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Abstract This paper presents a multimodel regression-sampling algorithm (MRS) for monthly stream-
flow simulation. MRS is motivated from the acknowledgment that typical nonparametric models tend to
simulate sequences exhibiting too close a resemblance to historical records and parametric models have
limitations in capturing complex distributional and dependence characteristics, such as multimodality
and nonlinear autocorrelation. The aim of MRS is to generate streamflow sequences with rich scenarios
while properly capturing complex distributional and dependence characteristics. The basic assumptions
of MRS include: (1) streamflow of a given month depends on a feature vector consisting of streamflow of
the previous month and the dynamic aggregated flow of the past 12 months and (2) streamflow can be
multiplicatively decomposed into a deterministic expectation term and a random residual term. Given a
current feature vector, MRS first relates the conditional expectation to the feature vector through an
ensemble average of multiple regression models. To infer the conditional distribution of the residual, MRS
adopts the k-nearest neighbor concept. More precisely, the conditional distribution is estimated by a
gamma kernel smoothed density of historical residuals inside the k-neighborhood of the given feature
vector. Rather than obtaining the residuals from the averaged model only, MRS retains all residuals from
all the original regression models. In other words, MRS perceives that the original residuals put together
would better represent the covariance structure between streamflow and the feature vector. By doing so,
the benefit is that a kernel smoothed density of the residual with reliable accuracy can be estimated,
which is hardly possible in a single-model framework. It is the smoothed density that ensures the genera-
tion of sequences with rich scenarios unseen in historical record. We evaluated MRS at selected stream
gauges and compared with several existing models. Results show that (1) compared with typical nonpara-
metric models, MRS is more apt at generating sequences with richer scenarios and (2) in contrast to para-
metric models, MRS can reproduce complex distributional and dependence characteristics. Since MRS is
flexible at incorporating different covariates, it can be tailored for other potential applications, such as
hydrologic forecasting, downscaling, as well as postprocessing deterministic forecasts into probabilistic
ones.

1. Introduction

A historical streamflow record represents only one of the many possible realizations under the present con-
ditions of land use and land cover, human intervention, climate variability, and other forcing factors [Nazemi
et al., 2013]. With one observed sequence, it is impractical to evaluate the effects of alternative policies and
plans for catchment water resources management. On the other hand, historical records with sufficient
length are needed for the formulation of reservoir operation policies, but in practice they are not always
available. To surmount these obstacles, one approach is to simulate synthetic sequences using stochastic
models.

Over the past several decades, a number of stochastic models have been developed for streamflow simula-
tion. In general, as noted by Bras and Rodriguez-Iturbe [1985], streamflow simulation can be thought of as an
exercise in the conditional distribution of Y | X, wherein Y stands for streamflow of current month and X the
corresponding feature vector. Simulation can be done through sequential sampling from the conditional
distribution. The feature vector X may consist of single or multiple variables. Typical examples include
lagged flow variables, aggregated flow variables, exogenous climate variables, and/or their combinations,
to mention a few. No matter how the feature vector X changes, the fundamental objective remains the
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same, namely, to derive the conditional distribution of current month flow in a parametric, semiparametric,
or nonparametric way.

Commonly used parametric models include the ARMA-type models [Bras and Rodriguez-Iturbe, 1985; Fer-
nandez and Salas, 1990], the entropy theory-based model [Hao and Singh, 2011], and the copula theory-
based model [Lee and Salas, 2011]. These parametric models assume that the conditional distribution of Y |
X is from some well-known family or at least should follow some rigid functional form. Parametric models
indeed have advantages as long as their assumptions are correct, or at least are not seriously violated. How-
ever, they lack flexibility in modeling complex distributional and dependence characteristics, such as multi-
modality and nonlinear autocorrelation. In this context, alternative semiparametric and nonparametric
models have been put forward [Lall and Sharma, 1996; Sharma et al., 1997; Sharma and O’Neill, 2002; Srinivas
and Srinivasan, 2001a, 2001b, 2005a, 2005b, 2006; Srivastav et al., 2011; Prairie et al., 2006; Salas and Lee,
2010; Lee et al., 2010; Keylock, 2012]. These models are typically based on nonparametric techniques like k-
nearest neighbor resampling (KNN), kernel density estimation (KDE), their variants, and/or combinations.
Semiparametric and nonparametric models avoid restrictive assumptions and allow the data to speak for
themselves. Simulations can thus relatively closely replicate characteristics of the historical data. Nonpara-
metric models are not without limitations, however. The representative one is that the simulated sequence
exhibits too close a resemblance to historical record, as first recognized by Maheepala and Parera [1996]
and more recently highlighted by Salas and Lee [2010] and Lee et al. [2010, 2012]. This limitation should be
addressed as it is against the primary purpose of stochastic simulation, namely, to examine scenarios that
are possible to occur but did not occur in history.

Considering the fact that parametric models have limitations in simulating complex distributional and
dependence characteristics and typical nonparametric models tend to simulate sequences exhibiting too
close a resemblance to historical record, the objective of this research is to seek an enhanced but straight-
forward simulation scheme that alleviates or eliminates typical shortcomings of existing parametric and
nonparametric models. To this end, we take advantage of several commonly used nonparametric techni-
ques in capturing complex distributional and dependence characteristics and introduce a novel multimodel
simulation scheme with an attempt to simulate diverse streamflow realizations. The multimodel simulation
scheme represents the most important contribution of this research in a sense that it provides a simple-to-
understand and easy-to-implement approach being capable of overcoming the inadequacy of typical non-
parametric models in simulating diverse streamflow realizations, which, to our knowledge, has not yet been
well addressed in the existing literature.

In the following sections, we shall first explain the development of the enhanced multimodel simulation
scheme and present its step-by-step implementation procedure, then evaluate the developed model at
selected stream gauges and compare it with three commonly used nonparametric alternatives, and finally
summarize the major conclusions of this research.

2. Development of Simulation Scheme

Basically, the enhanced simulation scheme is built upon the regression-resampling framework of the modi-
fied KNN model (MKNN) in Prairie et al. [2006]. Our innovation lies in that we advanced this framework such
that it can generate rich streamflow scenarios, at the same time with other recognized limitations of MKNN
being addressed. In order to set the stage for the enhanced scheme, we will first briefly summarize the logic
of MKNN. We will then enumerate its limitations. Through proposing solutions to each of the limitations, we
will finally unfold the overview of the enhanced scheme.

2.1. Logic of MKNN
For simplicity of explanation, we first clarify some notations. We consider streamflow of month t as a ran-
dom variable and denote it as Yt. We let Yt21 represent streamflow of the previous month. We use yt(i) to
mean the observation of Yt at time instance i, where i 5 1, 2, . . . , N, and herein N represents the total num-
ber of time instances. Then, for each yt(i), there is an associated observation yt21(i).

