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Abstract 

Climate change has significant impacts on water resource systems. The objective of this 

study is to assess climate change impacts on water resource management. The methodology 

includes: (a) the assessment of uncertainty introduced by choice of precipitation downscaling 

methods; (b) uncertainty assessment and quantification of the impact of climate change on 

projected streamflow; and (c) uncertainty in and impact of climate change on the 

management of reservoirs used for hydropower production. The assessment of uncertainty is 

conducted for two future time periods (2036 to 2065 and 2066 to 2095). The study area, 

Campbell River basin, British Columbia, Canada, consists of three reservoirs (Strathcona, 

Ladore and John Hart). A new multisite statistical downscaling method based on beta 

regression (BR) is developed for generating synthetic precipitation series, which can preserve 

temporal and spatial dependence along with other historical statistics (e.g., mean, standard 

deviation). The BR-based downscaling method includes two main steps: (i) prediction of 

precipitation states for the study area using classification and regression trees, and (ii) 

generation of precipitation at different stations in the study area conditioned on the 

precipitation states. To account for uncertainty in sources, four global climate models 

(GCMs), three greenhouse gas emission scenarios (RCPs), six downscaling models (DSMs), 

are considered, and the differences in projected variables of interest are analyzed. For 

streamflow generation a hydrologic model is used. The results show that the downscaling 

models contribute the highest amount of uncertainty to future streamflow predictions when 

compared to the contributions by GCMs or RCPs. It is also observed that the summer (June, 

July & August) and fall (September, October & December) flows into Strathcona dam 

(British Columbia) will decrease, while winter (December, January & February) flows will 



 

ii 

 

increase, in both future time periods. In addition, the flow magnitude becomes more 

uncertain for higher return period flooding events in the Campbell River system under 

climate change than the low return period flooding events. To assess the climate change 

impacts on reservoir operation, a system dynamics model is used for reservoir flow 

simulation. Results from the system dynamics model show that as the inflow decreases in 

summer and fall, reservoir release and power production are affected. It is projected that 

power production from downstream reservoirs (LDR & JHT) will decrease more drastically 

than the upstream reservoir (SCA) in both future time periods considered in this study.   

Keywords 

Downscaling, Climate change, Water resource, Streamflow, Reservoir operation, System 

Dynamics  
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Chapter 1  

1 Introduction  

The present research describes a new approach to quantifying climate change related 

impacts on regional hydrology and reservoir operations considering different sources of 

uncertainties.  The research results allow for an improved understanding of ongoing and 

projected climate change impacts on the West Coast of Canada. Further, a better 

understanding of the downscaling process and uncertainties in various steps of climate 

change impact analyses are discussed in this research.     

This particular section discusses a brief introduction of climate change processes, 

different greenhouse gas emission (GHGs hereafter) scenarios defined by IPCC (2013), 

and climate change impacts on water resources of Canada followed by climate change 

impact assessment process and uncertainty in the climate change impact assessment 

process. Following these, the primary objectives of the present research and its 

contribution towards the state of the art of climate change impact studies are presented. A 

general outline of the larger thesis is given at the end of this section.     

1.1 Climate Change and Greenhouse Gas Emission 
Scenarios 

Any change caused directly or indirectly by human activity that modifies the global 

climate and remains over a significant time period can be referred to as climate change 

(IPCC, 2013). Climate change can be caused by natural Earth processes (e.g., volcanic 

eruptions, periodic changes in solar irradiance) or more recently due to anthropogenic 

greenhouse gas emissions (i.e., burning fossil fuel, changes in land-use patterns). The 
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consequences of climate change are reflected in global as well as regional climatic 

variables such as surface temperature, precipitation, atmospheric moisture, snow cover, 

the extent of land and sea ice, sea level, and patterns in oceanic and atmospheric 

circulation (IPCC, 2013). In the present study, climate change refers  to the increase in 

the average temperature of earth’s surface and change in precipitation patterns since the 

mid-20th century and its future projection. According to the Intergovernmental Panel on 

Climate Change  (IPCC hereafter) (IPCC, 2007) the global surface temperature has 

increased 0.74 ± 0.18 °C  between 1906 and 2005 while the annual average surface air 

temperature has increased by 1.5ºC over the Canadian landmass between 1950 and 2010 

(Warren and Lemmen, 2014). It has been found that the increase in global surface 

temperature has a positive correlation with increasing concentrations of GHGs resulting 

from human activities such as deforestation and fossil fuel burning (Figure 1.1). 

An increase in the Earth’s surface temperature is expected to change the amount and 

pattern of precipitation and will cause sea levels to rise. IPCC (2013) has projected that 

the global surface temperature will increase in the range of 0.3ºC (low emission scenario) 

to 4.8ºC (high emission scenario) by the end of the 21st century compared to 1986-2005. 

Based on tide gauge data, the rate of global average sea level rise was 1.5 to 1.9 mm/year 

with a central value of 1.7 mm/year between 1901 and 2010 and 2.8 to 3.6 mm/year with 

a central value of 3.2 mm/year between 1993 and 2010 (IPCC, 2013). Decreasing snow 

cover (11.7 % per decade for June in Northern Hemisphere from 1967 to 2012) and land 

ice extent (globally 275 Gt/year over the period 1993 to 2009) continue to be positively 

correlated with increase land surface temperature (IPCC, 2013). Also, the behavior of El 

Nino Southern Oscillation (ENSO hereafter) has changed since the mid-1970s compared 



3 

 

with the last 100 years. The warm phase of ENSO is more intense and frequent compared 

with the cold ENSO phase. This pattern of ENSO leads to variation in temperature and 

precipitation in tropical and sub-tropical areas (IPCC, 2013). 

 

Figure 1.1 Observed change in global surface temperature with carbon dioxide 

concentration between 1880 and 2005 (after IPCC, 2013). Blue bars indicate 

temperatures that are below and red bars denote temperatures that are above the 1901-

2000 average temperature. The dark black line represents the atmospheric CO2 

concentration in parts per million over time. 

Precipitation in tropical areas (30°S to 30°N) increased in between 2000 to 2010 

compared to mid-1970s to mid-1990s. Also in mid-latitude of the northern hemisphere 

(30° N to 60° N), a significant increasing  trend has been found in precipitation over the 

last century (1901 to 2008) while in the southern hemisphere (30° S to 60° S) an abrupt 

declining trend in precipitation has been observed  between 1979 to 2008 (IPCC, 2013).          

As summarized above, significant evidence of climate change exists, especially over the 

last few decades. To estimate future emissions and concentrations of GHGs in the 



4 

 

atmosphere, IPCC Working Group-I has developed long-term emission scenarios, 

denoted as Representative Concentration Pathways (RCPs) (IPCC, 2013). RCPs are 

scenarios developed based on anthropogenic greenhouses emissions (GHGs) and do not 

include natural emissions such as volcanic eruption. These scenarios describe how 

radiative force may influence future emissions scenarios and analyze the associated 

uncertainties. Based on an approximate total radiative forcing in the year 2100 compared 

to 1750 four RCPs (2.6 W m-2 for RCP 2.6, 4.5 W m-2 for RCP 4.5, 6.0 W m-2 for RCP 

6.0, and 8.5 W m-2 for RCP 8.5) are  presented in the Fifth Assessment Report (AR5) of 

IPCC (IPCC, 2013). These four emission scenarios include one mitigation scenario (RCP 

2.6), two stabilization scenarios (RCP 4.5 and RCP 6.0) and RCP 8.5 describes the 

maximum and unabated GHGs emission conditions. The following section describes 

historical and projected impacts of climate change on water resources. 

1.2 Climate Change Impacts on Water Resources 

Water resources are inextricably connected to climate. Therefore, the prospect of global 

climate change poses a serious threat to water resources across the world. Precipitation is 

directly impacted due to an increase in global average temperature, driving 

evapotranspiration rates higher and thereby increasing the concentration of water vapor in 

the atmosphere. Changes in precipitation is expected to differ in magnitude and 

frequency from region to region. Changes in precipitation will affect water resources 

activities including use of reservoir storage, flood control, water supply, irrigation, 

hydropower production, navigation, and recreation. It has also been found that the annual 

runoff increases in higher latitude regions (Finland, China and coterminous USA) where 

a decreasing pattern can be found in lower latitude regions such as parts of West Africa, 
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southern Latin America and southern Europe (IPCC, 2013). Labat et al.,(2004) observed 

a direct relationship between global annual temperature rise and global runoffs for the 

last century. It is estimated that global runoff increases by 4% per 1ºC increase in global 

temperature. Meanwhile a stronger warming trend has been found in the western and 

northern parts of Canada (Yukon, British Columbia and Northwest Territories) as 

compared to eastern parts  during 1950-2010 (Eamer et al., 2010). Change in surface 

temperature affects evaporation and atmospheric circulation patterns which influence rain 

and snowfall.        

 

Figure 1.2(a) Minimum and (b) Maximum natural river flow trends in Canada in 

between 1975 to 2005 ( after Eamer et al., 2010). 

Mekis and Vincent (2011) reported that in Canada, especially on the west coast, the total 

precipitation has increased in the fall and spring seasons, while it has decreased in the 

winter season during the period of 1950-2010. Winter precipitation decreases because of 

winter snowfall decreased due to warm air temperature. Seasonal variations in flows can 

be found in most of Canadian rivers. Annual minimum flow occurs in late winter when 

precipitation is mixed with ice and snow, and in late summer when evaporation is high 
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and rainfall is low. In a study of 172 streamflow gauging stations, in naturally flowing 

rivers across Canada it has been found that the annual minimum flow decreased in 

southern and southwestern parts of the country, whereas minimum flow has increased in 

the northwestern and western parts between 1970 to 2005 (Eamer et al., 2010) (Figure 

1.2). Maximum annual flow generally occurs in late spring and in early summer due to 

snow melt and seasonal rainstorms. Seventeen percent of the 172 sites indicated a 

significant decreasing trend of maximum annual flow across Canada, especially in the 

southern and southeastern parts  (Eamer et al., 2010) (Figure 1.2b). Most Canadian river 

flow is significantly influenced by snow accumulation and melting patterns. In the west 

coast of Canada especially coastal British Columbia (BC) and the Great Lakes- St 

Lawrence area, the maximum snow water equivalent (SWE) is projected to decline while 

increasing patterns were predicted for the Arctic coast of Nunavut (Brown and Mote, 

2009). Glacier retreat has been found in Alberta and BC (Stahl et al., 2008; Marshall et 

al., 2011) and it is projected to continue in the future as the earth surface temperature 

warms. For watersheds that contain glaciers, it is expected that melting ice will affect 

runoff, especially during summer. Marshall et al., (2011) compared glacier runoff for 

historical (2000 to 2007) and future scenarios (2000 to 2100) (using Special Report on 

Emissions Scenarios B1 and A1B) for the Rocky Mountain area (Bow, Red Deer, North 

Saskatchewan, Athabasca, and Peace Rivers). In third assessment report, IPCC (IPCC, 

2000) a group of forty Special Report on Emission Scenarios (SRES) scenarios were 

developed from six scenario groups (A1F1, A1T, A1B, A2, B1 and B2) where A1B 

represents a rapid technological and demographic growth till mid-21st century after which 

global population decreases using energy efficient systems are introduced. B1 represents 
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a rapid demographic growth till mid-21st century after which it decreases due to usage of 

sustainable technologies, however, without any additional climate initiatives. Results 

showed that the glacier runoff will change -75% for the Peace River, -60% for the 

Athabasca River, -100% for the Bow and Red Deer Rivers and -80% for the North 

Saskatchewan River for the A1B scenario between 2000 and 2050. Also, Schnorbus et 

al., (2011) projected that the glacier area will shrink in the Upper Columbia River basin 

(approximately 50%) and the Campbell River basin (35% approximately) for B1, A2, and 

A1B emission scenarios by the end of 2050. Changes to glaciers will affect runoff which 

will subsequently affect water resources activities including the use of dam storage, flood 

control, water supply, irrigation, energy production, navigation, and recreation. Payne et 

al., (2004) observed that hydrologic changes due to climate change increased competition 

between reservoir storage for hydropower production and downstream streamflow targets 

in Columbia River basin, USA. Christensen et al., (2004) projected that annual 

hydropower production from Glen Canyon Dam, Colorado River basin, USA will be 

reduced in future (2010 to 2098) compared to historical (1950 to 1999) due to changes in 

seasonal streamflow patterns. These impacts may require that water resources planners 

and managers adopt alternative water management strategies in the future. Before making 

any adoption strategy, an assessment of climate change impacts on water resources is 

essential. Details of the climate change impact assessment process are discussed in the 

following sub-section. 

1.3 Climate Change Impact Assessment Process  

Impacts of climate change on regional water resources are assessed for future climate 

scenarios obtained from Global Climate Model (GCM) simulations. GCMs represent 
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state of the art modeling with respect to the simulation of global climate variables in 

response to greenhouse gas emission scenarios. These models are developed based on the 

numerical representation of the climate system which includes biological, chemical and 

physical properties of climate variables and feedback relationships between these 

variables. GCM outputs are coarsely gridded (>100 km2) and often fail to capture non-

smooth fields such as precipitation (Hughes and Guttorp, 1994). Downscaling methods 

are well-known and used for transferring coarse-scale climate information to local scale. 

 

Figure 1.3 Generalized framework for downscaling climate variables under changing 

climate conditions. 

A generalized framework for downscaling climate variables under changing climate 

conditions is outlined in Figure 1.3. Downscaling approaches are classified into two 

categories: (i) dynamic downscaling and (ii) statistical downscaling. Dynamic 

downscaling uses complex algorithms to describe atmospheric processes at finer 
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resolutions (typically 50 km x 50 km), nested within coarse resolution GCMs to derive 

boundary conditions. These models are known as regional climate models (RCMs). 

Statistical downscaling (SD) derives an empirical or statistical relationship between 

large-scale climate variables and hydrological variables (such as precipitation). SD 

methods can be classified into three groups: (i) classification/ weather typing methods 

(Hay et al., 1991; Hughes and Guttorp, 1994; Hughes et al., 1999; Mehrotra and Sharma, 

2005); (ii) regression/transfer function methods (Von Storch et al., 1993; Wilby et al., 

1999, 2002; Hashmi et al., 2009; Ghosh, 2010; Goyal and Ojha, 2010; Kannan and 

Ghosh, 2013; Chen et al., 2014); and (iii) weather generators (WG) (Wilks, 1999; Wilks 

and Wilby, 1999; Sharif and Burn, 2006; Eum and Simonovic, 2012; Lee et al., 2012; 

Srivastav and Simonovic, 2014; King et al., 2015). Details about these methods are 

provided in the Literature Review of this document. The following sub-section describes 

the various sources of uncertainty during the downscaling process.  

1.4 Process Uncertainty in Climate Change Impact 
Assessment 

Since the GCM output is coarsely gridded, the first step in the climate change impact 

assessment on hydrology is downscaling the hydro-climate variables (e.g., precipitation, 

temperature) to a local scale based on the large scale climate variables (e.g. specific 

humidity, mean sea level pressure) simulated by the GCMs. At the regional scale, the 

projection of hydro-climatic variables under changing climatic conditions is burdened 

with a considerable amount of uncertainty originating from several sources. These 

sources include: (i) inter-model variability due to different model structures between 

GCMs (Kay et al., 2009); (ii) inter-scenario variability due to different types of emission 
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scenarios; (iii) intra-model variability due to the model parameter selection; and (iv) the 

choice of downscaling models (Figure 1.3). From past studies, it has been found that 

GCMs contribute the largest source of uncertainty in regional applications that only 

consider single downscaling models (Prudhomme and Davies, 2008a; Najafi et al., 2011). 

Also, when the downscaling relationship is assumed to be stationary, it is subject to 

uncertainty, which impacts future hydrologic projections. 

Quantification of uncertainties is therefore part of the downscaling process, and it is very 

relevant to the climate change impact assessment process. Generally, hydro-climatic 

variables are used as input for the hydrologic models. Therefore if we want to project 

future streamflow rates using downscaled GCMs climate variables, the projected 

streamflow rates will carry uncertainties from the downscaling process because “any 

individual source of uncertainty, if quantified in some way, can be propagated through to 

give an uncertainty in the end result” (Kay et al., 2009). Also, multiple hydrological 

models are available and each one of these uses different parameters which could be 

another source of uncertainty (Dibike and Coulibaly, 2005). Therefore, uncertainty 

assessment in the climate change impacts assessment process is an important aspect of 

this study. The primary objectives of the present work are presented in following sub-

section.    

1.5 Research Objectives 

The primary objective of this research to build a framework for assessing probable future 

impacts of climate change on hydro-climatic variables and energy variables (e.g. 

precipitation, temperature, flow, and generated hydropower). To obtain higher resolution 

climate projections for a catchment (under study) from low-resolution GCMs data, a 



11 

 

robust and efficient downscaling model is required. Therefore, development of a robust 

downscaling model is another objective of this study. Uncertainties are inherent in each 

step of the climate change impact assessment process. Hence, quantification of different 

sources of uncertainty in projected climate and hydrologic variables is another objective 

of this study. The main objectives of this research are summarized below: 

1. Develop a reliable, efficient, and robust multisite multivariate statistical 

downscaling technique for predicting higher resolution future precipitation 

from low-resolution GCM data.   

2. Quantify climate change effects on the hydro-climatic variables (i.e., 

precipitation and temperature) and streamflow. 

3. Quantify uncertainty associated with the projected hydro-climatic variables 

(e.g., precipitation, temperature, streamflow).  

4.  Study climate change impacts on reservoir operation under uncertainty in 

hydrologic impacts of climate change. 

5. Assess future hydropower generation under changing climate conditions 

using a system dynamics simulation model (SDM).   

The detailed steps of this study are illustrated in Figure 1.4. The first objective involves 

the development of a new statistical downscaling (SD) model which will be able to 

capture spatial and temporal correlation in addition to other statistical characteristics (i.e. 

mean, standard deviation). Further, the performance of the proposed SD model will be 

compared to existing downscaling models. The second objective deals with the future 
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projection of hydro-climatic variables under different greenhouse gas emission scenarios 

reported by IPCC (2013) and the generation of streamflow considering these hydro-

climatic variables as an input to a hydrologic model. The third objective analyzes and 

quantifies uncertainties associated with the climate change impact assessment process in 

managing water resources. This objective includes uncertainty in temperature, 

precipitation and streamflow projection under climate change conditions. 

 

Figure 1.4 Generalized framework of the present study. 

The fourth objective deals with addressing different sources of uncertainties in reservoir 

operation under different climate change scenarios (Figure 1.4). To address these 

uncertainties, six downscaling models, four GCMs, three GHGs emission scenarios and a 

hydrologic model (UBC watershed model) are used. Finally, the last objective deals with 

hydropower production from reservoirs under changing climate conditions. Since the 
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projected streamflow of a river is burden with a considerable amount of uncertainties 

stemming from several sources of the climate change impact analysis process, it will 

affect reservoir (if existed in the basin) storage and release curves. If storage and release 

changes, it will modify the existing reservoir operation policy. Now the question is how 

much will present reservoir operation policies be affected in future climate conditions 

especially in terms of hydropower production. A system dynamics model (SDM) is used 

to simulate reservoir operations under different climate change conditions. This 

methodology is applied to the Campbell River basin in British Columbia, Canada. Three 

reservoirs (Upper Campbell, Lower Campbell and John Hart) are present in this river 

system and they are connected in a series. If the upstream reservoir is affected by climate 

change, it will affect the downstream reservoirs too and the quantification of this effect is 

the one objective of this study. The assessment process we followed in this study is given 

in Figure 1.5.  

In the present work, an attempt is made to capture uncertainty in the climate change 

impacts assessment process. Primary objectives of this study are to address different 

sources of uncertainties in the climate change impact assessment process and assess the 

relative contribution of sources of uncertainty towards the total uncertainty. In this study 

we used RCP 2.6, RCP 4.5 and RCP 8.5 as emission scenarios where we downscaled data 

from CanESM2, CCSM4, CSIRO-Mk3-6-0 and GFDL-ESM2G. To execute the present 

work we developed a beta regression based downscaling model. Along with the beta 

regression model, another five downscaling models (bias corrected spatial disaggregation 

(BCSD); bias correction constructed analogues with quantile mapping reordering 

(BCCAQ); delta change method coupled with a non-parametric K-nearest neighbor 
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weather generator; delta change method coupled with maximum entropy based weather 

generator and non-parametric statistical downscaling model based on the kernel 

regression) are used in this study. 

   

Figure 1.5 Framework presenting the climate change impact assessment process 

followed in this study (after Mandal et al., 2016a). 

