydrologic 

model uncertainty on climate impact assessment results, but they often only investigate 

uncertainties in parameterization [Arnell, 1999; Cameron et al., 2001; Wilby, 2005], 

model structure [Boorman and Sefton, 1997; Jiang et al., 2007], or a combination of both 

[Wilby and Harris, 2006; Kay et al., 2009; Prudhomme and Davies, 2009a; Prudhomme 

and Davies, 2009b], and almost never formally account for prediction error, which can 

often dominate total model uncertainty [Stedinger et al. 2008].  
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While parameter and structural errors are important components of the total uncertainty 

in hydrologic model results, accounting for these uncertainties alone may not guarantee 

reliable predictive bounds for streamflow estimates. For a watershed exhibiting 

significant heterogeneity or unexplainable behavior, many types of hydrologic response 

may be challenging to simulate even with an ensemble of model structures or 

parameterizations. The assumption that a set of hydrologic models with multiple 

parameterizations is complete enough to reliably bound true hydrologic response is 

difficult to verify [Renard et al., 2010]. This is especially true if the models struggle to 

reproduce certain aspects of the observed streamflow and exhibit errors that vary across 

the magnitude and timing of hydrologic responses. To generate reliable predictive 

bounds, a formal quantification of residual error is needed. If predictive uncertainty 

associated with the hydrologic model is not formally addressed and propagated through 

climate change impact analyses, claims of hydrologic alteration from such studies can be 

overstated and misguide water resources decision makers.  

 

In a related line of research, predictive uncertainty in hydrologic modeling has been 

extensively explored and mature methods for quantifying error have been developed. 

Early efforts focused on pseudo-Bayesian methods [Beven and Binley, 1992; Beven and 

Freer, 2001], and later more formal Bayesian techniques emerged to properly account for 

both residual and parameter uncertainties [Bates and Campbell, 2001; Marshall et al., 

2004; Stedinger et al., 2008; Schoups and Vrugt, 2010]. Further studies have dissected 
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model error into its component parts, investigating the impacts of uncertain input and 

response data on model predictions [Kavetski et al., 2006a, Kavetski et al., 2006b; Thyer 

et al., 2009; Renard et al., 2010]. Other innovative approaches for assessing hydrologic 

model uncertainty include Bayesian Recursive Estimation [Thiemann et al., 2001], 

Bayesian Hierarchical Mixture of Experts [Marhall et al., 2007], and Simultaneous 

Parameter Optimization and Data Assimilation [Vrugt et al., 2005; Clark and Vrugt, 

2006], among others. These techniques can be extended to climate impact studies to 

quantify the total uncertainty in hydrologic models and demonstrate the extent to which it 

obscures the differences between future and baseline hydrologic conditions.  

 

To the authors’ knowledge, only one study has attempted to simultaneously quantify 

hydrologic model prediction and parameterization error and then propagate that 

uncertainty through climate impact assessments of hydrologic alteration [Khan and 

Coulibaly, 2010]. This study employed a Bayesian neural network rainfall-runoff model 

to explore climate-impacted hydrology. In this study, the posterior distribution of model 

parameters and the final distribution of model predictions were assumed Gaussian to 

improve the tractability of Bayesian integrals, despite the availability of Markov chain 

Monte Carlo (MCMC) sampling procedures that allow for more complex and accurate 

distributional assumptions. More importantly, uncertainty bounds were only generated 

for the streamflow trace generated using the mean of ensemble climate members, rather 

than for each climate member individually. This approach artificially deflates the true 

uncertainty in future hydrologic model projections because hydrologic model error 
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should be integrated with the range of uncertainties stemming from GCMs and 

downscaling techniques.  

 

The study presented here will contribute to the science of hydrologic uncertainty analysis 

under climate change by developing a framework in which hydrologic model error is 

formally characterized and appropriately integrated with other sources of future climate 

uncertainty to better quantify the total uncertainty of hydrologic alterations under future 

climates. This allows a comparison of the range of projected changes in streamflow due 

to climate change to be compared with the uncertainty due to hydrologic model error. 

Hydrologic model prediction error is formally characterized with an appropriate 

likelihood function and combined with prior distributions of model parameters using 

Bayes’ Theorem. MCMC sampling is used to evaluate the posterior distributions of 

hydrologic and error model parameters. Reliable uncertainty bounds for streamflow 

estimates are constructed from the integration of parameter and residual uncertainties and 

evaluated over the historic record.  The Bayesian hydrologic modeling framework is then 

extended to a climate change impacts assessment. Ensembles of baseline and future 

climate data are downscaled from GCMs and used to drive simulations of streamflow 

over parameter samples drawn from the posterior space. While GCM projections do not 

fully capture climate change uncertainty, the range of climate projections can be 

described as an estimate of the irreducible range of climate uncertainty, a minimum 

bound [Stainforth et al., 2007a; Wilby and Dessai, 2010]. Time series of streamflow 

statistics are generated from baseline and future ensembles of simulated flows. 

Appropriate probability distributions are then fit to these statistics, enabling the 
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estimation of streamflow quantiles and their sampling error for the ensemble of baseline 

and future conditions. Quantile estimates are directly compared between baseline and 

future scenarios in the context of their cumulative uncertainties. The framework can be 

used to highlight the complex interactions between different sources of uncertainty and 

their effects on future estimates of design flow statistics used in decision-making. An 

application of this framework is presented for the White River Basin in Vermont using a 

version of the monthly ABCD hydrology model [Thomas, 1981] with a snow component.  

 

The paper will proceed as follows. Section 3.3 provides background on Bayesian 

inference techniques in rainfall-runoff modeling and their potential use for error 

propagation in future hydrologic simulations. Section 3.4 delineates the methodology 

used to quantify the total uncertainty of hydrologic alteration under future climate change 

scenarios. The methodology is applied and results presented in Section 3.5, and the study 

concludes in Section 3.6 with a discussion of future research needs.   

 

3.3. Bayesian methods in hydrologic modeling and their use in climate change 

studies 

Bayesian methods provide a formal mechanism to characterize the error in hydrologic 

model predictions, along with uncertainties surrounding parameterization. In a Bayesian 

framework, previous knowledge about parameter values can be incorporated into model 

calibration through a probability density function (pdf) known as the prior distribution. A 

joint pdf is then used to summarize the distribution of model residuals, and MCMC 

sampling procedures can be used to characterize the posterior distributions of hydrologic 
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and error model parameters. If the error model correctly represents the distribution of 

model residuals, parameter and residual uncertainties can be integrated to develop 

predictive bounds for streamflow estimates. A relatively simple Bayesian formulation for 

rainfall-runoff modeling is described below that can be employed to help propagate 

uncertainties in a climate change impacts analysis. The Bayesian formulation presented 

below can be used to emphasize the importance of prediction error in uncertainty 

analyses under climate change and highlight the complex interactions between different 

sources of modeling uncertainty. Later on (Section 3.6), we discuss other challenges (e.g. 

source separation of uncertainties, choice of error model, and model structural errors) 

facing a complete quantification of hydrologic modeling uncertainty and their 

implications for the framework presented in this work.  

 

3.3.1. Bayesian hydrologic modeling 

Let a conceptual rainfall runoff model be formulated as follows, 

     εεεεXXXXθθθθQQQQ   ), ( M +=M     (3.1) 

where Q equals the vector of observed streamflows of length n, θM equals the set of 

hydrologic model parameters, X equals the matrix of inputs, QQQQ̂ =M(θM, X) represents the 

streamflow model predictions, and ε equals residual model errors. Model residuals are 

assumed to follow a probability distribution described by a hypothesized joint pdf with a 

set of residual error model parameters θԑ. Initially, no assumptions are made regarding 

the functional form of the error model ε(θε). That is, model residuals may be 

autocorrelated, non-Gaussian, or heteroskedastic. However, we assume that errors 
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associated with input data measurements, response data measurements, and model 

structure are aggregated into the error term ε. The implications of this simplifying 

assumption are discussed in Section 3.6.1. 

 

Before proceeding with calibration, all previous knowledge about the set of hydrologic 

and error model parameters, θ = {θM, θԑ}, is summarized in a prior distribution, denoted 

P(θ). If no prior information is available, vague priors can be used so that calibration is 

driven by observed data only. The likelihood function, L(Q| θ, X), is based on the error 

model and is essentially a measure of hydrologic model skill. For certain hydrologic 

models applied at coarse temporal resolutions the choice of error model may be relatively 

simple, while many other applications may require more care in the identification of an 

appropriate error model [Kuczera, 1983]. These issues are discussed further in Section 

3.6.2. With an error model and associated likelihood function chosen, Bayes’ Theorem 

can then provide the joint posterior distribution of all model parameters, 

   

∫ ××

×
=

θθθθθθθθXXXXθθθθQQQQ
θθθθXXXXθθθθQQQQXXXXQ

,
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,
Q

,
Q

,
θθθθ

dPL
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P

)(),|(

)(),|(
)|(    (3.2) 

The integral in the denominator is a constant of proportionality required to ensure that the 

right hand side term is a well-defined probability density function. MCMC methods can 

be used to evaluate the joint posterior distribution by sampling parameter values that are 

consistent with the combined information of the data and prior knowledge. 
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To calculate predictive bounds on simulated streamflow, uncertainties in both model 

parameters and predictive skill need to be integrated. A time series of predicted 

percentiles, Qα Q�, for the 1-α non-exceedance level can be constructed for the vector of 

true streamflows Q as follows [Schoups and Vrugt, 2010]: 

 

ααεα =≤+=≤ = )|)](),(([)|( ,...,1,, XXXXQQQQθθθθεεεεXXXXθθθθXXXXQQQQQQQQ JjjjMMfreqP   (3.3) 

 

where, j=1,…, J is the number of parameter sets sampled from the posterior distributions 

of θM and θε. That is, J samples of model estimates, M(θM,j,X), and model errors, ε(θε,j), 

are generated for each simulated time step to produce a pdf of predicted values from 

which the predicted percentile can be inferred. The notation freq() is used to acknowledge 

that the probability of the true vector of streamflows Q falling below the vector of 

percentiles Qα is approximated using the frequency with which the sum of model 

predictions and errors fall below those percentiles. A 95% predictive bound around the 

time series of true streamflows Q can be formed with the bounded region [Q.025, 

Q.975]Q�.���, Q�.����.   If ε(θε) is set to zero, then model error associated with parameter 

uncertainty can be isolated.   

 

3.3.2. Integrating uncertainties from the hydrologic model and future climate 

projections 

Uncertainty in future climate must be integrated with errors from the hydrologic model to 

develop an appropriate range of possible hydrologic alterations. These uncertainties arise 
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primarily from errors inherent to GCM simulations, which have been shown to exhibit 

poor skill at predicting even mean climate conditions at sub-continental scales [Wood, 

1997; Stainforth et al., 2005]. Additional uncertainty stems from the downscaling 

technique used to transfer coarse GCM climate fields into meaningful climate changes at 

the local scale [Fowler et al., 2007]. The climate science literature is ripe with studies 

exploring different methods to quantify future climate uncertainty. This study does not 

aim to thoroughly review all of these approaches or examine the merit of each. Rather, a 

brief overview of common methods is presented and then one method is chosen to 

demonstrate how future climate uncertainties can be nested in a framework aimed at 

quantifying the total uncertainty in future hydrologic projections.  

 

The most common approach relies on an ensemble of future climate scenarios to bracket 

possible climate changes. These scenarios are developed using climate simulations from 

multiple GCMs that have been forced with several emission scenarios and initiated with 

different starting conditions, often downscaled with only one technique. Some studies 

have attempted to address downscaling uncertainty by using multiple downscaling 

methods [Wilby and Harris, 2006]. Other studies have attempted to assign non-uniform 

probabilities to different projections, using measures of bias and convergence to inform 

the choice of probabilities [Tebaldi et al., 2005]. No matter how they are used, however, 

direct use of downscaled, multi-model GCM output as forcing data can only generate a 

lower bound on the maximum range of future climate uncertainty [Stainforth et al., 

2007a]. Since GCM simulations over the historic record do not fully explore the multiple 

sources of uncertainty at play, it is difficult, if not impossible, to develop a satisfying 
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error model and bracket the true uncertainty of future climate projections. The 

quantification of future climate uncertainty remains largely intractable at present, as 

expectations for future experiments is that the uncertainty will increase. This study 

considers the simplest and most common quantification of future climate uncertainty 

where an ensemble of Z projections of future climate developed from several GCMs and 

emissions scenarios are downscaled to the region of interest using one downscaling 

technique. This represents a minimum range of climate uncertainty but allows a 

comparison of the range of GCM projections to hydrologic modeling uncertainty. The 

framework presented in Section 3.4 can easily be extended to accommodate more 

complex quantifications of future climate uncertainty. 

 

3.4. Framework to quantify hydrologic uncertainties under future climate scenarios 

The Bayesian hydrologic model described in the previous section can be used to help 

quantify the uncertainty of important streamflow statistics, Y, generated under baseline 

and future climate conditions. Here, Y is a time series of a statistic of interest (e.g. 

average annual flows, average monthly flows, annual peak flows, etc.) calculated from a 

simulated time series of streamflow. We present an approach that quantifies uncertainty 

in inferred quantiles of Y stemming from future climate projections, the hydrologic 

model, and sampling error.  

 

Assume that Z climate change projections are available to provide a model-based range 

of possible future climate changes. For each climate change projection z∈Z, streamflow 
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simulations are generated from one of two sequences of climate drawn from z: 1) a 

baseline series, b

zXXXX , which is generated from a downscaled time series of historical 

(1950-1999) conditions, or 2) a future series, f

zXXXX , generated from a downscaled time 

series of future conditions (2050-2099). Hereafter, all baseline (b) and future (f) variables 

will be denoted with superscripts. After the hydrologic model is calibrated in the 

Bayesian framework to historic observations, Monte Carlo resampling is used to select K 

parameter sets from the posterior parameter space over which to simulate an ensemble of 

K streamflow traces for both baseline and future climates. These ensembles capture the 

parameter and residual uncertainties in the hydrologic model. The simulation procedure 

can be repeated for each climate sequence z∈Zz � Z, producing a total of K×Z 

streamflow simulations for both baseline and future climates. Time series of streamflow 

statistics, Y�,�
�  and Y�,�

� , can then be developed from these K×Z baseline and K×Z future 

streamflow projections.  

 

To make an inference on the pth quantile, Yp, of the statistic Y, sampling error in the 

estimation of Yp must also be propagated through the analysis. If the climate projections 

are of limited length, then sampling error could contribute significantly to uncertainties in 

quantiles of projected hydrologic statistics and therefore need to be accounted.  For each 

climate projection z and posterior parameter sample k, appropriate pdfs can be fit to the 

baseline b

kz ,YYYY  and future f

kz ,YYYY  time series. Since both time series are of limited length, the 

true parameter values of the fitted pdfs will be unknown, but their uncertainty can be 

described using their sampling distributions. D samples of the pth quantiles �Y�,�
� ��and 
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Ddp

f

kz ,...,1
), =

YYYY ( can be estimated using D draws from the sampling distributions of the fitted 

probability model parameters. Predictive bounds for the quantiles p

b )Y (  and p

f )Y (  can 

then be estimated at some confidence level (1-α)100% using the 
2
α  and )1(

2
α−  

percentiles of the ensemble of  Z×K×D estimates of the pth quantile under both baseline 

and future climate conditions. We note here that an alternative approach to splitting the 

climate into pseudo-stationary baseline and future time periods would be to fit a non-

stationary probability model [Khaliq et al., 2006] to a transient climate over the entire 

timeframe (1950-2099).  

  

The methodology proceeds as follows (Figure 3.1):  

1. Calibrate the hydrologic model over a set of historic climate and streamflow 

observations as stated in Section 3.3 to develop posterior distributions of hydrologic and 

error model parameters. Evaluate the model using a split-sampling testing procedure. If 

possible, conduct a differential split-sample test to determine the capacity of the model to 

adequately model changes in climate [Klemes, 1986].  

2. Sample K hydrologic and error model parameter sets, ΘM = {θM,1, θM,2, … θM,K} and 

Θε = {θε,1, θε,2, … θε,K}from their posterior distributions developed in step 1.  

3. For the ith scenario of future climate, zi, selected from an ensemble of projections Z, 

develop a baseline climate sequence of length N, },...,,{ ,2,1,

b

Nz

b

z

b

z

b

z iiii
xxxxxxxxxxxxXXXX = , that 

represents historic climate. Climate information in b

zi
XXXX can be downscaled from a historic 
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period (i.e. 1950-1999) simulated in zi, and can include variables such as temperature, 

precipitation, potential evapotranspiration, etc. 

4. Generate a future climate sequence, f

zi
XXXX , that is downscaled from the same climate 

projection but is representative of some future time period (i.e. 2050-2099).  

5. To develop the kth time series of baseline streamflow, b

kzi ,QQQQ , sample N perturbations 

},...,,{)( ,2,1,

b

Nk

b

k

b

k

b εεεkε
,

=θθθθεεεε  from the error model ԑ(θε,k) using the kth error model 

parameter set θε,k. Then drive the hydrologic model with the baseline climate sequence 

using the kth hydrologic model parameter set θM,k and add the output to the error series 

)( kε
,

θθθθεεεεb : 

 

)( kε
,

b
zkM

,

b
k,z ), ( ii

θθθθεεεε    XXXXθθθθQQQQ b+=M    (3.4) 

 

The kth time series of future streamflow f

kzi ,QQQQ  can be generated in the same fashion by 

substituting b
zi

XXXX  with f
zi

XXXX  and )( kε
,

θθθθεεεεb  with a new sequence of errors )( kε
,

θθθθεεεεf .  

6. Repeat Step 5 K times to develop K time series of baseline and future streamflow.  

7. Calculate the time series of streamflow statistics Y�,�
�  and Y�,�

�  for each of the K 

parameter samples for both baseline and future climate conditions. 
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8. Fit an appropriate probability model to each time series of streamflow statistics. An 

estimate of the pth quantile, p

b

kzi
),YYYY (  and p

f

kzi
),YYYY ( �Y�,�

� �� , can be inferred from the fitted 

probability models for both baseline and future statistics. For instance, if the streamflow 

statistic (or its logarithms) are normally distributed, the pth quantile can be estimated as 

Yp = µy + ξp×σy, where µy is the mean of the statistic, σy is its standard deviation, and ξp is 

the 100p percentile of the standard normal distribution. To account for sampling error, 

draw D estimates of probability model parameters (i.e. µy,d and σy,d with d=1,…,D) from 

their sampling distributions to produce D estimates of the pth quantile, 
Ddp

b

kzi ,...,1, )
=

YYYY (  and 

Ddp

f

kzi ,...,1, )
=

YYYY ( . In this study, sampling distributions were taken as the posterior 

distributions of probability model parameters developed via a Bayesian fit of the 

probability model to the streamflow statistics Y�,�
�  and Y�,�

� . Vague distributions (e.g. 

uniform distributions) can be used as priors for probability model parameters in the 

Bayesian fit. Alternatively, estimates of sampling distributions for different probability 

models are often available in the literature.  

9. Repeat steps 3-8 for each climate projection z∈Z. This will produce K×Z×D different 

estimates of the pth quantile for both baseline and future climate conditions. The expected 

value of the pth quantile of Y for baseline and future conditions can be calculated by 

taking the mean across all K×Z×D quantile estimates, p

b
Y )(  and p

f
Y )( . Similarly, 

predictive intervals [
2

,)( αp

b
Y ,

)
2

1(
,)( α

−
p

b
Y ] and [

2

,)( αp

f
Y ,

)
2

1(
,)( α

−
p

f
Y ] for the pth quantile 

can be developed using the 
2
α  and )1(

2
α−  percentiles of the ensemble of Z×K×D quantile 

estimates. These two intervals quantify the total considered uncertainty in estimates of 
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the pth quantile of a streamflow statistic Y for both baseline and future conditions. They 

can be directly compared to provide a reliable depiction of how distinct the future 

hydrologic alteration for that statistic will be after accounting for all sources of 

uncertainty considered.  

 

Figure 3.1. Flow chart of the statistical framework for a hydrologic uncertainty analysis 

under climate change. 