MKNN first assumes that Yt can be additively decomposed into an expectation term Mt and a random resid-
ual term et as follows:
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Yt5Mt1et (1)

Then it is assumed that streamflow of the current month Yt depends on that of the previous month, i.e.,
Xt 5 Yt21. To estimate the conditional distribution of Yt | Yt21, MKNN first relates the expectation Mt to the
feature variable Yt21 through a locally weighted polynomial regression (LWPR) function f(�) [Loader, 1999;
Lall et al., 2006]

Mt5f ðYt21Þ (2)

which can be estimated from historical observations [yt21(i), yt(i)], i 5 1, 2, . . . , N.

After knowing the expectation Mt, one further needs to infer the distribution of the residual et conditional
on Yt21. To this end, MKNN assumes that the conditional distribution of et can be approximated by the
empirical distribution of historical residuals inside a k-neighborhood of the conditional feature point, i.e.,
Yt21 5 yt21. Hence, the conditional distribution of Yt | Yt21 5 yt21 can be perceived as equivalent to the
empirical distribution of the data obtained by adding the k residuals, respectively, back to the estimated
expectation Mt 5 f(yt21). With this conditional distribution, simulation can be completed by random number
generation.

We resummarize the logic of MKNN from the perspective of estimating the conditional distribution of
Yt | Yt21. We do that because it is helpful to explain where and how our improvements are made. In real sim-
ulations, one does not necessarily need to explicitly estimate the conditional distribution but follow the pro-
cedure in Prairie et al. [2006], presented in the following. Suppose now that one wants to simulate
streamflow of month t. Prior to the simulation, an LWPR function f(�) has to be fitted to historical observa-
tions of months t 2 1 and t; see the solid line in Figure 1a. Then historical residuals are calculated following
equations (1) and (2), as illustrated in Figure 1b. Now if it is assumed that the generated streamflow of

month t 2 1 is yg
t21, simulation can be achieved by first estimating the expectation through Mt5f yg

t21

� �
and

then adding it to a historical residual, which is randomly selected from the k-neighborhood of Yt215yg
t21.

The random selection is weighted such that the closer neighbors are more likely to be selected. Figures 1c
and 1d illustrate the above two-stage regression-sampling procedure.

Figure 1. Schematic illustration for the logic of MKNN. (a) An LWPR function (solid orange curve) is fitted to the historical streamflow
observations (scatter points) of June and May from the Lees Ferry gauge 09380000. (b) From the fitted regression curve, historical residuals
are calculated and represented by the color coding. (c) Given a feature value yg

t21 as shown by the dashed vertical line, i.e., the generated
streamflow of month t 2 1, at the regression stage, the expectation Mt is estimated by the fitted LWPR function, i.e., Mt5f yg

t21

� �
as shown

by the dashed horizontal line; at the sampling stage, a historical residual is randomly selected from the k-neighborhood (here k 5 10) of
the given feature value, as highlighted by the colored points; the simulated streamflow of month t can be obtained by adding the selected
residual the estimated expectation Mt. (d) The same as Figure 1c illustrating the regression-sampling procedure but for a situation where a
negative simulation may be obtained. Note that the unit of the axes is acre-foot.
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2.2. Rationale of the Enhanced Scheme
Despite the advantages, literature review revealed three major limitations [Prairie et al., 2006; Salas and
Lee, 2010; Lee et al., 2010]. First, like most of the current nonparametric models, MKNN-simulated
sequence exhibits too close a resemblance to historical record. Second, it may simulate negative values.
Third, it is less apt at preserving the interannual variability. We will now reason how to address these
limitations.

From section 2.1, one may have realized that the resemblance of historical record in simulated data is
mainly due to the limited choices available at the residual sampling stage. To circumvent this problem, it
seems intuitive to expand the sampling space by increasing the neighborhood volume k. However, in
order to obtain a model with balanced performance with respect to a suite of characteristics, k should be
neither too small nor too large. A too large k tends to underestimate some of the characteristics, like var-
iance and autocorrelation [Buishand and Brandsma, 2001]. A second remedy assumes that the residual et

in equation (1) is normally distributed with mean 0 and variance approximated by the sample variance of
historical residuals inside the k-neighborhood. Considering the relatively small sample size (usually k is
less than 10 for seasonal streamflow simulation), the accuracy of the estimated variance is doubtable,
let alone the questionable normality assumption. In addition, Lee et al. [2010] suggested a mixing proce-
dure based on the ‘‘crossover’’ machinery of the genetic algorithm. This procedure was then used for sto-
chastic weather simulation [Lee et al., 2012]. Because crossover may affect the serial correlation, a trial-
and-error procedure is required to determine a suitable mixing parameter such that the autocorrelation is
not distorted too much.

To generate streamflow with rich scenarios, here we neither want to impose the subjective distributional
assumption nor to adopt the relatively complex crossover mixing, but to introduce an application-oriented
multimodel simulation scheme. Note that at the regression stage MKNN makes little use of statistical ideas,
if any. It follows that in theory any surrogate function is feasible as long as it properly generalizes the
underlying Mt–Xt relationship. We thus hypothesize that improvement can be achieved if several
regression models are used. The motivating idea behind this is that with various models at hand, various
regression results can be obtained, which will in turn benefit the subsequent residual sampling by offering
more choices. Arguably, this should improve the simulation scheme in generating diverse streamflow
scenarios.

Pertaining to the generation of negative values, it mainly stems from the additive decomposition assump-
tion. Equation (1) indicates that if the selected residual et happens to be negative while with a magnitude
greater than the estimated expectation Mt, then a negative simulation will result, as the case shown in Fig-
ure 1d. To circumvent this risk, we hypothesize that instead of the additive decomposition, Yt follows a mul-
tiplicative decomposition:

Yt5Mt 3 et (3)

The multiplicative decomposition assures that no negative value will be generated. It should be noted that
for stream gauges in arid regions where a substantial amount of zero values may exist, in this case it would
be better to simulate the wet-dry sequence first using, for example, a Markov process and then simulate
streamflow of wet months using the hypothesis in equation (3).

The inadequacy of preserving the interannual variability is recognized as a consequence of the first-order
assumption of streamflow autocorrelation. To reproduce the interannual variability, additional feature varia-
bles retaining the respective signals are required. Prairie et al. [2006] discussed that it is expected to improve
MKNN in characterizing the interannual variability by incorporating the dynamic aggregated flow variable
of the past 12 months into the feature vector. To our knowledge, the mentioned work has not yet been
reported by the authors themselves or others. The idea of including a dynamic aggregated variable was ini-
tially discussed by Lall and Sharma [1996] and later applied by Sharma and O’Neill [2002] for monthly
streamflow simulation. A second approach suggested by Salas and Lee [2010] is to include the static aggre-
gated flow of a water year as an extra feature. Sharma and O’Neill [2002] argued that to maintain the
dependence between annual and monthly time scales, a more realistic way should be to use a moving
aggregated flow variable as compared to the static water year aggregated flow. We therefore adopt the first
logic. Then, the feature vector Xt can be represented as
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Xt5½Yt21; Ya� (4)

where Ya denotes the dynamic
aggregated flow of the past 12
months. In all analyses that fol-
low the feature vector Xt

should be understood as the
one given in equation (4)
unless otherwise stated.