1.6 Research Contributions 

Contributions from the present research are given below: 

1.  Downscaling models often fail to capture extreme behavior in generated 

precipitation sequences, and also fail to simulate multisite sequences with realistic 

spatial and temporal dependence. Therefore, using beta regression, a multisite,  

statistical downscaling model is developed and used in this study to downscale 

GCM based precipitation projection. 
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2. Another contribution of this study is uncertainty assessment on hydro-climatic 

variables with the use of multiple downscaling models, GCMs and future 

greenhouse gas scenarios.   

3. The assessment of the impacts of climate change on reservoir operation is another 

novel aspect of this study. 

4. Quantification of  climate change impact analysis process uncertainties in 

projected hydro-climatic variables (e.g., precipitation, temperature, and 

streamflow) and analyze the propagation of these uncertainties in reservoir 

operation are addressed in the present study. This is an another novel contribution 

of this study. 

Previously, most of the studies stated that the choice of GCMs contributes the largest 

source of uncertainty when only one or two downscaling models are considered. An 

important aspect of this study is to understand the variation in hydro-climate variables 

projections due to the choice of different downscaling models. Therefore, multiple 

downscaling models are considered in this study. We started with an assumption is that 

the choice of GCMs is not the highest source of uncertainty; downscaling models can be 

dominating too. GCMs are mathematical models which simulate climate variables 

considering multiple assumptions where downscaling models are statistical models, also 

subject to multiple assumptions. Therefore, making a conclusion without assessing results 

from multiple downscaling models might not be valid. This task has been treated as a 

significant contribution of this study. 
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Due to significant changes in climate for decades, stakeholders or decision-makers are 

motivated in acquiring information about climate change risk. More specifically, planners 

and managers are expressing interest in information regarding adaptive and risk-based 

planning approaches for management of water resources systems. They need appropriate 

management procedures based on the projected hydrological change. Therefore, this 

study could give them an overview, how regional water resources can be affected by 

climate change and they could make risk-based planning approach for water resource 

system based on the present work.       

1.7 Outline of the Thesis  

Chapter 2 provides a review of the literature related to the development of downscaling 

models for assessment of climate change impact on hydrology/water resources. The 

details about different sources of uncertainties in climate change impacts assessment 

process are presented in the second section of this chapter. The last part of this chapter 

reviews climate change impacts on reservoir operation and management. 

Chapter 3 describes methodology related to future precipitation projection under 

changing climate condition and quantifies uncertainties in downscaling process. The 

details about data and study area are provided in second and third section in this chapter 

respectively. Development of a new downscaling technique based on CART, PCA and 

beta regression and its validation are provided in next section. Quantification of the major 

source of uncertainties is discussed in second last section of this chapter followed by a 

summary. 
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Chapter 4 provides an assessment of future projected streamflow under changing climate 

conditions. The second part of this chapter describes the hydrological model (UBCWM) 

and its validation. Quantification of different sources of uncertainties in future 

streamflow projections due to climate change is given in third part of this chapter 

followed by a summary. 

Chapter 5 presents operation details of multiple reservoirs under climate change 

scenarios. The first section provides a brief introduction to reservoir operation in 

changing climate condition while the second section describes the study area (Campbell 

River system) and three reservoirs (Upper Campbell, Lower Campbell and John Hart) 

situated in this basin. The third part of this section provides details about a system 

dynamics simulation model (SDM) developed by Arunkumar and Simonovic (2017) 

which connects the three reservoirs together. This section also provides information about 

simulated inflow (historical and future) by the system dynamics model for all three 

reservoirs. The fourth section presents future storage, release and hydropower production 

for three reservoirs in the Campbell River basin followed by a summary section.     

A detail discussion about uncertainty propagation in future simulated results is provided 

in Chapter 6 where Chapter 7 presents a summary, conclusions, and future scopes of the 

present study. 
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Chapter 2 

2 Literature Review 

Literature related to impacts assessment of climate change on water resources which use 

downscaling methods and uncertainties in such assessment processes are reviewed in this 

present chapter. The following section describes different downscaling models. Literature 

related to different sources of uncertainty in climate change impact assessment process is 

reviewed subsequently. 

2.1 Downscaling Climate Variables 

Global Climate Models (GCMs) are credible and reliable tools for global scale climate 

analyses. These models are developed based on numerical representations of climate 

system which includes biological, chemical and physical properties of climate variables 

and feedback relationships between these variables. GCMs simulate the present climate 

and predict future climate change with forcing by aerosols and GHGs. Since GCMs 

provide information on the global scale, tools are required for regional studies to convert 

this information to the local scale. Downscaling tools are widely used for transferring 

coarse-scale climate information to regional scales. Downscaling method includes two 

different approaches: (i) dynamic downscaling approach and (ii) statistical downscaling 

approach. The details about these two approaches are presented in the following sub-

section. 

2.1.1 Dynamic Downscaling 

Dynamic downscaling is based upon nesting a finer scale regional climate model (RCM) 

(up to 10 km x 10 km horizontal resolution) within GCMs(Wood et al., 2004). Dynamic 
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downscaling has thus far been attempted with three approaches: (i) simulate a regional 

scale model with GCM data as geographical boundary conditions; (ii) run a global scale 

experiment with high resolution atmospheric GCMs, with coarse GCM data as initial and 

partial boundary conditions; and (iii) a variable-resolution global model. The major 

drawbacks of dynamic downscaling are model complications, high computational 

requirements, their dependence on boundary conditions obtained from GCMs and lack of 

transferability to different regions. 

2.1.2 Statistical Downscaling 

The statistical downscaling method uses an empirical relationship between large-scale 

GCMs simulated climate variables (predictors) and regional scale variables (predictands) 

such as precipitation. There are three assumptions made when using this downscaling 

technique (Hewitson and Crane, 1996): (i) predictor variables are realistically modeled by 

GCMs; (ii) the empirical relationship is valid for any climatic conditions (stationary and 

non-stationary) and (iii) the predictors fully represent the climate change signal. 

Statistical downscaling is more adaptable, flexible and popular because of low 

computational requirements, simple modeling structure and easy modifications for use at 

various locations. SD methods developed so far can be classified into three groups: (a) 

classification/ weather typing methods; (b) regression/transfer function methods and (c) 

weather generators (WG). 

2.1.2.1 Weather Generator 

Weather generators are statistical models that stochastically simulate random sequences 

of synthetic climate variables that preserve statistical properties of observed climate data 

(Mehrotra and Sharma, 2005; King et al., 2014; Srivastav and Simonovic, 2014). 
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Mehrotra and Sharma (2005) developed a K-nearest-neighbor (K-NN) based 

nonparametric nonhomogeneous hidden Markov model (NHMM) for downscaling 

multisite rainfall over a network of 30 different locations near Sydney, Australia. This 

model generates rainfall based on average rainfall occurrence over the previous day and 

conditional to a continuous weather state.  This model was successful in capturing day-to-

day rainfall characteristics compared to discrete state NHMM. 

Another non-parametric multisite weather generator named KnnCAD V4 was developed 

by King et al., (2014). The KnnCAD V4 is the updated version of KnnCAD V3 (Eum et 

al., 2010) which includes block resampling and perturbation. This model was used for 

downscaling daily temperature and precipitation data in the Upper Thames River basin, 

Ontario, Canada. This model can adequately reproduce statistical characteristics of 

historical climate variables as well as extrapolate historical extremes. 

Most recently, Srivastava and Simonovic (2014) developed a non-parametric multisite, 

multivariate maximum entropy based weather generator (MEBWG) for generating daily 

precipitation and minimum and maximum temperature values. The three main steps 

involved in MEB are (i) orthogonal transformation of daily climate variables at multiple 

sites to remove spatial correlation; (ii) use of maximum entropy bootstrap (MEB) to 

generate synthetic replicates of climate variables and (iii) inverse orthogonal 

transformation of synthetic climate variables to re-established spatial correlation. 

Principal component analysis is used for orthogonal transformation. This method can 

capture temporal and spatial dependency structures along with other historical statistics 

(e.g. mean, standard deviation) in downscaled climate variables. The performance of 

MEBWG is free of modeling parameters, and it is computationally inexpensive.      
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2.1.2.2 Weather Typing 

Weather typing approaches develop the relationship between local climate and 

atmospheric circulation variables based on a given weather classification scheme. The 

observed local climate variables are related to weather classes which include principal 

component analysis (PCA) (Schoof and Pryor, 2001; Wetterhall et al., 2005), fuzzy rules 

(Bardossy et al., 1995), canonical correlation analysis (CCA) (Gyalistras et al., 1994), 

analogues procedure(Martin et al., 1997) or other pattern recognition methods based on 

correlation (Wilby and Wigley, 1997). The major drawbacks of this approach are the 

stationary relationships between local climate variables and different types of 

atmospheric circulation and the additional effort needed for weather classification. Non-

stationarities are inherent traits of the climate system and can be observed in different 

spatiotemporal scales (Hertig and Jacobeit, 2013). Hence, ignoring the nonstationary 

relationships between climate variables may mislead the downscaling process. 

2.1.2.3 Transfer Function 

Transfer function based models usually build a statistical relationship between GCM or 

RCM outputs (large-scale predictor) and local-scale climate variables (predictands). 

Generally multivariate linear or nonlinear regression (Vrac et al., 2007; Chen et al., 

2014), non-parametric regression (Sharma and O’Neill, 2002; Kannan and Ghosh, 2013) 

and support vector machine (SVM) approach (Tripathi et al., 2006; Ghosh, 2010) are 

used for deriving those relationships. These approaches are widely used and known as 

‘perfect-prognosis’ downscaling methods. 

Raje and Mujumdar (2009) developed a conditional random field (CRF) downscaling 

method which does not require the assumption of independence for climate variables and 



22 

 

their distribution. In this method, four surface flux variables (precipitation flux, surface 

temperature, maximum and minimum surface temperature) and four surface/pressure 

variables (specific humidity, sea level pressure, U wind and V wind) are needed to 

maintain spatial and temporal dependence which makes this method computationally 

demanding. Also, the CRF method moderately captures spatial correlation and also 

overestimates the mean value of the predictand (precipitation). Individually downscaling 

at multiple stations may be the reason for poor spatial correlations and discretization of 

historical rainfall data into different classes. Without confirming an exact number of 

rainfall classes when using the clusters validity test it may produce bias toward over-

prediction of mean precipitation values at different stations. For this reason non- 

parametric statistical methods like K-nearest neighbors (K-NN)(Young, 1994; Brandsma 

and Buishand, 1998; Sharif and Burn, 2006; Eum and Simonovic, 2012; King et al., 

2014) or Kernel density estimator are referred in the literature as plausible approaches for 

the downscaling purposes (Mehrotra and Sharma, 2010; Kannan and Ghosh, 2013). 

Although non-parametric methods can successfully capture the spatial dependence of 

observed data, they often fail to capture extreme events in the case of precipitation. 

Markov based downscaling models (Hughes and Guttorp, 1994; Mehrotra and Sharma, 

2005, 2007) perform satisfactorily in capturing spatial variability of daily precipitation 

but they fail to reproduce the variability of a non-stationary climate as exogenous climate 

predictors are not considered. Coulibaly et al., (2005) developed a downscaling model 

based on a time-lagged feed-forward neural network (TLFN) method. The major 

assumption of the model is that the local weather variables (i.e. precipitation and 

temperature) depend on present and past large-scale atmospheric states.  The performance 
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of this model compared with SDSM (Wilby et al., 2002) and found TLFM model 

performs well in downscaling temperature and precipitation data compare to SDSM. 

However, TLFN overestimates wet-spell length and no spatial correlation assessment was 

mentioned in the study. 

It seems that despite progress made in the development and application of downscaling 

models for climate impact assessments in the past, all of them have limitations. The 

weather typing method considered a stationary relationship between local climate 

variables and different types of atmospheric circulation which is not true. Transfer 

functions provide ease of use but only explain a fraction of observed variability. 

Parametric weather generators have limitations due to a large number of parameters, 

representation of temporal and spatial variability in the generated sequences (Wilby et al., 

2004), accurate generation of extremes (maximum and minimum) (Pour et al., 2014) and 

generation of multisite sequences with spatial dependence. Most of the downscaling 

models developed in the past have failed to capture spatial dependence in rainfall 

occurrence, and they assume that the probability distributions of observed and future 

climate variables will remain the same, which can be a limiting assumption.  

In spite of considerable progress in the development of downscaling methods, in 

particular for the simulation of precipitation, challenges still exist in accurately capturing 

extreme behavior in generated precipitation sequences and simulating multisite sequences 

with realistic spatial and temporal dependence (Raje and Mujumdar, 2009). Moreover, 

the downscaling method should be efficient and computationally inexpensive to simulate 

the underlying processes present in the observed data. Recently, Kannan and Ghosh 

(2013) developed a multisite statistical downscaling model using a non-parametric kernel 
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density function. Exogenous climate predictors were used in this method for generating 

multisite precipitation. This method encouraged the development of a statistical 

downscaling model based on a new regression approach. This downscaling model is 

divided into two phases. In the first phase, the model predicts precipitation states using 

classification and regression trees (CART) wherein the second phase, daily precipitation 

is simulated at a particular station using multivariate beta regression.  

In addition, the water resources of a river basin are sensitive to projected climate change. 

The following sub-section describes state of the art regarding streamflow projection 

under climate change.   

2.2 Streamflow Projection under Climate Change  

Climate change has serious impacts on water resource across the world. The magnitude 

and frequency of river flows are affected by climate change and will continue to be in 

future. Changes to the river flow are not uniform across the world but regionally specific. 

Variation in magnitude and frequency of streamflow increases the vulnerability of water 

infrastructure. A study by the Canadian Institute of Actuaries (2014) found that water-

related insured damage and losses could increase by about 20% to 30% in the next few 

decades across Canada. Simonovic (2008) also suggested that water resource’s 

infrastructure planning, design, and operations should be revised to accommodate the 

expected changes in magnitude and frequency of streamflows. Therefore quantification 

of the impacts of climate change on streamflow is essential.  

Maurer (2007) studied climate change impacts on streamflow in the Sierra Nevada 

region, California, USA under two emission scenarios (SRES A2 & B1).  The results 
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show that winter streamflow will increase, while streamflow during late spring and 

summer will decrease between 2071-2100. This study also projected that the average 

temperature would increase by 2.4 °C to 3.7 °C in that timeframe which causes less snow 

in the winter time and will thus affect late spring streamflow.    

Spring snowmelt is a significant contribution to the streamflow of many rivers in north -

western America. Stewart et al.,(2004) conducted an assessment to study shifts in the 

timing of future spring runoff due to climate change in northwestern American rivers, 

especially the Pacific Northwest, Sierra Nevada, and Rocky Mountain regions. Results 

stated that spring snowmelt could be expected 30-40 days earlier in the future (1995 to 

2099) compared to 1948 to 2000 due to temperature change.        

Minville et al., (2008) conducted a study to assess climate change impacts on streamflow 

in the Chute-du-Diable watershed, Quebec, Canada. They compared historical runoff 

(1961 to 1990) with three future time periods centered on the years 2020, 2050 and 2080.  

Results projected that future spring runoff would appear 1-5 weeks earlier than usual with 

a variation of -40% to 25%. In addition, future summer runoff will decrease while runoff 

during the winter, spring and fall will increase in the Chute-du-Diable watershed. 

However these future projections contain several sources of uncertainty during the 

climate change impact assessment process. The details about these uncertainties 

discussed below. 

2.2.1 Sources of Uncertainties 

The assessment of climate change impacts on water resource systems is subject to a range 

of uncertainties due to either “incomplete” or “unknowable” knowledge. “Incomplete” 
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knowledge arises from a lack of information or understanding about biological, chemical 

and physical properties of climate variables and feedback relationships between these 

variables or due to inadequate analytical resources. “Unknowable” knowledge originates 

from the inability to predict future socio-economic and human behavior in a definitive 

manner or from the inherent unpredictability of the Earth’s systems. These cascades of 

uncertainty in any climate change impact study are interdependent but not necessarily 

additive or multiplicative way. Further, uncertainty due to future greenhouse gas 

emission scenarios is compounded when emission scenarios translate into atmospheric 

concentration because of inadequate knowledge regarding source, sink and recycling 

rates of GHGs in the Earth system. Additional uncertainty in the climate change impact 

assessment process arises from the structural, conceptual, and computational limitation of 

the GCMs (Gates et al., 1999). Finally, the outputs from assessment models 

(downscaling) are subject to uncertainties resulting from downscaling model structures 

and assumptions. Another source of uncertainty is added to the result if we simulate 

future streamflow using the downscaled climate variables as input to a hydrological 

model. There are multiple hydrologic models available and its parameterization has 

significant effects on projected stormflow (Najafi et al., 2011). Since uncertainties 

accumulate at various levels of climate change impact assessment process, their 

propagation at the regional or local level leads to large uncertainty ranges  (Wilby, 2005; 

Minville et al., 2008). 

A number of studies have been conducted to address and quantify uncertainties in climate 

change impact assessments. Prudhomme and Davies (2009) examined uncertainties in 

climate change impact analyses in four different catchments of the UK. In this study, they 
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downscaled precipitation using either the statistical or dynamic downscaling model from 

an ensemble of GCMs and scenarios and used this result to forecast river flow through a 

lumped hydrological model. The results show that the choice of downscaling method is a 

significant source of uncertainty, as is the choice of GCM. Kay et al., (2009) compared 

six different sources of uncertainty (GCMs structure; downscaling from GCMs including 

Regional Climate Model structure; hydrological model structure; hydrological model 

parameters and the internal variability of the climate system) with respect to climate 

change impact on flood frequency in England. This study concludes that the largest 

source of uncertainty is GCM structure, however if GCMs are omitted, other sources of 

uncertainty become more significant.  

Seiller and Anctil (2014) studied climate change impacts on the Haut-Saint-François 

catchment in Quebec, Canada. They compared streamflow data using twenty different 

lumped hydrological models, twenty-four potential evapotranspiration formulations, and 

seven snowmelt modules but used a Single GCM (CGCM version 3) and a single 

emission scenario (A2 scenario from SRES). Results indicated that natural climate 

variations are the primary source of uncertainty followed by potential evapotranspiration 

formulations and hydrological models. However, they did not assess uncertainty due to 

GCMs or emission scenarios.      

Minville et al., (2008) conducted another study that examined the impact of climate 

change on the hydrology of the Chute-du-Diable watershed in Canada. Minville et al., 

(2008) observed that projection of precipitation is most sensitive to the choice of GCM 

where Wilby and Harris (2006) found that GHG emission scenarios also caused 

uncertainty in precipitation projections under changing climatic conditions. Najafi et al., 
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(2011) conducted a study to compare uncertainties in predicted future flow stemming 

from different GCMs, emission scenarios, and hydrological models. This study concludes 

that uncertainty in streamflow due to GCM structure is higher than the uncertainty due to 

the choice of hydrologic model. However, this study also suggests that hydrologic model 

selection is important when assessing hydrologic impacts under changing climate 

conditions. Some other studies reported that a systematic bias is present in future 

projections and must be considered when interpreting results (Piani et al., 2010).  Many 

studies have also found that understanding current and future natural variability is 

important in assessing hydrologic impacts under changing climate conditions (Wilby, 

2005; Kay et al., 2009). Rupp et al., (2013) and Kay et al., (2009) also suggested that 

multiple catchments, or different locations, should be analyzed in order to obtain a 

comprehensive understanding of different sources of uncertainty. However, in most 

previous climate change impact assessment studies it has been found that GCMs 

contribute the largest uncertainty in the modeling of regional impacts (Wilby and Harris, 

2006; Chen et al., 2011). 

Studies presented in this section reported that climate change impacts on regional water 

resource are burdened with a considerable amount of uncertainty that originates from 

several sources. Uncertainties may arise from (i) inter-scenario variability of emission 

scenarios; (ii) inter-model variability of GCMs; (iii) choice of downscaling model and 

(iv) intra-model variability due to hydrological model parameter selection or hydrologic 

model selection. Many studies have been conducted to quantify the significance of 

different sources of climate change process uncertainty in relation to the total uncertainty. 

However, it has been found that different studies came to different conclusions, and all 
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sources of process uncertainty were not accounted for the climate change impact 

assessment. The work presented in this thesis considers all major sources of process 

uncertainty in climate change impact assessment process. The following sub-section 

describes climate change impacts on reservoir operations.  

2.3 Reservoir Operation under Changing Climate 
Conditions 

Most climate studies can be classified into three groups: (i) mechanism and reasons 

behind climate change; (ii) impacts of climate change and (iii) mitigation and adoption of 

climate change policy. Studies related to the mechanism and reasons behind climate 

change are discussed in the first chapter. The impact of climate change on reservoir 

operation is addressed in this section.  