 

3.5. Application of Statistical Framework in a Climate Impacts Assessment 

An application of the statistical framework described above is presented for the White 

River Basin, located in central Vermont. Records of monthly precipitation, temperature, 

and potential evapotranspiration are used to drive a Bayesian calibration of a conceptual 
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rainfall-runoff model of the basin. An adaptation of the ABCD conceptual hydrologic 

model that incorporates a new snow modeling scheme is chosen for this purpose. After 

calibration, posterior distributions of both hydrologic and error model parameters are 

examined for convergence, and a probabilistic evaluation of the error model is presented 

to ensure the distribution of model residuals is well characterized. After the model is 

evaluated, the framework for climate impact assessments is applied to an ensemble of 

transient GCM climate scenarios.  

 

3.5.1. White River Basin 

The White River is a major tributary of the Connecticut River in New England, draining 

1,790 square kilometers in the east-central portion of Vermont (Figure 3.2). Running 97.6 

km from the Green Mountains to the Connecticut River Valley below, the White River is 

the largest gaged basin in the Connecticut River Watershed without significant regulation 

from upstream reservoirs or land use changes. Precipitation rates are relatively constant 

throughout the year, averaging approximately 100 mm/month. Regional estimates 

suggest about 70% of all winter precipitation falls as snow [Huntington et al., 2004]. 

Seasonal variations in temperature drive snow accumulation and melt processes that 

dominate hydrologic response throughout the winter and spring months. Streamflow is 

lowest during the summer and early fall months when evapotranspiration rates reach their 

peak.  
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Figure 3.2. Schematic of the White River Basin - Vermont, U.S. 

 

3.5.2. ABCD Hydrologic Model 

An altered version of the ABCD hydrologic model is considered to model monthly 

streamflow in the White River Basin. The original ABCD model is a four parameter 

(a,b,c,d), conceptual rainfall-runoff model designed through a control volume analysis on 

upper soil moisture zone storage [Thomas, 1981]. The model converts monthly averaged 

precipitation and potential evapotranspiration into estimates of monthly streamflow by 

diverting water between two soil storage zones, losses to evapotranspiration, and the 

stream. The model has been recommended as an effective parsimonious model with 

physically meaningful parameters capable of efficiently reproducing monthly water 

balance dynamics in both theory [Vogel and Sankarasubramanian, 2003] and practice 

[Alley, 1984; Vandewiele et al., 1992]. A detailed review of the original ABCD model 

formulation can be found in [Fernandez et al., 2000].  

 

!.

USGS Gage 01144000

0 8 16 24 324

Kilometers



68 
 

A snow component similar to that in Martinez and Gupta [2010] was added to the ABCD 

model to simulate the snow accumulation/melt processes that dominate much of the 

hydrologic cycle in northern latitude watersheds. A snow storage zone is added that 

stores all incoming precipitation as snow water equivalent during times of year when the 

temperature falls below a threshold TSnow. A second threshold, Train, delimits the 

temperature above which all precipitation falls as rain. When temperatures rise above 

Train, all water held in the snow storage zone melts and is added to incoming precipitation 

for that month. This threshold melt process is highly representative of springtime 

hydrology seen in northern New England rivers. When monthly temperatures fall 

between Train and Tsnow, a fraction of the incoming precipitation for that month enters the 

snow storage component, and the remainder falls as rain. In addition, a fraction of the 

water held as snow is available for melt and is added to the effective rainfall for that 

month. The rate of melt is given by the parameter e. The total snow melt in time t is given 

by 
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where St-1 is the water stored as snow in the previous month, Ptot,t is the total precipitation, 

Tt is the mean monthly temperature, and fract is the fraction of precipitation that falls as 

snow, equal to 
snowrain

train

TT

TT

−
−

. The water stored as snow in month t is given by 
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 The effective precipitation input to the model (precipitation available for runoff, soil 

zone storage, ET, etc.) is then given by 
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In total, three parameters are used to represent snow accumulation/melt processes, 

bringing the total number of model parameters to seven (a, b, c, d, e, Train, Tsnow). During 

calibration, the parameter Tsnow is not directly calibrated because its prior distribution 

would have to be conditioned on the value of Train to ensure it took a smaller value. To 

circumvent this issue, a non-negative parameter dif = Train - Tsnow is used, from which 

Tsnow can be directly computed.  
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Martinez and Gupta [2010] performed a thorough analysis on the suitability of a similar 

snow-augmented ABCD model structure for catchments throughout the United States, 

testing the model using several diagnostic statistics including Nash-Sutcliffe efficiency, 

bias, and variance error. That study found that the snow-augmented ABCD model 

structure significantly improves results for snow-dominated watersheds in New England 

and is a suitable structure for many catchments in the region, supporting its use in this 

study.  

  

3.5.3. Bayesian Calibration and Evaluation 

Historic, monthly averages of precipitation and maximum, minimum, and mean daily 

temperatures were gathered for the basin over the period of January 1980 to December 

2005 from the gridded observed meteorological dataset produced by Maurer et al. [2002]. 

Average monthly streamflows were collected from the United States Geological Survey 

(USGS) West Hartford gage (ID #01144000) located at the mouth of the White River. 

Monthly averages of maximum, minimum, and mean daily temperatures were combined 

with estimates of monthly extraterrestrial solar radiation to produce a time series of 

potential evapotranspiration using the Hargreaves method [Hargreaves and Samani, 

1982]. Solar radiation was calculated using the method presented in Allen et al. [1998].  

 

Based on past hydrologic modeling experience for monthly flows in the New England 

region, a normal distribution with mean zero and standard deviation σ was initially 
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chosen to characterize the sampling distribution of the residuals of the natural logarithms 

of observations and model predictions (hereafter referred to simply as model residuals) 

   )
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where εln = ln(Q)-ln( Q̂ ). The likelihood function for the observed streamflow values, Q, 

is then given by 
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The prior for the unknown parameter σ was set to a gamma distribution with known 

shape λ=1 and scale ζ=2.5 parameters. The posterior of this parameter characterizes the 

level of uncertainty in hydrologic model estimates. A verification of the chosen sampling 

distribution for model residuals is described below.  

 

Past studies were used to inform prior distributions for the hydrologic model parameters 

a, b, c, and e [Alley, 1984; Vandewiele et al., 1992; Fernandez et al., 2000; Martinez and 

Gupta, 2010], and the remaining model parameters (d, Train, dif) were given vague priors 

in the form of uniform distributions or normal distributions with large variances. Initial 

states were also calibrated in the model to avoid any parameter biases from incorrect 

initial conditions. The slice sampler was chosen for the MCMC sampling and was 

implemented in the JAGS programming language [Plummer, 2011]. Three chains were 

used in the sampling, and the Gelman and Rubin factor was used to test for convergence 

[Gelman and Rubin, 1992]. Calibration was implemented over the period between 



72 
 

January 1980 and December 1999, leaving six years of data for evaluation. Table 3.1 

summarizes the prior and posterior distributions for all parameters inferred in the MCMC 

sampling, as well as allowable ranges for each parameter. Figure 3.3a shows the history 

plots of parameter a for the three chains, and Figure 3.3b presents histograms of the prior 

and posterior distributions of parameter a. For all model parameters, the Gelman and 

Rubin convergence factor was within 0.005 of 1, suggesting that convergence was 

reached for all calibrated parameters.  

 

Figure 3.3. MCMC and model error diagnostics, including a) the history plot for 

parameter a shown for the three MCMC chains, b) a histogram of the prior (red) and 

posterior (black) distribution for parameter a, c) a Q-Q plot showing sample quantiles of 

model error εln against theoretical quantiles of a standard normal distribution, and d) the 

autocorrelation function of model errors εln. 
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Table 3.1. Summary of prior and posterior distributions for all model parameters. Normal 

priors are given mean (µ) and standard deviation (φ) hyperparameters. Gamma priors 

have shape (λ) and scale (ζ) hyperparameters. 

   Posterior Distribution 
Parameter 

[unit] 
Allowable 

Range 
Prior Distributions 

1st 
Quartile 

Median Mean 
3rd 

Quartile 
a [-] (0,1) Beta(a=1.2,b=0.6) 0.982 0.984 0.984 0.986 

b [mm] (0,∞) Normal(µ=300,φ=100) 303 310 310 316 
c [-] (0,1) Beta(a=0.6, b=1.2) 0.14 0.18 0.18 0.22 
d [-] (0,1) Uniform(a=0, b=1) 0.45 0.66 0.74 0.90 
e [-] (0,1) Beta(a=0.8, b=1.8) 0.141 0.205 0.206 0.268 

Train [°C] (-∞,∞) Normal(µ=0, φ=4) -1.65 -1.48 -1.47 -1.31 
dif [°C] (0,∞) Uniform(a=.01, b=20) 12.9 13.9 14.0 15.0 

σ [ln(mm)] (0,∞) Gamma(λ=1, ζ=2.5) 0.13 0.14 0.14 0.15 
 

Figure 3.3c presents a normal probability plot of the model errors εln generated from the 

hydrologic simulation under the median posterior parameter set over the evaluation 

period (January 2000 to December 2005), and Figure 3.3d shows their autocorrelation 

coefficients. Results from the Q-Q plot suggest that model residuals follow a normal 

distribution relatively well. Most autocorrelation coefficients in Figure 3.3d are 

insignificant, including that at lag 1. There are some coefficients that exhibit small but 

significant values, particular at seasonal lag times. An autocorrelation component could 

be added to the error model, but this would require additional parameters to be estimated 

in the calibration, creating a tradeoff between problem dimensionality and error model 

accuracy. The seasonal autocorrelation seen in Figure 3.3d is rather low and not 

considered worth the increased dimensionality needed to model its behavior. Therefore, 

the original choice of a normal error model with no autocorrelation component for εln was 

considered adequate for this modeling exercise.  
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Figure 3.4 shows the observed monthly streamflow for the last five years of calibration 

and the entire evaluation period, as well as model estimates generated by the median 

values of the posteriors for hydrologic model parameters. The Nash-Sutcliffe efficiency 

(NSE), mean flow bias, and variance error for simulated streamflow using the median 

parameter set equals 0.82, -1.4%, and +6.6% for the calibration period and 0.67, -5.2%, 

and -15.1% for the evaluation period. The bias and variance errors are expressed as a 

percentage of observed values. These performance statistics are considered either “good” 

or “acceptable” in other hydrologic modeling studies [Martinez and Gupta, 2010]. Also 

shown in Figure 3.4 are error bounds consistent with the 2.5th and 97.5th percentiles of 

streamflow estimates, calculated according to equation 3.3. Observed data from the 

calibration and evaluation periods fell outside the 95% predictive interval 3.3% and 6.7% 

of the time, respectively, again suggesting that the error model adopted is appropriate for 

this application. 

 



75 
 

 

Figure 3.4. Time series of streamflow during calibration (left of vertical dashed line) and 

evaluation phases (right of vertical dashed line). Only a portion of the calibration time 

period is shown for clarity. 

 

An additional evaluation procedure was conducted to further evaluate the adequacy of the 

error model. The details of the procedure can be found in Laio and Tamea [2007]. In 

brief, the procedure tests whether probabilistic predictions for a set of streamflow 

observations are adequate in a statistical sense. To conduct the test, the cumulative 

distribution function of predicted streamflow at time t is evaluated with respect to the 

observation qt at t via a probability integral transform, vt = Pt(qt). If the probabilistic 

predictions of streamflow are suitable then the vt values will be mutually independent and 

distributed uniformly between 0 and 1. To test uniformity, a probability plot can be 

employed to graphically examine how well the distribution of vt values matches a U(0,1) 

distribution. The condition of mutual independence can be tested using the Kendall’s tau 

test of independence.  
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The probability plot of vt values versus a theoretical uniform distribution are shown in 

Figure 3.5, along with Kolmogorov confidence bands at the 95% confidence level. The 

distribution of vt values match that of a U(0,1) distribution very well, satisfying the first 

condition of the test. In addition, the condition of mutual independence was met under the 

Kendall’s tau test of independence (p-value of 0.81), satisfying the second condition of 

the test. These results provide further support for the error model chosen in this 

application.   

 

 

Figure 3.5. Q-Q plot of the sample quantiles of the vt values versus those of a U(0,1) 

distribution. Kolmogorov confidence bands (dashed) at the 95% confidence level are also 

shown. 

 

3.5.4. Future Climate Scenarios 

Seventy-three transient future climate simulations, running from 1950 to 2100 and 

sampled across the A1b, A2, and B1 emission scenarios, were gathered from the World 

Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project Phase 

3 (CMIP3) multi-model dataset. GCM simulations were downscaled according to the 
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bias-correction and statistical downscaling (BCSD) approach described in Maurer et al. 

[2007]. For each GCM simulation, a baseline and future climate scenario (i.e. time series 

of mean monthly temperatures and total monthly precipitation) was taken from fifty-year 

windows of downscaled climate data centered about the years 1975 and 2075, 

respectively. Figure 3.6 shows the absolute and percent difference between mean annual 

temperatures and mean annual precipitation, respectively, for these two periods across all 

seventy-three projections. We note here that maximum and minimum monthly 

temperatures are not provided in the downscaled CMIP3 dataset but are required for 

calculations of potential evapotranspiration. To generate maximum and minimum 

monthly temperature fields for baseline and future scenarios, the average differences 

between maximum and mean monthly temperature and minimum and mean monthly 

temperature were calculated for each month over the historic record. These average 

differences were then added to each time series of mean monthly temperature for all 

projections from the CMIP3 dataset to generate the maximum and minimum monthly 

temperature fields.  
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Figure 3.6. The change in mean annual precipitation and mean annual temperature 

between baseline and future time slices across all seventy-three climate scenarios. 

 

3.5.5. Projections of Hydrologic Response with Uncertainty 

The Z=73 baseline (1950-1999) and future (2050-2099) climate scenarios taken from the 

CMIP3 dataset were each used to drive an ensemble of K=5,000 hydrologic model 

simulations, each with different parameter sets drawn from the posterior distributions 

developed in Section 3.5.3. Four different annual streamflow statistics (Y) were 

considered in the analysis, including average January, March, April, and October 

streamflows. These monthly statistics were chosen because they exhibit a wide range of 

changes under future climate and highlight the importance of including hydrologic model 

error in climate impact assessments. These statistics were assumed to follow a lognormal 

distribution, similar to the observed historic streamflow data. This assumption was 

validated for each of these statistics under a large sample of climate scenarios and 

parameter sets using probability plots. Sampling error in the quantiles of these statistics 

was estimated using D=1,000 different estimates for the mean and standard deviation of 
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the fitted lognormal distributions drawn from their posterior distributions. Results are 

presented as follows. The isolated effects of hydrologic model residual error on the 

estimation of these statistics are considered first. The integration of uncertainties from the 

range of climate projections, model residual error, model parameterization, and sampling 

uncertainty are then addressed. An analysis of alteration in different monthly statistics is 

then presented in the context of their integrated uncertainty estimates. 

 

Figure 3.7 presents the pdf of a fitted lognormal distribution to January monthly 

streamflows developed from one GCM scenario over the baseline period forced with one 

sample of hydrologic and error model parameters. Two pdfs are shown, one developed 

from the original streamflow trace, and a second developed from the same trace after 

being perturbed with noise generated from the error model. The variability in both future 

climate and parameter estimates is omitted by considering only one climate trace and 

parameter set, therefore isolating the effects of residual error on the distribution of the 

January flow statistic. As expected, the addition of residual error to the simulated 

streamflow trace causes the spread in January flows to increase. Addition of residual 

uncertainty to the model output appropriately adjusts the data so that it better represents 

the actual precision with which we can estimate characteristics of the streamflow statistic. 

Since the error model is logarithmic, the spread increases more at higher streamflow 

values than it does at lower values, suggesting different levels of precision for different 

magnitudes of flow. Interestingly, this highlights one of the difficulties in the choice of 

error model. While a transformation might make the data more tractable for a given error 
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model, the application of that error model may lead to asymmetric uncertainty estimates 

after the transformation is reversed.  

 

Figure 3.7. Probability density functions of baseline January monthly streamflow with 

(red dashed) and without (black solid) a perturbation with noise generated from the error 

model. Only one GCM scenario (z=1) and parameter set (k=1) were used to generate the 

streamflow trace. 

 

To develop comprehensive uncertainty bounds around future hydrologic statistics, the 

residual error of the hydrologic model needs to be integrated with uncertainties in model 

parameterization, future climate projections, and sampling error. Figure 3.8 shows 95% 

predictive intervals for quantile estimates of baseline-period January streamflow plotted 

against non-exceedance probabilities for different considerations of uncertainty. Figure 

3.8(a-c) shows the isolated contributions of climate uncertainty, hydrologic model 

parameter and residual error, and sampling error to the uncertainty of quantile estimates, 

respectively. The range of quantile estimates in Figure 3.8a stems from the ensemble of 
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baseline climate scenarios run over the median hydrologic model parameter set without 

the addition of residual noise. The range in Figure 3.8b was developed for only one 

ensemble member of baseline climate, but both parameter and residual uncertainties from 

the hydrologic model were considered. The influence of hydrologic model parameter and 

residual errors are aggregated and presented together in Figure 3.8b in order to represent 

the total added uncertainty from the hydrologic model. In Figure 3.8c, one baseline 

climate scenario was used to drive the hydrologic model with the median parameter set 

and no additional noise, but sampling uncertainty was calculated for each quantile. We 

note that the ranges of uncertainty in Figure 3.8(a-c) are dependent on the climate 

ensemble member or parameter set that was held constant during their development and 

are thus only used to illustrate the range of isolated uncertainty bounds. Figure 3.8(d-f) 

shows the predictive bounds for quantile estimates when climate, hydrologic model, and 

sampling uncertainties are integrated together. Figure 3.8d is the same as in Figure 3.8a, 

but Figure 3.8e shows the uncertainty bounds for quantile estimates when climate 

uncertainty, parameter uncertainty, and residual uncertainty are considered 

simultaneously. Figure 3.8f shows the total integrated uncertainty with sampling error 

considered as well.  
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Figure 3.8. Isolated (a-c) and integrated (d-e) 95% predictive intervals for quantiles of 

January streamflow over the baseline period. Uncertainty originating from a range of 

climate scenarios, parameter and residual errors in the hydrologic model, and sampling 

error are shown in isolation in (a), (b), and (c), respectively. Climate uncertainty in (a) is 

repeated in (d), the integration of climate, parameter, and residual uncertainties is 

presented in (e), and (f) shows the cumulative uncertainty after sampling error is also 

considered. 
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When comparing isolated and integrated uncertainties, it immediately becomes clear that 

uncertainties from climate projections, hydrologic model parameter and residual error, 

and sampling error cannot be independently added to generate reliable predictive bounds 

for estimates of hydrologic statistics and their properties. This is seen in Figure 3.8e and 

Figure 3.8f, in which the range of uncertainty for many quantiles, particularly the larger 

ones, is greater than the sum of the uncertainties of their component parts (Figure 3.8(a-

c)). This property highlights the dependence of uncertainty bounds on the interactions 

between the different sources of uncertainty.  

 

This is a particularly important point, so we present a simplified example to emphasize it 

here. Consider a normalized streamflow quantile, Yp, with zero mean and a variance 

conditional on either isolated climate uncertainty ( 2

,cYp
σ ) or hydrologic modeling 

uncertainty ( 2

,hYp
σ ). Assuming Yp is normally distributed, a (1-α) predictive interval under 

isolated climate uncertainty and isolated hydrologic modeling uncertainty could be 

respectively written as [
2

, αξσ ×− cYp
,

2

, αξσ ×cYp
] and [

2

, αξσ ×− hYp
,

2

, αξσ ×hYp
], where 

2

αξ

is the (1-
2

α
) percentile of the standard normal distribution. Now assume that Yp can be 

expressed under the simple additive model Yp = εc + εh, where εc~N(0, 2

,cYp
σ ) and εh~N(0, 

2
,hYp

σ ). Assuming that variations in Yp stemming from climate and hydrologic modeling 

uncertainty are independent, we would expect that the total variance of Yp would equal 

the sum of the isolated variances, 2

,

2

,

2

hYcYY ppp
σσσ += . However, the predictive interval for 
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Yp under integrated climate and hydrologic modeling uncertainty would be given as [

2

2

,

2

, αξσσ ×+− hYcY pp
,

2

2

,

2

, αξσσ ×+ hYcY pp
], which does not correspond to the sum of the 

two isolated intervals above because
hYcYhYcY pppp ,,

2

,

2

, σσσσ +≠+ . Therefore, even under 

the simplifying assumption that variations in Yp can be described by the simple additive 

model above, we would not expect uncertainty intervals to be additive. Thus, there is no 

reason to believe that uncertainty intervals would be additive given a more complex 

situation in which variations in Yp can be influenced by the interactions of different 

sources of uncertainty within a hydrologic modeling framework. 

