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[1] River flow synthesizing and downscaling are required for the analysis of risks
associated with water resources management plans and for regional impact studies of
climate change. This paper presents a probabilistic model that synthesizes and downscales
monthly river flow by estimating the joint distribution of flows of two adjacent months
conditional on covariates. The covariates may consist of lagged and aggregated flow
variables (synthesizing), exogenous climatic variables (downscaling), or combinations of
these two types. The joint distribution is constructed by connecting two marginal
distributions in terms of copulas. The relationship between covariates and distribution
parameters is approximated by an artificial neural network, which is calibrated using the
principle of maximum likelihood. Outputs of the neural network yield parameters of the
joint distribution. From the estimated joint distribution, a conditional distribution of river
flow of current month given the estimation of the previous month can be derived.
Depending on the different types of covariate information, this conditional distribution may
serve as the ‘‘engine’’ for synthesizing or downscaling river flow sequences. The idea of the
proposed model is illustrated using three case studies. The first case deals with synthetic
data and shows that the model is capable of fitting a nonstationary joint distribution.
Second, the model is utilized to synthesize monthly river flow at four sample stations on the
main stream of the Colorado River. Results reveal that the model reproduces essential
evaluation statistics fairly well. Third, a simple illustrative example for river flow
downscaling is presented. Analysis indicates that the model can be a viable option to
downscale monthly river flow as well.

Citation: Li, C., V. P. Singh, and A. K. Mishra (2013), Monthly river flow simulation with a joint conditional density estimation
network, Water Resour. Res., 49, 3229–3242, doi:10.1002/wrcr.20146.

1. Introduction

[2] Generating synthetic river flow sequences is required
for the estimation of risks associated with water resources
management plans [Sharma and O’Neill, 2002]. Downscal-
ing general circulation model outputs to flows at site or
river basin scale is gaining importance in assessing regional
impacts of climate change [Tisseuil et al., 2010]. From the
viewpoint of stochastic hydrology, river flow synthesizing
and downscaling can be generalized as an exercise in the
conditional distribution of YjX, where Y is a random vector
representing river flows (e.g., flows of two adjacent
months), and X is a random vector representing covariates.
The covariate vector X may be lagged and aggregated flow

variables for river flow synthesizing or may be exogenous
climatic variables for downscaling. Hereafter, upper case
bold letters (e.g., Y) denote random vectors and the corre-
sponding lower case letters (e.g., y) their values.

[3] River flow synthesizing is to generate flow sequences
that are statistically consistent with historical records. To
that end, several approaches have been developed in a para-
metric or nonparametric framework. A commonly used
parametric method is the autoregressive moving average
(ARMA) model, wherein river flow is assumed to be nor-
mally distributed [Lettenmaier and Burges, 1977; Salas
and Delleur, 1980]. The normality assumption, neverthe-
less, is problematic since flow data are right-skewed and
very often even heavy-tailed [Bernadara et al., 2008; Car-
reau et al., 2009]. To render the data to be normal, transfor-
mation techniques are required, which consequently give
rise to other drawbacks [Hao and Singh, 2011]. To sidestep
data transformation, the ARMA model with gamma distri-
bution was proposed by Fernandez and Salas [1990].
Besides parametric models, nonparametric alternatives,
which are often based on bootstrap and/or kernel density
estimation, have addressed parametric limitations [Lall and
Sharma, 1996; Sharma et al., 1997; Sharma and O’Neill,
2002; Salas and Lee, 2010]. Nonparametric models allow
the data to speak for themselves [Wand and Jones, 1995;
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Sharma and O’Neill, 2002]. Therefore, the conditional dis-
tribution of YjX can be derived without either the assump-
tion of normality or resorting to normal transformation.
Admiring successes of nonparametric approaches, their
application requires large sample size [Evin et al., 2011].

[4] River flow downscaling aims to bridge the gap
between large-scale climatic variables (>104 km2) and flows
at site or river basin scale. River flow downscaling is typi-
cally accomplished in terms of statistical methods, which
have the advantage of being flexible in modeling and tracta-
ble in computation. Broadly speaking, statistical downscal-
ing models can be classified into three categories: (1)
regression functions, (2) weather generators, and (3) weather
typing schemes. Weather typing usually serves as a prepro-
cessor before building regression functions or weather gener-
ators [Huth et al., 2008; Vrac et al., 2007; Carreau and
Vrac, 2011]. Regression functions seek to estimate the con-
ditional mean E YjX ¼ x½ � of small-scale variables (e.g.,
river flows) given large-scale climatic covariates X ¼ x, like
the work of Schoof and Pryor [2001], Cannon and Whitfield
[2002], Ghosh and Mujumdar [2008], and Tisseuil et al.
[2010] among many others. In weather generators, small-
scale values are not estimated by E YjX ¼ x½ � but rather gen-
erated from a conditional distribution of YjX structured in a
parametric [Wilks, 1999], nonparametric [Rajagopalan and
Lall, 1999; Sharma, 2000; Mehrotra and Sharma, 2007a,
2007b], or semiparametric way [Cannon, 2008; Carreau
and Vrac, 2011]. It is acknowledged that downscaled results
are subject to uncertainties [Mujumdar and Ghosh, 2008]. A
reasonable estimate of uncertainty in hydrologic prediction
is valuable in water resources and other relevant decision-
making processes [Liu and Gupta, 2007]. To evaluate uncer-
tainty, one is less interested in a crisp projected value
E YjX ¼ x½ � than in a conditional distribution of YjX [Hsieh,
2009]. For this reason, weather generator-based downscaling
methods are preferred. As the name suggests, weather gener-
ator-based models are indeed adapted weather (river flow)
generators. In this sense, synthesizing and downscaling flow
sequences are virtually the same. The only difference resides
in that the covariate vector X for river flow synthesizing
comprises variables created from the historical observations,
whereas for downscaling, exogenous large-scale climatic
variables are included.