Simonovic and Burn (1996) examined impacts of climate change on the Shellmouth 

reservoir in Manitoba, Canada. They studied the operational performance of this reservoir 

using two different “cool” and “warm” sets of climate condition. The results from this 

study indicated that reservoir performance varies with inflow and that climate change has 

significant effects on reservoir operation. Li et al., (2010) studied the variation of 

streamflow and reservoir performance under changing climate conditions in the prairie 

region of North America. They found that the frequency and magnitude of high peak 

streamflow will increase in the future due to climate change. Eum et al., (2009) 

developed an integrated reservoir management system for the Upper Thames River basin 

in Ontario, Canada. This management system was applied with two downscaling models, 

two GCMs and two climate scenarios. This study concluded that streamflow is sensitive 

to climate scenarios which in turn affects reservoir system operations.  
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Raje and Mujumdar (2010) developed a stochastic dynamic programming (SDP) model 

to capture uncertainty associated with inflow due to climate change and derived a 

standard operating policy (SOP) for a multipurpose reservoir system in Orissa, India. 

This study analyzed two different sources of uncertainties resulting from different GCM 

structure and choices of greenhouse gas emission scenarios. The result of this study 

indicates that due to the hydrologic impact of climate change, performance and 

hydropower generation of the reservoir will decrease in the future. A major limitation of 

this study is that the reservoir optimization model (SDP) is based on transition 

probability. Therefore, this model assumes an “unconditional steady state probability 

distribution” for monthly streamflows which will not change from one year to the next. 

This assumption of steady-state transition probability is practically not acceptable 

because the variation in the streamflows changes with time, especially under the 

influence of climate change. 

Ahmadi et al., (2014) developed adaptive rules based on a non-dominated sorting genetic 

algorithm (NSGA-II) for reservoir management with regard to climate change. They 

applied this model in the Karron-4 reservoir, Iran. Results showed that new adaptive rules 

are better in terms of reliability in hydropower generation. However, they only 

considered a single GCM (HadCM3), a single GHG emission scenario (A2) and a single 

hydrologic model. Therefore uncertainties in the climate change assessment process were 

not included in this study.  

Pina et al.,(2017) conducted a study to assess future climate change impacts on water 

resource system of the Gatineau River Basin in Quebec, Canada using the vertical and the 

horizontal approaches. They examined weekly and annual hydropower generation from 
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the Gatineau River Basin. Structural hydrologic uncertainty and natural variability were 

addressed in this study. However they used a single GCM (CGCM3) under a single 

emission scenario (A2). Climate data from CGCM3 were downscaled using dynamical 

downscaling method. Hence, uncertainties stem from GCMs, downscaling models or 

emission scenario were not explored in this study.           

Minville et al., (2009) investigated the impacts of climate change on the Peribonka River 

Basin, Quebec, Canada which consists of two large reservoirs (Marouane Lake reservoir 

and Passes-Dangereuses reservoir) that are used for hydropower generation. The 

objectives of this study were to evaluate climate change impacts on hydropower, power 

plant efficiency, and reliability of the reservoir under changing climate conditions.  They 

developed a stochastic and a dynamic optimization model to adopt new reservoir 

operation rules according to the evolution of the climate. The results described that due to 

climate change the reliability of a reservoir would decrease where vulnerability will 

increase. However, they did not address uncertainties in the climate change assessment 

process.      

Climate change is expected to have significant impacts on regional hydrology and 

reservoir inflow. A comprehensive assessment of future reservoir operation under climate 

change condition considering different sources of uncertainty is incessant in the present 

context. In addition assessment of future hydropower production under different climate 

change conditions also addressed in the present study. The following chapters present the 

development of a new robust downscaling model, uncertainty combination, and 

assessment of future reservoir operation under climate change.                       
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Chapter 3 

3 Precipitation Projections under Changing Climate 
Conditions 

 Based on: Sohom Mandal, Roshan K. Srivastava and Slobodan Simonovic 

(2015), "Use of beta regression for statistical downscaling of precipitation in the 

Campbell River basin, British Columbia, Canada" Journal of Hydrology, 538, 49-

62.DOI: 10.1016/j.jhydrol.2016.04.009 

Impacts of climate change on regional water resources are assessed for future climate 

scenarios obtained from Global Climate Model (GCM) simulations. GCMs represent 

state of the art with respect to the simulation of global climate variables in response to 

emission scenarios of greenhouse gasses. GCMs can satisfactorily model smoothly 

varying fields such as mean sea level pressure, but often fail to capture non-smooth fields 

such as precipitation (Hughes and Guttorp, 1994). In addition, the spatial scale of GCM 

output is very coarse (>100 km2). Therefore, on a regional scale, capturing the impacts of 

climate change on hydro-meteorological variables (e.g. temperature, precipitation, soil 

moisture) is more difficult and uncertain. At the catchment level (<50 km2), downscaling 

of coarsely gridded GCM data is necessary for a better understanding and assessment of 

future hydrologic conditions in response to climate change. As discussed before, existing 

downscaling models have many limitations i.e. capturing extreme behavior in generated 

precipitation sequences, simulating multisite sequences with realistic spatial and temporal 

dependence and computational burden. Therefore, in this study, a new statistical 

downscaling approach is proposed.  
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This downscaling model considers the historical effect of exogenous climate variables for 

the generation of multisite precipitation amounts. Precipitation states of the basin are 

obtained from large-scale circulation patterns to capture the spatial patterns within the 

basin. We also use a multivariate beta regression model to downscale multisite 

precipitation amounts conditioned on precipitation states of the catchment.  Based on the 

precipitation states, beta regression is used to generate precipitation at each individual 

location within the catchment. This regression method based on the beta distribution has 

proven to be very versatile and flexible to model exogenous variables (Ferrari and 

Cribari-Neto, 2004) and is novel in its application as a statistical downscaling technique. 

For model performance evaluation, the results obtained from the proposed method are 

compared with those obtained from a recently developed model based on Kernel density 

estimation (Kannan and Ghosh, 2013). The primary objective of the comparison is to 

analyze the advantages and disadvantages of the proposed beta regression based 

downscaling method. 

The methodology is developed in two steps. First, precipitation states are predicted using 

the CART algorithm. Second, we generate time series of multisite daily precipitation by 

downscaling outputs of CanESM2 for a historical time period (1983–2005) and a future 

time period (2036–2065). The proposed downscaling method is applied to a case study in 

the Campbell River basin, British Columbia, Canada (Figure 3.1). Information regarding 

case study area and datasets used for this study are given in the next section.  
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Figure 3.1 The Campbell River basin with the location of gauging stations (after Mandal 

et al., 2016c). 

3.1 Study Area and Data Extraction 

Campbell River is situated in between the dry east coast and wet west coast climate on  

Vancouver Island, Canada. The total drainage area of this basin is approximately 1856 

km2 with a length of 33 km from the origin (Strathcona provincial park). The Campbell 

River basin consists of three lakes namely Buttle Lake and Upper Campbell Lake, Lower 

Campbell Lake and John Hart Lake. Campbell River system produces 2.5% of  BC 

Hydro’s total hydroelectric power which is equivalent to 11% of Vancouver Island’s 

annual energy demand (BC Hydro Generation Resource Management, 2012). In this river 

basin, streamflow is a mixture of melting snow and rainfall. Generally, the streamflow is 

high during fall and spring and low during the summer season. The salient features 

(longitude, latitude, elevation) of the gauging stations in the basin are given in Table 3.1.  
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Table 3.1 Salient features of precipitation stations in the Campbell River Basin, BC, 

Canada (after Mandal et al., 2016c). 

Station Elevation(m) Latitude (o N) Longitude (o W) 
Station 

Abbreviation 

Elk R ab Campbell Lk 270 49.85 125.8 ELK 

Eric Creek 280 49.6 125.3 ERC 

Gold R below Ucona R 10 49.7 126.1 GLD 

Heber River near Gold 

River 

215 49.82 125.98 HEB 

John Hart Substation 15 50.05 125.31 JHT 

Quinsam R at Argonaut Br 280 49.93 125.51 QIN 

Quinsam R nr Campbell R 15 50.03 125.3 QSM 

Salmon R ab Campbell 

Div 
215 50.09 125.67 SAM 

Strathcona Dam 249 49.98 125.58 SCA 

Wolf River Upper 1490 49.68 125.74 WOL 

Historical daily precipitation data (0.1° latitude x 0.1° longitudes) for a 40 years span 

(1961–2013) have been obtained from the ANUSPLIN Data Set, Environment Canada 

(Hutchinson and Xu, 2013). ANUSPLIN data is developed using ‘‘thin plate smoothing 

splines” algorithm. This technique interpolates climate variables as a function of latitude, 

longitude, and elevation. For this study, the daily precipitation data is used at ten 

locations covering the entire Campbell River basin. Details about ANUSPLIN data sets 

are provided in Appendix A. 

Large-scale climate circulation patterns govern the regional climate. Therefore, selection 

of the predictors is necessary for the downscaling process (Wilby et al., 2004; Wetterhall 

et al., 2005). According to Wilby et al., (1999),  predictors used for downscaling need to 
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be: (a) easily available, (b) reliably simulated and (c) strongly correlated with response 

variable (precipitation in this case). Considering those conditions, daily maximum and 

minimum air surface temperature (Tmax and Tmin), mean sea level pressure (mslp), 

specific humidity (hus) at 500 hPa, zonal (u-wind) and meridional (v-wind) wind are used 

as predictors. 

Due to inadequate historical climate data for a longer period, predictor data is extracted 

from the NCEP/NCAR (National Centers for Environmental Prediction/National Center 

for Atmospheric Research) reanalysis dataset (Kalnay et al., 1996) for 53 years spanning 

1961–2013. NCEP/NCAR data set is a combination of physical process and model 

forecast gridded data at the 2.5° x 2.5° spatial resolution. More details about 

NCEP/NCAR data are provided in Appendix A. In the context of GCM outputs 

downscaling, historical data from CanESM2 (1983–2013) is used for proposed model 

performance evaluation. CanESM2 (2.813° latitude x 2.79° longitude) is a second 

generation earth system model from the Coupled Model Inter-comparison Project 

(CMIP5) developed by the Canadian Centre for Climate Modeling and Analysis. 

ANUSPLIN, NCEP/NCAR and GCM (CanESM2) data have a different spatial 

resolution. Therefore, all the data sets are spatially interpolated to a location of interest 

(gauging station) using inverse distance square method (Shepard, 1968). Six climate 

variables (Tmax, Tmin, mslp, hus, u-wind and v-wind) at ten locations in the basin are 

used as model predictors where precipitation is the model predictand. 

Standardization procedure (Wilby et al., 2004) is applied to the predictors data to reduce 

the systematic bias among the variable means and standard deviations. Standardization is 
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carried out by subtracting the mean and dividing by standard deviation from all 

respective variables. A 30 years span (1961–1990) is considered as a model training 

period, where 23 years (1991–2013) daily data is used for model validation. Predictors 

for a particular station are expected to have a high correlation with other nearby stations 

which may lead to the multicollinearity problem (Ghosh, 2010). Multicollinearity is a 

statistical phenomenon which refers to highly correlated predictors in multiple regression 

analyses. It occurs when predictors are not only correlated with response variable but also 

to each other. Multicollinearity may lead to larger changes in the regression model 

estimation for small changes in the data. Therefore, it is necessary to remove 

multicollinearity from the predictor variables (Salvi et al., 2013). Apart from this, the 

model is expected to be computationally inexpensive for its multiple dimensions. Now if 

the dimensions are reduced without considering the internal variability and patterns of the 

data, it may lead us to an erroneous model result. Hence, to reduce the multicollinearity 

and dimensionality, the principal component analysis (PCA) is used. PCA is a powerful 

statistical tool which can identify patterns in multidimensional data. On the other hand, it 

can reduce dimensions without reducing the internal variability of the original data. There 

are no clear rules for choosing a number of principal components that explains the 

maximum percentage of variance. Srivastav and Simonovic (2014) investigated the 

performance of a multisite weather generator with different principal components and 

considered first principal component for their study. Kannan and Ghosh (2013) adopted 

Kasier’s rule for selecting principal components that explain more than the average 

amount of total variance. In this study, we considered first five principal components that 

explain 97% variability of the original data (Figure 3.2).  
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Figure 3.2 Cumulative percent of variance explained by principal components (after 

Mandal et al., 2016c). 

 

3.2 Statistical Downscaling of GCM Simulations with Beta 
Regression 

The details of beta regression-based statistical downscaling technique conditioned to the 

precipitation states are outlined in this section. The proposed modeling framework is 

shown in Figure 3.3. This framework is divided into two parts. In the first part (Figure 3.3 

(a)), the daily precipitation states are generated using a supervised classification 

technique, namely CART (classification and regression trees) wherein the second part 

(Figure 3.3 (b)), the daily precipitation sequences are generated for a particular location 

using multivariate beta regression. CART classifies predictor variables or builds 

relationship in terms of explanatory power and variance using an ‘‘acyclic tree”. The 

following subsections describe in details procedures for generation of precipitation states 

(part 1) and daily precipitation generation (part 2). 
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3.2.1 Generation of Daily Precipitation States 

The daily precipitation state is a qualitative representation of precipitation status for a 

given day in a particular region where multiple sites of interest belong. For predicting 

daily precipitation states in the river basin, CART algorithm coupled with an 

unsupervised classification method (K-means clustering) is used following Kannan and 

Ghosh (2013). K-means clustering helps to identify daily precipitation states in the river 

basin. CART is a classification and regression algorithm based on ‘if-then’ logic. The 

advantages of using CART are: (1) it does not follow a prior statistical distribution of 

predictors; (2) it is flexible and efficient with high dimensional data; and (3) it can 

effectively deal with a mixture of categorical, discrete and continuous predictor variables 

(James et al., 2013). The procedure for daily precipitation states estimation is explained 

in Figure 3.3(a). It includes few steps as follows: 

Step-I: Use K-means clustering technique for identifying precipitation states from 

the observed ANUSPIN precipitation data (1961–1990). For an optimum number of 

clusters, cluster validity index e.g. Silhouette Index, Davis–Bouldin index, Dunn Index 

and Connectivity measures (Brock et al., 2008) are used.  

Step-II: Standardize the NCEP/NCAR predictor variables by subtracting mean 

and dividing the data by standard deviation. After standardization, PCA is used to reduce 

the dimension and remove multicollinearity from the standardized predictor variables. 

Preserve the principal component/scores and eigenvectors/factors for the next step. 
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Figure 3.3 The schematic of proposed downscaling framework. (a) prediction of 

precipitation state using CART. (b) multivariate beta regression model for synthetic 

precipitation generation (after Mandal et al., 2016c). 

Step-III: Apply the standardization procedure and PCA to historical NCEP/NCAR 

predictor data and historical GCM predictor data (CanESM2) for a different time period.  

Step-IV: Build the CART with the help of principal components obtained from 

NCEP/NCAR predictor data and precipitation states obtained from K-means.  
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Step-V: Apply the CART model to GCM historical data (1983 to 2005) and 

historical NCEP/NCAR data (1991 to 2013) to derive rainfall states for a different time 

period and compare statistics with observed historical data for the same time period. 

These two different historical time periods are used for validating the proposed the 

downscaling model with GCM and NCEP/NCAR data set.  

Step-VI: For calculating future precipitation states under different climate change 

scenarios the CART model is applied to standardized future GCM (CanESM2) predictor 

data (2036–2065). 

Preserving the spatial correlation and capturing the variability of predictand are the 

important aspects of the statistical downscaling. Hence, it will be more acceptable if the 

procedure provides for derivation of precipitation states first and then generate 

precipitation amount. Precipitation states of the river basin combined with data driven 

regression approach (beta regression) preserve the spatial dependence in the precipitation 

fields. This combined procedure retains the marginal and joint density structure of 

historical precipitation series which includes nonlinearity and state dependence. 

3.2.2 Multisite Precipitation Generation 

For multisite precipitation generation, a relationship between predictors and predictand 

climate variables has to be developed.     

( / )t R t tP F X S                       (3.1) 
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The generalized relationship between predictors and predictand is described by Eq. (3.1) 

where Pt is the precipitation at a certain station at time t, Xt is predictor variables at time t 

and St is precipitation state of the river basin at time t.  

Generally this kind of relationship is developed using regression (parametric/non-

parametric)  or probabilistic approach (Wilby and Harris, 2006; Mehrotra and Sharma, 

2007; Srivastav and Simonovic, 2014). In this study, beta regression is applied to model 

the above-mentioned relationship. The predictors used to build the regression model are 

current day principal components of reanalysis predictor data and current day 

precipitation states from CART where predictand is present day precipitation at different 

stations (generated separately).   

3.2.2.1 Beta Regression 

Regression analysis builds a relationship between independent variables (x) and 

dependent variable (y).  In this study, large-scale global climate variables are independent 

variables or predictors and precipitation is dependent variable or predictand.  The 

relationship between them can be formalized as follows: 

    ( )i i iy f x   ,       1,2,.......i n                    (3.2) 

 where εi is a normally distributed non-zero error term. If the relationship is linear then 

the expression (3.2) is modified as follows:      

  
0 1 1 2 2 ................T

i d d iy x x x x                              (3.3) 
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where x is a vector of predictor variables with dimension d and β is a coefficient vector. 

The relationship in Eq. (3.3) is developed using beta regression (BR).  This regression 

approach follows the beta distribution. The beta distribution is very flexible for modeling 

dependent variables since its density can assume a number of different shapes based on 

its parameters. Apart from this, the beta distribution is heteroskedastic and can 

successfully accommodate asymmetric data (Ferrari and Cribari-Neto, 2004; Schmid et 

al., 2013). Another advantage of using beta distribution is that it can model nonlinear 

relationship (Simas et al., 2010). The beta density function of the predictand can be 

written as:        

1 (1 ) 1( )
( ; , ) (1 ) ,

( ) ((1 ) )
f y y y  

 
  

  
 
  

  0 1,0 1, 0y                             (3.4) 

µ is the mean of predictand, ϕ is a precision parameter, y is dependent variable and Γ(.) is 

gamma function. The beta distribution includes gamma function. In the past, gamma 

function was successfully implemented to model precipitation (Stern and Coe, 1984; 

Groisman et al., 1999; Wilks and Wilby, 1999).  The shape of beta density function can 

change depending on the values of µ and ϕ which help to estimate and model underlying 

structure of the data without assuming any functional form of estimators (Schmid et al., 

2013). If 1/ 2   then the model is symmetric and if 1/ 2  then the model becomes 

asymmetric.  

The proposed regression model assumed that the dependent variable or predictand is beta 

distributed and constrained to the unit interval (0, 1). Therefore any dependent variable 

bounded in an interval (a, b) where a and b are known scalar values (a < b) need to be 
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scaled to (0, 1) interval. For this case y (predictand) is scaled into (0, 1) interval using the 

following two steps: 

Step (i):              /y y a b a                        (3.5) 

Step (ii):    Pr ( ( 1) 0.5) /scaled y n n   ;                  (3.6) 

where y is precipitation data, a is minimum value of y, b is maximum value of y, n is 

sample size and Prscaled has scaled precipitation data into (0,1).   

To relate the conditional expectation function ( / )E y x for multivariate predictors, beta 

regression assumes a predictor-predictand relationship given by     

     
1

( )
k

t ti i

i

g x 


         (3.7) 

     
1( ,......., ); 1,....,ti t tkx x x t n         (3.8) 

            
1( ,........ ) ( )T k

i k            (3.9) 

where βi is a vector of unknown regression parameters and xti are observations of k 

covariates (k < n). g (.) is strictly monotonic and invertible link function that maps (0, 1) 

into .  Many types of link functions are possible here (e.g. probit, logit, log-log). Logit 

transformation is used for this work following Ferrari and Cribari-Neto (2004). 

Maximum likelihood estimation (MLE) is used to estimate β.  

One of the major challenges of downscaling methods is generation of precipitation data 

outside of the observed range. A perturbation technique is used with stochastic 
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precipitation simulations and enhances the generation of extreme precipitation following 

King et al., (2015). The following equation is used for perturbation:     

    , , 1j j

ppt t i ppt ppt t i ppt t iy x z      ; 1,2,....t n     (3.10) 

where 
,

j

ppt t iy 
is the perturbed precipitation value for t+i th day in jth location, 

,

j

ppt t ix 
 is 

precipitation value for t+i th day in jth location and t is number of days and 
t iz 

 comes 

from two parameters log-normal distribution (King et al., 2015). 
ppt  value varies in 

between 0 to 1 (0 means data series are totally perturbed and 1 means no perturbation in 

the results) and larger value of 
ppt is reasonable to preserve spatial correlation. It has 

been found that 
ppt =0.9 can adequately preserve spatial correlation and other statistics 

(i.e. mean, variance) while it can still produce precipitation values outside of the observed 

range (King et al., 2015).  