 

The dependence of variations in Yp on interactions between different sources of 

uncertainty can be traced to several contributing factors. First, the hydrologic model 

being considered is nonlinear, so different parameterizations of that model will result in 

nonlinear responses to a given climate. When those various parameterizations are used to 

simulate hydrologic response over a range of climates, there is the potential that the 

combination of an extreme climate ensemble member and parameter set will lead to 

significantly different streamflow responses than that seen under just climate or 

parameter uncertainty alone. Another source of dependency arises from the interaction 

between the error model and the ensemble of climate members. Because the error model 

used in this application is based on a logarithmic transformation, the uncertainty of large 

quantile values becomes highly skewed to the right after residual uncertainty is 

accounted. If an ensemble climate member leads to slightly larger quantile values for the 

streamflow statistic being considered, the residual error estimated for those larger 
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quantiles could lead to the significant expansion of their predictive bounds. Finally, there 

are significant interactions between sampling error estimation and both hydrologic and 

climate model uncertainties. Sampling error uncertainty bounds will grow with the 

uncertainty in the parameters of the distribution used to model the streamflow statistic. 

The sampling distributions of these parameters will likely change when climate and 

hydrologic model uncertainties are considered, causing the magnitude of sampling error 

to change with respect to its range when considered in isolation.  

 

After aggregating the uncertainties from climate scenarios, the hydrologic model, and 

sampling error, it becomes evident that some quantile values for certain streamflow 

statistics can only be estimated with limited precision. This is shown for the cumulative 

error under baseline climate conditions in Figure 3.8f. In the case of future climate 

conditions, the range of climate projections becomes far more significant. Figure 3.9 

compares the cumulative uncertainty of January monthly flows evaluated over the 

historic and future climate conditions. Figure 3.9a is the same as in Figure 3.8f, but 

Figure 3.9b now shows the uncertainty in future climate projections.  
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Figure 3.9. Integrated 95% predictive bounds for January flow quantiles under the a) 

baseline and b) future periods. 

 

Two primary differences arise between the baseline and future cumulative uncertainties 

for January flow quantiles. First, the underlying climate uncertainty is far greater under 

the future scenarios than those of the baseline. This is expected because the baseline 

climate projections are all directly mapped to the historical trace of temperature and 

precipitation via downscaling. Thus, the range of historical projections does not model 

climate uncertainty or even climate model uncertainty but rather is an artifact of the bias 

correction method. Consequently, the range of future projections also does not model the 

uncertainty of future climate or even the model uncertainty of future climate projections. 
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Nonetheless, the range of climate projections is commonly used to provide some sense of 

the uncertainty in the projections that arise due to model error and internal variability and 

are used for that purpose. That range, albeit a minimum range of climate uncertainty, 

significantly increases the uncertainty in the quantile estimates relative to hydrologic 

modeling uncertainty as shown in the comparison between Figure 3.9a and Figure 3.9b. 

Second, the sampling error for larger quantiles is vastly greater for the future scenarios 

than for the baseline. This is due to the greater spread of January flows under future 

conditions and its influence on sampling error estimates. Overall, it is clear that the 

cumulative uncertainty for quantile estimates of this statistic is much greater for the 

future than it is under baseline conditions.  

 

Quantile estimates can be directly compared between baseline and future scenarios in the 

context of their cumulative uncertainties to help determine the level of confidence that 

can be associated with their possible alteration under climate change. Figure 3.10 

presents the cumulative uncertainty of quantile estimates of monthly streamflow statistics 

in the White River for future and baseline conditions. Here, no distinction is made 

between the different sources of uncertainty (e.g. climate, hydrologic, or sampling 

errors). Rather, the cumulative 95% predictive intervals for flow quantiles under baseline 

and future conditions are overlaid on each other to provide a representation of whether 

changes in streamflow under climate change exceed the range of uncertainty that arises 

during the modeling process. Less overlap between predictive intervals of flow quantiles 

under baseline and future conditions provides greater confidence that the flow quantile 

will actual differ under future climate conditions. Figure 3.10a shows that there are 
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significant differences between the distributions of January flows in the baseline and 

future periods even after accounting for cumulative modeling uncertainties. Results 

suggest that climate projections of January flows are significantly higher in the future 

than in the present, likely due to a shift in the snowfall to precipitation ratio driven by 

increased wintertime temperatures. Over most January quantiles, approximately half of 

the bounded region for future conditions lies completely outside the range of baseline 

uncertainty. This suggests that this range of climate changes rises to a level that is well 

above the baseline uncertainty.   

 

Figure 3.10. Integrated 95% predictive bounds in flow quantiles for baseline and future 

periods for the months of a) January, b) March, c) April, and d) October. 
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Figure 3.10b and Figure 3.10c show results for March and April average streamflows, 

respectively. The range of climate projections show March flows increasing in the future 

while April flows decrease. These changes are consistent with earlier snowmelt 

occurrences and decreases in snowpack storage that historically have persisted into the 

later spring. Interestingly, the highest quantiles of March flows for the future period show 

minor departures from those of the baseline; differences become more noticeable for 

flows below the 95th percentile. This is not the case for April flows, which show more 

significant departures between baseline and future flows at the highest quantiles. This 

suggests that more confidence can be associated with shifts in the highest flows during 

April than in March. This is likely because snowpack, a driving factor of the largest 

spring flows, is consistently reduced in April under all future hydroclimatic projections, 

but is more variable across the projections in the month of March.  

 

Figure 3.10d shows results for the month of October. The range of climate projections 

exceeds only minutely the baseline uncertainty bounds for October quantiles. The spread 

in the future period for most quantiles extends both below and above that of the baseline 

period, although the changes are extremely small except for the higher quantiles. These 

results suggest that no real change in most October flow quantiles are projected in this set 

of CMIP3 climate changes.   

 

3.6. Discussion of Future Research Needs 

The framework in this study addresses many types of uncertainty in future hydrologic 

alterations and integrates them together to form a more comprehensive expression of the 
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total uncertainty surrounding future hydrologic variables. Nevertheless, several 

simplifying assumptions were made regarding the quantification of hydrologic model 

uncertainty in this analysis. Various challenges still hinder a complete quantification of 

this uncertainty, including source separation of uncertainties, choice of error model, and 

model structural errors. A discussion of each of these issues follows to highlight further 

research needed to bolster the framework presented in this study. 

 

3.6.1. Input and response data uncertainties in future hydrologic projections 

To simplify the modeling approach this study aggregated all errors associated with input 

data measurements, response data measurements, and model structure into one error term 

ε, but the aggregation of different types of error into one term can have significant 

implications for the quantification of uncertainties in future hydrologic projections [Thyer 

et al., 2009]. Errors in forcing data sets (e.g. input precipitation data, temperature data, 

etc.) and observations (e.g. streamflow measurements) are particular to the historic 

record. Their influence on uncertainty estimates for streamflow predictions should be 

isolated to the historic period and removed from uncertainty estimates of future 

streamflow projections. Approaches have been proposed to quantify and separate 

different sources of uncertainty in hydrologic modeling through Bayesian methods 

[Kavetski et al., 2006a, Kavetski et al., 2006b, Huard and Mailhot, 2008]. These 

approaches represent possible contributions of uncertainty from input and output 

measurement errors using prior distributions chosen by the modeler. Prior distributions 

for input and output data permit corruptions in those measurements to be filtered out of 

the calibration process, allowing for more robust and unbiased estimation of hydrologic 

and error model parameters, along with their associated uncertainties. While not 
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employed in this study, methodologies for separating input and response data 

uncertainties from uncertainties in future hydrologic projections are promising tools that 

should be explored in future applications of the proposed framework.  

 

3.6.2. Error model identification and associated challenges 

The choice of error model used to represent the probabilistic structure of model residuals 

also plays a critical role in accurately assessing uncertainties in future hydrologic 

projections. In the vast majority of hydrologic applications, model errors violate 

assumptions of normality, independence, and homoscedasticity [Kuczera, 1983]. If the 

error model is incapable of capturing these characteristics, parameter estimates can 

become biased and inferences of parameter and residual uncertainty can degrade [Thyer 

et al., 2009]. This could significantly impede efforts to accurately propagate hydrologic 

modeling uncertainty through a climate change impacts analysis.  

 

Previous studies have proposed many alterations to the error model to capture different 

characteristics of residual error. Several studies have employed autoregressive-moving 

average (ARMA) models and various transformations to model auto-correlated, non-

Gaussian, and heteroskedastic errors [Kuczera, 1983; Bates and Campbell, 2001; 

Thiemann et al., 2001]. Perhaps the most inclusive error model is proposed in Schoups 

and Vrugt [2010], in which residual errors were modeled using an autoregressive 

polynomial, a time-variant standard deviation linearly related with mean predicted flow, 

and a random noise component described by a skew exponential power distribution. The 
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three components allowed the error model to simultaneously model residuals exhibiting 

autocorrelation, heteroskedasticity, and non-normality, respectively, without the use of a 

transformation. A flexible parameterization, inferred through Bayesian techniques, 

allowed the structure of model errors to be determined during calibration, circumventing 

the difficulties of specifying error structure a priori. Overall, the advances in explicitly 

representing the stochastic nature of hydrologic model error are promising and suggest 

that Bayesian methods to quantify predictive uncertainty may be reliable for complex, 

high temporal resolution (e.g. daily) models often used in climate change impact 

analyses. Further research is needed to test this hypothesis.  

 

3.6.3. Structural errors in hydrologic modeling 

Structural errors in conceptual hydrologic modeling arise because spatially and 

temporally averaged representations of a catchment are often unable to simulate the true 

dynamics of a distributed and heterogeneous watershed. Structural errors may present one 

of the biggest challenges to the use of hydrologic models in predicting catchment 

response to climate change, especially when those responses fall outside the range of 

historic variability. Efforts to accurately characterize structural error in hydrologic 

models have met with only moderate success. Many studies assume input and output data 

are known and lump structural errors into a residual error term [Bates and Campbell, 

2001; Marshall et al., 2004; Stedinger et al., 2008]. This was the approach taken in this 

study. Other approaches consider fluxes in rainfall-runoff models as stochastic, using 

state space approaches [Vrugt et al., 2005] and time-varying parameter values [Kuczera 

et al., 2006; Reichert and Mieleitner, 2009] to compensate for structural deficiencies 
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stemming from spatial and temporal averaging. The use of several different model 

structures is also a popular choice [Boorman and Sefton, 1997; Wilby and Harris, 2006; 

Jiang et al., 2007; Kay et al., 2009; Prudhomme and Davies, 2009a; Prudhomme and 

Davies, 2009b], and methods like Bayesian model averaging have recently been 

employed to help generate more reliable predictive intervals from these ensembles [Duan 

et al., 2007; Marshall et al., 2007]. However, it is often difficult to determine whether 

enough model structures are considered to develop a complete accounting of structural 

uncertainties. These different approaches and their underlying assumptions are 

summarized in more detail in Renard et al. [2010]. The formal characterization of 

structural model uncertainty remains a primary challenge to the hydrologic modeling 

community, especially as the need for insight about future hydrologic alterations under 

previously unseen climate forcings increases.  

 

 

3.7. Conclusions 

There is a growing recognition that advancements in climate change alteration studies are 

required to inform water resource planners and managers of the magnitude and sources of 

uncertainty in future hydrologic projections. In particular, of interest is whether projected 

changes in streamflows are important relative to the baseline error of the hydrologic 

modeling process. A statistical framework for investigating this question was presented 

here. Our approach was able to propagate uncertainty from a hydrologic model into 

future streamflow projections and integrate that uncertainty with other sources, producing 

a more complete uncertainty analysis of future hydrology under climate change.  



94 
 

 

This study employed a very simple but common approach for quantifying future climate 

uncertainty based on an ensemble of future climate projections. More comprehensive 

approaches exist, including those that treat climatological uncertainty with formal 

probability distributions [Tebaldi et al., 2005]. These approaches present an interesting 

possibility of recasting the entire cascade of model results in a probabilistic framework. 

However, GCM simulations are projections, not predictions, and therefore a limit likely 

exists for how useful direct GCM output will be in developing reliable bounds on future 

climate. It is difficult to compare the raw projections with observations in meaningful 

ways to assess skill and error, and current practices that rely on a comparison of the 

marginal distributions of GCM simulations against those of the observations provide 

“only a limited kind of confidence” [Stainforth et al., 2007b]. In addition, the 

downscaling methods are often calibrated over the entire historic record, leaving cross-

validation approaches impossible. Nonetheless, the framework presented here allows a 

comparison of the range of climate projections with hydrologic modeling uncertainty.  

 

The application to the White River Basin demonstrates how a comprehensive treatment 

of uncertainty can reveal varying levels of precision associated with hydrologic 

alterations across a spectrum of hydrologic responses. This information could be very 

valuable in assisting water resource managers with decisions regarding adaptation 

measures to possible climate changes. Depending on the projected direction and severity 

of climate change impacts on regional hydrology, water resources investments for 

adaptation can be quite expensive. The possible regret associated with those investments 
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increases rapidly with the uncertainty surrounding future hydrologic alterations, 

particularly key design flow statistics. Since the minimization of regret is often used to 

govern decisions regarding large capital investments, a reliable quantification of future 

hydrologic uncertainty is critical for a robust application of decision theory to climate 

change adaptation investments in the water sector. This study provides a meaningful 

contribution towards that end. Future work will propagate future hydrologic uncertainties 

developed in this study through systems and environmental models to understand the 

impacts of integrated hydrologic and climate uncertainties on decision-making in fields 

like water resources and ecohydrology.  
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CHAPTER 4 

THE INTEGRATED EFFECTS OF CLIMATE AND HYDROLOGIC 

UNCERTAINTY ON FUTURE FLOOD RISK ASSESSMENTS 

 

4.1. Abstract 

This work examines future flood risk management performance within the context of 

integrated climate and hydrologic modeling uncertainty.  The research questions 

investigated are 1) whether hydrologic uncertainties are a significant source of 

uncertainty relative to other sources such as climate variability and change in the final 

assessment of future flood risk management, and 2) whether a statistical characterization 

of uncertainty using a lumped, conceptual hydrologic model is sufficient to account for 

hydrologic uncertainties in the modeling process. To investigate these questions, an 

ensemble of climate simulations are propagated through hydrologic models and then 

through a reservoir simulation model to delimit the range of flood protection under a 

wide array of climate conditions. Mean climate changes and internal climate variability 

are explored using a stochastic weather generator. Two hydrologic models are 

considered, a conceptual, lumped parameter model that preserves the water balance and a 

distributed, physically-based model that preserves both water and energy balances. In the 

conceptual model, parameter and structural uncertainties are quantified and propagated 

through the analysis using a Bayesian modeling framework with an innovative error 

model. The approach is demonstrated in a case study for the Coralville Reservoir on the 

Iowa River, where intense flooding over the past several decades has raised questions 

about potential impacts of climate change on flood protection adequacy.  
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4.2. Introduction 

It has long been understood by water resource planners that an analysis of planning 

uncertainties is critical when appraising the utility of any water resources project. For 

future flood risk under climate change at the local watershed scale, these uncertainties 

can be sizeable. Recent studies have stressed the extreme difficulty in projecting changes 

in local storm intensity and frequency [Liang et al., 2001; Dai, 2006; Knutson et al., 

2010], with some arguing that reliable conclusions about these changes are not yet 

available [Barsugli et al., 2009; Hirsch, 2011]. In addition, modeling hydrologic system 

response during large floods can be very challenging [Uhlenbrook et al., 1999; Todini, 

2004; Brath et al., 2006]. These uncertainties hinder a straightforward appraisal of flood 

protection infrastructure under climate change. This study presents a framework in which 

these uncertainties are accounted for and propagated through the analysis, providing 

information that can inform flood protection planning decisions even when the planning 

process is marred by deep future uncertainties. The approach relies on a large ensemble 

of climate projections across a wide range of potential changes to account for the 

irreducible uncertainty in future climate, while hydrologic uncertainties are accounted for 

using two model structures and a formal, Bayesian calibration approach that 

accommodates complex errors in daily hydrologic modeling. 

 

Traditionally, flood risk planning has relied on the underlying assumption that 

hydroclimatic variables of interest follow a time-invariant probability distribution (i.e. 

they are stationary). An estimate of this distribution could be used to estimate the 

expected benefits and costs associated with different flood management projects. Over 
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the last two decades, however, the validity of the stationary assumption has been strongly 

challenged [Solomon et al., 2007]. While empirical evidence supporting nonstationarity 

in flood series has been mixed [Lins and Slack, 1999; Villarini et al., 2009], some argue 

that enough evidence has been presented to preclude the use of stationarity as a 

justifiable, default assumption for water resource planning [Milly, 2008]. 

 

The water resources planning community has largely accepted that nonstationary climate 

needs to be considered moving forward. Over the past decade there has been an 

increasing emphasis in the literature on better accounting of climate change uncertainty in 

long-term planning efforts, with recent work emphasizing the need for risk-based 

approaches. Risk-based planning methods attempt to provide probabilistic information 

about potential impacts using scenario ensembles and relative scenario probabilities 

[Brekke et al., 2009], allowing decision-makers to choose a level of acceptable risk and 

discount impacts that do not exceed that threshold. The goal of these planning efforts is 

often to identify robust decisions - those that provide an adequate level of performance 

across a range of climate change uncertainty - provided that some of that uncertainty can 

be characterized with probabilistic information drawn from climate information sources 

(e.g. global circulation model (GCM) projections).   

 

Most studies adopting risk-based approaches rely on downscaled future climate 

projections from GCMs to provide an ensemble of climate scenarios and then use the 

relative frequencies of those downscaled projections to inform the probability analysis of 
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future change [Dessai and Hulme, 2007; Brekke et al., 2009; Lempert and Groves, 2010]. 

One potential issue with this approach is that these scenarios may not correctly bound 

future climate uncertainty [Stainforth et al. 2007a, Stainforth et al. 2007b]. Also, the 

computational expense of GCMs often hinders a thorough exploration of internal climate 

variability, despite its importance [Stainforth et al., 2005; Deser et al., 2012]. To 

circumvent this issue, Brown et al. [2012] introduced the methodology of Decision-

Scaling, a risk-based planning approach that employs climate scenarios that are 

independent of and extend beyond the range of GCM projections to identify system 

vulnerabilities. Future climate projections produced by GCMs and other climate 

information sources (e.g. historic trends, paleodata, expert opinion) can then be used to 

provide insight on likely future changes in order to estimate risk. By separating the 

identification of system vulnerabilities from the assessment of likelihoods of future 

change, this method is arguably less sensitive to climate model uncertainties because it 

can identify system vulnerabilities potentially unrealized under downscaled GCM 

projections. This approach can also utilize more computationally efficient climate 

generation tools to better explore the effects of internal climate variability.  

 

In addition to the uncertainty surrounding future climate, there is also significant 

uncertainty surrounding our ability to estimate the hydrologic response, especially the 

flood response, of a local watershed. There have been significant efforts to explore the 

uncertainty of future river flows stemming from both climate and hydrologic model 

uncertainties. Some work has considered these uncertainties in isolation [Arnell 1999; 

Prudhomme and Davies, 2009a,b; Kay et al. 2009], while others have explored their 
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integrated effects [Wilby and Harris 2006; Chen et al., 2011], but all of these studies 

utilize a small sample of conceptual hydrologic model structures (≤ 3) and lumped 

parameter sets (≤ 10) to quantify hydrologic modeling uncertainty. This literature 

generally concludes that hydrologic uncertainties are much less significant than those 

originating from climate change.  

 

The insignificant effects of hydrologic modeling uncertainty can in part be attributed to 

the limited sampling schemes used. While a small set of hydrologic model structures and 

parameter sets can provide some insight regarding this source of error, they may be 

insufficient to quantify the full uncertainty range [Renard et al. 2010]. In fact, the efforts 

mentioned above have largely ignored recent methodological advancements used to 

formally quantify hydrologic model uncertainty, particularly Bayesian techniques that 

account for both predictive and parameter uncertainties [Beven and Freer, 2001; Bates 

and Campbell, 2001; Marshall et al., 2004; Stedinger et al., 2008; Schoups and Vrugt, 

2010], input and response data errors [Kavetski et al., 2006a, 2006b; Thyer et al., 2009; 

Renard et al., 2010], and structural model uncertainty [Duan et al., 2007; Marshall et al., 

2007]. There have been a handful of studies that have utilized some of these advanced 

methods to more fully explore the influence of hydrologic uncertainty on future 

streamflow projections [Cameron et al., 2000; Cameron, 2006; Khan and Coulibaly, 

2010; Kwon et al., 2011; Steinschneider et al., 2012], and this work generally shows that 

hydrologic uncertainty has a more substantial influence on the total uncertainty than 

previously thought. It is possible that an effective statistical characterization of structural 

and parametric hydrologic uncertainty for a single conceptual, lumped parameter model 
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may effectively capture the hydrologic uncertainties in future streamflow projections for 

impact assessments.  