To establish the multimodel
simulation model one needs to
select a number of suitable
regression models. Since differ-
ent models may have different
performance, the next ques-
tion to be addressed is one of
how to combine them such
that put together they can
approximate the Mt–Xt rela-
tionship better or at least no
worse than any individual
model. Following this, how to
properly estimate the condi-
tional distribution of et | Xt

plays a crucial role in generat-
ing rich streamflow scenarios.
These three questions are dis-

cussed in order in the ensuing subsections 2.2.1–2.2.3.

2.2.1. Regression Models
As was noted, any regression model can be used as long as it approximates the Mt–Xt relationship reason-
ably well. Our application-oriented simulation scheme requires models that must be simple to use, but
must also be sophisticated enough to capture the dependence structure between Mt and Xt. Keeping this
point in mind, three types of regression methods were selected, including LWPR, least squares support vec-
tor regression (LS-SVR), and relevance vector regression (RVR). All of them are capable of both linear and
nonlinear regression analyses. Moreover, there exist free software packages available for their implementa-
tion, making them easily accessible to practitioners. In order to streamline the presentation in the main text,
we provide their background information in the supporting information. Combining them with different
kernel functions, seven models can be created, as listed in the reference card in Figure 2.

Among the seven models, except for f5 (RVR with linear kernel), the others contain at least one hyperpara-
meter that has to be determined beforehand, as shown by the numbers in the parentheses in Figure 2. To
identify the optimal hyperparameters, we apply a leave-one-out cross-validation (LOOCV) procedure with
the mean squared error of the regression estimates at the sample points being the objective function; see
details in the supporting information. It is argued that LOOCV requires a fair amount of computation. Yet
this should not be a serious limitation here because in general the sample size of available observed data
for monthly streamflow simulation is not large (around 100). In addition, the availability of ever-fast com-
puters significantly accelerates the computation speed.

Different models will produce different regression results. Even when assuming the underlying Mt–Xt rela-
tionship to be linear, the regression plane fitted by f2 may differ from the one by f5. One may argue that
only one of the seven models reflects the best knowledge about the underlying Mt–Xt relationship and
should therefore be used as its surrogate function. However, it is emphasized that our intention is not to
identify the one with the best performance. Instead, we deem that each model provides a reasonable
approximation. Then it follows that for a given neighborhood size k, the number of historical residuals et

obtained from the seven regression models will be 6k times more than that obtained from a single model.

f7 RVR + Laplacian kernel (1)

f6 RVR + Gaussian kernel (1)

f5 RVR + Linear kernel (0)

f4 LS−SVR + Laplacian kernel (2)

f3 LS−SVR + Gaussian kernel (2)

f2 LS−SVR + Linear kernel (1)

f1 LWPR (2)

Figure 2. Reference card for the regression models used in this research (LWPR: locally
weighted polynomial regression; LS-SVR: least squares support vector regression; and RVR:
relevance vector regression). Values in the parentheses are the numbers of hyperparameters
of the respective regression models.
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As will be seen later, the enriched residuals will in turn benefit the enhanced simulation scheme in generat-
ing rich streamflow scenarios.

2.2.2. Multimodel Weighting Scheme
Within the multimodel simulation scheme, for each calendar month t there are seven admissible models
approximating the Mt–Xt relationship. Properly weighting competing models at hand is necessary. Com-
monly used model weighting techniques includes naively equal weighting, inverse-variance weighting,
least squares weighting, and Bayesian weighting. Considering the simplicity of the naively equal weight-
ing and its decent performance [Hansen, 2007], it is adopted for this research. Note that the equal
weights, all positive and summing up to 1, can be explained as the likelihood measures of individual mod-
els being the best. Then, given a feature value Xt 5 xt, there are two options to estimate the expectation
Mt. One can first select one of the seven models at random and then make estimation on xt. One can also
average the seven models and then make estimation with the averaged model. Here we choose the sec-
ond way. In other words, we consider the averaged model as the unique surrogate function of the Mt–Xt

relationship.

2.2.3. Conditional Residual Sampling
To approximate the conditional distribution of et | Xt, we retain all the original residuals of the seven
models rather than those associated with the averaged surrogate function only. We believe that the
original residuals put together reflect a more comprehensive exploration of the covariance structure
between Yt and Xt. Consequently, options available at the residual sampling stage are increased 6
times more. Attributing to the increased residual numbers, one can further smooth these discrete
residuals to obtain a continuous distribution function and then do sampling from the smoothed
distribution.

We apply the nonparametric KDE to smooth the discrete residuals. Commonly used KDEs typically employ
the Gaussian kernel. However, negative residuals may be generated because the Gaussian kernel has an
unbounded support. Our simulation scheme requires the multiplicative residual that must be positive. To
avoid negatives, we adopt the gamma KDE introduced by Salas and Lee [2010]

f etjXt5xtð Þ5 1
n

Xn

j51

gamma et; et jð Þ2=h2; h2=et jð Þ
� �

(5)

where n is the total number of historical residuals inside the k-neighborhood of the conditional feature
point Xt 5 xt, herein n 5 7k with k being a heuristic value of

ffiffiffiffi
N
p

with N holding the same meaning as
defined in section 2.1; et(j) is the jth residual; gamma(�; a, b) is the probability density function (PDF) of
gamma distribution with shape parameter a and scale parameter b, respectively; and h is the kernel
smoothing parameter and can be determined by

h15r etð Þ=0:5n1=2 (6)

where r(et) is the standard deviation of et and can be estimated by the sample standard deviation of histori-
cal residuals et(i), i 5 1, 2, . . . , n. It is experienced that equation (6) tends to yield an overall small value. We
therefore modify it as

h25r etð Þ=n1=4 (7)

Comparing these two estimators, one can find their relationship: (1) h1> h2, when n< 16; (2) h1 5 h2, when
n 5 16; and (3) h1< h2, when n> 16. Generally, when the sample size is small, they have approximately the
same performance, whereas when the sample size is large, h1 tends to result in an undersmoothed density.

To illustrate this effect, we carried out a simple Monte Carlo simulation experiment. First, random sample
sets with different sizes (10, 15, 500, and 1000) were simulated from a gamma distribution with shape
parameter 5.0 and scale parameter 1.0. Equation (5) with the smoothing parameter estimated respectively
by h1 and h2 was used to smooth the sample data. For each sample size, random sampling and kernel
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smoothing were repeated 4
times. Results were summar-
ized in Figure 3. When the sam-
ple size is small (10), although
h2< h1, their difference is very
slight. Thus, it is not surprising
to observe almost the same
density estimates. No evidence
for over or undersmooth was
found with either estimator. As
the sample size increases, the
denominator of h1 increases
much faster than that of h2.
Consequently, undersmoothed
curves with irrational bumps
were observed along with h1.
Although the suggested esti-
mator h2 may not be the theo-
retically optimal option, the
simple simulation experiment
shows that at a minimum it is a
practically safe one.