KNN algorithm is used to resample a block of days and ranks them. A cumulative 

probability distribution is calculated based on a day’s rank. The next day precipitation is 

selected based on this probability distribution and a random number u (0, 1) which selects 

the closest day. For instance, precipitation of a day which is similar to present day 

precipitation has a higher probability of being selected and that helps to preserve 

temporal correlation of climate variables. After the resampling, the perturbation is used to 

reshuffle the precipitation values. This process can be repeated several times for 

generating alternative precipitation realizations. 
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3.2.3 Model Application 

An unsupervised K-means clustering method is used to identify historical daily 

precipitation states (1961–1990) in the river basin. The optimum numbers of clusters or 

precipitation states are obtained from cluster internal validity tests e.g. Connectivity 

measure, Silhouette index and Dunn index and Davis–Bouldin index (Brock et al., 2008). 

Each validity index has different criteria for identification of an optimum number of 

clusters. For an optimum number of clusters, connectivity index value should be 

minimized where Silhouette index, Davis–Bouldin index and Dunn index value should be 

maximized. All four indices are tested for a number of clusters varying from 2 to 10          

( Figure 3.4). Apart from cluster validity index there is a hydrological aspect in selecting 

number of precipitation states or optimum number of clusters (Kannan and Ghosh, 2010). 

Table 3.2 shows cluster centroids calculated using k-means clustering technique for 

clusters varying from 2 to 4. It is found that the dry condition states (low cluster centroid 

value) are well separated from the other states in all clusters (Table 3.2). To preserve the 

daily temporal correlational among predictor (large scale global climate variable) and 

predictand (precipitation) dry state condition need to be identified. Hence, the number of 

clusters exceeding 2 is considered following Kannan and Ghosh (2010). Cluster validity 

indices show that the optimal number of clusters should be greater than 2 where Davis–

Bouldin index indicates 3 clusters as the optimal number. After the cluster validity 

measure analysis and consideration of other hydrologic issues, 3 clusters are selected to 

be used in this study. These clusters divide precipitation states into ‘‘almost dry”, 

‘‘medium” and ‘‘high,” based on precipitation amount stored in the cluster centroid. 
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Daily precipitation amount divided into different clusters provides more realistic 

prediction of precipitation states (Kannan and Ghosh, 2010). 

CART model is constructed to predict precipitation states in the river basin using 

principal components derived from NCEP/NCAR predictor data and historical daily 

precipitation states obtained from the K-means clustering. CART prunes a classification 

tree conditioned to daily precipitation states. Principal components of NCEP/NCAR 

predictor variables for 30 years period (1961–1990) are used to prune the tree where the 

remaining 23 years of data (1991–2013) is used for validation of the model. It has been 

reported that the performance of classification tree was acceptable using NCEP/NCAR 

data with a lag-1 precipitation state (Kannan and Ghosh, 2010). The following 

relationship is used for building the CART model: 

     1 1{ , , }t t t ts f p p s        (3.11) 

where ts  is precipitation state, tp is set of climate variables on t th day and 1 1/t tp s   is 

precipitation state/ set of climate variables on (t-1)th day.  

Therefore, CART model build in this study used principal components of NCEP/NCAR 

predictor variables of the current day and the previous day with lag-1 precipitation state. 

BR model constructs a featured linear space based on identified daily precipitation states 

for the daily multisite precipitation generation. The linear space contains standardized 

and dimensionally reduced NCEP/NCAR predictors and corresponding daily observed 

precipitation data for 30 years period (1961–1990). For BR model validation, the 
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remaining 23 years (1991 to 2013) of standardized and dimensionally reduced 

NCEP/NCAR predictors are used conditioned to the precipitation states. 

 

 Figure 3.4 Cluster validity measures (after Mandal et al., 2016c). 

Table 3.2 Cluster centroid calculated from K-means clustering (after Mandal et al., 

2016c). 

 

No. of 

clusters 
Cluster centroids 

2 
3.08 3.04 3.47 3.20 2.12 2.47 2.09 2.60 2.45 3.21 

27.71 27.82 33.43 31.83 20.06 25.36 20.05 24.96 24.96 29.57 

3 

1.92 1.87 2.10 1.94 1.31 1.48 1.29 1.60 1.48 1.97 

16.40 16.56 19.33 18.07 11.77 14.24 11.69 14.30 14.04 17.49 

41.43 41.19 50.64 48.80 29.58 39.00 29.66 38.09 38.29 44.08 

4 

1.19 1.14 1.29 1.19 0.79 0.88 0.77 0.98 0.89 1.21 

10.61 10.64 12.18 11.28 7.472 8.86 7.38 9.09 8.71 11.22 

24.3 24.57 29.11 27.53 17.62 21.84 17.58 21.57 21.50 26.02 

48.02 47.55 59.07 57.29 34.66 46.06 34.76 44.84 45.28 50.99 
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In the context of GCM data downscaling and model performance test using GCM 

outputs, standardized and dimensionally reduced historical (1983–2005) predictors from 

the CanESM2 are downscaled and compared with daily observed data for the same 

period. The proposed BR model simulated output is compared with the multisite non-

parametric kernel regression (KR) model (Kannan and Ghosh, 2013). The kernel 

regression model has been used for generating multisite precipitation in the Mahanadi 

river basin, India. This model combines K-means, bias-correction, PCA, CART and 

kernel regression to generate synthetic precipitation. Simulation results from the BR 

model without rainfall state conditioning (BRWS) is also compared with the proposed 

BR model results in order to better understand the role of rainfall state in the down- 

scaling process. The comparison details and advantage of the BR model are discussed in 

the next section. A brief description of models used in this study with their acronyms is 

listed in Table 3.3. 

The objective is to demonstrate the efficacy of the proposed multisite BR model. Using 

BR model, 30 independent realizations are generated for the validation period (1991–

2013). The present downscaling method is also applied to GCM (CanESM2) simulated 

standardized predictor data for a future time (2036–2065) periods. 

Proposed BR model performance evaluation is based on the reproduction of historical 

statistics such as (1) temporal mean and standard deviation, (2) seasonal total 

precipitation (3) temporal and spatial cross correlation, and (4) preservation of quantiles. 

Results from different downscaling approaches such as BR, BRWS and KR are evaluated 

for spatial and temporal variation of precipitation over the river basin. 
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Table 3.3 Brief description of models used for comparison (after Mandal et al., 2016c). 

 

Acronym Description 

BR Beta regression conditioned to precipitation states 

BRWS 

 

    Beta regression not conditioned to precipitation states 

 

KR    Kernel regression  conditioned to precipitation states 

 

3.2.3.1 Model Validation  

3.2.3.1.1 Comparison of Statistical Characteristics 

The statistical characteristics (such as mean and standard deviation) from BR, BRWS and 

KR model applications are shown in Table 3.4 and they are compared with observed 

precipitation for the validation period (1991–2013) at ten downscaling locations. Student 

t-test is conducted to check if the means of model simulated precipitation series at 

different stations similar to those of the observed data. The hypothesis is stated as ‘‘H0: 

means of two series are the same” at 5% significance level. Results from the t-test are 

presented in  

Table 3.5. It can be seen that the BR model can generate precipitation time series similar 

to observed precipitation at different stations except for two locations: GLD and WOL. 

The BRWS and KR model results show mixed outcomes at a 5% significance level. 

3.2.3.1.2 Basin Average Annual and Monthly Precipitation 

Streamflow of the Campbell River is affected by snowmelt and rain. Peak streamflow is 

observed in spring and fall while the low flows are usually experienced during the 
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summer and winter (Zwiers et al., 2011). Hence, annual or seasonal changes in 

precipitation (snow/rain) will affect streamflow in the river. A comparison of the annual 

and monthly variability of basin average precipitation (50th percentile estimates) 

simulated from different models for the validation period are presented in this section. 

Figure 3.5 (a) and (b) compares annual and mean monthly precipitation generated by BR, 

BRWS and KR models in the river basin for a 23 year time period (1991–2013). Figure 

3.5 (c) and (d) presents the correlation coefficient between basin average annual and 

monthly precipitation simulated by different downscaling models and observed 

precipitation for the validation time period (1991 to 2013). 

Table 3.4 Mean and standard deviation for observed and simulated precipitation (mm) 

series (after Mandal et al., 2016c). 

 
Downscaling Location 

 ELK ERC GLD HEB JHT QIN QSM SAM SCA WOL 

 Mean 

Observed 6.01 5.91 7.29 7 4.56 5.45 4.53 5.5 5.47 6.31 

BR 5.4 7.2 7.37 6.65 3.95 3.49 3.94 4.27 4. 7.16 

BRWS 3.2 5.52 6.49 9.79 6.23 6.58 6.33 6.51 6.96 5.97 

KR 9.00 9.08 10.50 9.77 6.02 7.71 6.00 7.69 7.49 9.61 

 Standard Deviation 

Observed 10.22 10.22 12.7 12.4 8.19 9.84 8.20 9.63 9.79 10.81 

BR 10.58 11.65 10.5 12.8 7.89 9.62 7.63 10.02 8.8 9.8 

BRWS 8.40 7.28 9.02 9.36 4.94 8.77 7.94 8.75 9.26 7.99 

KR 12.9 13.02 15.76 14.93 9.26 11.67 9.25 11.47 11.45 13.87 
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Table 3.5 Hypothesis test results for testing mean of observed and simulated 

precipitation series (after Mandal et al., 2016c). 

 

 
Student’s t-test result for acceptance/ rejection of the null hypothesis at 5% confidence 

Station KR BRWS BR 

ELK Reject Do not Reject Do not Reject 

ERC Reject Do not Reject Do not Reject 

GLD Reject Do not Reject Reject 

HEB Do not Reject Do not Reject Do not Reject 

JHT Do not Reject Do not Reject Do not Reject 

QIN Do not Reject  Reject Do not Reject 

QSM Do not Reject  Reject Do not Reject 

SAM Do not Reject Reject Do not Reject 

SCA Do not Reject Reject Do not Reject 

WOL Reject Do not Reject Reject 

 

 

Figure 3.5 (a) Annual and (b) monthly mean precipitation, spatially averaged over the 

Campbell River basin. The corresponding temporal correlation coefficients for different 

downscaling approaches are shown in (c and d) (after Mandal et al., 2016c). 
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BR model is simulated mean annual precipitation (basin average) series shows a high 

correlation (correlation coefficient of 0.88) with the observed precipitation, which means 

that the BR model can capture annual variability fairly well over the basin. For monthly 

basin average precipitation BR shows a satisfactory match with the observed series and 

obtained correlation coefficients is 0.83, where KR performs moderately well with a 

monthly correlation coefficient of 0.64. Overall beta regression based method 

outperforms all other models in terms of capturing annual and monthly variability. 

Figure 3.6 (a)–(c) compares cumulative distribution function (CDF) of basin-average 

simulated precipitation series generated from different downscaling methods with those 

obtained using observed rainfall series. Compare to KR and BRWS, the CDF computed 

from BR model simulated data shows minimum deviation from the CDF obtained using 

observed precipitation. CDF of basin average precipitation obtained from BR model 

using historical CanESM2 GCM predictors (1983–2005) data is shown in Figure 3.6 (d) 

together with CDF of the observed precipitation. It seems BR model fairly well 

represents basin average precipitation using GCM (CanESM2) predictors data (Tmax, 

Tmin, mslp, hus, u-wind and v-wind). Another important observation is that the BR 

model is capable of capturing the percent of dry days (precipitation ≤ 1 mm/day) 

adequately. Using the BR, percent of dry days in the river basin calculated from 

simulated precipitation data is 42% for validation period, almost equal to actual observed 

dry day percent (Figure 3.6 (a)). Although, KR performs well in capturing percent of dry 

day (42%) but it has an upward shift which refers a decreased frequency of precipitation 

events from actual. Percent of dry days calculated from the CanESM2 (48%) is also 
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acceptable when compared to observed dry day percent (Figure 3.6 (d)). However, BR 

model ability to capture extreme precipitation (maximum) is very poor. 

 

Figure 3.6 (a–c) CDF of basin average precipitation obtained from different downscaling 

methods using reanalysis data (1991–2013). (d) CDF of basin average precipitation 

obtained from BR model using CanESM2 data (1983–2005)  (after Mandal et al., 2016c). 

3.2.3.1.3 Basin Average Wet/Dry Spell Length and Seasonal 
Precipitation Amounts 

Wet and dry spell lengths are very important in water resource planning and management 

especially where the reservoir needs a certain water storage level for hydropower 

generation. Hence, reproduction of wet/dry spell lengths along with seasonal precipitation 

is a very important aspect of the downscaling process. Although there are many 
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definitions presented in the literature for wet/dry spell (WS/DS) length, the following 

definition for WS/DS from WCRP (2009) is used for this study. A WS (DS) defined as a 

maximum number of consecutive days with precipitation greater than (less or equal to) 1 

mm.  

Table 3.6 shows the annual average total seasonal precipitation and compares 5th, 50th  

and 95th percentile for both observed and downscaled precipitation. It is found that 

overall performance of BR model is better compared to KR in terms of capturing total 

seasonal precipitation. KR performs well in spring and summer period. However, KR 

simulates the high amount of precipitation in winter and fall compare to historical 

precipitation which is not acceptable for water resource planning and management.  

Table 3.7 describes annual average wet and dry spell lengths from simulated 

precipitation. BR and KR perform similar in reproducing dry spell length, but BR 

performs well in capturing wet spell length. It seems from both Table (Table 3.6 and 3.7), 

BR model also performs satisfactorily in capturing seasonal precipitation (except fall) 

and WS/DS length using CanESM2 predictors data. 

3.2.3.1.4 Temporal variability and spatial dependence 

Assessment of temporal and spatial variability of precipitation is high importance for 

water resource management (municipal water supply, irrigation scheduling, hydropower 

generation, etc.). A better understanding of rainfall variability (temporal and spatial) is 

needed to better manage impacts of natural disasters (e.g. floods, droughts) in a changing 

climate. Therefore, the downscaling model should capture the temporal and spatial 

variability of precipitation accurately. Hence, the performance of all downscaling 
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methods in capturing temporal and spatial dependence of simulated precipitation series is 

examined.  

Table 3.6 Observed and downscaled annual average seasonal total precipitation (5th, 50th 

(median) and 95th percentile) for testing period (1991-2013) (after Mandal et al., 2016c). 

 

 Rainfall amount (mm)  

 

 

Simulated percentile estimate 

 

Percentage change 

in median value 

 

Season 

 

Observed 5th percentile Median 95th Percentile Rainfall amount 

Model using Reanalysis data for 1991-2013 

Model: BR 

Winter 253.61 240.32 284.92 310.25 12.34 

Spring 409.33 354.23 376.86 404.21 -7 

Summer 263.10 224.5 267.06 289.36 1.5 

Fall 188.39 180.5 217.37 266.52 15.3 

Model: BRWS 

Winter 253.61 358.23 410.55 425.36 61.8 

Spring 409.33 554.23 605.11 630.23 47.8 

Summer 263.10 359.36 404.73 456.32 53.4 

Fall 188.39 219.32 237.31 265.36 25.9 

Model: KR 

Winter 253.61 290.32 355.63 420.32 40.22 

Spring 409.33 410.35 494.11 550.35 20.71 

Summer 263.10 265.36 290.90 310.85 10.56 

Fall 188.39 289.36 308.43 340.25 63.72 

 

Downscaled precipitation data using current climate data of GCM (CanESM2) for 1983 - 2005 

Model : BR 

 

Winter 204.65 178.36 195.62 230.23 -4.41 

Spring 304.21 256.36 290.23 331.65 -4.59 

Summer 257.99 240.36 278.36 339.36 7.89 

Fall 129.99 155.36 160.36 225.36 23.35 



57 

 

Table 3.7 Annual averaged dry spell length and wet spell length of observed and 

downscaled precipitation (after Mandal et al., 2016c). 

Obs BR BRWS KR 

Model: using Reanalysis data for 1991-2013 

Dry spell length 

21 19 10 18 

Wet spell length 

23 20 14 37 

Obs   BR 

Model: using current climate data of  GCM (CanESM2) for 1983-2005 

Dry spell length 

              26 
                                                    23 

Wet spell length 

              28                                                    26 

Table 3.8 provides the correlation coefficient between model simulated precipitation time 

series and observed precipitation at all ten downscaling locations for the validation 

period. From the results, it can be concluded that the overall performance of BR model 

conditioned to precipitation states is moderately better when compared to other methods. 

Figure 3.7 shows the scatter plot of interstation correlation coefficients computed from 

model-simulated daily precipitation series and observed precipitation for all station pairs 

using different modeling approaches. From the plot in Figure 3.7, it can be concluded that 

the BR model captures spatial correlation better than the KR. Artificial correlation has 

been added during the simulation by the conditioned rainfall states which can lead the BR 

model to overestimation of precipitation. Hence, the rainfall states should be used 
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cautiously when the spatial correlation is of primary interest. The BRWS model fails to 

preserve the spatial correlation between data series. 

Table 3.8 Correlation coefficients obtained for observed and simulated precipitation 

series at different stations in the Campbell River basin, BC, Canada (Validation period: 

1991– 2013) (after Mandal et al., 2016c). 

 

Figure 3.7 Interstation correlation coefficients for different downscaling approaches 

(after Mandal et al., 2016c). 

 Correlation coefficient from Model generated precipitation series 

Stations BR BRWS KR 

ELK 0.6999 0.6160 0.5697 

ERC 0.6804 0.5984 0.4737 

GLD 0.7086 0.6321 0.5389 

HEB 0.6925 0.6301 0.5674 

JHT 0.6312 0.5788 0.5282 

QIN 0.6842 0.6058 0.5678 

QSM 0.6299 0.5831 0.4685 

SAM 0.6997 0.6155 0.6075 

SCA 0.6858 0.6107 0.4480 

WOL 0.6906 0.6131 0.3938 
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3.2.3.1.5 Seasonal Wet Days Characteristics 

Changes in wet day precipitation may lead to extreme hydrological events such as floods 

and droughts. Investigation of wet day characteristics is important for water resource 

planning and management. Accurate reproduction of wet days is one of the important 

aspects of statistical downscaling. Although there are different criteria used in the 

literature to assess the wet days (WD), this work follows the definition of WD from Gaur 

and Simonovic (2013).  

 

Figure 3.8  Characteristics of monthly wet day extremes for observed and simulated 

precipitation at the JHT station. (a and b) Obtained from NCEP/NCAR (time period: 

1991– 2013). (c and d) Obtained from CanESM2 (time period: 1983–2005) (after Mandal 

et al., 2016c). 
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According to Gaur and Simonovic (2013) if the amount of precipitation in a day is 

greater than 1 mm, then it is considerd as a wet day. Figure 3.8 represents 5th and 95th 

percentile estimates of downscaled monthly wet days for JHT station (considered as the 

only location to shorten the manuscript length). Figure 3.8 (a) and (b) shows WD 

characteristics obtained from the simulated reanalysis monthly precipitation data where 

Figure 3.8 (c) and (d) shows WD characteristics of downscaled data obtained using the 

historical CanESM2 (1983–2005) monthly data. From Figure 3.8 it can be observed that 

the BR model can generate values beyond extremes, but sometimes it underestimates 

extremes precipitation. This may be caused by scaling the response variable 

(precipitation) to (0, 1) interval. 

3.2.3.1.6 Adding Value to GCM Projections 

Future climate change projections using GCMs simulation are very sensitive due to the 

existence of historical climate bias (Liang et al., 2008). If a GCM reasonably simulates 

present and historical climate then the credibility of future climate projection using the 

same GCM simulation will be higher. This can be possible if a downscaling model adds 

value to historical and present GCM climate variables. An experiment is conducted to 

explore whether BR model adds value to GCMs historical climate change following 

Racherla et al.,(2012). The steps we followed for this experiment are:  

Step-I: First CanESM2 simulated historical precipitation data divided into two-time slices 

e.g. 1983–1994 (T1 hereafter) and 1995–2005 (T2 hereafter). 

Step-II: ANUSPLIN and BR simulated precipitation data also divided into same time 

slices following step-I.  
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Step-III: Precipitation biases are calculated by subtracting daily historical precipitation 

data (ANUSPLIN) from CanESM2/BR simulated precipitation data. These biases are 

calculated for T1 and T2 time period and converted to seasonal mean precipitation biases 

shown in Figure 3.9.  