 

To this point the discussion has focused on the progress and gaps of previous work 

exploring integrated uncertainty assessments in hydrologic impacts studies under climate 

change. Yet, there is an even more disparate gap in the literature exploring the 

propagation of these uncertainties through a water resource systems analysis. Most 

studies that have attempted to account for hydrologic modeling uncertainty in water 

resources planning mainly focus on short-term (daily-seasonal) decision-making 

timescales [Georgakakos et al., 1998; Faber and Stedinger, 2001; Yao and Georgakakos, 

2001; Alemu et al., 2011] and do not utilize the most recent advances in hydrologic 

modeling uncertainty methods referenced above. Two notable exceptions include the 

work presented in Ajami et al. [2008] and Muleta et al. [2013], which used more recent 

uncertainty methods to propagate hydrologic error into planning studies for a water 

supply and urban storm water system, respectively. These studies did not, however, 

consider planning uncertainties related to climate change. To the authors’ knowledge, 

there have been no attempts to formally quantify hydrologic model uncertainty using 

recent statistical approaches, couple it with an analysis of climate change uncertainty, and 

assess their integrated impact on long-term water resource planning decisions. 

 

There are two primary contributions of this work: 1) to present a framework for revealing 

whether a water resource system is robust under integrated uncertainties from both 
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climate variability and change and hydrologic modeling capabilities, and 2) to provide a 

novel exploration of whether it is sufficient to characterize the parametric and structural 

uncertainty in a simple lumped hydrological model and propagate that uncertainty 

through a climate risk assessment, or if more complex hydrologic models are required to 

better explore hydrologic uncertainty under climate change impacts. The proposed 

framework is considered particularly relevant for flood risk planning studies because 

hydrologic uncertainties can be substantial and therefore should not be ignored. The 

approach is demonstrated for the Coralville Reservoir, a flood control facility in Iowa. 

The remainder of the paper will proceed as follows. Section 4.3 introduces the 

uncertainty framework, specifying the different strategies used to address climate change 

and hydrologic model uncertainty. An application of the framework is described in 

Section 4.4. Results are presented in Section 4.5, and the paper concludes with a 

discussion of future research needs in Section 4.6.  

 

4.3. Uncertainty Framework 

The uncertainty framework proposed in this study is comprised of two primary 

components. The first utilizes the Decision-Scaling methodology [Brown et al. 2012] to 

explore the irreducible uncertainties in the climate system and estimate risk based on the 

most up-to-date climate information available. The second component employs two 

hydrologic model structures and, for one of those structures, a formal Bayesian 

calibration framework to characterize the parametric and predictive uncertainty in the 

hydrologic modeling process. These two components are described further below. 
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4.3.1 Future Climate Uncertainty and Decision-Scaling 

To account for the uncertainty of future climate change in flood risk planning, this study 

utilizes the Decision-Scaling methodology previously introduced in Brown et al. [2012]. 

At its core, the Decision-Scaling methodology can be characterized by two primary steps: 

1) the identification of climate conditions that lead to unacceptable flood control 

problems (i.e. a vulnerability assessment), and 2) an examination of different sources of 

climate evidence to determine whether those problematic climate changes are likely to 

occur. By separating the vulnerability assessment from the analysis of likely climate 

changes, the approach ensures that the performance of the system is tested over a 

sufficiently wide range of possible futures to identify important vulnerabilities. When 

coupled with information regarding the likelihood of different climate changes, the 

vulnerability analysis provides the decision-maker with an assessment of climate-based 

risks.  

 

This study utilizes a stochastic weather generator to produce the climate time series over 

which to conduct the vulnerability analysis. Stochastic weather generators are computer 

algorithms that produce long series of synthetic weather data. The parameters of the 

model can be systematically changed to produce new sequences of weather variables that 

exhibit a wide range characteristics, enabling detailed climate sensitivity analyses 

[Semenov and Porter 1995, Mearns et al. 1996, Wilks and Wilby 1999, Confalonieri 

2012]. The scenarios created by the weather generator do not have to be dependent on 

any climate projections, allowing for a wide range of possible future climates to be 

generated. Furthermore, climate scenarios exhibiting the same mean climate changes can 
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be stochastically generated many times to explore the effects of internal climate 

variability. These climate scenarios are used to drive hydrologic models to generate time 

series of streamflow, which in turn are used as input to a reservoir simulation model. The 

output of the reservoir simulations under each climate time series is used to create a 

functional link between system flood risk and a set of mean climate conditions.  

 

We note that it is not critical that all climate scenarios generated by the weather generator 

are plausible when first identifying system hazards, as long as implausible changes are 

discounted or disregarded later in the analysis when developing estimates of climate risk. 

The important factor is to determine how far the climate must change before the system 

no longer functions properly so that the analyst is aware of the potential climate hazards. 

Initially, the range of climate changes explored using the weather generator should be 

made wide enough to stress the system to failure. When those failures emerge, judgments 

can be made regarding the plausibility of the conditions causing them using available 

climate information (e.g., GCM projections, paleodata records, historic trends); they need 

not be made earlier.  

 

4.3.2 Hydrologic Modeling Uncertainty 

This study considers hydrologic model uncertainty to avoid underestimating flood risk 

associated with this source of error. There are several sources of uncertainty that obscure 

hydrologic model predictions, including model structure, parameterization, climate data 

quality, and streamflow data quality. This study explicitly focuses on the first two of 

these sources, structural and parameter uncertainties. Model structural uncertainties arise 
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because spatially and temporally averaged representations of a catchment are often 

unable to simulate the true dynamics of a distributed and heterogeneous watershed 

[Renard et al., 2010]. Parameter uncertainty is complicated by the issue of equifinality, 

characterized by the phenomenon where multiple parameter sets produce relatively 

indistinguishable streamflow responses under historic climate conditions [Beven and 

Freer, 2001; Beven, 2006] but can lead to diverging flow projections under alternative 

climate regimes [Wilby, 2005]. This can make it difficult for an analyst to choose one 

parameter set in a climate change analysis.  

 

This study accounts for structural hydrologic modeling uncertainties in two ways: 1) the 

use of two model structures, one lumped and conceptual and the other physical-based and 

distributed, and 2) using a stochastic representation of model errors for the conceptual 

model. For the second approach, an innovative error model is chosen to accommodate the 

non-Gaussian, auto-correlated, and heteroscedastic nature of daily hydrologic model 

errors [Schoups and Vrugt, 2010]. All input data uncertainties are implicitly lumped 

together with structural uncertainties in the error model. For the conceptual model, 

parametric uncertainty is also quantified using Bayesian methods. The structural and 

parametric uncertainty within the conceptual model is juxtaposed against the output of 

the physically-based, distributed hydrologic model to determine whether the statistical 

uncertainty of the simpler model can account for the predictive differences between the 

two model structures in a climate risk analysis. The components of the conceptual 

hydrologic uncertainty analysis are described in detail below.  
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4.3.2.1. An innovative error model to account for structural uncertainty 

To model the structural uncertainty of the conceptual model used in the hydrologic 

analysis, the distribution of model residuals is estimated using an innovative error model. 

The error model is taken directly from Schoups and Vrugt [2010] and is only briefly 

reproduced here. The reader is directed to the original study for more details on the 

method.  

 

Assume that daily streamflow observations   can be modeled as the sum of hydrologic 

model estimates  !�", #$� and an error term %: 

 &  !�", #$� ' %     (4.1) 

 

Here, the hydrologic model response is a function of the forcing data " and a set of 

hydrologic model parameters, #$. To account for potential non-normality, auto-

correlation, and heteroscedasticity in the residuals, the following model is proposed: 

 

Φ)�*�+, & Ψ.�*��/,0,�     (4.2.1) 

/, & /� ' /123,      (4.2.2)  

 0,~678�0,1, ;, <�      (4.2.3) 
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where Φ)�*� & 1 = ∑ ?@A@)
@B1  is an autoregressive modeling structure, Ψ.�*� & 1 '

∑ C@A@.
@B1  is a moving average modeling structure, A@ is the backshift operator for the ith 

term (A@+, & +,D@), ?@ is the ith autoregressive coefficient, C@ is the ith moving average 

coefficient, p is the order of the autoregressive model, q is the order of the moving 

average model, /, is a time-varying standard deviation, /� and /1 are the intercept and 

slope of a linear regression of the standard deviation as a function of the predicted flow, 

and 0, is a normalized error term that is independently and identically distributed 

according to a skew exponential power (SEP) distribution with mean 0, unit standard 

deviation, and parameters ; and < to account for skew and kurtosis. The parameters of 

the error model can be lumped into the vector #% & EF1:), H1:., /�, /1, ;, <I. 

 

There are three major components of the proposed error model. First, the auto-regressive 

moving average (ARMA) modeling structure of order (p,q) allows for hydrologic model 

residuals to exhibit persistence. Second, the time-varying standard deviation, /,, permits 

the variance of model errors to rise as the flows being predicted increase. The last 

component of the error model is the SEP distribution used to describe the frequency of 

normalized, uncorrelated, and homoscedastic errors at. The SEP distribution enables the 

representation of skewed and fat-tailed residuals, a common situation in daily hydrologic 

modeling.  

 

This study utilizes a Bayesian calibration scheme to calibrate both the hydrologic and 

error model parameters # & J#K, #%L and estimate their relative uncertainties. Before 



108 
 

performing the calibration, all previous knowledge about the hydrologic model 

parameters is summarized in a prior distribution, denoted 8�#�, which can be made 

vague if no prior information is available. The joint posterior distribution of all model 

parameters can be described using Bayes’ Theorem, which states that the joint posterior 

is proportional to the product of the likelihood function, M� |#, "� (see Schoups and 

Vrugt, 2010), and the prior distribution for each parameter: 

 

8�#| , "� & N� |#,"�OP�#�
Q N� |#,"�OP�#�OR##

    (4.3) 

 

The integral in the denominator of equation 4.3 is a constant of proportionality required 

to ensure that 8�#| , "� is a proper pdf. This integral is often extremely complicated in 

form and cannot be solved using available analytical methods. However, this challenge 

has been largely overcome using Markov Chain Monte Carlo (MCMC) techniques that 

allow for an exhaustive sampling of parameter values that can be used to describe the 

posterior space.  

 

4.3.2.2. Propagating hydrologic uncertainty into Decision-Scaling 

The Decision-Scaling methodology is coupled with the quantification of hydrologic 

modeling uncertainty to explore how integrated climate and hydrologic uncertainty 

influences estimates of system adequacy. In the Decision-Scaling approach, stochastic 

time series of weather representative of different types of climate change are used to 
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drive hydrologic and reservoir models to estimate system adequacy. Multiple stochastic 

simulations of the same climate change are used to explore the effects of internal climate 

variability.  

 

For the physically-based, distributed hydrologic model, only a single time series of 

streamflow is estimated for each climate sequence. To propagate the conceptual 

hydrologic model uncertainty through this analysis, an ensemble of hydrologic traces is 

produced for each climate sequence. For a given climate time series of length T, a large 

number of hydrologic model time series predictions  !1:S can be generated using posterior 

samples of #K. Posterior samples of ; and < can then be used generate an ensemble of 

time series a1:T drawn from the SEP distribution. An ensemble of standard deviations T1:S 

can be estimated in equation 4.2.2 using the hydrologic model flow estimates  !1:S and 

posterior samples of /� and /1. Using equation 4.2.1, ensembles of a1:T and T1:S can be 

combined with posterior samples of F1:) and H1:. to estimate a large sample of errors 

%1:S. The ensemble of residual time series %1:S are added to the ensemble of predicted 

flows  !1:S, and this ensemble of streamflow traces is then used to drive the systems 

model, producing a distribution of system performance measures associated with each 

climate sequence. The range of performance measures under hydrologic uncertainty for 

any given climate sequence can then be compared against the range of average 

performance across different realizations of climate variability and change to determine 

the relative influential of hydrologic modeling and climate uncertainties on estimated 

system robustness.  
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4.4. Application: Coralville Reservoir in Iowa 

The framework described in Section 4.3 is applied to a case study of the Coralville 

Reservoir in Iowa. The Iowa River is located in eastern Iowa, joining the Mississippi 

River north of Burlington, Iowa and south of Iowa City (Figure 4.1). Coralville 

Reservoir, completed in 1958 and operated by the United States Army Corps of 

Engineers (USACE), drains 8,070 km2 of predominantly agricultural land and is operated 

for flood control on the Iowa and Mississippi Rivers downstream of the reservoir. In 

addition to its primary objective of flood risk reduction, Coralville Reservoir is also 

operated for low flow augmentation, recreation, and fish and wild life management. 

 

Figure 4.1. Map of the Coralville River basin. 

 

The basin has a humid continental climate with extremes of both heat and cold. Annual 

precipitation averages 854 mm and snowfall is common. Heavy spring rains coupled with 
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snowmelt often leads to high flow events in the basin, but the largest floods occur in the 

summer. The floods of record for the Iowa River occurred in the summers of 1993 and 

2008, when peak daily inflows into the Coralville Reservoir reached 1,010 cms and 1,365 

cms, respectively (USGS gage ID#: 05453100). Both of these floods resulted from large 

summer rainfall events that were preceded by extended periods of anomalously wet 

weather that saturated the basin. In fact, the six months preceding the floods in 1993 and 

2008 were the wettest on record. This evidence, along with previous research [Kunkel et 

al., 1994; Coleman and Budikova, 2010; Nakamura et al., 2013], suggests that the worst 

flooding in the area is not caused by short duration, high intensity storms in isolation, but 

rather long periods of wet weather that lead to highly saturated antecedent basin 

conditions. It is under these conditions that large rainstorms can result in extreme floods 

that challenge the flood risk reduction capabilities of the dam.  

 

4.4.1. Data  

Historic daily climate data, including precipitation, maximum, minimum, and mean 

temperatures, and wind speeds, were gathered for the Coralville basin area over the 

period of January 1, 1949 to December 31, 2010 from the 1/8 degree resolution (~140 

km2) gridded observed meteorological dataset produced by Maurer et al. [2002]. A total 

of 70 grid cells covering the Coralville watershed are used as climate input for two 

hydrologic models: the lumped, conceptual HYMOD model [Boyle et al., 2000; Kollat et 

al., 2012] and the distributed, physically-based Variable Infiltration Capacity (VIC) 

model [Liang et al., 1994]. In addition to the climate data, soil texture data for the basin 
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gathered from USDA-NRCS [2000] and vegetation cover data gathered from Hansen et 

al. [1998] are used as VIC forcing inputs. 

 

Daily observed streamflow data were gathered from the United State Geologic Survey 

(USGS) Iowa River at Marengo gage (ID# 05453100) upstream of the Coralville 

Reservoir for the period of January 1, 1958 to December 31, 2010. These data were 

scaled by the drainage area ratio between the gage and the reservoir to produce a time 

series of observed reservoir inflows.  

 

Time series of observed reservoir releases between October 1, 1992 and September 30, 

2010, as well as operating rules for the Coralville Dam, were gathered from our partners 

in the USACE.  

 

Finally, mean changes in precipitation and temperature were gathered from the World 

Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project 

Phase 3 (CMIP3) and Phase 5 (CMIP5) multi-model data sets. GCM simulations were 

downscaled using the bias correction and statistical disaggregation (BCSD) method 

[Maurer et al., 2007]. These projected changes in precipitation and temperature were 

averaged across the entire Coralville watershed and developed using 30-windows 

between 1970-2000 (baseline) and 2041-2070 (2050 target year). 
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4.4.2. Stochastic Weather Generator  

For this application, a relatively new, data-driven weather generator was chosen to drive 

the vulnerability assessment [Steinschneider and Brown, 2013]. The weather generator 

couples a Markov Chain and K-nearest-neighbor (KNN) resampling scheme to generate 

appropriately correlated multi-site daily weather variables [Apipattanavis et al., 2007] 

with a Wavelet Autoregressive Modeling (WARM) framework to preserve low-

frequency variability at the annual time scale [Kwon et al., 2007]. A quantile mapping 

technique is used to post-process simulations of precipitation and impose various 

distributional shifts under possible climate changes; temperature is changed using simple 

additive factors. More details on the model structure can be found in Steinschneider and 

Brown [2013].  

 

To conduct the climate vulnerability assessment, 62-year, daily simulations of climate are 

run several times in the weather generator with different climate changes imposed at each 

simulation (62 years was chosen to match the historic record length). Three types of 

climate change are examined here, including alterations to the mean of non-zero daily 

precipitation, its coefficient of variation (CV), and the mean of daily temperatures. 

Changes to the precipitation mean are ranged from ±30% of historic monthly averages 

using increments of 10% (7 increments). An alteration to the mean increases all events 

across the precipitation distribution. The precipitation CV is also changed by month from 

±30% of historic monthly values using increments of 15% (5 increments). These changes 

alter daily precipitation extremes without changing the total amount of water falling each 

month. Temperature shifts are ranged from 0 to 4 degrees Celsius by 2°C increments (3 
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increments in total). All possible combinations of these changes are considered, leading 

to a total of 105 = 7×5×3 different climate change scenarios. These changes were chosen 

to range beyond the changes suggested by GCM climate projections for this region to 

ensure the identification of climate changes that cause system failure.  

 

To explore the effects of internal climate variability, several weather generator 

simulations were considered for each type of climate change. Without parallel computing 

capabilities, the number of climate simulations for each climate change must be limited to 

manage the computational burden of the entire vulnerability assessment. However, many 

weather generator simulations are needed to adequately explore the possible climate 

fluctuations that may emerge due to chance. To circumvent this issue, we initially 

generated 500 different 62-year, daily simulations of climate and then chose 10 of those 

simulations to be used for the vulnerability assessment. Those 10 simulations, or trials, 

were chosen so that the 100-year basin-averaged annual maximum precipitation event 

across those trials (estimated using a fitted General Extreme Value (GEV) distribution) 

varied uniformly above and below the historic estimated 100-year event and spanned the 

entire range of 500 simulated 100-year events. With 10 trials for each climate change, a 

total of 1050 = 105×10 different climate runs are considered for the vulnerability 

assessment.  

 

A brief evaluation is presented here to demonstrate the ability of the model to reproduce 

historic climate conditions (see Steinschneider and Brown [2013] for a more thorough 
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evaluation). In this evaluation, the 10 weather generator simulations with no climate 

changes imposed are compared against observed statistics. The mean, standard deviation, 

and skew of daily precipitation and maximum and minimum temperatures are examined, 

as well as daily statistics regarding precipitation spells and extreme precipitation events. 

All of these comparisons are conducted for the basin-averaged time series.  

 

Figure 4.2 shows the mean, standard deviation, and skew of non-zero daily precipitation 

amounts, daily maximum temperature, and daily minimum temperature for each calendar 

month. The results suggest good performance for all variables and statistics, with 

observed values always falling within the range of the simulations. The average lengths 

of wet and dry spells are also well simulated, which can be a very important statistic with 

respect to the generation of floods (Figure 4.3). We also note that the cross-correlations 

of all variables across sites are almost perfectly preserved (not shown), which is expected 

given the resampling techniques used to generate the daily weather sequences. Finally, a 

GEV distribution is fit to the basin-averaged annual maximum precipitation time series 

and different return interval events are examined (Figure 4.4). These extreme event 

statistics are also well preserved in the model. Overall, the performance of the model for 

most statistics is either good or adequate, suggesting that the weather generator can 

produce suitable climate simulations for a flood impacts study in this location. 
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Figure 4.2. Daily performance statistics by month, including the mean, standard 

deviation, and skew of precipitation, maximum temperature, and minimum temperature. 

The observed statistics (red triangles) are shown against the distribution of statistics 

across the 10 trials. 
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Figure 4.3. The average dry and wet spell length for basin-averaged precipitation by 

month. The observed statistics (red triangles) are shown against the distribution of 

statistics across the 10 trials. 

 

 

Figure 4.4. The 20-, 50-, and 100-year annual daily maximum precipitation event. The 

observed statistics (red triangles) are shown against the distribution of statistics across the 

10 trials. 