[5] Redefining Y as a random vector of flows of two
adjacent months, i.e., Y ¼ Yt�1; Yt½ � (in the boundary sea-
son, Yt�1 denotes the flow in December of the previous
year, and Yt represents that in January of the current year),
this paper primarily attempts to model the joint density
� yt�1; ytjxð Þ conditioned on covariate information x. Right-
skewed distributions with positive support, such as lognor-
mal and gamma distributions, are deemed as plausible
choices for representing monthly river flow [Sangal and
Biswas, 1970; Fernandez and Salas, 1990; Nadarajah,
2007]. The dependence structure of adjacent flows is cap-
tured using copulas [Joe, 1997; Nelsen, 2006; Lee and
Salas, 2011]. Parameters of the joint density are approxi-
mated as functions of covariates via a neural network,
which is calibrated by the principle of maximum likelihood
(ML) [Bishop, 1995; Cawley et al., 2007; Cannon, 2008;
Carreau et al., 2009; Carreau and Vrac, 2011]. The joint
density � yt�1; ytjxð Þ is allowed to evolve as the covariate
information changes. We will hereinafter refer to this

framework as the joint conditional density network
(JCDN). From � yt�1; ytjxð Þ, a new conditional distribution
of Yt given Yt�1 can be derived. Random numbers are then
sequentially simulated from this distribution as synthesized
and downscaled river flows.

[6] A similar modeling framework has been employed
for precipitation downscaling [Cawley et al., 2007;
Cannon, 2008; Carreau and Vrac, 2011] and rainfall-
runoff simulation [Carreau et al., 2009]. The major differ-
ence resides in that only precipitation or runoff at current
time step is modeled instead of that at adjacent time lags.
Yet these univariate models tend to result in inadequate se-
rial correlated sequences, as pointed out by Cannon [2008]
and Carreau and Vrac [2011]. To address this issue, Can-
non [2008] recommended guiding the simulation by a latent
Gaussian process, which has to be determined by a trial
and error procedure. JCDN explicitly takes the first-order
Markovian dependence into account. As a consequence, the
lag-1 autocorrelation of river flows is preserved.

[7] This paper proceeds as follows. Definition of the pro-
posed JCDN generator is described in section 2. Section 3
discusses how to identify a proper JCDN generator. Section
4 discusses the major numerical algorithms involved in the
implementation of JCDN, followed by three applications in
section 5: one is for demonstrating the ideas of JCDN on
synthetic data, and the others are for monthly river flow
synthesizing and downscaling, respectively. Conclusions
are generalized in section 6.

2. Model Definition

2.1. Joint Conditional Density Network

[8] Inspired by the work of Cawley et al. [2007], Cannon
[2008], Carreau et al. [2009], and Carreau and Vrac
[2011], the idea of JCDN is to let an artificial neural net-
work estimate parameters of the joint probability density of
river flows of two adjacent months conditioned upon a set
of covariates. To that end, an appropriate joint distribution
family should be specified first. The copula theory is used
to build the joint distribution by linking together its mar-
ginal distributions. The major benefit of using copulas to
construct the joint distribution is reflected by its flexibility
in describing diverse dependence structures and relaxing
marginal restrictions.

[9] In order to properly capture the behavior of adjacent
monthly flows, several univariate distributions and copula
families are selected as candidates. Lognormal and gamma
families are selected as alternatives for representing the
probability distribution of monthly river flow. Both of them
have been frequently used for river flow simulation [Sangal
and Biswas, 1970; Fernandez and Salas, 1990; Nadarajah,
2007]. Three copula families, i.e., Clayton, survival Clay-
ton, and Gaussian, are chosen as options to capture the
serial dependence.

[10] Following Sklar’s theorem [Joe, 1997; Nelsen,
2006], the joint conditional density � yt�1; ytjxð Þ of river
flows of two adjacent months can be expressed as

� yt�1; ytjxð Þ ¼ f yt�1jxð Þg ytjxð Þc F yt�1jxð Þ;G ytjxð Þjxð Þ; (1)

in which f �jxð Þ and g �jxð Þ are the marginal probability den-
sity functions (PDFs) of flows of months t � 1 and t
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conditioned upon covariates x, respectively; F �jxð Þ and
G �jxð Þ are the corresponding cumulative distribution func-
tions (CDFs); and c �jxð Þ is the mixed partial derivative of
the copula C �jxð Þ. The joint distribution is thought of as con-
ditional in the sense that its parameters depend on the covari-
ate vector X ¼ x. It may be noted that the covariate vector
may consist of any variable as long as it is a driving factor
of the monthly river flow process. Examples may include
lagged flow variables, large-scale climatic variables,
monthly mean precipitation, temperature, and date variables
encoded seasonal cycles, to mention a few. In practice, one
can specify the variables that should be included in X
according to their purposes, as will be shown later.