Step-IV: Historical climate change (T2 minus T1) is calculated using above mentioned 

three data sets (ANUSPLIN, CanESM2 and BR simulated precipitation) and presented in 

Figure 3.10. DJF, MAM, JJA and SON represent winter, spring, summer and fall season 

respectively. 

 

Figure 3.9 Seasonal mean (T1/T2 time periods) biases of daily averaged precipitation 

(mm/day; CanESM2/BR simulated precipitation minus ANUSPLIN precipitation) at 

different downscaling locations (after Mandal et al., 2016c). 
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Figure 3.10 Seasonal mean daily average precipitation changes (mm/day; T2 minus T1 

time periods) (after Mandal et al., 2016c). 

It has been found that a wet bias is present in CanESM2 T1 time period (Figure 3.9 (a)) 

especially in fall and winter season where a dry bias has been found in T2 time period 

except spring season (Figure 3.9 (b)). The biases are reduced in BR simulated 

precipitation in both time periods except GLD station (Figure 3.9 (c) and (d)). 

Downscaled changes in seasonal precipitation between T1 and T2 time periods are 

presented in Figure 3.10. The most visible observed positive changes in precipitation 

have found in fall and winter, where a small decreasing trend found in summer time 

(Figure 3.10(a)). Evidently observed changes are not reproduced well in CanESM2 

except summer (Figure 3.10 (b)). However, BR model fairly reproduces observed 

changes except for winter season (Figure 3.10 (c)). From this experiment, it can be 

concluded that GCMs historical bias can be reduced using BR model but not for all 

seasons and all stations. This limitation may be overcome if we consider different GCMs 

for the same experiment. 
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3.2.4 Future Precipitation Projection using GCM Simulation 

The BR model applied with standardized predictor data pertaining to RCP 2.6, RCP 4.5 

and RCP 8.5 scenarios of CanESM2 where RCP 2.6 represents low carbon emission 

scenario; RCP 4.5 referred as intermediate carbon emission scenario and RCP 8.5 is high 

emission scenario. To investigate the impact of future climate change on precipitation 

under different emission scenarios, a future time slice (2036–2065) is selected. 

Figure 3.11 represents CDF of daily precipitation at four downscaling locations. These 

four downscaling stations are selected based on their geographical location. JHT located 

near John hart dam where QIN and SCA are located near Strathcona dam. All of these 

three stations are located in downstream of the Campbell River basin where WOL is in 

upstream of the river. The CDFs obtained for three scenarios are similar to each other and 

almost match with the CDF of observed precipitation (1991–2013). However, a 

downward shift pertaining to all three scenarios can be observed for JHT which indicates 

an increased frequency of high precipitation events during 2036–2065 compared to 

1991– 2013 (Figure 3.11 (a)). JHT station is located in downstream of the Campbell 

River and surrounded by forest. According to Sheil and Murdiyarso (2009) winds travel 

through forests can produce more than twice times precipitation compare to when they 

travel over the land which can be the reason of increased precipitation events at JHT. 

Although the results obtained from a single GCM output using BR are compared here. 

More variation can be expected if the present analysis is performed with multiple GCMs 

(Werner, 2011). 
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Figure 3.11 CDF of simulated future (2036–2065) daily precipitation using CanESM2 

predictor data under three emission scenarios (RCP 2.6, RCP 4.5 and RCP8.5) at 

different locations compare with observed precipitation (1991–2013) (after Mandal et al., 

2016c). 

3.2.4.1 Projected Future Seasonal Precipitation Changes during 
2036– 2065 

Table 3.9  and Table 3.10 provide information on estimated changes in number of wet 

days and seasonal precipitation amounts during 2036–2065. Percentage change in the 

median of any scenario is estimated with respect to observed data (1991–2013). For all 

three scenarios, summer precipitation amounts are going to decrease along with wet days. 

Maximum 58% can be decreased in summer precipitation amount where wet days can be 

reduced up to 18%. The changes detected for all three scenarios show precipitation 

amount in the fall is going to increase with wet days. For RCP 8.5, the increase is 22% in 
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precipitation and 13% in wet days during winter time. For RCP 2.6 and RCP 4.5 both 

project a small amount of precipitation increase in spring time but the wet day increases 

26% and 21% respectively. 

Table 3.9 Seasonal changes in numbers of wet days during 2036-2065 (after Mandal et 

al., 2016c). 

 Scenario 

 
Observed 

(1991-2013) 
RCP 2.6 RCP 4.5 RCP 8.5 

Season 

Median 

estimate of 

number of 

wet days 

Median 

estimate 

of number 

of wet 

days 

Percentage 

change in 

median 

estimate 

Median 

estimate 

of 

number 

of wet 

days 

Percentage 

change in 

median 

estimate 

Median 

estimate of 

number of 

wet days 

Percentage 

change in 

median 

estimate 

Winter 23 22 -4 26 13 26 13 

Spring 19 24 26 23 21 24 26 

Summer 16 15 -6 13 -18 15 -6 

Fall 15 18 20 24 60 23 53 

 

The description and validation of a new downscaling method based on beta regression are 

discussed in the section 3.2.3.  As discussed before there are multiple significant sources 

of uncertainty exists in the downscaling process, it is essential to quantify all primary 

sources of uncertainty.   The following section provides a method to quantify different 

sources uncertainty in precipitation projection under climate change. 
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Table 3.10 Seasonal changes in precipitation amount during 2036-2065 (after Mandal et 

al., 2016c). 

 Scenario 

 
Observed 

(1991-2013) 
RCP 2.6 RCP 4.5 RCP 8.5 

Season 

Median 

estimate of 

mean 

precipitation 

(mm) 

Median 

estimate of 

mean 

precipitation 

(mm) 

Percentage 

change in 

median 

estimate 

Median 

estimate of 

mean 

precipitation 

(mm) 

Percentage 

change in 

median 

estimate 

Median 

estimate of 

mean 

precipitation 

(mm) 

Percentage 

change in 

median 

estimate 

Winter 253 260 2 289 13 311 22 

Spring 409 425 3 437 6 485 18 

Summer 263 116 -55 110 -58 108 -58 

Fall 188 236 25 252 33 267 41 
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3.3 Uncertainty in Precipitation Projections 

Based on: Sohom Mandal, Patrick Breach and Slobodan Simonovic (2016), 

"Uncertainty in precipitation projection under changing climate conditions: A 

regional case study", American Journal of Climate Change, 5, 116-132. DOI: 

10.4236/ajcc.2016.51012 

It is necessary to quantify the uncertainty involved in the hydrologic impact assessment 

analysis, in order to provide useful results for decision-making, to account for climate 

change. Spatial downscaling translates large scale climate variables simulated by GCMs 

to a regional scale. A generalized climate change impact assessment process framework 

is outlined in Figure 3.12 (a). At the regional scale, the projection of hydro-climatic 

variables under changing climatic conditions is burdened with a considerable amount of 

uncertainty originating from several sources. Uncertainty may arise from: (a) inter-model 

variability due to different model structure between GCMs; (b) inter-scenario variability 

due to different type of emission scenarios; (c) intra-model variability due to the model 

parameter selection; and (d) the choice of downscaling model (Figure 3.12(a)). Minville 

et al., (2008) observed that projection of precipitation is most sensitive to the choice of 

GCM where Wilby and Harris (2006) found out that GHG emission scenarios also caused 

uncertainty in precipitation projections under changing climatic conditions. However, 

according to Prudhomme and Davies (2008a) downscaling is a significant source of 

uncertainty along with the uncertainty due to the choice of GCM. There are several 

climate impact studies conducted on the west coast of Canada (Werner, 2011; Bürger et 

al., 2012) but future precipitation projections considering the propagation of uncertainty 
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(GCMs uncertainty, GHG emission scenarios uncertainty and downscaling uncertainty) 

are rarely performed. 

 

Figure 3.12 (a) Generalized framework of climate change impact assessment process; (b) 

flow chart presenting the assessment process followed in this study (after Mandal et al., 

2016b). 

Werner (2011) conducted a study to project future monthly precipitation in three BC 

watersheds (Peace, Campbell and Upper Columbia) with eight GCMs under three 

emission scenarios (B1, A1B and A2). This study found that the uncertainty in 

precipitation projection due to the choice of GCM to be larger than that due to the choice 

of emission scenarios for different temporal scales. However, this study did not assess the 

uncertainty due to the choice of downscaling method. Bürger et al., (2012) looked at 

changes in precipitation extremes in various climatic zones in British Columbia with six 

GCMs from the Coupled Model Inter-comparison Project (CMIP3) under three emission 

scenarios (B1, A1B and A2). Eight downscaling methods were used to compare 
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downscaling uncertainty. This investigation concludes that the results are more sensitive 

to the choice of downscaling methods followed by choice of GCM where the emission 

scenarios have a minor influence. Although this study addressed different sources of 

uncertainty, GCM data is now available from the CMIP5 and the conclusion is 

conflicting with other regional climate impact studies (Wilby and Harris, 2006; Wilby et 

al., 2006). From the past studies, it has been found (a) inconsistency in the conclusions 

and (b) that sometimes all sources of uncertainty are not included in the climate change 

impact analyses. Ensuring that all sources of uncertainty are included during 

quantification of climate change impacts on the regional hydrology is essential (Kay et 

al., 2009). 

It this section, an investigation is carried out to address the three primary sources of 

uncertainty attributed to the selection of GCM, emission scenario, and downscaling 

model for the assessment of the climate change impacts on total monthly precipitation in 

the Campbell River basin, BC, Canada (Figure 3.1). This investigation includes four 

GCMs, three emission scenarios, and six downscaling methods. GCM simulations from 

Coupled Model Inter-Comparison Phase 5 (CMIP5) are used in this study (IPCC, 2013). 

The list of GCMs is shown in Table 3.11. These four GCMs are selected based on data 

availability for the six downscaling methods (described in section 3.3.1). Four 

Representative Concentration Pathway (RCP) emission scenarios are recommended by 

the Fifth Assessment Report (AR5) of Intergovernmental Panel on Climate Change 

(IPCC) (IPCC, 2013). Three of these are used in this research (RCP 2.6, RCP 4.5 and 

RCP 8.5) that cover the range of emission scenarios. RCP 2.6 represents lower carbon 

emission scenario, RCP 4.5 and RCP 6.0 represent intermediate carbon emission 
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scenarios and RCP 8.5 assumes high and unabated carbon emission by the end of 2100. 

Six Downscaling methods applied in this study are as follows: (i) bias-corrected spatial 

disaggregation (BCSD) (Wood et al., 2004; Bürger et al., 2012), (ii) bias correction 

constructed analogues with quantile mapping reordering (BCCAQ) (Werner and Cannon, 

2015), (iii) delta change method coupled with a non-parametric K-nearest neighbor 

weather generator (King et al., 2014), (iv) delta change method coupled with maximum 

entropy bootstrap based weather generator (Srivastav and Simonovic, 2014), (v) non-

parametric statistical downscaling model based on the kernel regression (Kannan and 

Ghosh, 2013), and (vi) beta regression based statistical downscaling model (disused 

above). BCSD and BCAAQ were successfully applied across Canada in the past, 

however these methods cannot explicitly capture changes in daily extremes (Werner and 

Cannon, 2015) where the other four downscaling methods can capture changes in daily 

extremes and can produce extreme values outside of the historical boundaries (Kannan 

and Ghosh, 2013; King et al., 2014; Srivastav and Simonovic, 2014; Mandal et al., 

2016d). The above mentioned six downscaling methods are used to quantify the amount 

of uncertainty arising from different types of statistical downscaling methods and 

compare it with other sources of uncertainties. The steps followed for this study are 

shown in Figure 3.12(b).    

For this assessment, historical daily precipitation (prep) data for a 25 year span (1976 to 

2005) was extracted from the ANUSPLIN data set on a 0.1 º x 0.1 º grid (Hutchinson and 

Xu, 2013). The ANUSPLIN data set is developed by applying a “thin-plate smoothing 

spline” algorithm to observed data from Environment Canada. Historical precipitation 

data is extracted for ten locations covering the entire Campbell River basin (Table 3.1). 
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Daily maximum and minimum air surface temperature (Tmax and Tmin), mean sea level 

pressure (mslp), specific humidity (hus) at 500 hPa, zonal (u-wind) and meridional (v-

wind) wind are considered as predictor variables in this study following Kannan and 

Ghosh (2013). These climate variables are extracted from four GCMs ( 

Table 3.11) for a period of 25 years spanning 1976-2005, as well as for a near future 

period (2036 to 2065) and a far future period (2066 to 2095) under RCP 2.6, RCP 4.5 and 

RCP 8.5 emission scenarios. Details with regards to the use of these climate variables for 

the regression-based statistical downscaling models are given in next section. 

The ANUSPLIN and GCM data sets used in this study have different spatial resolutions. 

For climate change impact assessment at the catchment scale, all the data sets are 

spatially interpolated to the ten locations of interest (Table 3.1) using the inverse distance 

square method (Shepard, 1968).     

 

Table 3.11 List of GCMs (after Mandal et al., 2016b) 

GCM model Centre Name 
GCM resolution 

(Lon. Vs Lat.) 

CanESM2 

 

Canadian Centre for Climate Modeling and Analysis 

 

2.8 x 2.8 

CCSM4 

 

National Center of Atmospheric Research, USA 

 

1.25 x 0.94 

CSIRO-Mk3-6-0 

 

Australian Commonwealth Scientific and Industrial 

Research Organization in collaboration with the 

Queensland Climate Change Centre of Excellence 

 

1.8 x 1.8 

GFDL-ESM2G 
National Oceanic and Atmospheric Administration's 

Geophysical Fluid Dynamic Laboratory, USA 
2.5 x 2.0 
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3.3.1 Precipitation Projections using Multiple Downscaling 
Techniques 

Two gridded statistical downscaling methods from the Pacific Climate Impacts 

Consortium (PCIC) (Pacific Climate Impacts Consortium, 2014), two weather generators 

(based on K-nearest neighbor and maximum entropy bootstrap) and two regression based 

statistical downscaling methods (kernel regression and beta regression) are used for 

future precipitation projection. The details of these methods are given below. 

3.3.1.1 Gridded downscaling methods 

Bias-corrected spatial disaggregation (BCSD) (Wood et al., 2004; Bürger et al., 2012) 

and bias correction constructed analogues with quantile mapping reordering (BCCAQ) 

(Werner and Cannon, 2015) are gridded statistical downscaling methods that can 

effectively produce plausible hydro-climate variables from the GCM output with 

computational efficiency. The BCSD downscaling method is performed in three steps. 

First, monthly GCM simulated precipitation data is corrected for bias using quantile 

mapping. Next, bias corrected monthly precipitation is downscaled by interpolating 

“monthly anomalies” from the historical time period at each station. This step is called 

“local scaling” because simulated coarse gridded monthly precipitation data is multiplied 

by a monthly scaled factor at each local station. This step helps to remove long term bias 

between large-scale simulated precipitation and observed precipitation at a regional scale. 

The mathematical description of the “local scaling” process is as follows:   

     , ( , )
mod

mod

P
obs monP x t P x t

ds
P

mon

                 (3.12) 
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where mod ( , )P x t  is simulated large scaled mean monthly precipitation from station x at 

time t in months ‘mon’; mod ( , )P x t  is observed mean monthly precipitation;  ,dsP x t  is the 

monthly downscaled mean precipitation and ...
mon

 is the monthly mean precipitation 

calculated from gridded observed and historical GCM datasets. 

Finally, the daily time series is generated by temporal downscaling of monthly mean 

precipitation to daily using a stochastic resampling technique following Wood et al., 

(2002). BCCAQ is a hybrid method that combines bias correction constructed analogues 

(BCCA) and bias-corrected climate imprint (BCCI) where BCCI is referred as “inverse 

BCSD”. BCCA follows the same spatial aggregation and bias correction (quantile 

mapping) steps as BCSD but it includes spatial information from daily GCM anomalies  

(Werner and Cannon, 2015). Simulated daily future precipitation datasets using BCSD 

and BCCAQ downscaling techniques are extracted from the PCIC database (Ahmed et 

al., 2013). 

3.3.1.2 Weather Generators  

Development of future precipitation projections using a weather generator is divided into 

two steps: (i) scaling of future scaled climate variables and (ii) generation of synthetic 

future climate time series (Gaur and Simonovic, 2013). The delta change, or change 

factor methodology is used in this study for scaling climate variables to account for GCM 

simulated climate change. In the delta change method, change factors are calculated from 

historical and future GCM data. This change is then applied to the observed historical 

climate data to scale the historically observed climate variables to account for the 

projected changed between the historical and future GCM condition. Several types of 
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change factors (CF) can be applied at different temporal scales (monthly, seasonal or 

annual). They can use different mathematical formulations (additive or multiplicative) or 

can be applied based on number of change factors (single or multiple). Using only a 

single CF will not capture changes in event frequency calculation and antecedent 

conditions in the case of hydrologic modeling due to the importance of temporal 

sequencing of dry and wet days which remains unchanged (Anandhi et al., 2011). In the 

present study, we used 25 evenly spaced additive CFs across the precipitation distribution 

for scaling the precipitation data following Anandhi et al., (2011). 

After scaling the climate data, weather generators (WGs) are used for generating a 

synthetic time series. WGs can preserve statistical characteristics of input data as well as 

capture temporal and spatial correlation between climate variables at multiple sites. The 

two different WGs: (i) K-nearest neighbor (K-nn CAD V4) and (ii)   maximum entropy 

bootstrap (MBE), are used in this investigation. 

3.3.1.2.1 KnnCAD V4 

A non-parametric multisite weather generator named KnnCAD V4 (King et al., 2015) 

based on K-nearest neighbors (K-NN) is used in this study. The KnnCAD V4 is the 

updated version of KnnCAD V3 (Eum et al., 2010) which includes block resampling and 

perturbation. A detailed description of block resampling can be found in King et al., 

(2015). For perturbation the following equation is used: 

    , , 1j j

ppt t i ppt ppt t i ppt t iy x z      ; 1, 2,....i n     (3.13) 
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where t iz  comes from two parameters log-normal distribution; ,
j
ppt t ix   is reshuffled non-

zero precipitation value for t+i th day in jth location; ,
j
ppt t iy  is the perturbed precipitation 

value for t+i th day in jth location and t is current day. 
ppt  value varies in between 0 to 1 

(0 means data series are totally perturbed and 1 means no perturbation in the results) 

(King et al., 2015). This model can adequately reproduce statistical characteristic of 

historical climate variables as well as extrapolate historical extremes. 

3.3.1.2.2 Maximum Entropy Based Weather Generator 
(MEBWG) 

Srivastav and Simonovic (2014) developed a non-parametric multisite, multivariate 

maximum entropy based weather generator (MEBWG) for generating daily precipitation 

and minimum and maximum temperature. The three main steps involved in MBE are: (i) 

orthogonal transformation of daily climate variables at multiple sites to remove spatial 

correlation; (ii) use of maximum entropy bootstrap (MEB) to generate synthetic 

replicates of climate variables and (iii) inverse orthogonal transformation of synthetic 

climate variables to re-established spatial correlation. Principal component analysis is 

used for orthogonal transformation. The maximum entropy density is constructed using 

the following equations to satisfy ergodic theorem (mean preserving): 

   1 1 20.75 0.25m O O                           (3.14) 

   1 10.25 0.5 0.25k k k km O O O     ; 2,3,...., 1k t                  (3.15) 

   10.25 0.75t t tm O O                     (3.16) 

where tO is a rank matrix derived from first principal component and t is time 

step. This method can capture temporal and spatial dependency structures along with 
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other historical statistics (e.g. mean, standard deviation) in downscaled climate 

variables. The performance of MBEWG is free of modeling parameters, and it is 

computationally inexpensive.  

3.3.1.3 Regression Based Downscaling Methods 

Regression based methods are most commonly used for statistical downscaling. In this 

method a statistical relationship (linear or non-linear) is established between large scale 

climate variables simulated by GCMs (predictors) with observed local surface variable 

(predictand) which is then applied to future climate. For this assessment, two multivariate 

regression methods ( based on kernel regression and beta regression) are used in this 

study. 

3.3.1.3.1 Multivariate Kernel Regression Model 

A multisite multivariate non-parametric kernel regression (KR) based statistical 

downscaling method was proposed by Kannan and Ghosh (2013). This model projects 

precipitation conditioned on precipitation states. A non-parametric regression is a 

smoothing technique that projects the predictand using a set of predictor variables. 

Multiple sites can be included by applying weights to the other neighboring region 

predictand of the one desired. Multivariate kernel regression is used for calculating the 

conditional expectation of a random variable. In this study, kernel regression is used to 

capture a non-linear relationship between daily precipitation and other predictor 

variables. The conditional expectation of the kernel regression can be expressed as 

follows: 

   
( / )

( / ) ( )
( )x

yf y x
E Y X m X

f x
 


                  (3.17) 
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where Y is the predictand; X is principal component of the predictor variable; ( / )f y x is 

conditional probability density function (pdf) of Y given X=x and ( )xf x  is marginal pdf 

of X. 