3. Model
Implementation

To make the multimodel simu-
lation scheme easy to repro-
duce, we summarize here its
step-by-step implementation
procedure. We divide the
whole procedure into two
phases. The first phase is for
preprocessing the observed
data and estimating the model
hyperparameters, and the sec-
ond for generating synthetic
streamflow sequences.

3.1. Data Preprocessing and Hyperparameters Estimating
Formulating historical streamflow matrix: Suppose there are N years of monthly streamflow observations at
the gauge of interest. These observations are first stored in an N-by-12 matrix with one row for each year, as
illustrated in Figure 4a. For simplicity, we use Y to denote the matrix thus obtained. Thereby, the tth column
of Y stores the historical observations of Yt, i.e., streamflow of the calendar month t.

Creating conditional feature matrices: From the historical flow matrix Y, another matrix Y21, referred to as
the matrix for streamflow of the previous month, can be obtained through a three-step procedure that fol-
lows. Step 1: create an N-by-12 matrix of zeros, denoted by Y21, as illustrated by Figure 4b. Step 2: assign
the submatrix of Y formed by all rows and columns 1 through 11 to the submatrix of Y21 formed by all
rows and columns 2 through 12, as illustrated by Figure 4c. Step 3: assign the submatrix of Y formed by
rows 1 through N 2 1 and column 12 to the submatrix of Y21 formed by rows 2 through N and column 1, as
illustrated by Figure 4d. Upon recursively repeating the above three steps, other matrices for streamflow of
l prior months are obtained and designated by Y2l, l 5 1, 2, . . . , 12. One may have realized that the above
operations artificially introduced varying numbers of zeroes in the first rows of these matrices. We remove
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Figure 3. Behavior of different smoothing parameter estimators (h1 and h2) for gamma KDE
as the sampling size increases from 10 to 1000. In each subplot, the gray dashed curve is for
the true density and the solid curves for the kernel smoothed densities with different colors
representing different Monte Carlo simulation trials.
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the first rows of Y and Y2l, l 5 1, 2, . . . , 12, leading to matrices with N 2 1 rows, as demonstrated by Figures
4e and 4f. In order not to complicate the notation, in subsequent descriptions we shall use N rather than
N 2 1 to refer to the number of rows of these matrices. From Y2l, l 5 1, 2, . . . , 12, the matrix for the dynamic
aggregated flow of past 12 months can be obtained as

Ya5
X12

l51

Y2l (8)

The foregoing matrix operations assure that the tth columns of Y21 and Ya store observations of the first
and second variables in the feature vector Xt in equation (4), respectively.

Standardizing conditional feature matrices: Let m21 and s21 denote, respectively, the vectors of sample
mean and standard deviation of Y21, each with a size of 1-by-12. Note that the tth element of m21 is com-
puted from the data in the tth column of Y21. The same holds true for s21. Similarly, denote the corre-
sponding vectors of Ya as ma and sa, respectively. Standardization of Y21 is achieved by subtracting the tth
element of m21 from data in the tth column of Y21 and then dividing by the tth element of s21. Likewise,
standardization of Ya can be accomplished. For simplicity, let Z21 and Za denote the standardized matrices
of Y21 and Ya, respectively.

Identifying hyperparameters of regression models: For a given month t, t 5 1, 2, . . . , 12, data in the tth col-
umns of Y, Z21, and Za are fed to identify the hyperparameters of the regression models. The identified
hyperparameters are then stored in different arrays Pm, m 5 1, 2, . . . , 7, one for each regression model. Since
different models may have different numbers of hyperparameters (see the numbers in Figure 2), the size of

Pm may vary from one model
to another. For instance, for
model f1, the size of P1 is 2-by-
12 with one column for each
calendar month; whereas for f2,
the size of P2 is 1-by-12. Note
that since f5 has no hyperpara-
meters, P5 is an empty array.

Calculating historical residuals:
To store historical residuals, we
first create seven matrices em,
m 5 1, 2, . . . , 7, each with a
size of N-by-12 (the same as
that of Y, Y21, and Ya). We take
e1 as an example to explain
how these residual matrices
are filled. For a given month t,
t 5 1, 2, . . . , 12, first access the
tth columns of P1, Y, Z21, Za,
denoted by P1(:, t), Y(:, t), Z21

(:, t), Za(:, t), respectively. With
the hyperparameters in P1(:, t),
model f1 is calibrated with data
in Y(:, t) and [Z21(:, t), Za(:, t)].
The calibrated model is then
used to make regression on
[Z21(:, t), Za(:, t)]. Upon dividing
each element of Y(:, t) by the
corresponding regression esti-
mate thus obtained, finally the
multiplicative residuals can be
yielded and stored in the tth

a b c d e f g h i j k l
m n o p q r s t u v w x
y z α β γ δ ε ζ η θ ι κ
λ μ ν ξ ρ σ τ υ φ χ π ω

Y

(a)
dim. of

month (12)

dim. of
year (N)

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Y−1

(b)

Y−1 <−
zeros(N,12)

a b c d e f g h i j k
m n o p q r s t u v w
y z α β γ δ ε ζ η θ ι
λ μ ν ξ ρ σ τ υ φ χ π0

0
0
0

Y−1

(c)

Y−1(:,2:12) <−
Y(:,1:11)

a b c d e f g h i j k
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Figure 4. Schematic illustration for (a) formulating the historical streamflow matrix and for
(b–f) creating the conditional feature matrices.
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column of e1. Following the same vein, the other residual matrices can be filled. Note that there exists an
one-to-one corresponding relationship between the elements of Y and em, m 5 1, 2, . . . , 7.

Thus far, it seems somewhat tedious due to a number of matrix operations and notations. It must, however,
be noted that first the above data manipulations are computationally very efficient and can be easily
accomplished with only a few commands in the environment of MATLAB; second, the data organization is
clear and convenient for the following simulation experiments, as will become obvious in section 3.2. Note
that not all the mentioned arrays need to be passed to the simulation phase. We end this section by enu-
merating those which will be used afterward: (1) Y, (2) m21, (3) s21, (4) ma, (5) sa, (6) Z21, (7) Za, (8) Pm, and
(9) em, m 5 1, 2, . . . , 7. All other intermediate terms can be omitted hereinafter.