[11] A standard one-hidden-layer perceptron neural net-
work was used to approximate the covariate-parameter
relationship. Outputs of the neural network were inter-
preted as parameters of the joint conditional distribution.
Let n be the number of hidden neurons. For each hidden
neuron, its output ai

h is computed as

ai
h ¼ tanh

XD

d¼1

xi
dwdh þ bh

 !
; h ¼ 1; 2; :::; n (2)

where xi
d represents values of the dth covariate; wdh and

bh are the input-hidden-layer weights and offset parame-
ters, respectively. Suppose there are K parameters in the
specified joint distribution, then the kth parameter is
estimated as

�i
k ¼ �hk

Xn

h¼1

ai
h ~whk þ ~bk

 !
; k ¼ 1; 2; :::;K (3)

where ~whk and ~bk correspondingly denote the hidden-out-
put-layer weights and offset parameters; �hk �ð Þ is a transfer
function to project the linear combination term in equation
(3) onto the parameter space of the kth parameter. Func-
tions �hk �ð Þ (k¼ 1, 2, . . . , K) are determined by the speci-
fied distribution. For example, for a gamma distribution
with shape parameter � and scale parameter �, since both
of them should be positive, �hk �ð Þ (k¼ 1, 2) will be exponen-
tial functions.

[12] The advantages of using a neural network to approx-
imate the covariate-parameter relationship include the fol-
lowing: (1) it is flexible for both linear and nonlinear
modeling; (2) it is capable of accounting for complex inter-
actions among covariates [Cannon, 2008; Carreau et al.,
2009; Hsieh, 2009; Carreau and Vrac, 2011]; (3) it is apt
at incorporating different covariates as many as necessary;
and (4) it allows the joint PDF to change over time.

2.2. JCDN-Based River Flow Generator

[13] From the joint distribution of river flows of each
paired adjacent months (e.g., January–February and
February–March), a conditional CDF of Yt given Yt�1 ¼
yt�1 can be expressed as

�Yt jYt�1
ytjyt�1; xð Þ ¼ c1 F yt�1jxð Þ;G ytjxð Þjxð Þ; (4)

where c1 �ð Þ is the partial derivative of copula C �ð Þ with
respect to its first argument [Zhang and Singh, 2007].

This conditional CDF is the ‘‘engine’’ used to generate
river flow at month t given the value of its previous month
by entering a uniform random number p into the quantile
function

yt pjyt�1; xð Þ ¼ G�1ðc�1
12
ðFðyt�1jxÞ; pjxÞjxÞ; (5)

where G�1 �ð Þ is the inverse of the CDF G �ð Þ, and c�1
12
�ð Þ is

the inverse of c1 �ð Þ with respect to its second argument.
[14] The step-by-step chain-dependent generation proce-

dure may (1) start at any given month, for instance, the first
month of historical observations, which is denoted as t, by
selecting any random number (or the mean, median) from
the marginal distribution of river flow of month t ; (2) then
proceed to the next month, denoted as t þ 1, by evaluating
the quantile function (equation (5)) at the generated flow of
month t ; and (3) then continue by repeating step 2 until
flow for a given month, say, the last month of the historical
period, is generated. To diversify scenarios of synthetic
data, multiple sequences are usually required. In this situa-
tion, the generation procedure might be repeated as many
times as necessary.

[15] The major advantage of JCDN-based generator over
its univariate analogues is that JCDN explicitly takes the
first-order Markovian dependence into account. It follows
that the short-term persistence of river flow is preserved in
the generated sequences.

3. Model Identification

3.1. JCDN Parameter Identification

[16] Weights and offset parameters are adjustable terms
in JCDN and are calibrated following the principle of ML,
which is by far the most popular technique for deriving dis-
tribution parameter estimates [Casella and Berger, 2001].
Often, it is more convenient to work with the log-likelihood
function instead. Given covariates x ¼ x1; x2; :::; xD½ �
(N�DN matrix) and flow observations of two adjacent
months y ¼ yt�1; yt½ � (N � 2 matrix), the log-likelihood
function based on the specified distribution is expressed as

LL ¼ LL f þ LL g þ LL c (6)

LL f ¼
XN

i¼1

log f yi
t�1jHf xi

� �� �� �
(7a)

LL g ¼
XN

i¼1

log g yi
tjHg xi

� �� �� �
(7b)

LL c ¼
XN

i¼1

log c F yi
t�1jHf xi

� �� �
;G yi

tjHg xi
� �� �

j� xi
� �� �� �

; (7c)

in which N is the number of observations; Hf and Hg are
the parameter vectors of marginal distributions of river
flows (e.g., suppose f �ð Þ is a gamma density with shape pa-
rameter � and scale parameter �, Hf will be �; �½ �) ; and �
is the copula parameter. Of particular note, Hf �ð Þ, Hg �ð Þ,
and � �ð Þ are used to emphasize that these parameters are
functions of covariates. Our simulation experiments (results
not shown) illustrate that the ML method performs
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reasonably well as long as (1) the data are from the speci-
fied parametric family, or at least approximately so, and (2)
the sample is sufficiently large.

[17] Equation (6) implies that parameters of the marginal
distributions and the copula function can be estimated sepa-
rately by three different neural networks. In this case, the
objective function (log likelihood) of each neural network
becomes simple, which will in turn make the calibration
easy to converge. It should be noted that this benefit is at
the expense of an increased overall model complexity. For
the sake of a parsimonious model, here we estimate the
joint distribution using one neural network. This treatment
can also provide adequate goodness of fit with the aid of a
novel optimization algorithm, as will be seen in section 5.