The multivariate pdf in Eq. (3.17) is replaced by kernel density estimator and formulated 

as follows:  

    1

1

( )

( )

( )

n

h i i

i

h n

h i

i

K x X Y

m x

K x X















         (3.18) 

where ( )hm x  the expected is value Y for a condition of iX x ; and hK  is the kernel with 

bandwidth h. The method can efficiently capture extreme precipitation events as well as 

autocorrelations and spatial cross-correlation among downscaling sites.   

The multisite multivariate downscaling method based on beta regression (discussed in 

Section 3.2) also used in this assessment to study uncertainty in projected precipitation. 

The main objective of this study is to quantify sources of uncertainty and assess which 

one has a major influence on precipitation projections. Daily precipitation is projected 

using different downscaling models (BCSD, BCCAQ, KnnCad V4, MEBWG, KR and 

BR) at different locations over the river basin and results are compared at different 

temporal and spatial scales. The details are given below. 

3.3.2 Comparison and Quantification of Uncertainties 

The annual average total monthly precipitation is used to compare the different sources of 

uncertainty amongst the selection of GCM, DSM, and RCP scenario for the near (2036-
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2065) and the far future (2066-2095) time slices (Figure 3.13). Results for the three 

stations; JHT, SCA and WOL are shown in Figure 3.13(a-f).  

 

Figure 3.13 Boxplots showing projected annual average total monthly precipitation at 

three different stations in the Campbell River basin with historical (1976-2005) observed 

precipitation - comparison between two future time periods (after Mandal et al., 2016b). 
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WOL are located upstream of the river where SCA and JHT are located downstream near 

Strathcona dam and John hart reservoir respectively. On the contrary, these three stations 

have different elevation levels (Table 3.1) which may have an influence on the result. The 

dark black line in this figure represents historical annual average total monthly 

precipitation. To calculate historical annual average total monthly precipitation, we used 

30 years (1976 to 2005) of daily ANUSPLIN data. Figure 3.13 shows that the summer 

months (June, July and August) are typically drier in comparison to the other seasons 

(Fall, winter and spring) for all three stations. However, there is a potential for more 

extreme events in the spring (March, April and May) for all three stations. Although the 

median total monthly precipitation is higher for the winter months, there is still a 

potential for larger amounts of precipitation in the early spring, as indicated by the 

outliers in Figure 3.13. Figure 3.13 shows a significant variation in precipitation 

projections without clear identification of the sources of uncertainty. 

3.3.2.1 Quantification of Uncertainty 

To identify and quantify the sources of uncertainty, an uncertainty metric is calculated. 

This metric was chosen as it will allow for uncertainty to be disaggregated across the 

seasons. The uncertainty metric is used to gauge the amount of uncertainty associated 

with each step of the statistical downscaling process (i.e. choice of GCMs, RCP scenario 

and downscaling model). The calculation for each weather station and calendar month 

can be summarized by the following steps: 

Step- I: Calculate the total monthly precipitation by summing the precipitation 

into monthly bins, and taking the average for each calendar month, 𝑚 across all years 
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for the future downscaled precipitation (𝐹𝑖,𝑗,𝑘,𝑙,𝑚) for each GCM (i), DSM (𝑗) , RCP 

scenario (𝑘), and weather station (𝑙). 

Step-II: Follow the same procedure as described in previous step for observed 

historical precipitation to calculate monthly total historical precipitation (𝐻𝑙,𝑚) where 

m is month and 𝑙 is weather station  

Step-III: Take the ratio of the future downscaling to observed total monthly 

precipitation values   

   
, , , ,

, , , ,

,

i j k l m

i j k l m

l m

F
A

H
  

1,2..,4; 1,2..,6; 1,2,3

1,2...10; 1,2...12

i j k

l m

   

  
    (3.19) 

Step-IV: Calculate the range across the dimensions representing a selection step 

in the downscaling process:  

     , , , , , , , ,max minuncertainty i j k l m i j k l mi i
GCM A A                 (3.20)  

      , , , , , , , ,max minuncertainty i j k l m i j k l mj j
DSM A A                 (3.21) 

      , , , , , , , ,max minuncertainty i j k l m i j k l mk k
RCP A A                 (3.22) 

The resulting ranges in total monthly precipitation represent the uncertainty in results 

associated with the downscaling process due to the choice of a particular GCM, DSM, or 

RCP scenario. This method uses the range in total monthly precipitation as a metric for 

the amount of uncertainty and does not consider the distribution of total monthly 

precipitation attributed to the selection made in a level of the downscaling process. 
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In Figure 3.14 uncertainty is aggregated for each step of the downscaling process for each 

month in different future time periods. It can be observed that uncertainty in precipitation 

projections can mainly be attributed to the choice of DSMs compared to GCMs and RCPs 

throughout the year. A larger amount of uncertainty has been found in the late spring 

(May) and summer months (June, July and August) using different DSMs. Further 

disaggregation can show the level of uncertainty associated with a single choice of GCMs 

and DSMs for different RCPs and future time periods (Figure 3.15). From this, it is 

shown that the two regression based statistical downscaling methods (KR and BR) are 

attributed a larger portion of uncertainty in precipitation projections than the other 

methods. KR and BR model used six predictor climate variables which may influence the 

uncertain precipitation projection.   

The combined spatial and seasonal variations of uncertainty in the precipitation 

projections across the ten stations in the river basin are analyzed (Figure 3.16 - Figure 

3.18). GCMs were shown to be associated with larger amounts of uncertainty in summer 

precipitation for both time periods (Figure 3.16 (e-f)) along with spring precipitation for 

the near future (Figure 3.16 (c)). The choice of RCP was only associated with a small 

amount of uncertainty in the far future (2066 to 2095) summer months (Figure 3.17(f)).  

Another important observation is that the uncertainty in downstream precipitation is 

higher than that of the stations upstream except for the winter period (Figure 3.16).  This 

may be caused because of basin topography because stations located in the upstream have 

higher elevation compare to downstream stations and three reservoirs (Strathcona, Ladore 

and John Hart) are located in the downstream of the Campbell River. Compared to GCMs 
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and RCPs, the choice of DSM shows maximum uncertainty in precipitation projections 

across all seasons in the basin (Figure 3.18). 

 

Figure 3.14 Heat maps showing comparison of different sources of uncertainty metrics 

for two future time periods (after Mandal et al., 2016b). 

 

Figure 3.15 Heat maps showing GCMs and DSMs uncertainty metrics for different 

emission scenarios - comparison between two future time periods (after Mandal et al., 

2016b). 
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Figure 3.16 Seasonal variation of GCMs uncertainty metric in the Campbell River basin 

for two future time periods (a-h). (i) Location of the downscaling stations (after Mandal 

et al., 2016b). 
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Figure 3.17 Seasonal variation of RCPs uncertainty metric in the Campbell River basin 

for two future time periods (a-h). (i) Location of the downscaling stations (after Mandal 

et al., 2016b). 
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Figure 3.18 Seasonal variation of DSMs uncertainty metric in the Campbell River basin 

for two future time periods (a-h). (i) Location of the downscaling stations (after Mandal 

et al., 2016b). 
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3.4 Summary   

In this chapter, a new multisite statistical downscaling model is proposed for generating 

precipitation for a river basin using large scale climate variables conditioned to daily 

rainfall states. The proposed downscaling approach can reproduce the spatiotemporal 

structure of the historical data at daily time scale, in addition to other statistics (i.e. mean 

and standard deviation). The proposed downscaling method involves two main steps: (1) 

rainfall state generation using CART; and (2) generation of multisite precipitation 

amounts using multivariate BR model. To capture multicollinearity and reduce 

dimensionality we combine principal components analysis (PCA) with the BR. First, five 

principal components are selected for this study which explains 97% variability of the 

original data. 

CART constructs a classification tree based on the categorical and continuous predictors 

to generate precipitation state of the river basin. Lag-1 precipitation is used to prune the 

classification tree. The multisite precipitation sequences in the Campbell River basin are 

generated using beta regression conditioned to precipitation states in the river basin. As 

BR model estimates mean precipitation values, perturbation method is added to the 

model for stochastic generation of precipitation outside the observed range following 

King et al.,(2015). The model performs well in terms of preserving temporal and spatial 

dependence. However, BR overestimates spatial interstation cross-correlation.  

Since there is no clear guidance for determining the optimal number of principal 

components, we considered a number of components which represent a large fraction of 

the variability (here 97%) contained in the original data. However, with the availability of 

large data set obtained from the GCM simulated climate variables we may follow the step 
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wise procedure described by Srivastav and Simonovic (2014). BR method is a data driven 

method which builds a relationship between climate variables and daily precipitation. It is 

considered a stationary relationship among predictand and predictors variable 

(precipitation) which may not always be true. The basic relationships between climate 

variables controlled by conservation laws are not going to alter because of climate 

change. However, if the downscaling model is calibrated under stationary conditions and 

regional warming (e.g. El Nino-Southern Oscillation) influences the convective 

precipitation fraction then the stationary relationship in the downscaling process may 

indeed change. Salvi et al., (2013) observed that the kernel regression (KR) based 

statistical downscaling model failed to capture the changes in mean precipitation under 

non-stationary climate. They also identified that the assumption of stationarity was 

violated during the model testing period. It may be the reason for the changes in climate 

pattern occurring at large-scale or interference by some local factors e.g. urbanization. 

The urban areas have different climatology  (Kishtawal et al., 2010; Shastri et al., 2015) 

and the effect of urbanization is not included in the BR model. Therefore the same 

outcomes might be possible from BR if we test the BR model under non-stationary 

condition. Hence, identifying the exact reason of non-stationary behavior and validating 

the proposed model under non-stationary climate condition may be considered as a future 

scope of the present work.  

Another important factor is the link function in the beta regression model. Several link 

functions are available such as logit, probit and log–log link. In this study, we used only 

logit link function. Different outcomes may be expected if other link functions are used. 

In the present study, we used only one GCM output for downscaling. Future precipitation 
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estimation may be different for the use of other GCMs. Uncertainty modeling of 

downscaled precipitation from different GCMs is a potential research area under 

consideration. 

The main advantage of using BR based downscaling model is multisite rainfall sequence 

generation which captures the temporal and spatial variability of the predictand at each 

downscaled location which makes this model reliable and robust. The proposed model is 

computationally inexpensive and ideal for practical engineering application. It can use 

any number of predictor variables which may be considered the scope of future work and 

it makes this model efficient.   

Further, different sources of uncertainty in the projection of total monthly precipitation 

were assessed and compared for two future time periods in the Campbell River basin. 

Previous studies found that the choice of GCM is the largest source of uncertainty in the 

downscaling process (Minville et al., 2008; Prudhomme and Davies, 2008a). However, 

this study concludes that the choice of DSMs dominates other sources of uncertainty, 

particularly in the case of the regression based models. Downscaling methods used in this 

study have significant difference in formulation. Every statistical downscaling model is 

subject to constraints imposed by different sets of predictor variables, and they all assume 

a stationary relationship between predictor and predictand. This can be the reason why 

DSMs show the largest source of uncertainty.  

Uncertainty metric for different sources of uncertainty is very simple to calculate, and it 

is computationally inexpensive. It can be used at any temporal and spatial scale. This 

study represents the analyses on a regional scale, however if applied to continental or 
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global scales the spatial component of uncertainty in downscaled precipitation projections 

can be studied more in depth. The following chapter discusses future streamflow 

variation under changing climate condition. 
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Chapter 4 

4 Assessment of Future Streamflow under Changing 
Climate Conditions 

Based on: Sohom Mandal and Slobodan Simonovic (2017), “Assessment of 

future streamflow under changing climate condition: comparison of various 

sources of uncertainty”. Hydrological Processes Journal. DOI: 

10.1002/hyp.11174 (In press). 

Impacts of climate change possess a significant threat to the water resources for all 

continents in  the world.  Changing climate will magnify the existing risks and increase 

the future risks associated with management of water resources systems. The frequency 

and magnitude of streamflow are affected by climate change, and there is a clear 

indication that changes in streamflow will continue in the future because of continuous 

increase in the concentration of greenhouse gasses in the atmosphere (IPCC, 2013). The 

streamflow variation is not uniform across the world, but it is hydrologic regime specific. 

For example, a decreasing trend in maximum flows is identified for the maritime 

provinces of Canada (east coast) and the St Lawrence River basin (Leclerc and Ouarda, 

2007) in the last two decades. On the contrary, in the northwest and west parts of Canada, 

an increasing trend in minimum annual flow has been observed for the period of 1970-

2005 (Warren and Lemmen, 2014). Variation in magnitude and frequency of streamflow 

increases the vulnerability of the water infrastructure. According to the Public 

Infrastructure Engineering Vulnerability Committee of Engineers Canada (Canadian 

Council of Professional Engineers, 2008), failure of water resource’s infrastructures due 

to extreme hydrological events (droughts and floods) will increase across Canada due to 
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climate change. A study by the Canadian Institute of Actuaries (2014) found that water-

related insured damage and losses could increase by about 20% to 30%  in the next few 

decades across Canada. Simonovic (2008) also suggested that water resource 

infrastructure planning, design, and operations should be revised to accommodate the 

expected changes in magnitude and frequency of streamflows.  

According to Prudhomme and Davies (2008), selection of GCMs creates more 

uncertainty in the downscaling process compared to the choice of emission scenarios or 

model parameterization. However, its also found that downscaling methods might be a 

significant source of uncertainty in hydrologic projections compared to the choice of 

climate models and emission scenarios that are a much less significant source of 

uncertainty (Bürger et al., 2012). Most past studies  investigated only changes in climatic 

variables e.g. temperature or precipitation. Najafi et al., (2011) conducted a study to 

compare uncertainties in predicted future flow stemming from different GCMs, emission 

scenarios, and hydrological models. They considered eight GCMs, two emission 

scenarios from CMIP3 (Coupled Model Intercomparison Project 3) and four hydrologic 

models. The Tualatin River basin, Oregan, USA was used as a study area. The study 

concludes that uncertainty in streamflow due to the GCMs structure is higher than the 

uncertainty due to the choice of the hydrologic model.  However, Najafi et al., (2011) 

also suggested that hydrologic model selection is important when assessing hydrologic 

impacts under changing climate condition. The structural difference in hydrological 

models and uncertainties in parameter estimation can affect the spatial and temporal 

distribution of runoff. Reccntly, Surfleet and Tullos (2012) have conducted another study 

to explore uncertainties in predicted hydrologic response due to the choices of GCMs and 
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a hydrological model. They selected  the Santiam River basin in Oregon, USA for case 

study purpose and found that GCM structure and parameterization contribute more to the 

uncertainties in predicted flow, compared to the contribution of hydrologic models. 

However, limited literature is available, which investigates all sources of uncertainty in 

streamflow projections under climate change. Schnorbus et al.,(2011) assessed the 

hydrologic impacts of climate change in three different watersheds (Peace, Campbell and 

Columbia River) of British Columbia (BC), Canada. This investigation is conducted 

using a suite of eight Global Climate Models (GCMs) with three emission scenarios. 

Climate variables from GCMs were downscaled using Bias Corrected Spatial 

Disaggregation (BCSD) method. This assessment concludes that GCMs are indeed a 

significant source of uncertainty when only a single downscaling model is used. Another 

study has been conducted by Das and Simonovic (2012) to assess uncertainty due to 

climate change in extreme flood flows for the Upper Thames River Basin, Ontario, 

Canada. In this study, three carbon emission scenarios and six GCMs with a single 

weather generator based on the K-Nearest Neighbour (K-NN) used for downscaling the 

climate variables. This study also found that different GCMs introduce more uncertainty 

compared to others sources. Dibike and Coulibaly (2005) assessed impacts of climate 

change on streamflow in the Saguenay watershed, Quebec, Canada. They used two 

downscaling models and two hydrological models for this study. The results of their work 

show that the variation in river flow due to the choice of downscaling model is more 

significant than the variation introduced by choice of hydrological model. However, they 

did not consider variation due to the choice of emission scenario and/or GCMs.  
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Previously, most of the climate change assessment studies conducted in Canada were 

based on a single downscaling method except Dibike and Coulibaly (2005) who 

compared two downscaling tools and two hydrologic models. The main objective of this 

chapter is to characterize the primary sources of uncertainty in simulated streamflow 

under changing climate conditions. The case study area is Campbell River basin, BC, 

Canada. The Campbell River is a coastal watershed in the central part of Vancouver 

Island. It consists of three reservoirs: Upper Campbell, Lower Campbell, and John Hart. 

From this river catchment, 1,230 GWh (gigawatt hours) of electricity is generated, which 

is equal to 11% of Vancouver Island’s annual energy demand (BC Hydro Generation 

Resource Management, 2012).  Hence the variation in inflow into Campbell River 

reservoirs may have very significant economic and environmental consequences.  

Total drainage area of this watershed is approximately 1,856 km2 (BC Hydro Generation 

Resource Management, 2012). Annual average precipitation during the last 20 years 

(1994 to 2013) in the catchment is 2,960 mm. The magnitude of precipitation is high in 

the upstream section of the basin compared to downstream (Figure 4.1b). As the river 

originates from the west-facing mountains, orographic lifting of warm moist air from the 

Pacific Ocean causes heavy precipitation in the upstream part of the basin. Campbell 

River includes three dams, Strathcona, Ladore and John Hart (Figure 4.1a). Strathcona 

dam is located in the upstream section of the river, where other two are in the 

downstream section. Three reservoirs created by the dams are Upper Campbell Lake 

reservoir, Lower Campbell Lake reservoir and John Hart Lake reservoir. The UBCWM 

hydrologic model used in this study simulates inflow into the Upper Campbell Lake 

reservoir, and the inflow into other two reservoirs is regulated by release from the 
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Strathcona dam. The focus of this chapter is to assess the inflow variations into the 

Strathcona dam due to climate change. UBCWM is calibrated for the area upstream of 

Strathcona dam (1,176 km2) excluding the Heber and Crest Diversions.  

The detailed objectives of this study include quantification of the magnitude and 

frequency of streamflow in Campbell River basin considering three main sources of 

uncertainty introduced by the selection of downscaling methods, GCMs, and GHGs 

(greenhouse gasses) emission scenarios. Four GCMs, three emission scenarios, and six 

downscaling models are used for this purpose. The  UBC Watershed model (UBCWM) 

(Quick and Pipes, 1977) is used for hydrologic flow simulation.  

 

Figure 4.1 (a) Campbell River basin, British Columbia, Canada, with different 

downscaling locations and reservoirs location; (b) Spatial representation of annual 

average precipitation (1994-2013); (c) Digital elevation model (DEM) of the Campbell 

River basin (after Mandal and Simonovic, 2017). 
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Daily time series of climate variables (e.g. precipitation (Pr), maximum temperature 

(Tmax) and minimum temperature (Tmin)) are required for simulating flow using 

UBCWM. For two of downscaling methods, BCSD (bias-corrected spatial 

disaggregation) and BCCAQ (bias correction constructed analogues with quantile 

mapping reordering), climate variables (Pr, Tmax, and Tmin) are extracted from the 

Pacific Climate Impacts Consortium (PCIC) database (Pacific Climate Impacts 

Consortium, 2014). For K-NN CAD v4 (K-nearest neighbor weather generator) and MEB 

(maximum entropy bootstrap weather generator), climate variables (Pr, Tmax, and Tmin) 

are obtained from CMIP5 database (IPCC, 2013). In addition to these variables, mean sea 

level pressure (mslp), specific humidity (hus) at 500 hPa, zonal (u-wind) and meridional 

(v-wind) wind are extracted from the CMIP5 repository for BR (beta regression) and KR 

(kernel regression) downscaling method. All the climate variables extracted for the 

corresponding GCMs shown in Table 3.11. For the hydrologic model validation, 

historical daily inflow data (1984 to 2013) for the Strathcona dam has been obtained from 

the BC Hydro repository. The following sub-section provides details about hydrological 

model (UBCWM) structure and its validation.   

4.1 UBC Watershed Model  

 In this study, the UBCWM is used to simulate streamflow in the Campbell River basin. 