3.2. Synthetic Streamflow Generating
Suppose now that we want to generate a synthetic sequence of Ns years. We first create a row vector Ys to
store streamflows to be simulated. The length of Ys is 12Ns. Next, replicate Ns copies of each array retained
in the first phase, i.e., Y, m21, s21, ma, sa, Z21, Za, Pm, and em, m 5 1, 2, . . . , 7. Subsequently, these copies
are concatenated one after another to form an expanded array. For instance, for Y, the expanded array will
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Figure 5. Box plots of basic summary statistics (minimum, mean, standard deviation, skewness, and maximum) of MRS-simulated (black)
and MKNN-simulated (gray) streamflow sequences, calculated at the monthly scale, for (left) gauge 09380000 and (right) gauge 10234500.
Red pluses represent the corresponding statistics of historical observations. Different units were used for the two gauges simply because
the original data acquired from the corresponding websites were used without unit transformation.
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be [Y, Y, . . . , Y] with a size of N-by-12Ns. For simplicity without introducing confusion, we will use the same
notations for the expanded arrays. Streamflow simulation proceeds as follows:

1. Randomly select any integer r from 1, 2, . . . , N.

2. Access the data in row r of Y and store these data in order in the first 12 entries of Ys.

3. Now start with t 5 13.

4. Using the simulated data, compute values of the conditional feature variables at the current step as
xs

t 5 ys
t21; ys

a

� �
, in which

ys
t215Ys t21ð Þ

ys
a5

Xt21

i5t212

Ys ið Þ

5. Standardize the conditional feature point xs
t as

zs
t5

xs
t2 m21 tð Þ;ma tð Þ½ �

s21 tð Þ; sa tð Þ½ �

Of particular note is that the above division is performed on an element-by-element basis.

6. Access data in the tth column of Y and store them in an column vector yt, i.e., yt 5 Y(:, t).
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Figure 6. Box plots of lag-1 to lag-4 autocorrelations of MRS-simulated (black) and MKNN-simulated (gray) streamflow sequences, calcu-
lated at the monthly scale, for (left) gauge 09380000 and (right) gauge 10234500. Red pluses represent the corresponding statistics of his-
torical observations.
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7. Access data in the tth col-
umns of Z21 and Za and store
them in an N-by-2 matrix zt,
i.e., zt 5 [Z21(:, t), Za(:, t)].

8. Access data in the tth col-
umns of Pm and store them
separately in different arrays
pm

t , i.e., pm
t 5Pm :; tð Þ,

m 5 1, 2, . . . , 7.

9. Feed yt and zt to calibrate
each regression model fm with
hyperparameters pm

t , m 5 1,
2, . . . , 7. Then given zs

t , esti-
mate Mm

t with the calibrated
model fm, m 5 1, 2, . . . , 7.

10. Naively average Mm
t , m 5 1,

2, . . . , 7, and denote the aver-
aged value as Ms

t .

11. Calculate the Euclidean dis-
tance between zs

t and each
point in zt as

di5kzs
t2zt i; :ð Þk; i51; 2; :::;N

Store the resulting values in
order in an N-by-1 column vec-
tor d.

12. Find the location indices of
the first k (k5

ffiffiffiffi
N
p

) smallest val-
ues in d. Store the indices in a
column vector idx.

13. Access the historical resid-
uals stored in the submatrix of
em formed by rows specified

by idx and column t and store them separately in different column vectors em
t , i.e., em

t 5em idx; tð Þ, m 5 1,
2, . . . , 7.

14. Smooth the discrete residuals em
t , m 5 1, 2, . . . , 7, using gamma KDE with the smoothing parameter esti-

mated by h2.

15. Generate a random number es
t from the smoothed density.

16. Assign Ms
t3es

t as the simulated streamflow at the current step and store this value in the tth entry of Ys.

17. Update t to t 1 1 and repeat steps 4–16.

18. Repeat step 17 until t is equal to 12Ns.

4. Model Evaluation and Comparison

Among many streamflow data sets (from 17 gauges) with which we have tested the developed model, all
with satisfactory performance, in the following we will only report the results for two representative gauges
and reserve those of the other gauges in the supporting information. It is noted that almost all the observa-
tions and remarks reported in the following are in general applicable to other gauges (Figures S1–S33 in

Figure 7. Selected comparison examples of gamma kernel density estimates of observed
and MRS-simulated streamflow sequences, for (left) gauge 09380000 and (right) gauge
10234500. The solid red curves are for the density estimates of historical observations and
the boxes represent the range of density estimates of the 100 simulated sequences. Differ-
ent units were used for the two gauges simply because the original data acquired from the
corresponding websites were used without unit transformation.
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the supporting information). The two representative gauges are gauge 09380000 (U.S. Geological Survey
gauge number) on the Colorado River at Lees Ferry, Arizona, with monthly records from 1906 to 2007
downloaded from http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html; gauge 10234500 on the
Beaver River near Beaver, Utah, with records from 1915 to 2010 downloaded from http://waterdata.usgs.
gov/usa/nwis/nwisman/?site_no510234500&agency_cd5USGS. We focused on these two gauges because
they have been extensively studied to test different streamflow simulation approaches and also because
they have quite different characteristics. Detailed description of these data sets can be found elsewhere in
Prairie and Russell [2005], Lee et al. [2010], Sharma et al. [1997], and Sharma and O’Neill [2002], and will not
be repeated here.

For simplicity in description, we shall refer to the enhanced multimodel regression-sampling algorithm as
MRS. Table S1 in the supporting information presents the identified hyperparameters of the regression
models for the two representative gauges. We applied MRS independently at each gauge. One hundred
sequences, each with length equal to the corresponding effective historical record (101 years for gauge
09380000 and 95 years for gauge 10234500), were generated for each gauge. The model performance was
evaluated from the following three aspects: (1) reproduce basic summary and autocorrelation statistics; (2)
reproduce the overall historical distribution; and (3) reproduce interannual variability.

Basic summary and autocorrelation statistics used here include (1) mean, (2) standard deviation, (3) skew-
ness, (4) minimum, (5) maximum, and (6) lag-1 to lag-4 autocorrelations at monthly scale. Nonparametric
Kendall’s s was used as the autocorrelation measure. Reproduction of the overall historical distribution was

0.7 0.8 0.9 1.0

10
0

25
0

40
0

Water demand level

M
D

L 
(m

on
th

s)

0.7 0.8 0.9 1.05.
0e

+0
7

2.
5e

+0
8

Water demand level

M
D

A
 (a

cr
e.

ft)

0.7 0.8 0.9 1.0

0
10

0
25

0

Water demand level

M
S

L 
(m

on
th

s)

0.7 0.8 0.9 1.00e
+0

0
6e

+0
8

Water demand level

M
S

A
 (a

cr
e.

ft)

1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
4

0.
8

Month

Y
t−
Y

ac
or

re
la

tio
n

Min2e
+0

6
8e

+0
6

Mean1.
3e

+0
7

1.
7e

+0
7

Std

3e
+0

6
6e

+0
6

Max2.
2e

+0
7

3.
2e

+0
7

Lag−1

−0
.2

0.
2

0.7 0.8 0.9 1.0

0
40

0
80

0

Water demand level

M
D

L 
(m

on
th

s)