3.2. JCDN Hyperparameter Identification

[18] Families of the marginal distributions and the cop-
ula function are two of hyperparameters of the JCDN-based
generator. In addition, the number of hidden neurons,
which controls the generalization ability of the neural net-
work to the underlying covariate-parameter relationship, is
another hyperparameter. Hyperparameters of JCDN may be
determined via cross-validation, which can efficiently
avoid overfitting and underfitting, and hence identify a par-
simonious model with decent generalization ability.

[19] The L-fold cross-validation is implemented as fol-
lows. First, data including flow observations and covariates
are split into L subsets, i.e., S1, S2, . . . , SL. Second, holding
the subset S1 out, JCDN is calibrated on the other subsets,
parameter estimations are made on the held-out set S1, and
then the log-likelihood is evaluated on S1. This procedure
is repeated L times, rotating each time the held-out set. The
best hyperparameters are chosen as those which maximize
the sum of log-likelihood of each held-out set. Once the
optimal hyperparameters are determined, JCDN is cali-
brated anew with all the data. The final model is then used
for river flow synthesizing and downscaling.

[20] Note that it is reasonable to evaluate competing
models based on the log likelihood evaluated on the held-
out set in view of the following two facts. First, each time
data in the held-out set is unseen in the calibration set [Car-
reau and Vrac, 2011]. Second, given a model fitted from
the calibration set, the log likelihood evaluated on valida-
tion set can be interpreted as the likelihood that the sample
is from the specified distribution. The larger the log likeli-
hood, the more likely the sample is from the distribution.

4. Model Implementation

[21] For the implementation of the JCDN-based genera-
tor, a suite of MATLAB scripts and functions are written,
which are rooted in the R package for the univariate condi-
tional density network developed by Cannon [2012]. Sev-
eral critical points need more description, for instance, the
numerical algorithm used for maximizing the log likeli-
hood since to some extent, alternative numerical techniques
might affect the results reported in this paper.

[22] The log-likelihood function might be maximized
following the procedure in Cannon [2012]. First, the
Nelder-Mead simplex (NMS) algorithm is conducted. After
a number of iterations with NMS, the obtained weights and
offset parameters are sent to initialize the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm.
One inherent difficulty associated with the problem of find-
ing the maximum of a function is that of converging to a
local maximum. Avoiding local maxima might be achieved
in one of the two ways, in terms of a global optimization
algorithm like particle swarm optimization (PSO), or by
randomly initializing the optimization a number of times
and selecting the best model. We follow the first way for
this study. To accomplish the PSO optimization, an extra
MATLAB package is required and is accessible from
http : //www.mathworks.com/matlabcentral/fileexchange/
7506-particle-swarm-optimization-toolbox. Besides PSO,
another global optimization algorithm, shuffled complex
evolution method (SCE-UA), developed by Duan et al.
[1992] is a viable option too. Compared with the hybrid
NMS-BFGS optimization strategy, the PSO algorithm
offers more accurate parameter estimates but with
increased computational burden. One point worth noting is
that in order to obtain a stable JCDN, the PSO optimization
is repeated 10 times, and the resulting distribution parame-
ters are averaged, which are used as the ultimate parameter
estimates of the joint distribution.

[23] One other minor but sometimes fatal pitfall, which
is very often encountered by practitioners, is also worthy of
more explanation. Theoretically, there are two different
manners to calculate the log-likelihood function. Taking
the gamma distribution, for instance, given an observation
y, the log likelihood can be calculated as

LL �; �jyð Þ ¼ log G �ð Þ�ð Þ�1 y

�

� ���1

exp
�y

�

� � !
; (8)

or as

LL �; �jyð Þ ¼ �� 1ð Þlog
y

�

� �
� y

�
� log G �ð Þð Þ � log �ð Þ: (9)

[24] In recent days, many statistical software packages
are available. Most, if not all of these packages, provide
procedures for the computation of PDFs of basic distribu-
tions. As such, it would be natural to choose equation (8) to
compute the log-likelihood, i.e., first compute the PDF, and
then take its logarithm, because not only this way is
straightforward but also it can take advantage of existing
software resources. Yet, due to the roundoff error, the PDF
of data from extreme right tail (e.g., y ¼ 1200 for � ¼ 1
and � ¼ 1:5) will be 0. Note that it is not uncommon to see
some extremely large values appearing far away from the
‘‘bulk’’ of monthly river flow data. After taking the loga-
rithm of 0, the log-likelihood will be �1, which in turn
will mislead the optimization search. To circumvent this
risk, a somewhat more reliable and robust approach is the
second one, i.e., through equation (9).

[25] The flowchart in Figure 1 generalizes the basic steps
of JCDN for monthly river flow synthesizing and
downscaling.

5. Application

[26] In this section, the idea of JCDN is tested first on
synthetic data and is then applied to synthesizing and
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downscaling monthly river flows at sample stations over
the main stream of the Colorado River.