This is a continuous hydrological model and only need precipitation, maximum and 

minimum temperature to simulate flow. As the UBCWM was designed from minimum 

meteorological parameters, it is very useful in the mountainous watershed e.g. Campbell 

River watershed where meteorological and flows data are often spare (Micovic and 

Quick, 2009). Since the hydrologic response of a mountainous watershed  depends on 
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elevation, UBCWM adapted the “area-elevation band” concept. This concept includes 

orographic gradients of temperature and precipitation which are assumed as dominate 

gradients of hydrological behavior in the mountainous catchment and act similarly for 

each storm. The UBCWM not only estimates streamflow in a catchment but also provides 

information about groundwater storage, soil moisture, surface and sub-surface 

components of runoff, energy available for snowmelt, snowpack water equivalent, the 

area of the snow cover, evapotranspiration and interception losses (Quick and Pipes, 

1977).  The UBCWM integrates multiple meteorological sub-models as described in 

(Micovic and Quick, 1999). A  schematic of UBC watershed model is given in Figure 

4.2. 

 

Figure 4.2 Generalized flow chart of UBC watershed model (after Quick and Pipes, 

1977) 
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The hydrologic model UBCWM is calibrated by British Columbia Hydro (BC Hydro) for 

Campbell River system and used in this study. UBCWM is available as a hydrological 

modeling framework under the name “Raven”(Craig and Snowdon, 2010). Raven 

considers a catchment as the integration of multiple subbasins where a number of non-

contiguous and contiguous hydrological response units (HRUs) are assembled. Each 

HRU setup is based on a single combination of vegetation cover, terrain type and land 

use/land type (LU/LT). Also, each HRU has a defined soil profile and stratified aquifer. 

Raven has a large number of user-customized subroutines which can be used to develop a 

number of existing hydrologic models. UBCWM is emulated successfully in Raven by 

BC Hydro. Details about RAVEN are presented in Appendix – B. 

4.1.1 Validation of UBC Watershed Model 

For this assessment purpose, the model is validated using observed data. Due to an 

inadequate amount of historical observed climate data, daily precipitation (Pr), maximum 

and minimum temperature (Tmax and Tmin) have been extracted from ANUSPLIN data 

set (0.1º latitude x 0.1º longitude), Environment Canada (Hutchinson and Xu, 2013). 

These data sets are extracted for a 20-year time period (1984 to 2013). ANUSPLIN data 

set is generated using “thin-plate smoothing spline” algorithm and broadly used in 

climate studies (Irwin et al., 2016; Mandal et al., 2016c). As the ANUSPLIN data set has 

a different spatial resolution from GCMs, all the variables are spatially interpolated using 

IDW to downscaling locations (Table 3.1) and used as input to the UBCWM. Multiple 

statistical indices,  Nash–Sutcliffe Efficiency (NSE) index, Pearson correlation coefficient 

(R2), Root Mean square error (RSME), and relative bias are used to compare UBCWM 

simulated flow with the observed historical flow (1984 to 2013) (Table 4.1) at different 
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temporal scales. Nash–Sutcliffe Efficiency (NSE) index is a goodness-of-fit index which 

is used to compare model simulated data with observed data. NSE is calculated as: 
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where t

oQ  is observed flow at time t, mQ is model simulated flow and oQ mean observed 

flow. For accurate model prediction which means simulated flow ( )t

mQ  value is equal to 

observed flow ( )t

oQ , NSE will be 0. However, in this study, the value of NSE is high for 

all four temporal scales.  

Table 4.1 Hydrological model performance statistics (1984-2013) in the Campbell River 

basin, British Columbia, Canada (after Mandal and Simonovic, 2017). 

Time period 

Nash–Sutcliffe 

Efficiency 

(NSE) 

Pearson 

correlation 

coefficient 

(R2) 

Root mean 

square error 

(RSME in mm) 

Relative bias 

( % Bias) 

Total Daily flow 0.35 0.83 46.78 -13.69 

Total Monthly flow 0.39 0.88 296.33 -13.72 

Total  Quarterly 

flow 
0.36 0.89 563.20 -13.72 

Total Annual flow 0.60 0.85 6540.60 -11.32 
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For total annual flow, the NSE reaches 0.6, which is not acceptable. Dimensionless 

statistical index e.g. R2 plays an important role in the assessment of both, the hydrologic 

and statistical significance during a hydrologic model validation (McCuen, 2016). For 

example, if R2 between predicted and measured values is high, that means the model 

outputs have quite similar pattern with measured values. R2 varies between 0 to 1. High 

R2 indicates a good correlation between observed and simulated data, which is desired. 

The results are showing R2 values between 0.83 to 0.89 for different temporal scales. 

These values can be improved. RSME is a dimensioned statistical index, and low RSME 

is desired in hydrologic model validation. However, the results obtained in this study 

show a very high value of RSME, 6540.6 for total annual flow, which is not acceptable. 

Relative bias is used for comparing different data sets.  Relative bias lower than 5% is 

usually recommended as the threshold value in hydrologic model validation (McCuen, 

2016). However, the results obtained in the present study show relative bias higher than 

5%, which is again not satisfactory. Figure 4.3 (a-d) presents time series comparison of 

simulated and observed flow at different temporal scales (daily, monthly, quarterly and 

yearly). It shows that the UBCWM often fails to capture the extreme flow events. Figure 

4.3 (e-g), represents the Q-Q plot between model generated and historical daily, monthly 

and quarterly flows, respectively. The Q-Q plots also show that for higher quantiles, 

simulated flow is not matching the observed data. However, if we review Figure 4.3(d) 

after 2010, the simulated streamflow matches with observed streamflow very well. BC 

Hydro (BC Hydro Generation Resource Management, 2012) reported that the Herber 

dam used to release water into the Campbell River system until 2012 when it was 

decommissioned. The Herber River is located approximately 70 km west of the City of 
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Campbell river. It naturally flows southwest for approximately 14 km before joining the 

Elk river which later joins Strathcona reservoir. During this 14 km stretch, the Herber 

river connects Crest lake, Mud lake, Upper and Lower Drum lakes before joining the Elk 

river.  The Herber river connects with Crest lake through a wood stave and diverts water, 

when available. The Herber diversion used to divert on average 1.1 m3/s into Elk river 

where annual mean inflow to Strathcona reservoir is 77.5 m3/s. Although the diverted 

flow from Herber diversion is much smaller than the inflow into Strathcona reservoir, the 

total annual amount of 35 Mm3/year represents a significant contribution to the 

Strathcona reservoir volume. The Herber diversion has been decommissioned in 2010 

(BC Hydro Generation Resource Management, 2012).   

The hydrologic model (UBCWM) was calibrated in 2014 by BC Hydro. Therefore 

UBCWM does not consider additional flow from the Herber dam before 2010 and that is 

the possible explanation for unsatisfactory validation results. For further investigation, 

the new validation period has been selected, 2012-2013, for daily and monthly 

streamflow analyses. For yearly flow validation, we considered a three-year time span 

(2010 to 2013). The validation results for a new period are shown in Table 4.2. Due to 

inadequate data set after 2013, we selected three years (2010-2013) for new validation 

period. There are studies (Refsgaard, 1997; Asokan and Dutta, 2008) conducted in the 

past using less than five years of data for hydrological model validation. For the new 

validation period (2010 to 2013), the NSE value is improved compared to the validation 

using 1984-2013 period. The NSE value for total annual flow is 0.08. An improvement is 

also observed for other three indexes. Relative bias is lower than 5% for all four temporal 

scales. 
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Figure 4.3 (a-d): Daily, Monthly, Quarterly and Yearly simulated and observed total 

inflow into the Strathcona reservoir, British Columbia, Canada respectively (1984 - 

2013); (e-g): Daily, Monthly and Quarterly Q-Q plot of simulated and observed total 

inflow into the Strathcona reservoir (1984 - 2013) respectively (after Mandal and 

Simonovic, 2017). 
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Table 4.2 Hydrological model performance statistics for (2012-2013) in the Campbell 

River basin, British Columbia, Canada (after Mandal and Simonovic, 2017). 

Period 

Nash–Sutcliffe 

Efficiency 

(NSE) 

Pearson 

correlation 

coefficient (R2) 

Root mean 

square error 

(RSME) 

Relative bias  

( %Bias) 

Total Daily flow 0.27 0.87 30.61 -2.28 

Total Monthly 

flow 
0.18 0.91 210.67 -1.40 

Total  Quarterly 

flow 

0.15 0.92 421.56 -1.40 

Total Annual flow 

(2010-2013) 
0.08 0.97 952.51 -2.16 

 

Simulated daily, monthly, quarterly and yearly streamflow for new validation period are 

shown in Figure 4.4 (a-d), respectively. These plots confirm that the UBCWM generated 

flow is quite similar to the observed flow. Figure 4.4 (f) shows a Q-Q plot between model 

generated and historical flows. It also certifies that the UBCWM model generated 

streamflow matches historical flow. Therefore, from the validation analyses, it can be 

concluded that the UBCWM performs well in capturing historical flow. 
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Figure 4.4 (a-d): Daily (2012-2013), Monthly (2012-2013), Quarterly (2012-2013) and 

Yearly (2010-2013) simulated and observed total inflow of the Strathcona reservoir 

respectively; (f) Daily Q-Q plot of simulated and observed total inflow of the Strathcona 

reservoir (2012-2013) (after Mandal and Simonovic, 2017). 
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4.2 Streamflow Projection using UBCWM 

In this section details regarding streamflow projection using UBC watershed model are 

discussed.  

4.2.1 Uncertainty in the Streamflow Predictions 

Downscaled climate variables (Pr, Tmax and Tmin) are used with the hydrologic model 

for future flow generation. The simulated flow is generated and analyzed for two future 

time periods (2036-2065 and 2066-2095). Figure 4.5 - Figure 4.7 present cumulative 

distribution function (CDF) of simulated flow for different emission scenarios, GCMs 

and DSMs respectively. The CDF is a useful tool for assessing the intensity of the 

occurrence of high/low flow in the catchment. It has found that CDFs obtained from 

different emission scenarios are quite similar (Figure 4.5). A similar pattern can be found 

in Figure 4.6 and Figure 4.7. However, RCP 4.5 and RCP 8.5 show the high intensity of 

flow compared to historical flow in the near future (2036-2065) (Figure 4.5 c and e). In 

far future (2066-2095) a high-intensity flow is found for RCP 2.6 and RCP 8.5 (Figure 

4.5 b and f). Another observation is that flow intensity in higher quantiles is subject to 

higher uncertainty for different RCPs and GCMs (Figure 4.5 and Figure 4.6). However, 

Figure 4.7 shows that in higher quantile CDFs are less flattered compare to Figure 4.5 

and Figure 4.6. Results in Figure 4.5 and 4.6 are generated for fixed choice of DSMs 

(BCSD, BCAAQ, BR, KR, K-NN CAD v4 and MEB),  wherein Figure 4.7, the resulting 

CDFs are obtained for different DSMs. Different DSMs are developed using different 

statistical methods and assumption and therefore the downscaled values may show 

variation in flow intensity. For further investigation, comparison of a single combination 

of RCP, GCM and DSM is included in Figure 4.8. Results in Figure 4.8 confirm that 
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variations in streamflow due to the choice of DSMs are higher compared to the variations 

due to the selection of RCPs or GCMs.  

Table 4.3 Historical (1984-2013) and future mean seasonal flows (m3/s) (5th, median -

50th, and 95th percentile estimates) for different emission scenarios in Upper Campbell 

Lake reservoir, British Columbia, Canada (after Mandal and Simonovic, 2017). 

2036-2065 2066-2095 

Historical 5th 50th 95th 

Change in 

median 

value (%) 

5th 50th 95th 

Change in 

median 

value (%) 

RCP 2.6 

Winter 7602 4553 8591 15397 13 4586 8744 15233 15 

Spring 7763 4202 6772 16726 -12 4115 6750 16459 -13 

Summer 6661 1726 3254 7282 -51 1518 3393 6650 -49 

Fall 6924 3245 5714 12990 -17 2729 5821 12853 -15 

RCP 4.5 

Winter 7602 4758 9094 16221 19 4763 9306 16897 22 

Spring 7763 4085 6681 15319 -13 3346 6568 14821 -15 

Summer 6661 1745 3232 7110 -51 1608 2697 6062 -59 

Fall 6924 3142 5895 13382 -14 3021 6260 13312 -9 

RCP 8.5 

Winter 7602 4896 8884 16962 16 4663 9802 17312 29 

Spring 7763 3925 6528 15558 -16 2922 6111 13857 -21 

Summer 6661 1631 2694 6235 -59 1276 2265 5686 -66 

Fall 6924 2645 5612 13342 -19 3341 5912 12930 -14 

Average historical and future seasonal flow statistics for different RCPs, GCMs and 

DSMs are shown in Table 4.3 to Table 4.5, respectively. Table 4.3 indicates that mean 

winter flow will increase, with estimated range between 13% to 19% in the near future 

(2036 to 2065) and 15% to 29% in the far future (2066 to 2095) for different emission 

scenarios. However, summer mean streamflow will decrease by at least 51% in the near 

future and 66 % in the far future (Table 4.3). A Similar kind of trend is found in Table 4.4 

and Table 4.5.  
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Figure 4.5 Cumulative probability distribution (CDF) of simulated (2036-2065 and 

2066-2095) and historical (1984-2013) daily streamflow into the Strathcona reservoir, 

BC, Canada for different emission scenarios (after Mandal and Simonovic, 2017). 

 

Figure 4.6 Cumulative probability distribution (CDF) of simulated (2036-2065 and 

2066-2095) and historical (1984-2013) daily streamflow into the Strathcona reservoir, 

BC, Canada for different GCMs (after Mandal and Simonovic, 2017). 
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Figure 4.7 Cumulative probability distribution (CDF) of simulated (2036-2065 and 2066-

2095) and historical (1984-2013) daily streamflow of the Strathcona dam, BC, Canada 

for different downscaling methods. BCAAQ: Bias correction constructed analogues with 

quantile mapping reordering; BCSD: Bias-corrected spatial disaggregation; BR:Beta 

regression based statistical downscaling model; KR: non-parametric statistical 

downscaling model based on the kernel regression; KnnCAD v4:Delta change method 

coupled with a non-parametric K-nearest neighbor weather generator; MBE: Delta 

change method coupled with maximum entropy weather generator (MBE) (after Mandal 

and Simonovic, 2017). 
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Table 4.4 Historical (1984-2013) and future mean seasonal flows (m3/s) (5th, median -

50th, and 95th percentile estimates) for different GCMs in Upper Campbell Lake 

reservoir, British Columbia, Canada (after Mandal and Simonovic, 2017). 

                            2036-2065 2066-2095 

 
Historical 5th 50th 95th 

Change in 

median 

value (%) 

5th 50th 95th 

Change in 

median 

value (%) 

CCSM4 

Winter 7602 5324 7999 14413 5 5320 8620 15422 13 

Spring 7762 3814 6229 15238 -19 3137 6436 14369 -17 

Summer 6661 1455 3000 6441 -54 1241 2506 5924 -62 

Fall 6923 2812 5302 13040 -23 2481 5498 12706 -20 

CSIRO-Mk3-6-0 

Winter 7602 4186 9053 16274 19 4524 10023 16261 31 

Spring 7762 3877 7021 15699 -9 3223 6567 14184 -15 

Summer 6661 1802 3332 6103 -49 1473 2373 5440 -64 

Fall 6923 2375 6371 12974 -7 2539 6727 12945 -2 

CanESM2 

Winter 7602 8569 9368 16284 23 8446 10054 17810 32 

Spring 7762 6272 6942 18321 -10 5168 6604 16728 -14 

Summer 6661 1605 2855 7172 -57 1422 2242 6207 -66 

Fall 6923 5294 5985 13105 -13 5165 6048 12729 -12 

GFDL-ESM2G 

Winter 7602 4561 8925 16994 17 4357 9426 17082 24 

Spring 7762 4682 6694 15561 -13 3621 6682 15175 -13 

Summer 6661 1771 3358 7569 -49 1771 2771 7242 -58 

Fall 6923 3883 5580 14911 -19 4025 5768 15531 -16 
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Table 4.5 Historical (1984-2013) and future mean seasonal flows (m3/s) (5th, median -

50th, and 95th percentile estimates) for different downscaling methods in Upper 

Campbell Lake reservoir, British Columbia, Canada (after Mandal and Simonovic, 2017). 

Downscaling 

method 
               Historical 5

th
 Median 95

th
 

Change in 

median 

value (%) 
5

th
 Median 95

th
 

Change in 

median 

value (%) 

B
C

C
A

Q
 

Winter 7602 8382 9493 10884 24 8846 10284 11313 35 

Spring 7762 5807 6260 6877 -19 5466 5878 6403 -24 

Summer 6661 1791 2019 2324 -69 1587 1886 2403 -71 

Fall 6923 5361 5935 7098 -14 5419 6094 7686 -11 

B
R

 

Winter 7602 6601 7479 12394 -1 4175 4927 10806 -35 

Spring 7762 6111 6782 8840 -12 2829 3651 5830 -52 

Summer 6661 3903 4251 4562 -36 1179 1530 2038 -77 

Fall 6923 4752 5850 8945 -15 2373 3523 5783 -49 

K
R

 

Winter 7602 9995 12077 13866 58 10426 12499 13846 64 

Spring 7762 11003 11756 14867 51 8810 10688 12997 37 

Summer 6661 1577 2813 4195 -57 3905 4893 6890 -26 

Fall 6923 8307 9138 11452 31 8289 8917 11578 28 

B
C

SD
 

Winter 7602 8150 9170 9918 20 8627 9636 10918 26 

Spring 7762 6098 6358 7237 -18 5378 5830 6749 -25 

Summer 6661 1889 2156 2520 -67 1618 1879 2530 -71 

Fall 6923 4889 5602 6374 -19 5351 6075 6897 -12 

K
n

n
C

A
D

V
4

 

Winter 7602 7218 8334 8942 9 7786 8502 9517 12 

Spring 7762 6663 7003 7553 -9 6304 6752 7412 -13 

Summer 6661 3601 4259 4960 -36 2423 3629 5121 -45 

Fall 6923 4946 5459 6450 -21 4864 5497 6353 -20 

M
B

E 

Winter 7602 7589 8257 9223 8 7858 8796 9998 15 

Spring 7762 6386 6942 7624 -10 6594 6818 7344 -12 

Summer 6661 4560 5243 5724 -21 3070 4488 6087 -32 

Fall 6923 5194 5846 6468 -15 5246 5911 6722 -14 

 

 



110 

 

 

Figure 4.8 Cumulative probability distribution (CDF) of simulated (2036-2065) and 

historical (1984-2013) daily streamflow of the Strathcona dam, BC, Canada for (a) RCP 

2.6; (b) CSIRO-Mk-3-6-0 and (c) Beta Regression based statistical downscaling model 

(BR) (after Mandal and Simonovic, 2017). 

The results indicated that the winter flow will increase where other seasonal flow will 

decrease, in both future time periods (Table 4.4 & Table 4.5). Summer flow will decrease 

from 49 % to 57 % in near future and 58 % to 66 % in the far future where winter flow 

will increase 5% to 23% and 13% to 32% in near and far future respectively for different 

GCMs (Table 4.4).  Results from Table 4.5  indicate that the summer flow in the near 

future will be reduced up to a maximum of 69% compared to the historical flow where 

the highest decrease in the flow of 71% may be experienced in the far future. Only the 
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KR model provides different results (Table 4.5). To summarize, the summer flow in the 

Campbell River basin (British Columbia, Canada) will be highly affected by the changing 

climate conditions. Spring flow will range from -9% to -19 % and -12% to -52% for near 

and far future respectively except for KR model results. Streamflow during fall will 

decrease in the range from -7% to -23% and -2% to -49% for near and far future 

respectively except KR model results. 

Figure 4.9 to Figure 4.11 present box plots of projected mean monthly simulated 

streamflow with the historical flow for different emission scenarios, GCMs, and 

downscaling models respectively. It is clearly visible that the mean monthly flow in 

Figure 4.9 and Figure 4.10 are quite different when compared to the flows in Figure 4.11. 