0.7 0.8 0.9 1.0

0
10

00
0

25
00

0

Water demand level

M
D

A
 (c

fs
)

0.7 0.8 0.9 1.0

0
50

15
0

Water demand level

M
S

L 
(m

on
th

s)

0.7 0.8 0.9 1.0

0
10

00
0

Water demand level

M
S

A
 (c

fs
)

1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
4

0.
8

Month

Y
t−
Y

ac
or

re
la

tio
n

Min

10
0

20
0

30
0

Mean

45
0

60
0

75
0

Std

10
0

25
0

40
0

Max

50
0

15
00

25
00

Lag−1

−0
.2

0.
2

Figure 8. Box plots of maximum drought length and amount (first row), maximum surplus length and amount (second row), Yt–Ya correlation (third row), and annual scale basic sum-
mary statistics and lag-1 autocorrelation of MRS-simulated (black) and MKNN-simulated (gray) streamflow sequences, for (left) gauge 09380000 and (right) gauge 10234500. Red pluses
represent the corresponding statistics of historical observations. Different units were used for the two gauges simply because the original data acquired from the corresponding websites
were used without unit transformation.
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checked by comparing the
gamma kernel smoothed den-
sity of the simulated data
against that of the observed
data. Drought and surplus sta-
tistics, Yt–Ya correlation, as well
as the above-enumerated basic
summary statistics but calcu-
lated at annual scale were
adopted as interannual vari-
ability measures. Drought and
surplus statistics include maxi-
mum drought length (MDL)
and amount (MDA), maximum
surplus length (MSL), and
amount (MSA). MDL (MSL) is
defined as the longest period
of deficit (excess) relative to
the water demand level in a
given period of years. Corre-
spondingly, MDA (MSA) is the
maximum deficit (excess)
obtained from all the drought
(surplus) events that occurred
in that period [Salas and Lee,
2010]. Static water demand
levels, expressed as fractions
(0.7, 0.8, 0.9, and 1.0) of the his-
torical mean, were used in this
research.

4.1. Preliminary Evaluation
Figures 5 and 6 present basic
summary and autocorrelation
statistics of observed and simu-
lated sequences for the repre-
sentative gauges. Apparently,

MRS effectively reproduced all the summary statistics for both gauges (Figure 5). One point worth noting is
with respect to the minimum and maximum statistics, which have been recognized as being relatively hard
to simulate. For each gauge and each month, the historical minimum and maximum fell inside the respec-
tive box of simulations. More importantly, the simulated data were nearly symmetrically distributed. This is
an interesting feature of MRS compared with most other nonparametric models, in which the simulated
minimum and maximum values present, respectively, L-shaped and J-shaped distributions, as will be dis-
cussed later. This suggests MRS’ decent extrapolation capability. Figure 6 shows that MRS, by construction,
can reproduce lag-1 autocorrelation; for high-order autocorrelations, MRS’ performance is, to varying
degrees, tied to the order of the autocorrelation, gauges and months, despite all examined autocorrelations
being reasonably reproduced for most months.

To check how well MRS reproduces the historical distribution, we compared the gamma KDE of simulated
data against that of historical data. Figure 7 presents representative results for January, May, and August for
both gauges. In general, MRS can capture complex distributional properties, such as strong asymmetry and
bimodality. Reproducing bimodality is valuable for river basins affected by seasonal precipitation concentra-
tions or those jointly fed by both rainfall and snowmelt.

Figure 8 compares observed and simulated drought and surplus statistics, Yt–Ya correlation, and summary
statistics and lag-1 autocorrelation calculated at the annual scale. In general, MRS did quite a good job of

Figure 9. Scatter plots of observed (red) and MKNN-simulated (gray) streamflow sequences
of selected adjacent months (January–February: top row; April–May: middle row; and July–
August: bottom row), for (left) gauge 09380000 and (right) gauge 10234500. Different units
were used for the two gauges simply because the original data acquired from the corre-
sponding websites were used without unit transformation.
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preserving these interannual
statistics at both gauges. Due
to the inclusion of Ya as an
additional feature variable, it is
not surprising to observe MRS’
skill in reproducing the Yt–Ya

correlation. Although MRS has
not been explicitly structured
for reproducing annual sum-
mary statistics and lag-1 auto-
correlation, all of them were
resolved fairly well. Since inter-
annual variability is often
related to sustained droughts
or periods of high flows, the
remarkable performance of
MRS in this respect implies that
it could serve as a reliable aid
for catchment water resources
management and drought
analysis. As was noted, the
most important contribution of
MRS, making it distinctive from
most existing nonparametric
models, is that it can simulate
diverse streamflow realizations
unseen in historical records.
This feature is more readily
appreciated through compari-
sons with other nonparametric
models, presented in the fol-
lowing subsections.

4.2. Comparison With MKNN
MRS represents an enhanced
version of MKNN. It will be
interesting to see their com-

parison. Figures 5 and 6 also include the corresponding results for MKNN. MRS exhibited more or less the
same skills as MKNN in reproducing mean, standard deviation, skewness, and lag-1 to lag-4 autocorrela-
tions. Comparing with MRS, MKNN is less apt at capturing extreme statistics. In particular, a number of nega-
tives were simulated, especially in wet seasons, such as April, May, and Jun for gauge 09380000 and June
and July for gauge 10234500, consistent with the previous findings of Salas and Lee [2010]. In MRS, the mul-
tiplicative decomposition mechanism ensures the avoidance of negative simulations unless, as was men-
tioned, the simulated expectation Mt happens to be negative. It is experienced that for almost all the
gauges only few instances (less than 3) where the simulated expectation is negative might occur (due to
overextrapolation) in one or two of the regression models. It never happens that all seven models simulta-
neously yield negative Mt. In practice, it is, therefore, safe to simply neglect the negative estimates and take
average over the others, attributing to the sevenfold insurance of MRS. One can also see that MKNN-
simulated maximum values presented a J-shaped distribution in most of the months at both gauges, imply-
ing its limited extrapolation capacity.