5.1. Case 1: Testing With Synthetic Data

[27] Case 1 is to illustrate the idea of JCDN on a syn-
thetic data set simulated from a known bivariate distribu-
tion, which was designed such that it can mimic typical
behavior of seasonal variability of monthly river flow. The

Clayton copula was used to construct the parent distribu-
tion by combining two identical gamma margins. Parame-
ters of the distribution are functions of covariate X �
[1, 12], which were set up as follows. First, we obtained 51
years of monthly streamflow records from 1956 to 2006 of
the Lees Ferry stream gauge in the Colorado River basin.
Information about this gauge can be found elsewhere in
this paper. Then, we fitted a gamma distribution for each
calendar month as well as a Clayton copula for each paired
adjacent months. The corresponding parameter estimates
are shown by black circles in Figures 2a–2c. In the next
step, these discrete points were smoothed by sine and
cosine functions and their combinations, as shown by the
imposed solid lines over the circles. These smoothed lines
were used to represent the underlying covariate-parameter
relationships. Following Nelsen [2006, p. 40], a sample
consisting of 2500 data pairs was generated from the joint
distribution with x drawn uniformly from [1, 12]. Figures
2d and 2e illustrate the distributional patterns of the sample
data. One can observe a noticeable trend of the random
numbers as the covariate X varies. The objective herein is
to identify the underlying covariate-parameter relationship
that is most likely to have generated the random sample.
For that purpose, we used sin(X) and cos(X) in addition to
X as covariate variables. For simplicity, in the following
we assumed that the hidden neuron number was the only
unknown hyperparameter to be determined.

[28] In order to identify the most parsimonious model
with nice generalization ability, a simple calibration-valida-
tion experiment was carried out. First, the whole sample set
was split into two parts in terms of random sampling with-
out replacement. About two third of the data (1800) was
used for model calibration and the other part (700) for vali-
dation. JCDNs with increasing number of hidden neurons
were tuned on the calibration set, and each time the result-
ing model was evaluated on the validation set. The number
of hidden neurons was increased from two to eight with a
step size of one. Finally, JCDN with five hidden neurons
was identified as optimal for the parent distribution. As a

Figure 1. Basic flowchart of JCDN for monthly river
flow synthesizing and downscaling.

Figure 2. Parameters and representative random vectors generated from the parent distribution. (a and
b) Shape and scale parameters of the gamma marginal distribution, (c) Clayton copula parameter, (d) the
generated random vectors plotted as a function of covariate x, and (e) scatterplot of random sample R1
against R2.
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note, the L-fold cross-validation was not carried out mainly
for the consideration of saving implementation effort.
Nevertheless, later in this section we would make a double
check about the reasonability of the identified hidden neu-
ron numbers.

[29] To verify how well the JCDN with identified hidden
neuron number generalizes the underlying covariate-
parameter relationship, another random sample also with a
size of 2500 was generated from the joint distribution.
JCDN was calibrated on the sample with the identified hid-
den neuron number, and prediction was made on the same
sample using the calibrated JCDN. The obtained covariate-
parameter relationships were plotted by dashed lines in
Figures 3a–3c. As can be inferred from Figures 3a–3c, in
general, the modeled covariate-parameter relationships
were consistent with or almost the same as the actual ones.
It is noted that as was mentioned in section 4, each covari-
ate-parameter relationship represents the ensemble average
of 10 members obtained by repeatedly performing the PSO
optimization 10 times.

[30] Additionally, it is needed to check if under- or over-
fitting occurred. First, the interval [1, 12] was partitioned
into 50 equal-sized subintervals. Endpoints of these subin-
tervals were held out for validation. With X drawn uni-
formly from each subinterval, 50 random vectors were
sampled from the joint distribution. These random vectors
were then concatenated to form a calibration set. This sam-
pling design ensured that the validation data were unseen
in the calibration set. JCDN with identified number of hid-
den neurons was trained on the calibration set. Parameter
estimation was made on the held-out interval endpoints, as
presented in Figures 3d–3f. Obviously, the generalization
ability of the trained JCDN was consistent with the results
in Figures 3a–3c. No significant evidence of under- or over-
fitting was found, which also provided an empirical justifi-
cation for the rationale of the identified JCDN
hyperparameters. After all, this preliminary study showed
that JCDN was capable of capturing the underlying covari-
ate-parameter relationship and can be used for fitting a non-
stationary bivariate distribution.

5.2. Case 2: River Flow Synthesizing

[31] Considering the fact that to date to our knowledge,
the idea of conditional density network has not yet been
used for river flow synthesizing; case 2 presents a com-
prehensive treatment of the utility of JCDN for generating
synthetic river flow sequences. Fifty-one years of monthly
river flow records spanning over a period of 1956–2006 at
four sites located on the main stream of the Colorado
River were used to test the model performance. Among
the four sites, one is station 09380000, Lees Ferry, Ari-
zona, which has been utilized several times in related
studies, like Prairie et al. [2006], Salas and Lee [2010],
and Hao and Singh [2011]. The other three stations sited
to the downstream of station 09380000 are station
09402500 near Grand Canyon, station 09427520 below
Parker Dam, and station 09429490 above Imperial Dam,
respectively.

[32] Before proceeding to hyperparameter identifica-
tion, it was required to select appropriate covariates.
Note that for river flow synthesizing the covariates are
typically flow variables created from historical observa-
tions, for instance, lagged flows and aggregated flows
over several past months. Herein there were in total four
covariates involved in estimating the joint distribution of
river flows of months t� 1 and t : (1) the summation
of river flows of months t� 1 and t ; (2) the summation
of river flows of months t� 2, t� 3, t� 4, and t� 5; (3)
the summation of sine values of t� 1 and t ; and (4) the
summation of cosine values of t� 1 and t. The second
covariate bears similarity to the one used in the nonpara-
metric model for river flow preserving long-term vari-
ability (NPL) developed by Sharma and O’Neill [2002].
Therein the trivariate distribution of adjacent monthly
and annual aggregated flows is approximated by kernel
density estimation and then is used for river flow simula-
tion. The last two covariates aim to capture seasonal
cycles inherent in the data [Cannon, 2008; Carreau et
al., 2009; Carreau and Vrac, 2011]. These covariates
were first transferred to be normally distributed.