 

4.4.3. Conceptual Hydrologic Model - HYMOD Model 

HYMOD is a lumped-parameter model composed of a soil-moisture accounting module, 

a snow module, and a routing module (see Figure 4.5). The soil-moisture accounting 
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module utilizes a storage capacity distribution function with parameters Cmax and β for 

the storage elements of the catchment [Moore, 1985]. The snow module uses a simple 

degree-day method for calculating snowmelt [Bergstrom, 1975], with a temperature 

threshold Ts to determine rain/snow separation, a second threshold Tm to initiate 

snowmelt, and a melt rate defined by the degree-day factor (DDF). The routing module 

divides excess water using the split parameter (α) and routes it through parallel 

conceptual linear reservoirs. The quick (Kq) and slow (Ks) reservoir depletion rates 

controls the flow from each routing reservoir. Multiple (Nq) quick flow reservoirs can be 

utilized. The outputs from quick and slow reservoirs are summed to simulate streamflow.  

 

Figure 4.5. Schematic representation of the HYMOD model with a description of its 

parameters. 

 

During the calibration process, a total of 15 parameters require estimation, including 9 

hydrologic model parameters (#$ & EUVWX, Y, Z, [. , [\, ]. , ^^_, \̀, V̀I) and 6 

parameters for the residual error model (#a & J?1, C1, /�, /1, ;, <L). One autocorrelation 

coefficient and one moving average coefficient are included because diagnostic tests (not 
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shown) suggest autocorrelation in the residuals can be represented using a simple 

ARMA(1,1) process. The model calibration was conducted over 10 years of historic 

climate, from October 1, 1989 to September 30, 1999. Daily precipitation and mean 

temperature were averaged across the catchment to produce a basin-averaged input time 

series. Daily potential evapotranspiration was calculated using the Hamon method 

[Hamon, 1963]. Before proceeding with the Bayesian calibration, all prior distributions 

were set to vague uniform distributions to allow the data to drive model calibration. The 

DREAM(ZS) MCMC algorithm was chosen to explore the joint posterior distribution of 

all model parameters [Vrugt et al., 2011]. Three sampling chains were used for each 

parameter, and convergence was verified using the Gelman and Rubin factor [Gelman 

and Rubin, 1992]. The feasible range, prior distribution, and posterior distributions for all 

model parameters are presented in Table 4.1.  

Table 4.1. Summary of prior and posterior distributions for all model parameters. 

   Posterior Distribution 

Parameter 
Feasible 
Range 

Prior Distribution 
First 

Quartile 
Median Mean 

Third 
Quartile 

cmax (mm) (0,∞) Uniform (a=0,b=1000) 171 173 174 175 

b (0,2) Uniform (a=0,b=2) 0.382 0.390 0.391 0.399 

α (0,1) Uniform (a=0,b=1) 0.803 0.809 0.809 0.814 

nq Ν 
Discrete Uniform 

(a=1,b=7) 
3.226 3.480 3.491 3.736 

kq (0,1) Uniform (a=0,b=1) 0.237 0.242 0.241 0.245 

ks (0,1) Uniform (a=0,b=1) 0.002 0.002 0.002 0.002 

DDF (0,1) Uniform (a=0,b=1) 2.905 3.216 3.747 4.749 

Ts (°C) (-∞,∞) Uniform (a=-4,b=4) -1.667 -1.631 -1.638 -1.611 

Tm (°C) (-∞,∞) Uniform (a=-10,b=10) -1.046 -0.976 -0.961 -0.863 

/� (0,∞) Uniform (a=0,b=1) 0.000 0.000 0.000 0.000 

/1 (0,∞) Uniform (a=0,b=1) 0.117 0.119 0.119 0.121 

; (0,∞) Uniform (a=0.1,b=10) 1.128 1.140 1.141 1.155 

< (-1,1) Uniform (a=-1,b=1) 0.997 0.999 0.998 0.999 

?1 (-1,1) Uniform (a=-1,b=0.85) 0.850 0.850 0.850 0.850 

C1 (-1,1) Uniform (a=-1,b=1) 0.455 0.465 0.465 0.476 
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Diagnostic plots are used to verify the skill of the model and ensure that the fitted error 

model is consistent with the observed distribution of the residuals. Figure 4.6a shows the 

fitted SEP density function using the two parameters < and ;, as well as the empirical 

density of the normalized residuals, at, of the HYMOD model. Both parameters < and ; 

were estimated very close to unit, suggesting that the error distribution is highly peaked 

(< b 1) and symmetric (; b 1). There is a slight bias in the fitted distribution because the 

errors are not exactly centered about zero, but this bias is small. Figure 4.6b shows the 

autocorrelation function of the residuals from the model. While the original residuals of 

the HYMOD model exhibited very significant autocorrelation at several lags, this 

autocorrelation has largely been removed from the normalized residuals. Finally, Figure 

4.6c shows the relationship between predicted streamflow values and the errors 

associated with those predictions. While the variance of the original residuals varied 

significantly with predicted flow, the normalized errors maintain a much more constant 

spread across the range of flow predictions. These three diagnostic plots suggest that the 

error model used adequately captures the non-Gaussian, auto-correlated, and 

heteroscedastic nature of the daily residuals.  
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Figure 4.6. a) The fitted SEP density (red line) and empirical density (blue points) of 

normalized errors. b) The partial autocorrelation function of the normalized errors. c) The 

residuals plotted against the mean predicted flow from the HYMOD model. 

 

Figure 4.7 shows the observed daily hydrograph for a calibration and validation period, 

as well as the model estimates generated by the mean of the posteriors for all HYMOD 

parameters. The Nash-Sutcliffe efficiency (NSE) for the mode prediction over the 

calibration and validation period is 0.86 and 0.85, respectively. The Kling-Gupta 

efficiency (KGE) for these two periods is 0.91 and 0.90. This measure is a relatively new 

objective function that provides an alternative (and potentially improved) balance 

between mean bias, variability bias, and correlation compared to the NSE [Gupta et al., 

2009]. Also shown in Figure 4.7 are 90% predictive bounds for the modeled flows. These 

bounds are calculated using 500 time series of model predictions and randomly generated 

residuals. We note that even though the mean model prediction fails to capture some of 

the highest peak flows in the record, including the 1993 and 2008 floods, the 90% 

predictive bounds do contain these extreme events.    
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Figure 4.7. Streamflow hydrographs for the calibration and validation period for the 

HYMOD model. Observations (black dots) are shown against the median HYMOD 

prediction (red) and the associated 90% confidence bounds (shaded grey). The VIC 

model predictions are also shown (blue). 

 

4.4.4. Physical, Distributed Hydrologic Model - Variable Infiltration Capacity 

Model 

Unlike the conceptual HYMOD model, that only maintains the water balance, the VIC 

model accounts for balances in both water and surface energy. We employ a gridded 

version of VIC that utilizes the same grid as the driving weather input files. A majority of 

the area within the Coralville watershed is covered by cropland, and two types of land 

cover (cropland and grassland) account for over 90 percent of the basin area. More details 

about the most up-to-date VIC modeling processes, including evapotranspiration, soil 

moisture, and runoff processes, can be found in Gao et al. [2010].  
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The parameters of the VIC model were calibrated by maximizing the KGE over the 

calibration period. A genetic evolutionary algorithm was utilized to conduct the 

optimization [Houck et al., 1995]. Six parameters are considered in the calibration: one 

parameter related to the variable infiltration curve shape, two parameters related to 

thickness of soil layers, and three parameters related to the baseflow scheme. One 

parameter set was considered for all grid cells in the model. Therefore, the calibration of 

the VIC model is parsimonious while still leveraging the benefits of improved routing via 

the distributed structure. The optimized streamflow simulation is shown in Figure 4.7. 

The NSE (KGE) for the calibration period is 0.87 (0.93) and for the validation period is 

0.82 (0.90). This model skill is comparable to the simulation result from the HYMOD 

model, suggesting that VIC provides a valuable alternative model to explore future flood 

response under climate change.  

 

4.4.5. Coralville Reservoir Systems Model  

A water resources systems simulation model of the Coralville Reservoir was developed to 

emulate the flood risk reduction capacity of the system. The systems model was 

developed to mimic the documented operating policies used by the USACE to manage 

the reservoir. The model is formulated to switch between different operating rules 

conditional on the storage in the reservoir. A rectangular weir equation is used to 

simulate releases made through the spillway.  
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The primary objective of the Coralville Reservoir is the reduction of flood-related 

damages downstream. Expected annual flood damage (EAD) is the metric chosen to 

measure whether or not this objective is being met. This metric is required for risk 

analysis within the USACE and thus is highly pertinent in the decision-making process 

[USACE Report ER-1105-2-101, 2006]. Flood damages are calculated from modeled 

reservoir discharge rates using flow-stage and stage-damage relationship curves 

previously created for the region (Figure 4.8a).  

 

The systems model was run with historic inflows, and historic releases were used to 

evaluate the systems model performance (Figure 4.8b). The model was able to capture 

and closely resemble the reservoir behavior well, especially during peak flow events. 

Overall, the calibration of the systems model is adequate for the purposes of this study.  

 

Figure 4.8. Relationship between streamflow downstream of the Coralville Reservoir and 

resulting flood damage. b) Observed (black) and modeled (red) releases from the 

Coralville Reservoir simulation model under historic, observed inflows. 
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4.4.6. Conducting the Climate Vulnerability Assessment 

Two modeling experiments are considered in this assessment. First, both the HYMOD 

and VIC models are run under all 1050 generated climate time series to produce an 

ensemble of inflow sequences, which are then used to force the Coralville simulation 

model and estimate an ensemble of expected annual damages. Here, HYMOD is run 

using the mean posterior parameter set and no residual errors are added to the simulated 

streamflow time series. These 1050 simulations explore the effects of both internal 

climate variability and change (10 internal variability trials, 105 changes per trial) on 

system performance. The results are compared against an ensemble of GCM projections 

to provide insight on climate risks facing the system.  

 

The use of both VIC and HYMOD above partially explores the effects of structural 

hydrologic uncertainty. To more fully examine this uncertainty source, as well as 

parametric uncertainty, we conduct a second experiment in which 500 HYMOD 

simulations are run using random samples from parameter posterior distributions and are 

added to randomly generated time series of residuals. This procedure is carried through 

for 70 climate time series, including all 10 internal variability trials and the 7 changes in 

mean precipitation (with the precipitation CV and temperature held at baseline levels). 

The range in flooding upstream of the reservoir and downstream EAD under hydrologic 

model uncertainty is juxtaposed against that from climate variability and change to 

explore their relative contributions to total uncertainty of system robustness. Also, the 

results from HYMOD and VIC are compared to determine whether the statistical 
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uncertainty in the simpler HYMOD model is sufficient to capture the uncertainty across 

the HYMOD and VIC structures.  

 

4.5. Results and Discussion: Comparison of System Robustness under Hydrologic 

and Future Climate Uncertainty 

Figure 4.9 shows parallel coordinate representations of the EAD climate response of the 

system using the mean posterior HYMOD model and VIC. The parallel coordinates 

enable system response to be visualized across multiple dimensions in climate change 

space. Each point in 3-dimensional climate change space (dimensions associated with 

changes in mean precipitation, precipitation CV, and mean temperature) is represented by 

a polyline with vertices on the parallel axes. Climate change combinations that lead to 

greater EAD are shown using darker, thicker lines. The average EAD values across the 

10 internal variability trials are shown, so only the effects of climate change are being 

considered here. Finally, the distribution of CMIP3 and CMIP5 climate projections for 

mean precipitation and temperature centered on 2050 are superimposed on the figure; no 

attempt was made to quantify the distribution of change to daily precipitation variability 

because GCMs poorly reproduce this aspect of precipitation.   
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Figure 4.9. Parallel coordinate plots of expected annual damages in a 3-dimensional 

space of climate changes. Damages are shown for the system forced with HYMOD and 

VIC streamflows, averaged across all 10 trials. Darker, thicker lines indicate climate 

change scenarios with greater flood damage. No statistical uncertainty was considered 

here for the HYMOD model. Empirical density plots of precipitation changes (left) and 

temperature changes (right) are also shown for CMIP3 (red dashed) and CMIP5 (blue 

solid) projections. 

 

Figure 4.9 shows the sensitivity of a decision-centric metric to various types of climate 

change. Several insights emerge from this figure. First, the gradient of EAD values is 

steepest across changes in mean precipitation, suggesting that this climate change 

dominates the response of the system. All of the high damage scenarios (>$2 

million/year, which is the historic EAD value estimated using observed data) for both 

hydrologic models require increases in mean precipitation of at least 10%. Interestingly, 

changes in the CV of precipitation do not dramatically influence EAD values. While 

greater daily precipitation variability does lead to increased damage, the gradient in EAD 
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is much less steep across this climate change than for mean precipitation changes. This 

suggests that the reservoir is able to buffer out the effects of increased daily precipitation 

variability with storage. The effects of temperature are even less impactful. Even a 4°C 

temperature increase only marginally reduces damages, likely due to slightly reduced 

flood risk from shifting snow dynamics and increased evapotranspiration. Finally, CMIP3 

and CMIP5 climate projections for mean precipitation suggest a 5% increase on average, 

although the tails of the projection distribution do include some precipitation increases as 

high as 22%, which are associated with high EAD values. The very worst EAD scenarios 

(polylines across the top of the figure) will likely be avoided, however, as indicated by 

projections suggesting increased temperatures averaging 2.5°C. 

 

The influence of climate change on system performance can also be juxtaposed against 

that of internal climate variability to determine their relative contribution to total 

uncertainty. Figure 4.10 shows average EAD responses for both hydrologic models for 

each type of climate change (with the other two held at baseline levels), as well as the 

range of responses under internal climate variability (i.e. the 10 trials). Again, no 

statistical uncertainty in HYMOD is considered in this figure. The results of Figure 4.9 

again emerge in Figure 4.10, with changes in the precipitation mean dominating system 

response. However, what also emerges in Figure 4.10 is the importance of internal 

climate variability. For all changes and both models, the width of the gray shaded region 

is of the same order of magnitude as the average change in EAD across adjacent climate 

changes. For instance, the range of EAD across the 10 trials under the VIC model for a 

10% increase in mean precipitation is $2.6 million/year, while the average change in 



129 
 

EAD between 10% and 20% increases in mean precipitation is $2.7 million/year. We also 

note that the uncertainty in EAD associated with internal climate variability increases as 

mean climate changes lead to more damage. This suggests that the uncertainty due to 

internal climate variability cannot be estimated using historic climate conditions, but 

must be considered in conjunction with mean climate changes.  

 

Figure 4.10. Expected annual damage under each type of climate change averaged across 

all 10 trials, as well as the spread across the range of internal variability (I.V.) uncertainty 

(grey region). Damages are shown for the system forced with both HYMOD and VIC 

streamflows. For each climate change, the other two climate factors were held constant at 

their baseline levels. No statistical uncertainty was considered here for the HYMOD 

model. 

 

Finally, system vulnerabilities to climate under both hydrologic models can be compared 

against a backdrop of statistical uncertainty in the conceptual HYMOD hydrologic 

model. Figure 4.11 shows estimates of the 100-year flood (fitted to annual peaks using a 
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Log-Pearson Type III distribution) upstream of the Coralville Reservoir (left panel) and 

EAD estimates downstream of the reservoir (right panel) for all 10 trials and a range of 

potential changes in mean precipitation. No changes in the CV of daily precipitation or 

temperature are considered here. For the VIC model, each climate scenario is associated 

with one sequence of predicted streamflow. For the HYMOD model, these two metrics 

are shown under climate variability and change uncertainty alone, as well as the 

additional statistical uncertainty of the conceptual model (i.e. the ensemble of 500 

HYMOD traces for each climate sequence).  

 

Figure 4.11. The 100-year flood estimate upstream of the Coralville Reservoir (left panel) 

and expected annual damages downstream of the reservoir (right panel) across a range of 

uncertainty factors. The range of both metrics under internal climate variability (I.V) 

uncertainty is shown for VIC (gray shaded) and HYMOD (blue solid). For the HYMOD 

model, statistical uncertainty associated with parameter calibration and residual error is 

shown using a 95% predictive interval for the ensemble of Monte Carlo HYMOD runs 

across all 10 trials (red dashed). 
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Two main conclusions emerge from these results. First, the statistical uncertainty of the 

HYMOD model is important for both upstream flooding and downstream damages, as 

indicated by the width this uncertainty source adds to the range of these two metrics over 

internal climate variability uncertainty. It is noteworthy, however, that HYMOD 

uncertainty appears more influential for upstream flooding estimates than for downstream 

damages. For instance, with a 10% increase in average precipitation, statistical HYMOD 

uncertainty increases the predictive bounds by 130% over those under internal climate 

variability alone, whereas the predictive bounds increase by 65% for EAD. This suggests 

that the effects of statistical hydrologic uncertainty may be dampened if there is storage 

available to buffer out additional random variability introduced by the hydrologic 

uncertainty model.  

 

Second, the statistical uncertainty of HYMOD does not account for the structural 

uncertainties between the two hydrologic models when climate conditions change. For 

instance, when precipitation increases beyond baseline levels (100% of historic 

precipitation), downstream damages predicted under the VIC simulations increase above 

the statistical uncertainty bounds associated with the HYMOD simulations. This occurs 

even though VIC-simulated damages are contained by the HYMOD statistical uncertainty 

bounds for baseline climate, and VIC-simulated upstream flooding is contained by 

HYMOD predictive bounds for almost all climate changes. For the largest precipitation 

increase (130% of historic precipitation), the range in EAD for the VIC simulations 

($6.69 million/year) is 13% larger than the range under HYMOD uncertainty ($5.94 

million/year). The distributed structure of VIC can translate alternative, spatially-explicit 
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climate scenarios produced by the weather generator into new flood generation pathways 

that lead to a wide array of multi-day flooding events. Even with additional statistical 

uncertainty embedded in the simulations, the conceptual HYMOD model is more limited 

in the multi-day floods that are possible under alternative climates because there are 

fewer ways that water can be stored across the basin and discharged to the reservoir. The 

results imply that the structural differences between the two models can be more 

influential with respect to decision-centric metrics than the statistical uncertainty within 

the conceptual model in a climate risk assessment framework.  

 

4.6. Conclusion  

This work presents a framework for assessing the effects of hydrologic modeling 

uncertainty on the estimation of future flood risk within the context of a changing 

climate. The influence of hydrologic uncertainty is compared against the effects of other 

uncertain variables, such as precipitation and temperature. Structural and 

parameterization uncertainties in the hydrologic modeling process were explored using 

two hydrologic models and a unique error model couched in a Bayesian calibration 

approach.  

 

This analysis showed that parametric uncertainty and statistical error in a conceptual 

hydrologic model can have important, decision-relevant implications when examining 

water system performance. Furthermore, the structural differences between a simple 

conceptual hydrologic model and a physically-based, distributed model were very 
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influential to the climate risk assessment and extended beyond the effects of the statistical 

uncertainty of the conceptual model alone.  

 

When compared against future climate uncertainty, the hydrologic uncertainty 

contributed significantly to the imprecision of future flood risk estimates, as did the 

effects of internal climate variability. Even though uncertainty in future mean 

precipitation changes emerged as the most influential source of uncertainty on future 

flood risk, internal climate variability and hydrologic uncertainties led to changes in flood 

risk of the same order of magnitude, especially for large precipitation changes. This 

suggests that these additional uncertainties should not be ignored in flood risk studies. In 

fact, the influence of both internal climate variability and hydrologic modeling 

uncertainty outweighed that from future temperature changes or daily precipitation 

variance, indicating that it may be more beneficial to improve our understanding of 

natural climate fluctuations and hydrologic error characterization than to improve 

estimates of these types of climate change.  