Pertaining to reproduction of historical distribution, MRS and MKNN performed comparably well. We there-
fore omit their comparison here. The observed and MKNN-simulated interannual variability statistics were
included in Figure 8 as well. MRS showed similar performance to MKNN in reproducing drought and surplus
statistics and the summary statistics at the annual scale. MRS outperformed MKNN in preserving the Yt–Ya

Figure 10. Scatter plots of observed (red) and MRS-simulated (gray) streamflow sequences
of selected adjacent months (January–February: top row; April–May: middle row; and July–
August: bottom row), for (left) gauge 09380000 and (right) gauge 10234500. Different units
were used for the two gauges simply because the original data acquired from the corre-
sponding websites were used without unit transformation.
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Figure 11. Box plots of forward-above (top row) and forward-below (bottom row) state-dependent autocorrelations of MRS-simulated
streamflow sequences, calculated at monthly scale, for (left) gauge 09380000 and (right) gauge 10234500. Red pluses represent the corre-
sponding statistics of historical observations.
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Figure 12. Box plots of basic summary statistics (minimum, mean, standard deviation, skewness, and maximum) of NPL-simulated (black)
and KGKA-simulated (gray) streamflow sequences, calculated at monthly scale, for (left) gauge 09380000 and (right) gauge 10234500. Red
pluses represent the corresponding statistics of historical observations. Different units were used for the two gauges simply because the
original data acquired from the corresponding websites were used without unit transformation.
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correlation and the lag-1 autocorrelation of annual streamflow. In detail, both of the two statistics was con-
sistently underestimated throughout the year by MKNN. The improved performance of MRS stems from the
inclusion of Ya as an additional feature variable.

In contrast to the original KNN model of Lall and Sharma [1996], MKNN enables simulating values unseen in
historical records [Prairie et al., 2006]. However, its extrapolation ability is rather limited, as can be seen from
the scatter plots in Figure 9. Simulations from MKNN tend to distribute around the observations following a
linear or nonlinear pattern, depending on the underlying relationship of adjacent months’ streamflows. This
implies that the simulated sequences represent too close a resemblance to historical records. With such
simulations, it is hardly possible to obtain a comprehensive picture about alternative management policies
and plans for a water resources system.

Comparing Figures 9 and 10, one can easily appreciate how good MRS is at generating rich streamflow sce-
narios unseen in historical records, underlining the added value of the multimodel simulation scheme. Care-
ful inspection of Figure 10 reveals MRS’ skill in capturing nonlinear autocorrelation, like most nonparametric
models; see the two bottom left plots. This feature is further distilled in Figure 11, which presents the
observed and simulated state-dependent correlations (above-and-forward and below-and-forward correla-
tions) for both gauges. The definitions for these state-dependent correlations can be found in Sharma et al.
[1997]. Obviously, MRS, by construction, is able to reproduce these state-dependent correlations, implying
its ability in capturing nonlinear autocorrelation. The Monte Carlo simulation experiment in Appendix A also
confirmed this point.

4.3. Comparison With Other Long-Term Nonparametric Alternatives
We also compared MRS with another two nonparametric models reported in the literature. One is the Gaus-
sian kernel-based nonparametric model (NPL) of Sharma and O’Neill [2002]. The other is the KNN resampling
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Figure 13. Box plots of lag-1 to lag-4 autocorrelations of NPL-simulated (black) and KGKA-simulated (gray) streamflow sequences, calcu-
lated at monthly scale, for (left) gauge 09380000 and (right) gauge 10234500. Red pluses represent the corresponding statistics of histori-
cal observations.
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with gamma kernel perturbation with aggregated variable (KGKA) developed in Salas and Lee [2010]. Both
are especially structured for preserving the interannual variability. It is noted that NPL involves inverting the
covariance matrix of Yt, Yt21, and Ya. Since the magnitude of monthly flow (Yt and Yt21) may be greatly
smaller than that of Ya, the covariance matrix sometimes is ill conditioned, which will in turn bring troubles
to simulation. To address this issue, we first standardized Yt, Yt21, and Ya, and then run NPL with the stand-
ardized data, finally back transformed the simulations into the original scale. As such, reported results about
NPL might slightly differ from those in Sharma and O’Neill [2002] and in Salas and Lee [2010]. This should
not be confusing.

Basic summary statistics of observed and simulated sequences from NPL and KGKA are summarized in Fig-
ure 12. In general, the three models (MRS, NPL, and KGKA) performed comparably well in reproducing
monthly mean, standard deviation, and skewness for both gauges. This is slightly different from the findings
in Sharma and O’Neill [2002] and in Salas and Lee [2010] that NPL inflates the standard deviation. However,
such a feature was not seen here, partly because of the standardization carried out in our simulation experi-
ment. Although the three models reasonably reproduced the minimum and maximum for both gauges, the
advantage of MRS over the other two is obvious, confirming again the promising extrapolation capability of
MRS. Both MRS and NPL reproduced lag-1 autocorrelation reasonably well, whereas KGKA demonstrated
underestimation throughout the year (Figure 13). This is likely due to the fact that KGKA estimates the
gamma kernel smoothing parameter using all historical data rather than those inside the k-neighborhood.
As to the higher-order autocorrelations, all models did a reasonably good job, with MRS and NPL slightly
better than KGKA.
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Figure 14. Box plots of maximum drought length and amount (first row), maximum surplus length and amount (second row), Yt–Ya correlation (third row), and annual scale basic sum-
mary statistics and lag-1 autocorrelation of NPL-simulated (black) and KGKA-simulated (gray) streamflow sequences, for (left) gauge 09380000 and (right) gauge 10234500. Red pluses
represent the corresponding statistics of historical observations. Different units were used for the two gauges simply because the original data acquired from the corresponding websites
were used without unit transformation.
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Careful inspection of Figures
8 and 14 reveals that MRS
performed somewhat supe-
rior to NPL and KGKA in
reproducing drought and sur-
plus statistics for both
gauges, despite all of them
being able to reasonably cap-
ture these statistics. Although
KGKA uses the same feature
variables as those in MRS and
NPL, it underestimated Yt–Ya

correlation across most
months for both gauges due
to perhaps the same reason
for the underestimation of
monthly lag-1 autocorrela-
tion. Compared with MRS,
NPL and KGKA overestimated
the annual minimum for both
gauges.

Figures 15 and 16 are the
same as Figures 9 and 10,
but for NPL and KGKA mod-
els, respectively. Compared
with MKNN, NPL and KGKA
did improve significantly in
generating rich streamflow
scenarios. However, the
improvement was still not
adequate, as signified by the
isolated blocks concentrated
around extreme observa-
tions. KGKA performed bet-
ter than NPL. Neither KGKA
nor NPL could simulate

streamflow scenarios as rich as those by MRS, highlighting the most important advantage of MRS
over NPL and KGKA. Simulating streamflow sequences with diverse scenarios is of great impor-
tance when using the simulations to formulate optimal reservoir operation policies.

5. Concluding Remarks

We present a multimodel regression-sampling algorithm (MRS) for single-site monthly streamflow simula-
tion. MRS is specifically designed for alleviating the issue that typical nonparametric models simulate
streamflow sequences always exhibiting too close a resemblance to historical record. In order to retain the
merits of nonparametric model in capturing complex distributional and dependence characteristics, we
build the enhanced multimodel simulation scheme upon the simple nonparametric regression-sampling
framework introduced by Prairie et al. [2006] but with several innovative adaptations in an attempt to cor-
rect the recognized shortcomings of the original model.