Figure 3. Calibration results : (a–c) the true (solid lines) and approximated (dashed lines) covariate-
parameter relationship for each parameter of the parent distribution, and validation results : (d–f) scatter-
plots of the true versus estimated parameters of the parent distribution.
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The quantile matching method was used for data trans-
formation, which is mathematically generalized as

xi:N ! zi:N :¼ zi:N ¼ ��1 i� 0:5

N

� �
; (10)

where xi:N and zi:N are the ith order statistics of data in the
original scale and the corresponding normal transformed
value, respectively; and ��1 �ð Þ is the quantile function of
the standard Gaussian distribution.

[33] Hyperparameters of JCDN, i.e., the copula and the
marginal distribution families and the number of hidden

neurons, were identified by fivefold cross-validation. To
that end, data were split into five decade-long segments,
i.e., 1957–1966, 1967–1976, 1977–1986, 1987–1996, and
1997–2006. It is noted that flows for the year of 1956 were
excluded from cross-validation, since data of this year were
used for preparing covariates. The fivefold cross-validation
was implemented following the procedure described in sec-
tion 3.2. For simplicity but without losing rationale, mar-
ginal distributions of river flows of two adjacent months
were assumed to belong to the same family. There were
two admissible alternatives for the marginal distribution
and three for the copula function. The number of hidden

Figure 4. Box plots of basic distributional statistics of observed and synthesized sequences by JCDN
and NPL for station 09380000.
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neurons was chosen from [2, 3, 4, 5, 6, 7, 8]. Therefore,
there were in total 42 possible combinations involved in
the cross-validation exercise. For each station, the combi-
nation resulting in the maximum log likelihood was finally
used to set up JCDN.

[34] To evaluate how good the performance of JCDN in
river flow synthesizing is, 1000 sequences, each with the
same length as the effective historical records (50 years),
were generated for each station. In view of the possibility
of converging to local minima and in order to achieve a
relative objective evaluation, the 1000 sequences were gen-
erated as follows. First, JCDN with identified hyperpara-
meters was trained on the whole data set to estimate the
nonstationary joint distribution of monthly river flow.
Then, 100 sequences were generated from the estimated
distribution. The above two steps were repeated 10 times
resulting in 1000 sequences.

[35] A set of distributional, autocorrelation, surplus, and
deficit statistics were used to evaluate the performance of
JCDN-based generator in river flow synthesizing. The basic
distributional statistics included monthly (1) mean, (2)

standard deviation, (3) skewness, (4) minimum, and (5)
maximum. The serial autocorrelation statistics were (6)
lag-1 autocorrelation and (7) lag-2 autocorrelation. Surplus
statistics included (8) maximum surplus length and (9)
maximum surplus amount for different static water demand
levels. Deficit statistics were simply the counterpart of sur-
plus statistics. They were (10) maximum deficit length and
(11) maximum deficit amount. These statistics have been
extensively used for assessing products of river flow syn-
thesizing [Sharma and O’Neill, 2002; Prairie et al., 2008;
Salas and Lee, 2010; Hao and Singh, 2011].

[36] The monthly mean, standard deviation, skewness,
minimum, and maximum values of synthetic and historical
sequences for each month are summarized by box plot in
Figure 4 for the representative station 09380000, along
with the corresponding results obtained from the NPL
model for comparison. Figure 4 reveals one major point
that JCDN exhibited fairly good performance in reproduc-
ing these statistics. One additional interesting point is
related to the minimum and maximum statistics, both of
which have been recognized as relatively hard to simulate

Figure 5. Box plots of autocorrelation statistics of observed and synthesized sequences by JCDN,
NPL, and UCDN for station 09380000.
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[Salas and Lee, 2010; Hao and Singh, 2011]. Apparently,
these two statistics were reasonably captured by JCDN.

[37] Figure 5 illustrates lag-1 and lag-2 autocorrelations
of the synthetic and observed sequences. As expected, the
JCDN-based generator presents decent performance in pre-
serving the short-term persistence of available observed
flow data. Particularly, lag-1 autocorrelation was better
reproduced than that of lag-2, which was underestimated
through the year. There was no significant difference
between JCDN and NPL in reproducing short-term auto-
correlation statistics.

[38] In addition, to understand better how good the
JCDN-based generator is in preserving autocorrelation of
observed river flow comparing with its univariate analog
(UCDN) [Cannon, 2008; Carreau et al., 2009; Carreau
and Vrac, 2011], another 1000 sequences were generated
by UCDN for this representative station. Lag-1 and Lag-2
autocorrelations of UCDN-synthesized and observed
sequences are plotted in Figure 5 as well. Simulation
experiment showed that no matter how we changed the
hyperparameters we could not obtain a model with satisfac-
tory results if employing the same covariates as in JCDN.
We therefore tested different covariate combinations and
finally selected the one (river flow of previous month and
sine and cosine values of the current month) which could
match the basic distributional statistics simulated by JCDN
as well as possible. Results revealed that as expected
UCDN underestimated the observed serial correlation.
Sometimes, it might even generate sequences with unrealis-
tic zero or negative autocorrelations. In the context of crisp
prediction (‘‘crisp’’ was used to distinguish with ‘‘probabil-
istic’’), expectation of the predictive distribution or sample
mean of multiple realizations from the predictive distribu-
tion is usually used as the predicted value. In this situation,
the autocorrelation might be adequately preserved as long
as lag covariates were included, as discussed by Cannon
[2012]. One should be careful not to confuse that the repro-
duction of autocorrelation in the ensemble average of

UCDN simulations does not mean the reproduction of auto-
correlation in each ensemble member. The JCDN-based
generator ensures that observed autocorrelation can be stat-
istically preserved in each member.