 

Future work will consider the use of parallel processing to apply the Bayesian uncertainty 

framework to the more complicated, distributed VIC model for this basin, as this study 

suggests that a distributed structure appears necessary for an adequate climate risk 

assessment of flood control infrastructure. The uncertainty framework presented in this 

report will then be used to explore how integrated climate and hydrologic uncertainties 

influence investment decisions in climate change adaptation strategies for this system. 
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Further work will also examine in detail the most recent set of global climate model 

projections to better understand how information from these projections can be used to 

better estimate climate-based risks to flood control facilities and inform the decision-

making process.  
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CHAPTER 5 

A FRAMEWORK TO IDENTFY ROBUST LONG-TERM WATER SYSTEM 

PLANS UNDER INTEGRATED UNCERTAINTIES 

 

5.1. Abstract 

A framework is presented to identify long-term adaptation plans for a water resources 

system that are robust to a variety of non-stationary conditions and modeling 

uncertainties. Several sources of uncertainty were considered, including long-term 

changes in the underlying distribution of future conditions, sampling variability in 

realizations of those transient distributions, and uncertainty inherent to transfer functions 

necessary to convert exogenous conditions into measures of systems performance. The 

integrated uncertainty analysis is coupled with systems modeling to identify long-term 

planning alternatives that are robust despite the uncertainties. A new metric is proposed 

to define robustness in this context. The framework is coupled with a host of long-term 

projections, including downscaled climate model output and long-term water demand 

forecasts, in order to understand the likelihood of potential future changes and provide 

useful guidance for robust planning. The approach is demonstrated in a case study 

examining dynamic reservoir management as a long-term planning alternative for a dual-

purpose surface water reservoir in Texas providing water supply security and flood risk 

reduction services. 
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5.2. Introduction 

Current long-term planning efforts for complex water systems often depend on a 

modeling chain that links projections of climate and societal change to models of water 

supply and demand and finally to a water systems model that can simulate performance 

under status quo conditions and a variety of planning alternatives. The goal of this 

exercise is to identify a long-term plan that can ensure adequate system performance 

under changing future conditions at a reasonable cost. Unfortunately, any insights for 

decision-making are hindered by a variety of uncertainties that are propagated through 

each stage of the modeling chain, making it increasingly difficult to select a particular 

long-term plan without concern that it is vulnerable to uncertainties that were not 

considered in the modeling process. This study presents a framework to identify effective 

water system planning alternatives that are robust to nonstationary conditions and a 

variety of modeling uncertainties. The approach utilizes Monte Carlo methods to explore 

and propagate the uncertainty at several modeling stages and uses systems modeling to 

determine which of a variety of planning alternatives provide adequate performance 

despite the uncertainties.  

 

Nonstationarity in the underlying distribution of future conditions are a primary concern 

in long-term water systems planning efforts. Global climate change may introduce 

nonstationarity into local temperature and precipitation through a variety of physical 

mechanisms, including shifts in large-scale synoptic circulation [Sheridan and Lee, 2010] 

and thermodynamic boundary conditions, i.e., an increase in the water holding capacity 

of the atmosphere [Muller et al., 2011; Romps, 2011]. Population growth, economic 
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development, and shifts in per capita water use will drive nonstationarity in other 

important variables like municipal and agricultural water demands and land use changes, 

among others. In both cases, nonstationarity can manifest as shifts in the mean or as 

changes in variability (i.e. the coefficient of variation, serial correlation, etc.), and in both 

cases, these shifts are very difficult to predict with confidence.  

  

General circulation models (GCMs) of the Earth’s ocean-atmosphere system are the best 

tools available to understand shifts in the distribution of local climate, but moderate 

biases in modeled regional circulation under baseline greenhouse gas concentrations 

makes the interpretation of future projections difficult. For example, if a GCM exhibits 

erroneous circulation under baseline conditions, how should shifts in those patterns (and 

resulting shifts in regional precipitation) be perceived? It is unclear whether statistical 

bias correction used to correct the effects of erroneous baseline circulation can be directly 

applied to a future climate where that circulation has changed due to global warming; the 

bias and the future change become very difficult to disentangle. Dynamical downscaling 

procedures do not provide a satisfying remedy if they are constrained by erroneous large-

scale circulation and by design must propagate the error forward [Xu et al., 2005]. In 

addition to nonstationary climate, projections of future water demands, development, and 

economic activity linked to the water sector are also ridden with uncertainty. For 

instance, projections of municipal water demand are notorious for miscalculating long-

term trends in water use [Osborn et al., 1986; Fullerton and Molina, 2010]. For all of 

these reasons, many have claimed that nonstationary variables influencing the water 

sector exhibit ‘Knightian’ uncertainty, i.e., we are unable to estimate the probability 
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distributions necessary to characterize the risk of future events. As such, standard 

decision-theory methodologies that seek to minimize measures of risk dependent on the 

characterization of probabilities may be inadequate.  

 

In response to this challenge, alternative robustness-based approaches have been 

proposed that shift the focus of the analysis to identifying adaptation strategies that 

provide satisfactory performance over a wide range of plausible future conditions. 

Prominent methodologies include Robust Decision Making (RDM) [Lempert et al., 

2006], Scenario-Neutral Planning [Prudhomme et al., 2010], Info-Gap Analysis [Ben-

Haim, 2006], and Decision-Scaling [Brown et al., 2012]. The different methodologies 

employ a variety of strategies and procedures, but they all recognize that no one future 

scenario or small subset of scenarios can adequately encapsulate the uncertainty in long-

term changes to the underlying distribution of important exogenous variables. Often these 

approaches attempt to minimize some measure of regret, defined as the difference in 

terms of expected losses between a given design or plan and the optimal plan for a 

specific scenario. These methods adapt the planning process to cope with a state of deep 

uncertainty in future conditions and provide decision-relevant information despite this 

uncertainty.   

 

While deep uncertainty in nonstationary factors can substantially impact the outcome of 

long-term water system planning efforts, it is not the only source of uncertainty. Even if 

the transient distributions of nonstationary variables were known, individual time series 
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drawn from these distributions are often required in order to estimate the impact on 

complex water systems, particularly when simulation models are used to understand 

system response. A limited number of time series realizations can lead to substantial 

sampling error that can bias our understanding of system response to long-term changes 

in the underlying distribution of nonstationary variables. This challenge is especially 

relevant for climate variables like precipitation that follow complex distributions with 

significant variability, persistence, and fat tails. The climate science community often 

refers to this form of uncertainty as internal climate variability [Deser et al., 2012]. Any 

long-term planning process must account for sampling error and ensure that the choice of 

adaptation plan is not vulnerable to risks that were underexplored with a limited number 

of scenarios drawn from underlying nonstationary distributions of influential variables. 

 

Finally, future realizations of exogenous conditions exhibiting long-term change 

generally need to be passed through one or more transfer functions that relate these 

conditions to measures of systems performance useful for planning purposes. For long-

term water systems planning, the primary transfer function is often a hydrologic model 

that converts future climate into streamflow time series that can be used directly by water 

systems planning models. While other transfer functions are also relevant, such as the 

systems model itself, the uncertainty in the hydrologic modeling effort often dominates. 

To ensure unbiased estimation of performance across different water system plans, 

relevant transfer function uncertainties need to be propagated through the planning 

process along with the other uncertainties discussed above. 
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This study presents a framework to identify effective water system planning alternatives 

that are robust to uncertain, nonstationary conditions. The Decision-Scaling methodology 

is utilized to manage the uncertainty in long-term change exhibited by exogenous 

conditions. This approach has been employed previously in a limited number of studies 

[Brown et al., 2011; Moody & Brown, 2012; Brown et al., 2012] but has never been 

embedded in an integrated uncertainty assessment as proposed here. Sampling error in 

climate time series is addressed using a large ensemble of stochastically generated 

climate simulations, while transfer function uncertainty associated with the hydrologic 

modeling process is quantified using a Bayesian approach. All of these uncertainties are 

integrated with a systems analysis approach to characterize the robustness of different 

planning alternatives for a dual-purpose surface water reservoir in Texas providing water 

supply security and flood risk reduction services. The results are coupled with a host of 

long-term projections, including climate model output downscaled using a variety of 

methods, in order to understand the likelihood of potential future changes and provide 

useful guidance for robust planning. The remainder of the paper will proceed as follows. 

Section 5.3 will introduce the framework used in this study. The case study application 

and specific models used in the analysis are presented in section 5.4, and results are 

presented in section 5.5. The paper will conclude with a discussion in section 5.6.  

 

5.3. Methods 

The proposed framework embeds systems modeling in an integrated uncertainty analysis 

that utilizes Monte Carlo methods to explore whether different adaptation strategies 
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provide adequate performance despite a wide array of uncertainties. These uncertainties 

term changes in the underlying distribution of future conditions, sampling 

variability in realizations of those transient distributions, and uncertainty inherent to 

transfer functions necessary to convert exogenous conditions into measures of systems 

performance. Different planning alternatives are considered robust to a particular type of 

term change if they provide adequate performance for a certain proportion of Monte 

Carlo simulations associated with that long-term change. Different water demand 

projections and climate change projections processed through a variety of downscaling 

methods are used to determine the likelihood of those long-term changes. An overview of 

the framework is given in Figure 5.1 and is described in further detail below. 
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5.3.1. Long-Term Change 

To account for Knightian uncertainty in long-term exogenous change, this study utilizes 

the Decision-Scaling methodology [Brown et al., 2012]. This methodology is explained 

in detail elsewhere [Brown et al., 2011; Moody & Brown, 2012; Brown et al., 2012], so it 

is only briefly reviewed here. Decision-Scaling can be characterized by two primary 

steps: 1) the identification of future conditions that lead to unacceptable systems 

performance (i.e. a vulnerability assessment), and 2) an examination of different sources 

of evidence to determine whether those problematic changes are likely to occur. By 

separating the vulnerability assessment from the analysis of likely change, the approach 

ensures that the performance of the system is tested over a sufficiently wide range of 

possible futures to identify important vulnerabilities. When coupled with information 

regarding the likelihood of different futures, the vulnerability analysis provides the 

decision-maker with an assessment of risk facing the system.  

 

It is not critical that all scenarios of future long-term change be plausible when first 

identifying system hazards, as long as implausible changes are discounted when 

estimating risk. The goal of the vulnerability analysis is to determine how far exogenous 

factors must change before the system no longer functions properly, so initially the range 

of future changes should be made wide enough to stress the system to failure. When those 

failures emerge, judgments can be made regarding the plausibility of the conditions 

causing them using all available sources of evidence (e.g., downscaled GCM projections, 

water demand projections, paleo-data records, expert opinion).  
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The sources of evidence used to infer the likelihood of future long-term change will 

certainly change as new observations emerge and projections evolve over time. A major 

benefit of Decision-Scaling is that new evidence regarding the likelihood of future long-

term change can easily be superimposed on the vulnerability analysis as it becomes 

available to quickly determine if that new information suggests a substantial shift in long-

term risk. A new ensemble of system model runs is not required. Furthermore, since the 

vulnerability analysis is decoupled from any projections, there is no need to decide on a 

particular set of future climate projections prior to the analysis. In fact, by coupling 

different types of climate evidence (e.g. different climate models or downscaling 

techniques) with the vulnerability analysis, the approach makes evident whether the 

decision to select a particular plan is sensitive to the choice of climate evidence, 

information that can be instructive from a decision-making perspective.   

  

5.3.2. Future Realizations of Variability - Stochastic Climate Generation 

While all system stressors are likely susceptible to some sampling error, realizations of 

future climate time series are particularly sensitive, especially for variables like 

precipitation [Deser et al., 2013]. A stochastic climate model is used to develop future 

climate scenarios that represent different realizations of potential futures under long-term 

change. This model can produce multiple climate time series that exhibit the same mean 

climate statistics, allowing the analyst to explore the effects of internal climate 

variability. Details on the specific stochastic climate model used in this study are 

provided later; the framework is generalizable to any model available in the literature.  
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In section 5.3.1, many different long-term changes are considered to explore the often-

irreducible uncertainty in nonstationary variables. For climate variables, several 

stochastic generation runs are needed to explore internal climate variability under each 

long-term change, requiring the generation of hundreds if not thousands of time series 

simulations. When coupled with transfer function uncertainty methods (described below), 

the number of ensemble members that need to be run through the systems model can 

quickly exceed 106, pushing the computational limits of standard desktop computers. 

Multiprocessor and parallel computing offer one solution to manage the computational 

burden. This study presents an alternative solution appropriate for less intensive 

computing methods. Ex-post scenario development is utilized to select a handful of 

realizations of future climate that span the range of the distribution of future climate 

events. The following procedure is used: 

 

1. Develop a large ensemble (1,000s - 1,000,000s) of climate simulations using the 

stochastic climate generator.  

 

2. Identify decision-relevant climate events. For instance, if the system of interest is a 

water supply reservoir with over-year storage sufficient to meet two years of demand, 

then the minimum 2-year or 3-year moving average of precipitation would be an 

appropriate, decision-relevant climate event on which to focus. If the system meets 

multiple objectives, such as water supply and flood risk reduction, then several types of 

events (e.g. minimum 2-year precipitation total and maximum 3-day precipitation total) 
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can be selected. In some cases these quantities are known or can be intuited but in other 

cases preliminary modeling runs may be necessary to identify them. 

 

3. Select a subset (5-10) of climate simulations that span the range of the empirical 

distribution of climate events. If more than one type of event is selected, then multivariate 

methods are required. For instance, if X is the minimum 2-year precipitation total and Y 

is the maximum 3-day precipitation total, then 5 time series can be selected such that 

8�c � c� d e f e�� & g, where g & J0.05,0.25,0.50,0.75,0.95L are probabilities and 

c� and e� are drought and flood thresholds, respectively. These 5 time series represent 

increasingly difficult realizations of future climate variability for the system to manage 

(deeper droughts and more intense floods). If X and Y are independent, then by letting 

c� & c√)  and e� & e1D√) be quantiles from the marginal distributions of X and Y 

associated with nonexceedance probabilities mg and 1 = mg, we have 8�c � c� d e f

e�� & 8nc � c√)o p1 = 8ne � e1D√)oq & nmgo p1 = n1 = mgoq & g. The quantiles 

c√) and e1D√) can be estimated empirically using probability plotting positions or 

analytically by fitting distributions to the data. If X and Y are not independent, then 

appropriate joint distributions, copula functions, or nonparametric methods [Serfling, 

2002] can be used for the joint estimation of quantiles for X and Y.  
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The selected subset of future climate simulations associated with each long-term change 

will be used to quantify the impact of internal climate variability on systems 

performance. 

 

5.3.3. Transfer Function Uncertainty – Hydrologic Modeling  

We account for the uncertainty in one particular transfer function, the hydrologic model, 

using a stochastic representation of model parameters and residual errors. A modified 

version [Evin et al., 2013] of the error model presented in Schoups and Vrugt [2010] is 

chosen to accommodate the non-Gaussian, auto-correlated, and heteroscedastic nature of 

hydrologic model errors. Input data uncertainties are considered separately using rainfall 

multipliers. Parametric uncertainty is quantified using Bayesian methods. 

 

Assume that streamflow observations   can be modeled as the sum of hydrologic model 

estimates  !�", #$� and an error term %: 

 &  !�", #$� ' %     (5.1) 

 

Here, the hydrologic model response is a function of the forcing data " and a set of 

hydrologic model parameters, #$. To account for potential non-normality, auto-

correlation, and heteroscedasticity in the residuals, the following model is proposed: 
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+, & /,0,       (5.2.1) 

/, & /�23,
rs

       (5.2.2)  

Φt�*�0, & Ψ.�*��0,�     (5.2.3) 

 0,~678�0,1, ;, <�      (5.2.4) 

 

where /, is a time-varying standard deviation, /� and /1 are the parameters of a power 

regression of the standard deviation as a function of the predicted flow, and 0, is a 

normalized error term that is independently and identically distributed according to a 

skew exponential power (SEP) distribution with mean 0, unit standard deviation, and 

parameters ; and < to account for skew and kurtosis. The novel power regression 

structure presented here allows for residual variance to grow nonlinearly and can prevent 

unreasonably wide predictive error bounds for the largest flow values. Following Evin et 

al. [2013], the original residuals +, are first normalized and then corrected for 

autocorrelation, where Φt�*� & 1 = ∑ ?@A@t
@B1  is an autoregressive modeling structure 

of order u, Ψ.�*� & 1 ' ∑ C@A@.
@B1  is a moving average modeling structure of order q, 

and A@ is the backshift operator for the ith term (A@+, & +,D@). The parameters of the error 

model can be lumped into the vector #% & EF1:), H1:. , /�, /1, ;, <I. 
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Both the hydrologic and error model parameters # & J#K, #%L are estimated in a 

Bayesian framework. According to Bayes’ Theorem, the joint posterior distribution of all 

model parameters can be described as: 

 

8�#| , "� w M� |#, "� O 8�#�   (5.3) 

 

where M� |#, "� is the likelihood function and 8�#� is a prior distribution. Markov 

Chain Monte Carlo (MCMC) techniques allow for an exhaustive sampling of parameter 

values that describe the posterior space. Hydrologic model uncertainty can then be 

characterized by simulating a large number of hydrologic model time series predictions  !  

using posterior samples of #K and adding them to time series samples of ε using 

posterior samples of #% [see Schoups and Vrugt, 2010]. 

 

5.3.4. Robustness of Planning Alternatives 

The uncertainty analysis presented above employs Monte Carlo sampling to explore a 

wide range of long-term distributional changes in nonstationary exogenous variables, 

sampling error associated with those transient distributions, and transfer function 

uncertainty inherent to each realized future. Systems analysis is used to identify 

alternative adaptation plans that are robust despite these uncertainties. A plan or design is 

considered robust to a set of long-term changes in the distributions of exogenous 

variables if that plan can provide adequate or satisfying performance across all important 

system objectives for a certain proportion of Monte Carlo simulations associated with 
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those long-term changes. The following procedure is used to define the robustness of 

different planning alternatives: 

 

1. Choose quantitative performance indicators or metrics that accurately characterize all 

system objectives and set thresholds for all performance metrics in order to indicate 

unacceptable systems performance.  

2. Compile an inventory of z=1,…,Z available options or plans for adapting the system to 

future threats.  

3. For each of i=1,..,N conditions of long-term change, simulate the water system under 

Monte Carlo ensemble members that explore j=1,…,J future realizations of variability 

and b=1,…,B realizations of transfer function uncertainty. For example, assume we are 

interested in exploring system response over a 50-year planning horizon to a set of long-

term changes including: a 10% decline in mean precipitation, a 10% increase the 

coefficient of variation of annual precipitation, a 2°C temperature increase, and a 30% 

increase in average annual water demands. For that particular set of future conditions, 

J=5 stochastic climate scenarios can be coupled with B=1,000 hydrologic model 

simulations to produce 5,000 Monte Carlo ensemble members exhibiting that long-term 

change. Run these simulations through the systems model under each adaptation plan.  

4. For the zth adaptation plan, assign a binary performance score, Xz, to each Monte Carlo 

simulation. Let Xz=1 if all performance metrics are maintained above their thresholds, 

and Xz=0 otherwise.  
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5. An adaptation plan is considered robust to the ith long-term change if all performance 

metrics are maintained above their thresholds for a certain proportion of Monte Carlo 

simulations associated with that long-term change. This proportion can be evaluated by 

averaging binary performance cx�y, z, {� across all J realizations of future variability and 

B realizations of transfer function uncertainty. Because a limited set of realizations of 

future variability were selected with different relative likelihoods, these realizations can 

be assigned an additional weight wj if desired. For instance, letting ԑ and Φ be the 

density and distribution function of a standard normal random variable, respectively, 

|} & ~p��sn)�oq
∑ ~p��sn)�oq�

��s
  assigns normalized weights based on the probabilities of occurrence 

p for each realization of future variability (where g & J0.05,0.25,0.50,0.75,0.95L for 

example). A robustness score, or R-Score, can then be assigned to the zth plan under the ith 

long-term change as: 

 

�‐6����x@ & ∑ |}
1
�

�
}B1 ∑ cx�y, z, {��

�B1   (5.4) 

A plan might be considered robust to a particular set of long-term changes if the R-Score 

is greater than some threshold, say 0.75. If all realizations of future climate variability 

were considered equal (i.e. |} & 1 �� ), this is equivalent to the situation where 75% of the 

Monte Carlo runs (3,750 of the 5,000 simulations) have all metrics maintained above 

their threshold values. This percentage threshold should reflect the risk managers are 

willing to assume and therefore needs to be selected through a dialogue between analysts 

and system operators. 
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5. Steps 1-4 provide a mapping that indicates which plans provide adequate performance 

under different combinations of long-term change despite a variety of sampling error and 

transfer function uncertainties. This mapping can be combined with a variety of 

projection-based data or other evidence sources (e.g. climate or water demand 

projections, paleo-data records, expert opinion) to indicate which long-term changes are 

more likely than others to occur. Decision-makers can then review the robustness of 

different planning alternatives against a backdrop of evidence suggesting the most likely 

future changes when selecting a long-term plan. This process can be updated quickly as 

new sources of evidence (e.g. new projections, recent observations) become available. 