To appreciate the improvements, we applied the enhanced model to 16 stream gauges in the Colorado
River basin and compared with other existing nonparametric alternatives such as the NPL model [Sharma
and O’Neill, 2002] and the KGKA model [Salas and Lee, 2010]. We draw two major conclusions from this
research:

Figure 15. Scatter plots of observed (red) and NPL-simulated (gray) streamflow sequences
of selected adjacent months (January–February: top row; April–May: middle row; and July–
August: bottom row), for (left) gauge 09380000 and (right) gauge 10234500. Different units
were used for the two gauges simply because the original data acquired from the corre-
sponding websites were used without unit transformation.
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1. Similar to other nonparamet-
ric models, MRS is capable of
capturing complex distribu-
tional and dependence charac-
teristics of monthly streamflow,
which generally cannot be
expected from parametric
models.

2. Comparing with the exam-
ined nonparametric models,
the most pleasing point is that
MRS is more apt at generating
streamflow sequences with
more diverse scenarios in addi-
tion to its better performance
in several other aspects (e.g.,
reproducing the minimum and
maximum statistics).

Compared to MKNN, NPL, and
KGKA, MRS involves much
more parameters (9 3 12
hyperparameters in total), mak-
ing its application relatively
cumbersome. It should be real-
ized that the increased number
of hyperparameters should not
be understood as equivalent to
increasing the risk of overfit-
ting because each of the seven
regression models works inde-
pendently in simulating the
Mt–Xt relationship.

MRS cannot simulate nonsta-
tionary streamflow, as sug-
gested by the results of a split

sample simulation experiment following Srinivas and Srinivasan [2001a, 2001b] (Figure 17). To address this
issue, external forcing covariates should be included. Exploring which covariate should be used is beyond
the scope of this research. The technique discussed in Sharma and Mehrotra [2014] provides useful hints to
this problem.

At the current stage, MRS is only suitable for single-site simulation. How to extend it for multisite simulation
deserves further research. In addition, it would be interesting to study the performance of MRS at more
gauges from different regions and make a more comprehensive comparison with other semiparametric
models such as those introduced in Srinivas and Srinivasan [2001a, 2001b, 2005a, 2005b, 2006], Srivastav
et al. [2011], and Keylock [2012].

To capture the interannual variability of monthly streamflow, MRS uses dynamic aggregated streamflow of
past 12 months as a conditional variable. Another possible way is to apply the multimodel regression-
sampling framework directly in the Fourier domain following Keylock [2012]. Further effort is required to
investigate such a possibility.

Moreover, it should be noted that we have used statistical regression models to approximate the Mt–Xt rela-
tionship. Actually, this is not required. Any models are feasible as long as they can generalize the underlying
relationship, not matter they are statistical models, or simple conceptual hydrologic models, or complex
physically based models. By changing different surrogate models and/or different feature variables, MRS is

Figure 16. Scatter plots of observed (red) and KGKA-simulated (gray) streamflow sequences
of selected adjacent months (January–February: top row; April–May: middle row; and July–
August: bottom row), for (left) gauge 09380000 and (right) gauge 10234500. Different units
were used for the two gauges simply because the original data acquired from the corre-
sponding websites were used without unit transformation.
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applicable to other purposes, such as hydrologic simulation, forecasting, downscaling, and postprocessing
deterministic forecasts into probabilistic forecasts.

Appendix A: MRS Testing With Synthetic Data

The following Monte Carlo simulation experiment was designed for testing MRS’ ability in capturing nonlin-
ear autocorrelations. The experiment was carried out as follows. First, 200 random data pairs were gener-
ated from a bivariate distribution whose PDF is given by f yt; yt21ð Þ5N l1;R1ð Þ if yt21 � 0; and
f yt; yt21ð Þ5N l2;R2ð Þ otherwise, with N l;Rð Þ being the PDF of a bivariate normal distribution with mean
vector l and covariance matrix R. To mimic a state-dependent nonlinear correlation between Yt and Yt21,
the bivariate distribution is parameterized as follows:
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The contour plots in Figure A1 show the PDF of the bivariate distribution. It can be clearly seen that Yt and
Yt21 are positively correlated with a relatively strong correlation coefficient (0.6) when Yt21 � 0, whereas

1 2 3 4 5 6 7 8 9 10 11 120e
+0

0
3e

+0
6

Month

M
ea

n 
(a

cr
e.

ft)

1 2 3 4 5 6 7 8 9 10 11 12

6e
+0

5
18

e+
05

Month

S
td

 (a
cr

e.
ft)

1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
4

0.
8

Month

La
g−

1 
co

rr
el

at
io

n

1 2 3 4 5 6 7 8 9 10 11 12

0
50

15
0

Month

M
ea

n 
(c

fs
)

1 2 3 4 5 6 7 8 9 10 11 12

0
50

10
0

Month

S
td

 (c
fs

)

1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
4

0.
8

Month

La
g−

1 
co

rr
el

at
io

n

Figure 17. Comparison of mean, standard deviation, and lag-1 autocorrelation of MRS-simulated streamflow sequences during the first-
half time period with those of the observed sequences during the first-half period (red pluses) and the second-half period (blue solid lines),
calculated at monthly scale, for (left) gauge 09380000 and (right) gauge 10234500. The split-sample experiment was carried out as follows:
the whole data set for each gauge was split into two halves; the first half was used to run MRS and the second half was used to test its
out-of-sample performance. The distinctive within-sample and out-of-sample performance of MRS implies that the application of MRS to
nonstationary streamflow time series should be cautioned.
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they are negatively correlated with a relatively weak correlation coefficient (20.5) when Yt21 > 0. The scat-
ter points in the top left subplot of Figure A1 represent the generated 200 random data pairs.

With these data pairs, the second step is to estimate the regression curves between Yt and Yt21 with the
seven regression models. The estimated curves are shown by dashed red lines in the top left subplot, one
for each regression model. It is seen that models f2 and f5 resulted in the same linear curve, whereas the
other models, by construction, resulted in somewhat different nonlinear curves. The ensemble average of
the seven models is shown by the bold solid curve. Apparently, the averaged curve in general captured the
underlying nonlinear relationship, even though models f2 and f5 did not.

To see if MRS-simulated random numbers are indeed consistent with the underlying distribution, in the
third step we partitioned the interval between the minimum and maximum of the random values of Yt21

that were obtained in the first step into equal-sized subintervals, each with a size of 0.1; we used the end-
points of these subintervals as conditional feature variables (blue rug in the bottom left subplot) to run
MRS. The red scatter points in the bottom left subplot represent MRS-simulated values. One can easily see
that MRS-simulated values were in good agreement with the underlying distribution. We repeated the
above three steps once and obtained similar results, as shown in Figure A1 (right). Overall, this relatively
simple Monte Carlo experiment provides a proof for the promising capability of MRS in simulating nonlinear
autocorrelations.
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