[39] Comparison of surplus and deficit statistics between
synthetic and observed sequences is presented in Figure 6.
These statistics were computed using static water demand
levels. Following Hao and Singh [2011], the water demand
level was selected as a fraction (0.7, 0.8, 0.9, and 1.0) of
the historical mean. As can be inferred from Figure 6, the
deficit statistics were preserved quite well, whereas the sur-
plus statistics were somewhat underrepresented.

[40] For economy of space, results for the other stations
were pooled together and are depicted in Figures 7–9. Note
that the simulations were carried out separately at each sta-
tion, with all stations assumed to be spatially independent.
Figure 7 is for basic distributional statistics, i.e., mean,
standard deviation, skewness, maximum, and minimum.
Figure 8 presents the serial autocorrelation statistics, and
Figure 9 displays the surplus and deficit statistics. As seen
from Figures 7–9, similar observations as those at station
09380000 can be found at the other stations. Therefore, we
can remark that generally the JCDN-based generator can be
a decent approach for river flow synthesizing.

5.3. Case 3: River Flow Downscaling

[41] The advantage of JCDN is that it is flexible at incor-
porating covariates. Changing different covariates makes
JCDN applicable for different applications. For instance, in
case 2 we have used covariates that are created from histor-
ical observations for river flow synthesizing. If we change
the covariates to exogenous large-scale climate variables,
then JCDN can be applied for river flow downscaling. Case
3 is to illustrate how JCDN can be used for this purpose.
Note that our intention here is to give an illustrative exam-
ple to demonstrate the utility of JCDN for river flow down-
scaling rather than to conduct a comprehensive
downscaling exercise.

Figure 6. Box plots of deficit and surplus statistics (MDL: maximum deficit length; MDA: maximum
deficit amount; MSL: maximum surplus length; MSA: maximum surplus amount) of observed and syn-
thesized sequences by JCDN and NPL for station 09380000.
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[42] We simply chose station 09380000 as an example.
Potential covariates were drawn from the literature review
of Cannon and Whitfield [2002] and Ghosh and Mujumdar
[2008]. They were mean sea level pressure, geopotential
height at 500 hpa, and specific humidity at surface and
850 hpa. Gridded climate data at monthly scale of a period
from 1960 to 1999 were obtained for an area spanning over
30�–41�N in latitude and 105�–117�E in longitude. These
data can be found at http://www.esrl.noaa.gov/psd/data/
reanalysis/reanalysis.shtml. The period from 1960 to 1999
was used mainly for the consideration that it is neither too

long nor too contemporary to include strong global change
signals [Ghosh and Mujumdar, 2008].

[43] There were in total 16 grids involved. Climate data
of months t� 1 and t were averaged for each variable at
each gird, resulting in 80 covariates. After normalization
with the quantile matching method, principal component
analysis was applied to transform the normalized covariate
set into another set of perpendicular vectors. It was
observed that the first three principal components explained
approximately 98% of the information content retained by
all the 80 covariates, and therefore, they were finally used

Figure 7. Box plots of basic distributional statistics of observed and synthesized sequences by JCDN
for all stations selected in this study.
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for downscaling. In addition, the summations of sine values
of months t� 1 and t and of cosine values of months t� 1
and t were also included as covariates to encode seasonal
cycles. It is worth noting that the quantile matching method
may not be suitable for an ‘‘out-of-sample’’ context, for
example, projecting future climate scenarios to river flow.
In this situation, we promote the data preprocessing
approaches discussed by Ghosh and Mujumdar [2008] and
Cannon [2012]. The whole data from 1960 to 1999 were
then split into two parts. Date for the first 35 years was
used for JCDN calibration and the remainder of the data for
validation (or evaluation). Fivefold cross-validation was
performed on the calibration set to select the best hyper-
parameter combination. The identified JCDN had a struc-
ture of being a Gaussian copula linking two gamma

marginal distributions with five hidden neurons. Then
JCDN was trained anew on the whole calibration set. Pre-
diction was made on the validation set. One thousand
sequences each with the same length as the validation pe-
riod were generated following the procedure as described
in section 5.2.

[44] Since the validation period (5 years) is too short to
calculate the evaluation statistics in section 5.2 with reli-
able accuracy, the model evaluation strategy used there
may not be feasible here. We therefore averaged 1000
sequences and compared them against observations, as pre-
sented in Figure 10. In order to properly appreciate the skill
of JCDN, we compared it with another reference model:
relevance vector machine (RVM), which has been success-
fully used for downscaling monthly flow at river basin

Figure 8. Box plots of autocorrelation statistics of observed and synthesized sequences by JCDN for
all stations selected in this study.