 

5.4. Case Study Application 

5.4.1. Study Site and Planning Alternatives 

This study examines the operation of Belton Lake located in the Brazos G Regional 

Water Planning Area in Texas, which consists of 37 counties, 30 major reservoirs, and 

covers over 81,800 square kilometers [BGRWPG, 2010].  Region G is separated into 

several sub regions and Belton Lake is located in the IH-35 Corridor sub region.  The IH-

35 Corridor consists of five counties and has been subject to rapid population growth, 

averaging 3.9 percent annually since 1970 [Jenicek at al., 2011], raising concerns about 

adequacy of water supply for the region. Belton Lake drains approximately 9,680 square 

kilometers and is owned by the U.S. Army Corps of Engineers (USACE). The lake serves 

two primary purposes, downstream flood risk reduction and water supply to a host of 

communities, including Temple and Kileen, TX. The capacity of the reservoir is 

approximately 1,357 million cubic meters (MCM), with 537 MCM of water (nearly 40% 
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conservation pool allocated for supply (Figure 5

River Authority (BRA) and the military installation at Fort Hood own the only water 

rights to Belton Lake, with the BRA owning the majority (123 MCM

authorized use per year of 138 MCM). The 821 MCM of empty space above the 

managed exclusively by the USACE for flood risk reduction. In 

Fort Hood and other surrounding counties, Belton Lake is

operated in conjunction with other reservoirs in Region G to supply water 

downstream, including the metropolitan area of College Station.   

Schematic of Belton Lake with the existing and four alternative conservation 

pool elevations. The figure is not to scale. 

The current allocation of storage in Belton Lake for flood risk reduction and water supply 

objectives is based on a historical analysis of inflows, water demands, and water rights. 

Under future climate regimes and increasing water demand, this storage allo

be suboptimal and either or both of the primary objectives of Belton Lake may no longer 
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Schematic of Belton Lake with the existing and four alternative conservation 

The current allocation of storage in Belton Lake for flood risk reduction and water supply 

objectives is based on a historical analysis of inflows, water demands, and water rights. 

Under future climate regimes and increasing water demand, this storage allocation may 

be suboptimal and either or both of the primary objectives of Belton Lake may no longer 
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be adequately met. A potential low-regret strategy to adapt the system to changing 

conditions would be to dynamically reallocate reservoir storage across flood control and 

water supply objectives as water use and climate regimes evolve over time [Wurbs, 

1987]. This type of adaptation falls into a class of dynamic management actions recently 

explored as a potential strategy to mitigate the effects of climate change [Georgakakos et 

al., 2012; Steinschneider and Brown, 2012]. In response to the regional population 

increase and potential need for additional water, the USACE, in conjunction with BRA, 

recently examined the feasibility of storage reallocation across multiple reservoirs in the 

Brazos River Basin using an integrated water resources model of the entire river basin, 

with a particular focus on the impact to safe yield under historic inflow conditions 

[BGRWPG, 2010]. For Belton Lake, four alternative storage allocations were considered 

(see Table 5.1 and Figure 5.2). This study presents a stylized extension of the USACE 

feasibility study that only considers one reservoir (Belton Lake) in the Brazos River 

Basin system but examines alternative operations for nonstationary conditions over a 50-

year planning horizon. The framework presented in section 2 is used to examine system 

robustness under 5 alternative storage allocations (the current allocation and 4 

alternatives) across a wide range of possible futures and modeling uncertainties. The 

analysis is coupled with a set of climate and water demand projections to frame the 

results in terms of the best available evidence regarding likely future long-term change.  
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Table 5.1. The alternative management plans for Belton Lake. 

Alternative 

Conservation Pool 
Elevation (meters 
above mean sea 

level) 

Water Supply 
Storage (MCM) 

Percent of Total 
Capacity (%) 

Existing 181.1 537 40 

Alternative 1 181.7 568 42 

Alternative 2 182.3 598 44 

Alternative 3 182.6 615 45 

Alternative 4 184.7 739 54 

 

5.4.2. Data 

Historic daily climate data, including precipitation and maximum, minimum, and mean 

temperatures, were gathered for the Belton Lake watershed over the period of October 1, 

1949 to September 30, 2010 from the gridded observed meteorological dataset produced 

by Maurer et al. [2002]. These data have a spatial resolution of approximately 144 km2. 

All climate fields were spatially averaged across the entire watershed and were 

aggregated to a monthly time step to produce a single, monthly time series. Monthly 

potential evapotranspiration was calculated for the basin using the temperature-based 

Hargreaves method [Hargreaves and Samani, 1982]. 

 

Daily observed streamflow data were gathered from two United State Geologic Survey 

(USGS) gages, the Leon River near Belton gage (ID# 08102500) directly downstream of 

Belton Lake and the Little River near Little River gage (ID# 08104500) farther 

downstream. These data were gathered for the period of October 1, 1953 to September 

30, 2010. Historical daily inflows, storages, and releases for Belton Lake were gathered 

online from the USACE Fort Worth District Data Center [http://www.swf-
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wc.usace.army.mil/cgi-bin/rcshtml.pl?page=Hydrologic] for the same period. All data 

were also aggregated to a monthly time step.  

 

Current demand data for all municipal water users served by Belton Lake were taken 

from county/utility annual demand estimates by BRA [BGRWPG, 2010]. No data was 

available for the region regarding monthly use, so monthly demand data from a nearby 

watershed [Griffin and Chang, 1990] was used to generate monthly demand factors and 

parse annual demands into a monthly time series.  Two sets of projections for water 

demand across all counties served by Belton Lake were gathered from BRA [BGRWPG, 

2010] and the Texas Water Development Board (TWDB) 

[https://www.twdb.texas.gov/waterplanning/data/projections/index.asp]. These two data 

sources project water demands to increase above current (2010) levels by 48% (BRA) 

and 62% (TWDB) by the year 2060. We note that while demand is likely related to 

temperature changes, no such link exists in the water demands used in this study.  

 

Projections of climate change for the Belton Lake watershed were gathered from the 

North American Regional Climate Change Assessment Program (NARCCAP) [Mearns et 

al., 2009]. Four AOGCMs (CCSM, CGCM3, GFDL, and HadCM3) were used to drive 6 

RCMs (CRCM, ECP2, HRM3, MM5I, RCM3, WRFG) in a variety of combinations 

(Table 5.2). All simulations were conducted under the A2 SRES emission scenario. 

Changes in mean annual precipitation and mean annual temperature were calculated for 

both raw AOGCM output and downscaled RCM simulations. Precipitation and 
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temperature changes were assessed as a ratio and difference, respectively, between the 

future (2041-2070) and baseline (1971-2000) periods, averaged across the Belton Lake 

watershed.  

Table 5.2. Climate projections used in this study. 

 Driving AOGCM 

RCM CCSM CGCM3 GFDL HadCM3 

CRCM X X   

ECP2   X  

HRM3   X X 

MM5I X   X 

RCM3  X X  

WRFG X X   

 

5.4.3. Belton Lake Reservoir Simulation Model 

A water resources systems model was developed to simulate the operations of Belton 

Lake under different management plans. The systems model is a simple monthly mass-

balance model that tracks inflows (e.g., river inflows and precipitation directly onto the 

lake) outflows (e.g., controlled and uncontrolled releases downstream, demand 

withdrawals directly from the lake, and evaporation directly off of the lake), and storage 

accumulation.  In accordance with the BRA 2012 Drought Management Plan 

[unpublished report, 2012], water withdrawals and releases for downstream demands are 

increasingly curtailed as reservoir storage falls below a set of successively lower trigger 

levels (see Figure 5.2). A simple release rule for flood control is imposed whereby gated 

downstream releases are used to maintain reservoir levels at the conservation pool but 
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cannot exceed 220 MCM/month in high inflow months. This threshold is equivalent to an 

entire month of flow at the bank-full flooding threshold set for the downstream Leon 

River flood control checkpoint gage (USGS ID# 08102500).   

 

We note that given the flood risk reduction objectives of Belton Lake, a daily model was 

initially deemed necessary. This requirement would have added significant computational 

burden to the methods used in this work, requiring the use of parallel computing. 

However, further investigation suggested that floods can be adequately modeled at a 

monthly time step, primarily because the capacity of the reservoir is so large that 

significant reservoir spill events and subsequent downstream damages only occur if 

inflows are substantially above average for several weeks at a time. Figure 5.3a shows the 

annual maximum storage levels in Belton Lake between 1980 and 2010 versus 

cumulative inflows preceding the date of the annual storage maxima. Several 

accumulation periods are considered, including 1-day, 15-day, and 30-day cumulative 

inflows. Figure 5.3a shows that maximum annual storage levels are most closely related 

to 30-day cumulative inflow periods, while there is significant noise in the relationship 

with the 1-day period. This suggests that a single day of large inflow is generally not 

sufficient to threaten the flood control objectives of Belton Lake, but rather weeks of high 

inflows are needed to cause the reservoir to spill. Therefore, a monthly time step model 

was deemed acceptable for representing the flood control objective of the reservoir. 

Figure 5.3b shows that the historic simulation of the reservoir under observed inflows 

compares well against observed monthly storage levels, suggesting that the monthly 

model adequately captures current operations.  
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Figure 5.3. a) Annual storage maxima in Belton Lake versus cumulative inflows prior to 

the annual maxima date of occurrence. Three accumulation periods are shown, including 

1-day, 15-day, and 30-day inflows. All storage and flow events are normalized for 

comparison. b) Observed and simulated monthly average storage in Belton Lake. 

 

5.4.4. Future Climate Scenarios 

The stochastic climate model used in this analysis is a monthly version of a previously 

developed daily model [Steinschneider and Brown, 2013] and therefore is only described 

briefly here. The proposed model has three primary components, including 1) a wavelet 

decomposition coupled to an autoregressive model (the wavelet auto-regressive modeling 

(WARM) approach, see Kwon et al. (2007)) to simulate structured, low-frequency 

oscillations in the aggregate climate (e.g. seasonal precipitation), 2) a temporal 

disaggregation  approach to convert seasonal climate to a monthly time step, and 3) a 

post-processing adjustment to enforce long-term distributional shifts in climate variables 

under climate change. These components allow the model to generate time series of 

climate variables that exhibit realistic characteristics at long-term (inter-annual) and mid-
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term (seasonal) timescales, and they also enable the creation of many climate change 

scenarios over which to stress system performance.  

 

The climate over the Belton Lake watershed exhibits a dual peak in precipitation, with 

one peak occurring in the spring between January and June (JFMAMJ) and another 

occurring in the autumn between the months of July and December (JASOND). The 

stochastic climate generator simulates, disaggregates, and adjusts climate variables from 

these two seasons separately and then combines them to form a continuous time series of 

climate data. This is justified since the correlation between seasonal precipitation is very 

low (Pearson r ~ -0.03). The WARM approach is used to extract low frequency signals in 

each time series of seasonal precipitation using wavelet decomposition and then 

stochastically simulates each signal using autoregressive time series models. The power 

spectrum for spring precipitation exhibits a near-significant 2-4 year signal at the 90% 

confidence level (as compared to a background white noise spectrum), while autumn 

precipitation exhibits a dual spectral peak at 1-2 and 5-7 year periods (Figure 5.4). Some 

of this low-frequency variability is likely related to the well-established influence of El-

Nino-Southern Oscillation (ENSO) on the climate of central Texas [Piechota and Dracup, 

1996]. The WARM approach is used to simulate the time-series characteristics of these 

modes of variability as well as residual noise, and in both seasons, the WARM model is 

capable of reproducing much of the spectral signature of the observed data, particularly 

for the autumn season. An anomalous spectral peak does emerge in the WARM 

simulations for spring precipitation near a 7-year period, but this bias is not drastic. Also, 

the 95% predictive bounds encompass most of the observed power spectrum except for 
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long periods in the autumn season. Seasonal average, minimum, and maximum 

temperatures are predicted from simulated seasonal precipitation values using linear 

regressions of observed temperature variables against observed seasonal precipitation.  

 

Figure 5.4. Power spectra for seasonal precipitation. The observed spectra (black solid) 

are compared against the mean power spectra (dashed blue) of 500 simulations, along 

with the 95% predictive range of the ensemble (grey). Also shown is the 90% 

significance level (red dotted) developed from a white noise background process. 

 

All seasonal climate variables are then disaggregated to a monthly time step using the 

method of fragments [Srikanthan and McMahon, 2001]. This is accomplished through a 

k-nearest-neighbor resampling of monthly disaggregation factors based on the simulated 

precipitation values. For each simulated value of seasonal precipitation, the nearest k=7 

observed values from the observational record are selected. The value k is selected as the 

square root of the record length, as suggested by Lall and Sharma [1996]. Each of the k 

values is assigned a probability using the discrete kernel function ���� &
1 ��

∑ 1 ���
��s

 , where l 

indexes the k selected values according to their Euclidean distance �� from the simulated 
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seasonal value. One of the k observed values is selected based on the kernel weights, and 

the monthly precipitation and mean, minimum, and maximum temperature values are 

gathered for that season. Multiplicative disaggregation factors are derived by dividing the 

monthly precipitation values by the observed seasonal total. Similarly, additive 

temperature factors are derived by subtracting the observed seasonal temperature average 

from the monthly values. The multiplicative and additive factors and then applied to the 

simulated seasonal precipitation and temperature values to disaggregate them to a 

monthly time step. This is repeated for every season of simulated climate from the 

WARM model.  

 

Figure 5.5 compares a range of statistics for monthly precipitation and mean temperature, 

including the mean, standard deviation, and skew, across a 500-member ensemble of 

stochastic climate model simulations and the observed values. The ensemble of stochastic 

simulations reproduces most of the statistics for all months rather well. The standard 

deviation and skew of precipitation are somewhat underestimated for June, November, 

and December, while the skew for mean temperature is somewhat overstated in February, 

October, November, and December. However, the overall performance of the model for 

both precipitation and temperature variables is satisfactory and considered adequate for 

the purposes of this study. 
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Figure 5.5. Performance statistics by month, including the mean, standard deviation, and 

skew of precipitation and average temperature. The observed statistics (red triangles) are 

shown against the distribution of statistics across the 500 stochastic climate simulations. 

 

To impose various climate changes in the simulated time series, transient additive delta 

factors are used to adjust temperature values over the simulation period. These factors 

increase linearly by month for the entire simulation period, starting at 0 and ending at the 

level of specified change (e.g. 2ºC). For precipitation, quantile mapping is utilized. The 

quantile mapping procedure can be used to adjust the simulated precipitation over time so 

that it follows a new distribution with transient characteristics (e.g. time-varying mean, 

coefficient of variation, etc.) (see Steinschneider and Brown [2013] for details). In this 

study, three types of climate change are examined, including alterations to the mean of 

seasonal precipitation, its coefficient of variation (CV), and the mean of seasonal 

temperatures. Even though different seasonal changes are possible using the climate 
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generator, the same change is always applied to both seasons so no shifts in seasonality 

are explored here. This choice was made because the storage in Lake Belton is large 

enough to modulate intra-annual variability. Changes to the precipitation mean are ranged 

from ±30% of historic seasonal averages using increments of 15% (5 increments). The 

precipitation CV is also changed by season from ±30% of historic monthly values using 

increments of 30% (3 increments). Temperature shifts are ranged from 0 to 4 degrees 

Celsius by 2°C increments (3 increments). All possible combinations of these changes are 

considered, leading to a total of 45 = 5×3×3 different climate change scenarios. These 

changes were chosen to ensure the identification of climate changes that cause system 

failure. Each of these 45 combinations of long-term change was applied to 5 different 50-

year monthly climate simulations, producing 225 climate simulations altogether. These 5 

realizations of internal climate variability were selected amongst 10,000 original runs 

according to the methods in Section 2.2 using 5 nonexceedance probabilities g &

J0.05,0.25,0.50,0.75,0.95L from the joint distribution of the minimum 1-year 

precipitation total (drought metric) and the maximum 1-month precipitation total (flood 

metric). The joint distribution was assumed equivalent to the product of the two marginal 

distributions because these two variables are independent (Pearson r < 0.001 across the 

10,000 original runs).  

 

5.4.5. Future Water Demand Scenarios 

Demands are linearly increased for all municipal users throughout the system over time 

in order to evaluate the vulnerability of the water supply of Fort Hood to population 

growth across the region.  Demand changes are applied to the local community users 
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only, i.e. the utilities and nearby cities with access to and authorized use of Belton Lake.  

Three different demand scenarios are considered, including 100%, 130%, and 160% of 

current demand levels. The maximum demand scenario was capped at 160% of current 

demand because this increase is equivalent to the total legal allocation available to the 

two water-rights holders for Belton Lake, BRA and Fort Hood. All scenarios of future 

demand are derived by multiplying 2010 demand levels by a time series of transient, 

multiplicative factors over the 50-year planning horizon for all nearby municipal users. 

Manufacturing, steam-electric, mining, irrigation, and livestock demand changes are 

minor in comparison and are not considered in this study.  Downstream user demands 

(e.g. sporadic releases for College Station and other major water rights contract holders) 

are included in the analysis, but are only applied at historical levels. When combined with 

the 225 different climate change scenarios, these three demand changes lead to 675 

different scenarios of future long-term change and internal climate variability. Each of 

the 675 scenarios will be coupled with an ensemble of hydrologic model simulations to 

complete the integrated uncertainty analysis.  

 

5.4.6. Belton Lake Hydrologic Model 

The conceptual, lumped-parameter HYMOD model [Kollat et al., 2012] was selected to 

translate future climate scenarios into inflows for Belton Lake. This model is composed 

of a soil-moisture accounting module that utilizes a storage capacity distribution function 

with parameters Cmax and β and a routing module that divides excess water using a split 

parameter (α) and routes it through parallel conceptual linear reservoirs. The quick (Kq) 

and slow (Ks) reservoir depletion rates control the flow from each routing reservoir. The 
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outputs from quick and slow reservoirs are summed to simulate streamflow. In additional 

to the hydrologic model parameters, two additional rainfall multipliers �\ and �W for the 

spring (January-June) and autumn (July-December) seasons, respectively, were included 

because there are a limited number of rain gages in this region that were available to 

develop the gridded data product used in this study.  

 

During the calibration process, a total of 13 parameters require estimation, including 7 

hydrologic model parameters (#$ & EUVWX, Y, Z, [. , [\, �\, �WI) and 6 parameters for 

the residual error model (#a & J?1, C1, /�, /1, ;, <L). One autocorrelation coefficient and 

one moving average coefficient are included because diagnostic tests (not shown) suggest 

autocorrelation in the residuals can be represented using a simple ARMA(1,1) process. 

The model calibration was conducted over 40 years of historic climate, from October 

1953 to September 1989, leaving 10 years for validation. All prior distributions were set 

to vague uniform distributions. In this study, the DREAM(ZS) MCMC algorithm was used 

to explore the posterior parameter space [Vrugt et al., 2011]. Convergence across three 

MCMC sampling chains used in the Bayesian calibration was verified using the Gelman 

and Rubin factor [Gelman and Rubin, 1992]. The feasible range, prior distribution, and 

posterior distributions for all model parameters are presented in Table 5.3.  
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Table 5.3. Summary of prior and posterior distributions for all model parameters. 

   Posterior Distribution 

Parameter 
Feasible 
Range 

Prior Distribution 
First 

Quartile 
Median Mean 

Third 
Quartile 

cmax (mm) (0,∞) Uniform (a=0,b=1000) 291.44 324.51 313.33 340.81 

b (0,2) Uniform (a=0,b=2) 0.25 0.28 0.28 0.31 

α (0,1) Uniform (a=0,b=1) 0.47 0.56 0.59 0.73 

Kq (0,1) Uniform (a=0,b=1) 0.84 0.91 0.89 0.96 

Ks (0,1) Uniform (a=0,b=1) 0.29 0.39 0.37 0.46 

�\ (0,∞) Uniform (a=.9,b=1.1) 1.07 1.08 1.08 1.09 

�W (0,∞) Uniform (a=.9,b=1.1) 0.93 1.00 0.99 1.06 

/� (0,∞) Uniform (a=0,b=1) 0.58 0.59 0.59 0.60 

/1 (0,∞) Uniform (a=0,b=1) 0.99 0.99 0.99 1.00 

; (0,∞) Uniform (a=0.1,b=10) 1.58 1.67 1.68 1.76 

< (-1,1) Uniform (a=-1,b=1) 0.89 0.94 0.92 0.97 

?1 (-1,1) Uniform (a=-1,b=1) 0.32 0.37 0.37 0.41 

C1 (-1,1) Uniform (a=-1,b=1) -0.13 -0.07 -0.08 -0.03 

 

Figure 5.6a shows the observed daily hydrograph for part of the calibration period, as 

well as the model estimates generated by the mean of the posteriors for all HYMOD 

parameters. The Nash-Sutcliffe efficiency (NSE) for the mean prediction over the 

calibration and validation period is 0.70 and 0.60, respectively. Also shown in Figure 

5.6a are 90% predictive bounds for the modeled flows. These bounds are calculated by 

sampling 5,000 parameter sets from their posterior distributions and summing 5,000 

simulated time series of model predictions and randomly generated residuals. These 

bounds contain 87% of the observations, suggesting that hydrologic uncertainty is being 

adequately characterized.   
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Figure 5.6. a) Streamflow hydrograph for a portion of the calibration period. 