Figure 9. Box plots of deficit and surplus statistics (MDL, maximum deficit length; MDA: maximum
deficit amount; MSL, maximum surplus length; MSA, maximum surplus amount) of observed and syn-
thesized sequences by JCDN for all stations selected in this study.
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scale [Ghosh and Mujumdar, 2008]. As a note, the Gaus-
sian kernel with a bandwidth of 3.5 was used to set up
RVM. The bandwidth was simply determined through five-
fold cross-validation by trial and error of values from 1 to
10 with a step size of 0.1. Implementations of RVM were
accomplished with the MATLAB package developed by
Tipping [2001]. The results were included in Figure 10 as
well. One can observe that JCDN presented decent per-

formance with a determination coefficient R2 of 0.858
which is approximately the same as that of RVM. One
should realize that the selection of large-scale climate cova-
riates is critical for a downscaling model. The work of
Sharma [2000a, 2000b] discussed a novel approach based
on nonparametric partial mutual information for predictor
(or covariate) selection. It is likely that the results of JCDN
would improve if the covariates were more carefully
selected.

[45] Figure 11a presents the observed and projected river
flow time series by JCDN and RVM of the validation pe-
riod. It shows a quite good consistency between observed
and projected series by both JCDN and RVM. JCDN pro-
vides a full predictive distribution for river flow of each
month, from which a predictive confidence interval can be
obtained, as shown by the gray-shaded envelope. One may
have also observed a right-skewed confidence interval for
each month of each year, which may be easier seen from
the superimposed box plots of JCDN realizations of several
representative months. This is expected since JCDN
assumes gamma or lognormal distribution for monthly river
flow. This is an interesting advantage of JCDN over most
multivariate regression techniques, in which river flow is
assumed to be Gaussian distributed. From Figure 11a, one
may also notice that not only the ensemble average but also
each ensemble member (dashed line) preserved the sea-
sonal variability, which may not necessarily hold for the
UCDN model.

Figure 10. Observed versus JCDN and RVM downscaled
monthly river flow of the validation period.

Figure 11. (a) Observed sequence (solid line), ensemble mean of JCDN downscaled sequences (orange
circles), and the 95% confidence interval (gray-shaded envelop), RVM downscaled sequence (light blue
circles), and a randomly selected ensemble member of JCDN downscaled sequences (dashed line) of the
validation period; (b) the predictive joint distribution of flows of June and July 1998; (c) the marginal
distribution of June 1998; and (d) the conditional predictive distribution of July 1998 derived from the
joint predictive distribution given a random realization of a downscaled value of June.
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[46] At last, it is worthwhile to have some intuition about
the working machinery of the JCDN-based generator. The
contour plot in Figure 11b represents the JCDN-derived
predictive PDF of flows of June and July of the year 1998.
The scatter points are the corresponding observed data
pairs from 1960 to 1999. It is observed that the scatter
points were not captured well by the contour plot. This is
not unreasonable since the predictive distribution was for
flows of June and July of 1998 rather than for the whole
observed data pairs. Figure 11c shows the marginal distri-
bution of June of 1998. The observed flow of this month is
marked by a gray-dashed line, which is roughly the same as
the mode of the distribution. The downscaled flow, which
is a random realization rather than the expectation of the
conditional distribution of June given the downscaled value
of May, is marked by an orange-dashed line. Given this
value and from the joint predictive distribution, a condi-
tional predictive distribution of July was derived, as pre-
sented in Figure 11d. Similarly, a random realization of
this conditional distribution and the corresponding
observed flow are marked by the orange- and gray-dashed
lines, respectively.

6. Conclusions

[47] We have presented a probabilistic model, termed
JCDN, for fitting a joint distribution whose parameters are
not constant but vary with covariates. The fitted distribution
can be used for generating synthetic river flow sequences in
a chain-dependent way. Since JCDN is flexible at incorpo-
rating covariates, by altering different covariates it may
have different potential applications, like river flow synthe-
sizing, downscaling, rainfall-runoff simulation, and for any
purpose of probabilistic prediction. With three case studies,
we tested the idea of JCDN on synthetic data first and then
applied it for river flow synthesizing and downscaling. Par-
ticularly, a detailed treatment was given for river flow syn-
thesizing in view of the fact that similar modeling
framework has not been used for generating artificial
hydrologic sequences. Based on the analysis, three major
conclusions can be generalized:

[48] (1) The synthetic case study shows that the pre-
sented JCDN can be used for fitting a nonstationary joint
distribution with decent performance.

[49] (2) JCDN can be used for monthly river flow syn-
thesizing with the basic distributional statistics being
adequately reproduced, as well as lag-1 autocorrelation and
long-term deficit statistics.

[50] (3) JCDN is flexible at incorporating covariates.
Therefore, it might be adapted for monthly flow downscal-
ing. A simple intuitive downscaling example signifies the
decent performance of JCDN.

[51] It should be noted that still there are some prob-
lems inherent in JCDN that require further study in the
future. First, the presented JCDN does not account for
modeling zero-inflated data, which are commonly seen in
arid areas. Nevertheless, theoretically, there is nothing to
restrict the JCDN modeling framework to fit a bivariate
discrete-continuous mixture distribution, like the work of
Cannon [2008, 2012] and Carreau and Vrac [2011],
therein a number of zero-inflated univariate distributions
were estimated by neural networks. Second, the proposed

model cannot adequately reproduce the higher-order auto-
correlation property. Multivariate copula (higher than 2)
might be a good solution for this problem by constructing
a joint distribution of adjacent monthly river flows of lon-
ger time lags.
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