Observations (red dots) are shown against the mean HYMOD prediction (black line) and 

the associated 90% confidence bounds (shaded grey). b) The fitted SEP density (black 

line) and empirical density (red points) of normalized errors. c) The autocorrelation 

function of the original and normalized errors. d) The residuals plotted against the mean 

predicted flow. 

 

Diagnostic plots are used to further verify that the fitted error model is consistent with the 

observed distribution of the residuals. Figure 5.6b shows the fitted SEP density function 

using the two parameters < and ;, as well as the empirical density of the normalized 

residuals, at, of the HYMOD model. The parameter < is estimated very close to unity, 

suggesting that the error distribution is highly peaked, and ; b 1.57, suggesting positive 

skew in the distribution. Figure 5.6c shows the autocorrelation function of the residuals 

from the model. While the original residuals of the HYMOD model exhibited significant 

autocorrelation at lag 1, this autocorrelation has largely been removed from the 
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normalized residuals. Finally, Figure 5.6d shows the relationship between predicted 

streamflow values and the errors associated with those predictions. While the variance of 

the original residuals varied significantly with predicted flow, the normalized errors 

maintain a much more constant spread across the range of flow predictions. These three 

diagnostic plots suggest that the error model used adequately captures the non-Gaussian, 

auto-correlated, and heteroscedastic nature of the residuals.  

 

In each future climate scenario for Belton Lake, an ensemble of 200 HYMOD 

simulations are run using samples from the posterior parameter space and additional 

residuals added to each simulation, as described in section 2.3. When coupled with the 

675 scenarios of long-term change and internal climate variability, a total of 

135,000=675×200 Monte Carlo ensemble members are generated over which to run the 

Belton Lake simulation model.  

 

5.4.7. Measures of Performance and Robustness 

System performance is tracked using four different metrics and thresholds (Table 5.4). 

Flood risk reduction is measured using the frequency of reservoir spill events and the 

maximum flow directly downstream of the reservoir. Any simulation is considered a 

failure if more than 2 independent spill events occur during the 50 year simulation or if 

the magnitude of downstream flow rises above 730 MCM (i.e. the flow required to cause 

flooding for an entire month at the Little River flood control checkpoint gage (USGS ID# 

08104500)). Water supply is measured using the frequency of drought watch events and 
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the minimum storage achieved during the simulation. A simulation is considered 

unsatisfactory if the frequency of drought watch events is greater than 1 in every 5 years 

or minimum storage falls below 216 MCM (the designated emergency storage level). A 

particular management plan z is considered robust to the i
th long-term change if 

�‐6����x@ f 0.75 across the Monte Carlo simulations that represent future variability and 

hydrologic uncertainty. This threshold, arbitrarily chosen here, should reflect the risk 

managers are willing to assume when deciding whether a plan is adequate for a particular 

set of long-term conditions.   

Table 5.4. Objectives, metrics, thresholds, and robustness criteria. 

Objective Metric 
Threshold of Acceptable 

Performance 
Robustness Threshold 

Flood Risk Reduction 

Frequency of Reservoir 
Spills 

2 in every 50 years 75% 

Magnitude of 
Downstream Flows 

200 MCM 75% 

Water Supply Security 
Frequency of Drought 1 in every 5 years 75% 

Minimum Storage 216 MCM 75% 

 

5.4.8. Testing the robustness of dynamic reservoir management 

The framework presented in this study is used to demonstrate the robustness of a dynamic 

management strategy for Belton Lake in which the conservation pool is adjusted through 

time to manage different types of long-term change and maintain an adequate level of 

flood control and water supply service. In each 50-year simulation, the conservation pool 

elevation is kept at its current level for the first 25 years and then is switched to an 

alternative pool level for the remaining 25 years. Two modeling experiments are 

conducted to explore the robustness of the adaptive management strategy. In the first 

experiment, all 5 management plans - maintaining the present conservation pool or 
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switching to one of the 4 alternative levels at year 25 - are run for each of the 135,000 

Monte Carlo ensemble members. For each management plan and long-term change (a 

specified precipitation mean and CV, temperature mean, and mean water demand), the R-

Score is calculated and robustness (e.g. R-Score > 0.75) mapped across the space of all 

long-term changes. This will show whether dynamic management of Belton Lake could 

mitigate the effects of long-term change if managers knew which change was going to 

occur and thus which plan to select.  

 

During the true realization of future climate and water demands, however, operators of 

Belton Lake will not know which path of long-term climate and water demand change is 

actually occurring. The second modeling experiment will explore whether the dynamic 

management strategy is still effective given the lack of perfect foresight. Here, for each of 

the 135,000 Monte Carlo simulations, a decision rule is implemented to choose whether 

the lake level should be adjusted during the simulation. For each Monte Carlo ensemble 

member, the reservoir system model is run under the current conservation pool level for 

the first 25 years. If the current lake level provides satisfactory performance for that first 

period, then no change is made for the second 25 years. However, if performance is 

unsatisfactory, then the lake level is iteratively raised to the next highest elevation and 

back-tested over the first 25 years until performance is satisfactory for that period. The 

lake level that first provides adequate back-tested performance is then used for the next 

25 years of the simulation. If no lake level provides satisfactory performance for the first 

25 years, then the existing plan is maintained. The decision rule used in the second 
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experiment essentially tests whether dynamic management can “see” past the noise of 

any particular realization of the future and effectively react to emerging trends. 

 

5.5. Results 

Figure 5.7 displays the robustness of two management plans (the status quo and 

Alternative 4) for changes in municipal water demand and average precipitation, with 

temperature and the precipitation CV held at baseline levels. The existing conservation 

pool elevation is capable of providing adequate performance for both flood control and 

water supply objectives for all demand levels when precipitation averages are at 100% 

and 85% of historic averages, but when precipitation drops significantly to 70% of 

historic levels, the existing plan is only viable at current demand levels; increases in 

demand lead to unacceptable water supply performance. Conversely, Alternative 4 (a 

very high pool elevation) can robustly manage all futures where precipitation falls below 

85% of historic averages, but does not perform well under current precipitation levels 

because downstream flooding becomes too severe. This demonstrates the tradeoffs across 

the different system objectives that emerge when the conservation pool elevation is 

changed. 
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Figure 5.7. Robustness of the existing conservation pool and Alternative 4 under future 

changes in water demands and mean precipitation, with mean temperature and 

precipitation CV held at baseline levels. Blue regions indicate futures under which plans 

are robust (R-Score > 0.75). 

 

Figure 5.8 summarizes the results of the first modeling experiment for all of the 

combinations of long-term change considered. Here, each long-term change is assigned 

the management plan that provides robust performance. When multiple plans are robust 

for a particular type of change, the plan closest to the existing conservation pool elevation 

is chosen because there are costs associated with raising the conservation pool (e.g. 

flooding out infrastructure and conservation lands surrounding the lake). Also designated 

are long-term changes for which no plan provides robust performance. Several results 

emerge from Figure 5.8. First, the existing conservation pool provides adequate 

performance across a wide swath of future changes in mean precipitation, mean 

temperature, and water demands as long as the variability (i.e. CV) of precipitation does 

not rise substantially. This includes all futures with current precipitation averages, as well 
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as the majority of futures with a 15% decline in precipitation. As temperatures or 

demands rise, higher lake levels are required to maintain adequate performance. In most 

instances, the next two lake levels (Alternatives 1 or 2) are sufficient to maintain 

performance, but when demands rise in conjunction with drier and warmer futures, the 

highest lake level (Alternative 4) is required. During some the warmest, driest futures 

with substantial water demand increases, no lake level performs adequately. When the 

CV of seasonal precipitation increases, there are very few futures that any plan can 

manage well. This suggests that when precipitation variability rises, droughts and floods 

both occur more frequently and cannot be managed effectively simply by reallocating 

storage between flood risk and water supply objectives. In these futures, some additional 

infrastructure or other investment would be required to manage the increased variability 

and maintain adequate performance.  

 

Projections of future water demands (BRA and TWDB) and climate (raw AOGCM and 

RCM-downscaled) for the year 2060 are also superimposed on Figure 5.8. All climate 

projections exhibited temperature changes close to 2ºC and no substantial change in the 

CV of seasonal precipitation. Since climate and demand projections were generated 

independent of one another, all climate projections were coupled with both the BRA and 

TWDB demand projections. The majority of projections suggest that the status quo plan 

is robust to future changes, but a handful of projections indicate that Alternative 1 may 

need to be adopted. A few projections also suggest that in a wetter future, no plan can 

sufficiently provide robust performance. Importantly, in this case study, the changes 

suggested by raw AOGCM output do not differ substantially from the downscaled RCM 
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results, suggesting that the process of downscaling for this application is not critically 

important for the decision-making process.  

 

Figure 5.8. The management plan that provides robust performance (R-Score > 0.75) for 

long-term changes in mean precipitation (x-axis), water demands (y-axis), mean 

temperature (columns), and precipitation CV (rows). Also shown are 2060 projections of 

climate from the NARCCAP project (raw AOGCMs and downscaling RCMs) combined 

with 2060 projections of water demand from BRA and TWDB. All projections exhibited 

temperature increases near 2ºC and thus were plotted in the 2ºC column.  
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Figure 5.8 shows which plans would provide robust performance across a range of future 

changes and modeling uncertainties if system operators knew to implement them half 

way through the planning period. However, in a real-time operational setting, operators 

may not know which future path is emerging, especially if hydroclimatic noise obscures 

their ability to detect long-term trends. Figure 5.9 shows the results of the second 

modeling experiment, in which lake levels are dynamically changed by back-testing their 

performance over the first 25 years. The results of this experiment highlight the utility of 

dynamic reservoir management as an adaptation to climate change when based on a naïve 

forecast, i.e., the past several decades are indicative of the trends to emerge in the next 

several decades. Here, different plans may be chosen for different Monte Carlo 

simulations under a particular long-term change, but the general strategy of dynamic 

management is considered robust to a long-term change if R-Score > 0.75. The 

robustness of the status quo plan is also shown for comparison in Figure 5.9 to determine 

if dynamic management provides substantial advantages over the current plan. Figure 5.9 

shows that without perfect foresight, the dynamic management plan loses much of its 

utility, and provides almost no additional benefit above just maintaining the current 

conservation pool level. The dynamic management strategy provides robust management 

for only one additional long-term change condition over the status quo plan (30% decline 

in precipitation, 2ԑC increase in temperature, no change in precipitation CV or demand). 

In part, this is because the dynamic management strategy chooses to maintain the current 

conservation pool elevation for over 50% of all Monte Carlo simulations across all long-

term change conditions. Even under futures with substantial drying and higher water 

demands, there is enough hydroclimatic noise in the first 25 years of the simulation to 
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prevent the performance degradation needed to trigger another management plan. These 

results suggest that in order for dynamic reservoir management to be a viable adaptation 

strategy for many long-term changes, some forecast skill beyond a naïve back-testing 

method may be necessary.  

 

Figure 5.9. The robustness of the status quo plan and the dynamic management strategy 

for long-term changes in mean precipitation (x-axis), water demands (y-axis), mean 

temperature (columns), and precipitation CV (rows). Also shown are 2060 projections of 

climate from the NARCCAP project (raw AOGCMs and downscaling RCMs) combined 

with 2060 projections of water demand from BRA and TWDB. All projections exhibited 

temperature increases near 2ºC and thus were plotted in the 2ºC column. 
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When coupled with the Figure 5.9, a subset of the projections suggests that dynamic 

management will not provide robust performance. One raw AOGCM (HadCM3) and one 

downscaled RCM (ECP2/GFDL) both indicate that reduced precipitation will lead to 

inadequate performance, while another raw AOGCM (CGCM3) and three RCMs 

(HRM3/HadCM3, MM5I/HadCM3, and WRFG/CGCM3) indicate that wetter conditions 

will lead to poor flood control performance. Interestingly, while the raw HadCM3 

indicates poor performance due to substantial drying, two RCMs forced by this GCM 

indicate inadequate system performance due to additional flooding. In either case, 5 out 

of the total 15 climate projections included in this analysis suggest that the dynamic 

management strategy may be insufficient as a long-term planning strategy that can 

provide robust performance.  

 

5.6. Conclusion 

This study presented a framework to identify long-term adaptation plans for a water 

resources system that are robust to a variety of non-stationary conditions and modeling 

uncertainties. Several sources of uncertainty were considered, including long-term 

changes in the underlying distribution of future conditions, sampling variability in 

realizations of those transient distributions, and uncertainty inherent to transfer functions. 

The integrated uncertainty analysis was coupled with systems analysis to identify long-

term planning alternatives that are robust despite the uncertainties. A new robustness 

metric, the R-Score, was presented for this purpose.  
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The case study focused on dynamic reservoir management as an adaptation to long-term 

climate and societal changes. Results suggested that if the path of long-term change were 

known, an adaptive management strategy could effectively manage many nonstationary 

futures. However, without foreknowledge about the future, the particular dynamic 

management strategy employed in this study was unable to see past hydroclimatic noise 

and effectively adapt to emerging trends. Additional forecast skill may be required to 

make adaptive management a more viable adaption approach; decadal hydroclimatic 

forecasts provide a promising path of future research towards this end [Meehl et al., 

2013]. 

 

The framework presented in this work utilized Monte Carlo methods to explore a variety 

of uncertainties. The approach is computationally expensive, even after employing 

methods to reduce the computational burden. While advanced computing and large 

Monte Carlo ensembles are becoming more popular for integrated risk assessments of 

water resource systems [Matrosov et al., 2013; Kasprzyk et al., 2013], many local water 

utilities do not possess the resources or expertise to employ such methods. What may be 

required are new methods that can effectively approximate and propagate the uncertainty 

at each stage of the modeling chain with greater efficiency to reduce the computational 

burden.  This is an important avenue of future work to emerge from this research.  
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CHAPTER 6 

CONCLUSION 

 

The primary goal of this dissertation was to present methods that can better estimate the 

precision associated with future projections of water resource system performance under 

climate change, and through this provide information that can guide the development of 

adaptation strategies that are robust to these uncertainties. A series of methods were 

presented to quantify the interactions, propagation, and relative contributions of different 

sources of uncertainty in a water resources impacts assessment under climate change. 

Several sources of uncertainty were considered throughout the work, including 

uncertainty in long-term climate changes, internal climate variability, and the hydrologic 

modeling process. A stochastic weather generator was presented to capture uncertainty in 

long-term climate changes and internal climate variability, while hydrologic modeling 

uncertainty was addressed using Bayesian methods.  

 

The uncertainties from mean climate changes, internal climate variability, and hydrologic 

modeling errors were integrated in climate change analyses of a New England river basin, 

a flood control facility in Iowa, and a multi-purpose surface reservoir system in Texas. 

The results of these case studies indicated that the precision of impact analyses under 

climate change significantly declines when multiple sources of uncertainty are accounted 

for and propagated through the modeling exercise. This was true for hydrologic statistics 

of interest (Chapter 3), as well as for performance metrics associated with water resource 
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systems (Chapters 4). However, despite the reduction in precision, it is still possible to 

provide useful planning guidance with the modeling chains often used for climate change 

assessments. Chapter 5 presented an example of how such guidance could be developed 

under an integrated uncertainty assessment.  

 

Several future research needs emerge from the work presented in this dissertation. First, 

the uncertainty framework adopted for all case studies utilized Monte Carlo methods to 

explore the uncertainty space. This approach, while effective, is computationally 

expensive, particularly when using complex hydrologic or water resource system models. 

If the uncertainty space for any one of the case studies were to be expanded, the 

computational burden would have required more advanced parallel processing 

techniques. State-of-the-art computing is indeed a valid path to follow in order to 

improve the treatment of uncertainty in climate change impact studies. However, utilities, 

state agencies, and other stakeholder groups often lack access or the expertise necessary 

to adopt such methods. Therefore, future research needs to explore alternative methods to 

effectively approximate and propagate the uncertainty at each stage of the modeling chain 

with greater efficiency to reduce the computational burden.   

 

Secondly, future work is needed to develop an appropriate statistical characterization of 

hydrologic model uncertainty, as this is not a straightforward process. The results in 

Chapter 4 highlighted that the structural differences between a simple and complex 

hydrologic model could extend beyond the predictive bounds associated with the simple 
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model. One potential approach to resolve this issue is to apply a similar Bayesian 

uncertainty analysis to more complex, distributed hydrologic structures, but the 

computational burden would be great. Again, parallel processing methods would be 

required. Alternatively, the statistical uncertainty analysis applied to simpler hydrologic 

models may need to be improved and thoroughly tested under different climate regimes 

to ensure they still function appropriately in a climate change context.  

 

Finally, substantial work is still needed to integrate climate change projections with the 

uncertainty methods presented in this work. It remains unclear how best to use highly 

uncertain and difficult-to-verify climate models for long-term water system planning. The 

work presented in this dissertation proposed methods to account for and propagate future 

climate change uncertainty into impact analyses. In Chapters 4 and 5, climate projections 

were superimposed on the uncertainty analyses to put the projections in context. 

However, the value of this approach for decision-making is still unclear. It remains an 

open question how projections should be coupled with the methods proposed in this work 

to best provide decision support for long-term water resources planning. This provides an 

exciting and important avenue for future research.  
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APPENDIX 

 

The wavelet transform utilizes a generalized local base function, or wavelet )(tΨ , that 

can be dilated and translated into a set of elementary functions, )(
a

bt −
Ψ , for use in 

exploring different signals in the original data across various frequencies and time scales. 

Mathematically, a signal of a particular frequency (or wavelet scale, a) is extracted from 

the data at a localized time (b) via the continuous convolution  

 

    ( ) dt
a

bt

a
baW ×

−
Ψ×= ∫

∞

∞−

)(~1
),( *tx    (A1) 

 

where ),( baW  is a wavelet spectrum and *Ψ  indicates the complex conjugate of the 

wavelet function. In this study, we employ the Morlet wavelet, given by 

)
2

exp()exp()(
2

0
4

1
ttit −××××=Ψ

−
ωπ , where 60 =ω  is a nondimensional frequency 

[Torrence and Campo, 1998] and 1−=i . Since climate data are only available at 

discrete time steps, the continuous convolution in equation A1 is often estimated using a 

discrete, N times convolution, where N equals the number of annual observations. 
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Here, t∂  equals the time step. Computationally, it is more convenient to carry out the N 

times convolution in equation A2 in Fourier space. The Fourier transform of the original 

annual data is given by 
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Here, g=0,1,…,N-1 indexes the frequencies. Given that the Fourier transform of the 

wavelet function )(
a

t
Ψ  is given by )(ˆ ωaΨ  in its continuous limit, the convolution 

theorem can be employed to calculate the wavelet transform of the data as the inverse 

Fourier transform of the product: 
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Once the wavelet transform has been calculated over a set of scales for each time step, 

low-frequency component series, hzzzz , can be reconstructed by summing the real part of 

the wavelet transform over a subset of scales associated with that component: 
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   (A5) 

 

where o∂ is the scale increment, ∂C is a reconstruction factor, and )0(0Ψ is a factor that 

removes the energy scaling. The term Oh indexes all of the scales associated with the hth 

low-frequency component. The statistical significance of wavelet power spectra can be 

tested at all of the scale values by comparing the power spectra against that of a white-

noise or red-noise process. Scales at which the power spectra appear significant can be 

bundled together into groups, Oh. The modeler should use judgment in the development 

of these groups, as they should reflect known structure in the climate system for that 

location (i.e. significant wavelet scales associated with periods between 3-7 years could 

be grouped and associated with ENSO, while significant wavelet scales associated with 

periods on the order of 10-20 years could be grouped and associated with the PDO).   
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