In Figure 4.11 for summer months, (May, June and July) future flows for both time 

periods are less than historical summer mean flows. However, in Figure 4.11, variation in 

mean monthly flows is less compared to Figure 4.9 and Figure 4.10. These results  

support the hypothesis that the choice of DSMs introduces a higher level of uncertainty in 

streamflow prediction compared to the choice of RCPs and GCMs. In addition, the 

results in Figure 4.10confirm that future summers will be drier and future winters will be 

wetter compared to the historical time period (1984-2013). Schnorbus et al., (2011) 

investigated hydrologic impacts of climate change in the Campbell River basin where 

they found that decreasing trend (-14% for A1B scenario) in future precipitation (2041 to 

2070) for June, July and August and increasing trend (5% to 11%) in October through 

December. This study also found that monthly mean temperature would have a 

significant and strong signal of shifting to warmer temperature throughout the year and 

particularly higher for July, August, and September in future (2041 to 2070). Streamflow 
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in the Campbell River is fed by a mix of rain and snowmelt. As the temperature is 

increasing, it has been predicted that snowfall will decrease throughout the fall and winter 

where rainfall will increase (Schnorbus et al., 2011) in this river basin. This leads to a 

conclusion that the streamflow in this river basin will be rainfall dominated compare to 

the hybrid mix (snow and rain). Due to projected higher temperature in mid-winter and 

early spring (Schnorbus et al., 2011), snow will melt faster than before, whereas less 

snow will be available for melt because of significant reduction of historical spring 

freshet. This evidence is the possible reason behind the increasing flow in winter, and less 

flow in summer (Figure 4.10). From this study it can be concluded that the Campbell 

River basin will become a pluvial regime (rainfall dominated) in future from the hybrid 

nival-pluvial regime (snow influenced). Schnorbus et al., (2011) also provided similar 

conclusion in their study. The details about flow frequency analysis are given in the 

following section.  

 

Figure 4.9 Boxplots showing projected mean monthly simulated streamflow for the near 

future (2036-2065) and the far future (2066-2095) with historical (1984-2013) observed 

flow into the Strathcona dam, BC, Canada for different emission scenarios (after Mandal 

and Simonovic, 2017). 
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Figure 4.10 Boxplots showing projected mean monthly simulated streamflow for the 

near future (2036-2065) and the far future (2066-2095) with historical (1984-2013) 

observed flow into the Strathcona dam, BC, Canada for different GCMs (after Mandal 

and Simonovic, 2017). 

 

Figure 4.11 Boxplots showing projected mean monthly simulated streamflow for the 

near future (2036-2065) and the far future (2066-2095) with historical (1984-2013) 

observed flow into the Strathcona dam, BC, Canada for different downscaling models 

(after Mandal and Simonovic, 2017). 
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4.2.2 Flow Frequency Analysis 

The Generalized Extreme Value (GEV) distribution is used for flow frequency analysis. 

GEV is an integration of continuous probability distributions which combines the 

Gumbel (EV1), Frechet and Weibull distributions and is widely used in flow frequency 

analysis (Fowler and Wilby, 2010; Das and Simonovic, 2012; Das et al., 2013). The GEV 

has three parameterse.g. location, shape and scale. The shift in the distribution is 

described by the location parameter where the scale parameter describes the spread of the 

distribution and the shape parameter describes the skewness. If the shape parameter (k) 

=0, GEV becomes Gumbel distribution, and when k<0 it is transformed in Weibull 

distribution. If k>0, then the GEV is converted into the Frechet distribution. Cumulative 

distribution (CDF) and probability distribution (PDF) function of GEV are defined as 

follows (Hosking and Wallis, 1997): 
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The flow frequency analysis is conducted using ‘ismev’ package (Heffernan, 2016) in R-

studio combined with python environment. The flow frequency curves are shown in 

Figure 4.12. The flow frequency curve derived from the observed historical data is also 

shown in Figure 4.12. The results are presented for various return periods from 2 to 200 

years. The figure summarizes the impact of choosing different GCMs and DSMs on the 

flows corresponding to different return periods. It is found that the uncertainty increases 

with the increase in the return period where  CDFs become flattered.  It is also found that 

in the far future, CDFs are flatter compared to the near future time period. The average 

percentage changes in flow magnitudes are shown in Table 4.6. The maximum average 

percentage changes of the 50-year flow magnitude between future climate (2036-2065 

and 2065-2095), and the historical (1984-2013) are respectively -20.2% and -5.7%. In the 

near future, for RCP 8.5, a decreasing trend is observed with the increase in the return 

period. On the contrary, in the far future for RCP 8.5 an increasing trend is observed with 

the increase in the return period. RCP 8.5 considers maximum amount of GHGs emission  

 in the atmosphere which is approximately three times of today’s carbon emission by the 

end of this century (Vuuren et al., 2011). GHGs emissions have a positive correlation 

with atmospheric temperature (IPCC, 2013). Therefore, the precipitation pattern can be 

changed significantly. This can be a possible reason for decreasing trend of flow 

magnitude for near future.  

Table 4.7 shows a comparison between historical and future flow return periods for 

different emission scenarios. For all emission scenarios, the return period of higher flow 

event will increase in both future time periods. For example, 1250 m3/s flow had a return 

period of 11 years but it will change to 20 years (2036-2065) and 21 years (2066-2095) 
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for RCP 2.6 emission scenarios (almost doubled). A similar trend could be found for 

other emission scenarios too. 

Table 4.6 Average percentage changes in streamflow magnitude between baseline period 

(1984-2013) and future time periods in Upper Campbell Lake reservoir, British 

Columbia, Canada (after Mandal and Simonovic, 2017). 

 

 

Figure 4.12 Simulated flow frequency results of the Strathcona dam, BC, Canada using 

GEV for different emission scenarios between two future time periods (after Mandal and 

Simonovic, 2017). 

Return 

period 

(year) 

2036-2065 2066-2095 

RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 

5 -14.0 -13.2 -16.1 -13.8 -12.5 -6.6 

10 -14.1 -14.4 -17.8 -15.0 -13.6 -6.8 

50 -13.0 -16.1 -20.2 -16.0 -14.4 -5.7 

100 -11.8 -16.4 -21.0 -16.0 -14.0 -4.6 

150 -11.0 -16.5 -21.1 -15.6 -13.4 -3.9 

200 -10.3 -16.6 -21.3 -15.2 -13.0 -3.2 
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Table 4.7 Comparison of historical (1984-2013) and projected flow return periods for 

two future time periods (2036-2065 and 2066-2095) in Upper Campbell Lake reservoir, 

British Columbia, Canada (after Mandal and Simonovic, 2017). 

 
Return period (Year) 

 
 

Historical 

2036-2065 2066-2095 

Flow (m3/s) RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 

 

RCP 8.5 

 

800 3 4 4 4 4 4 3 

1000 5 8 8 10 8 8 6 

1250 11 20 21 26 21 20 14 

1500 22 40 45 57 45 42 28 

1900 60 105 135 178 130 117 75 

 

4.3 Summary 

This study used multiple RCPs, GCMs and DSMs to assess the uncertainty in streamflow 

due to climate change. The analyses are performed for the case study of Campbell River 

basin in British Columbia, Canada, with the focus on Strathcona dam location. Most of 

the previous regional studies in Canada found that the choice of GCMs is the biggest 

source of uncertainty in downscaling processes. The analyses in the Campbell River 

basin performed with different RCPs, GCMs and DSMs show that the choice of DSMs 

has a higher influence on streamflow variation compared to the choice of GCMs or 

RCPs. Downscaling models (DSMs) are developed based on a statistical relationship 

between climate variables. DSMs includes multiple assumptions, selections of statistical 

parameters (e.g. scale, shape, skewness) and climate variables (predictand and predictors) 

which make a DSM different from other DSMs. Therefore structure and procedure 
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followed in a DSM could be possible reasons for significant streamflow variation for 

various DSMs. Hence, it is important to use multiple DSMs during climate change 

impact assessment. In section 3.3 we reached a similar conclusion in the study of 

precipitation projection under changing climatic conditions. It is to be expected that if the 

precipitation pattern is affected then the streamflow will change too. However,  the 

previous section (section 3.3) does not quantify the amount of precipitation or future 

streamflow changes. According to Warren and Lemmen (2014) increasing trend in 

average annual precipitation can be found on the west coast of Canada where snowfall 

has decreased in last 61 years (1950 to 2010). Therefore quantifying changes in 

streamflow due to climate change is an important contribution of this study that makes it 

different from the previous work.  Another important difference of this study is the 

analysis of propagation of sources of uncertainty in the projected streamflow, which is 

discussed in the results section.   

From the Table 4.5, it can be found that all the DSMs show similar pattern e.g. increasing 

trend in streamflow for winter and a decreasing trend for other seasons except KR and 

BR. However, KR agrees with summer and winter flow trend with other DSMs where BR 

captures streamflow pattern for all seasons except winter. BR and KR  models are 

regression based, and multiple predictors variables (Tmax, Tmin, mslp, hus at 500 hPa, u-

wind and v-wind) are used for build a relationship between predictors and predictand 

(here precipitation). These predictor variables are correlated with each other 

(positively/negatively) which could be the reason for disagreement between KR and BR 

results when compared with other DSMs.  
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For the purpose of this present study, a single hydrologic model (UBCWM) is used 

which is a limitation of this study at this stage. Hydrologic models should be selected 

based on the study region, available data, basin characteristics, and study purposes but 

often the model is selected which is readily available. In this case, BC Hydro provided 

the calibrated model (UBCWM). In addition, Kay et al., (2009) investigated the role of 

different hydrologic models and found that the choice of the hydrologic model also 

contributes to the uncertainty in projected streamflow. Also projected streamflow is 

highly sensitive to hydrologic model parameterization  (Jiang et al., 2007; Poulin et al., 

2011). However, it has been found that uncertainty due to the hydrological model 

structure is more significant compared to model parameter uncertainty. Therefore, 

streamflow generation using multiple hydrological models with multiple RCPs, GCMs 

and DSMs may be advised for the continuation of the presented work. There are two 

other dams in the basin (Ladore and John Hart) which are connected with the Strathcona 

dam. Hence, quantifying stream flow uncertainty due to climate change at all three dam 

locations could be another area of future research.  Another limitation of the study is the 

use of a single river catchment. The consistency of GCMs varies substantially from one 

region to another. Rupp et al.,(2013) and Kay et al.,(2009) also suggested that multiple 

catchments, or different locations, should be analyzed in order to obtain a more 

comprehensive understanding of different sources of uncertainty. Focus of the present 

work is in the development of the uncertainty assessment methodology that can be used 

with multiple catchments for more thorough analyses of uncertainty. This work is 

considered as a potential future research topic. In this study, only four GCMs are used 

due to data availability for all downscaling models. GCMs use mathematical relationships 
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to simulate global climate system in three spatial dimensions with respect to time. GCMs 

simulate different atmospheric components (e.g. temperature, sea-ice, humidity) at 

various scales (horizontal spacing and grid size) and include many complexities 

(parameterization schemes). Some GCMs are based on the same analytical procedures 

and even share the same mathematical equations. Therefore, future climate predictions 

using an arbitrary number of GCMs may be very precise and consistent for a particular 

region, but it may be inaccurate as the outcome can be consistently biased. For example, 

Rupp et al., (2013) found that two GCMs, MIROC-ESM- CHEM and MIROC-ESM, to 

perform poorly in Europe and Southeast Asia. However, these two models perform well 

in Africa. Therefore selection of GCMs is crucial for uncertainty analysis and may be a 

potential future research area.   

Another main observation of the presented study is that the winter flow will be increasing 

in both future time periods considered (2036-2065 and 2065-2095), where the summer 

flow will be decreasing by atleast 21%. These findings can have a serious effect on the 

management of water resources infrastructure in the basin, which is one of the main 

components of the British Columbia hydropower generation system. However, a major 

weakness of river flow forecast under climate change is limited validation. There is a 

prospect for testing the primary flow patterns relative to recent empirical trends which 

provide an opportunity for future work. The recommendations of the study presented in 

this chapter are: (a)  new water resources infrastructure planning and design guidelines 

should be developed in order to include the changing climatic conditions in the future; 

and (b) the serious review of the current operational rules for the water resources 

infrastructure in the basin should be conducted in with the main goal of finding the best 
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adaptation strategies to changing future conditions. The next chapter gives an assessment 

of reservoir operation under changing climate conditions.  
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Chapter 5 

5 Reservoir Operation under Changing Climate Condition 

Based on: Sohom Mandal, R. Arunkumar, Patrick A. Breach, Slobodan P. 

Simonovic, “Reservoir operation under climate change: a system dynamics 

approach” (under preparation).  

In the previous chapter (Chapter 4), it is presented how streamflow in the Campbell river 

is projected to change under the influence of climate change. The projected changes are 

also found to be uncertain depending on the choice of GCMs, downscaling methods and 

emission scenarios for analysis. Changes in streamflow, in turn, will require changes in 

reservoir operation rules to better manage water resources in Campbell river basin. A 

methodology to assess the climate change impacts on future reservoir operation rules is 

discussed in this chapter.   

Reservoir operation is a complex problem that involves a significant number of decision 

variables, objective functions and constraints (Yeh, 1985; Simonovic, 1992). It contains 

an inherent uncertainty due to inflow variability. There are two reasons behind inflow 

variability: (a) natural seasonal variability; and (b) long-term variability due to climate 

change (Raje and Mujumdar, 2010). Inflow variation due to climate change and analysis 

of operating rules under uncertain inflows are the primary focus of this chapter. 

The majority of studies performed in the past focused on climate change impacts on 

hydro-climate variables, such as precipitation, temperature, streamflow, etc. (Ghosh and 

Mujumdar, 2006; Mehrotra and Sharma, 2006; Ghosh, 2010; Das and Simonovic, 2012; 

Gaur and Simonovic, 2013; Kannan and Ghosh, 2013) or anticipated future water 
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demand under hydrologic impact of climate change (Asokan and Dutta, 2008; Li et al., 

2010). Particularly, analysis of reservoir operating rules considering primary sources of 

uncertainty in streamflow caused by climate change is rarely addressed in climate change 

impact studies. Li et al.,(2010) studied the variation of streamflow and reservoir 

performance under changing climate conditions in the North American prairie region. 

They found that the frequency and magnitude of peak streamflow will increase in future 

due to climate change. However, they did not use multiple downscaling models to 

address uncertainties.  Ahmadi et al., (2014) used adaptive rules based on non-dominated 

sorting genetic algorithm (NSGA-II) for reservoir management considering climate 

change. They applied this model in Karron-4 reservoir, Iran. The result showed that new 

adaptive rules are better in terms of reliability in hydropower generation. However, they 

only considered a single GCM (HadCM3), single GHG emission scenario (A2) and a 

single hydrologic model. Therefore uncertainties in climate change assessment process 

were not included in this study. Minville et al., (2009) studied climate change impacts on 

the Peribonka River Basin, Quebec, Canada which consists of two large reservoirs 

(Marouane lake reservoir and Passes-Dangereuses reservoir) for hydropower generation. 

The objectives of this study were to evaluate climate change impacts on hydropower, 

power plant efficiency, and reliability of the reservoir under changing climate condition.  

However, they did not address uncertainties in the climate change assessment process.         

In summary, past uncertainty modeling studies of reservoir operation due to climate 

change are limited only to the impact of choosing GCMs and emission scenarios. 

However, there are no studies especially in Canada, which address the cascade of 

uncertainty due to (i) choice of GCMs; (ii) selection of emission scenarios (iii) choice of 
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downscaling models. Therefore to assess the impact of climate change on reservoir 

operation, primary sources of uncertainties need to be addressed. For case study purpose, 

Campbell river system is used. Campbell river system includes: Buttle lake and Upper 

Campbell lake reservoir (Strathcona dam, Strathcona generating station and Crest 

diversion); Lower Campbell lake reservoir (Ladore dam, Ladore generating station, 

Salmon diversion dam, Quinsam diversion dam and Quinsam storage dam) and John Hart 

lake reservoir (John Hart dam and generating station). The details of this river system and 

reservoirs are discussed in the following section. 

5.1  Campbell River System and Reservoirs 

Campbell river system is located on Central Vancouver island, western part of Canada. It 

originates from Strathcona Provincial Park and connects Buttle Lake and Upper 

Campbell lake reservoir, Lower Campbell lake reservoir and John Hart lake reservoir, 

before drains into Strait of Georgia.  The Buttle lake and Upper Campbell lake flow is 

regulated by Strathcona dam, Lower Campbell lake by Ladore dam and John Hart lake 

reservoir is regulated by John Hart dam. Campbell river system has three diversion 

namely Crest (and formally Heber), Salmon and Quinsam. At full supply level (220.98 m 

water storage height), Buttle and Upper Campbell lake reservoir has a surface area of 

6,870 ha with 2,459 million m3 (approximately) of water storage. In 212 m elevation 

level both lakes (Buttle and Upper Campbell) becomes a single reservoir. However, in 

between 212 m and 208 m they separated into two lakes. Strathcona Dam is an earthfill 

dam located northeast arm of Upper Campbell lake. This dam is 53 m in height and 550 

m in length, has two 42,000 hp (2x 31.3 MW) turbines for power generation.  Maximum 

turbine discharge from Strathcona varies from 175.0 to 197.4 m3/s.  Figure 5.1 shows the 
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water use plan for Upper Campbell lake reservoir. Upper Campbell river has a maximum 

(220.5 m) and minimum (212 m) operating levels to meet recreation, shoreline, fisheries 

and flood mitigation interest (Figure 5.1). It also has a preferred maximum (220.5 m) and 

preferred minimum (217 m) operating levels for summer recreation (Figure 5.1).  

 

Figure 5.1 Upper Campbell Reservoir Operation Zones (after BC Hydro Generation 

Resource Management, 2012). 

Lower Campbell reservoir has a surface area of 2,650 ha and a total storage of 316 

million m3 (approximately). Ladore dam controlls flow from Lower Campbell  reservoir. 

Ladore is a concrete gravity dam situated 15km west from the City of Campbell river. 

This dam has two 35,000 hp (2x 26.1 MW) turbines for hydropower generation. 

Maximum turbine discharge from Ladore varies from 160.0 to 167.9 m3/s. Operation 

policy of Lower Campbell reservoir is shown in Figure 5.2. The maximum and minimum 

operating level is 178.3 m and 174.0 m respectively (Figure 5.2). However, the preferred 
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maximum and preferred minimum operation level is 177.5 m and 176.5 m respectively 

(Figure 5.2).   

 

Figure 5.2 Lower Campbell Reservoir Operation Zones (after BC Hydro Generation 

Resource Management, 2012). 

The last reservoir of the Campbell river system is John Hart lake reservoir which includes 

another hydropower generating station into the river system. John Hart has an earthfill 

dam and six generation units (6x 20.9 MW).  Maximum turbine discharge from John Hart 

varies from 122.0 to 124.0 m3/s. John Hart has a preferred operation range of 139.60 m 

(maximum) to 139.0 m (minimum). The details about Campbell River system and 

reservoir storage are shown in Figure 5.3. All the information described in this sub-

section is extracted from Campbell river water use plan developed by BC Hydro (BC 

Hydro Generation Resource Management, 2012).      

Typically, for coastal reservoirs like reservoirs in Campbell River system peak inflow 

occur between October and March. During this time of the year, peak flow results from 
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seasonal rainstorms and spring snowmelt (Figure 5.4).  It is typical for winter months 

when snowpack increases, followed by large short-term Pacific disturbances with warmer 

temperatures which help to melt a portion of the snowpack.  

 

Figure 5.3 Campbell river system: relative storage volume (after BC Hydro Generation 

Resource Management, 2012). 
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Figure 5.4 Historical (1984 - 2013) mean daily inflows of Upper Campbell reservoir 

(SCA inflow), Lower Campbell reservoir (LDR inflow) and John Hart reservoir (JHT 

inflow) (after Mandal et al., 2016a). 

As discussed in Chapter 4, streamflow of the Campbell river could be affected due to 

climate change. Therefore an assessment which includes future operation details of all 

three reservoirs in the Campbell rivers system under climate change scenarios is 

conducted in this chapter.  As there are three reservoirs in the river system and connected 

in a series, Arunkumar and Simonovic  (2017) developed a system dynamics simulation 

model to connect these reservoirs.  The details about this model are discussed in the 

following section.     
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5.2  System Dynamics Simulation Model of Reservoir 
System  

System dynamics simulation was first developed in the 1960s on the basis of control 

theory and has evolved into a widespread approach for modeling dynamic non-linear 

systems. It is a rigorous object-oriented simulation approach, which can be used in the 

analysis of dynamic systems (Simonovic, 2009).  The strength of the system dynamics 

approach is in modeling complex non-linear feedback systems over time, where the 

change in the system state or in the variables due a decision is internalized within a 

feedback loop.  Thus, system dynamics simulation allows the modeler to observe the 

behavior of a system and its response to any disturbance over time.  Also, the 

transparency of system dynamics simulation allows the modeler to understand the links 

between the system structure and its dynamic behavior through interaction and 

relationships among the different variables (Simonovic and Fahmy, 1999). Water 

resources systems have many interrelated components and their interactions and dynamic 

behavior make them complex. System dynamics simulation is a suitable tool for effective 

analysis of water resources systems that address the dynamic behavior and complex 

interactions of various components in a realistic way, where the stakeholder can be 

involved in the modeling process.   

Application of system dynamics simulation technique has been an important focus of 

research in water resources engineering, and numerous models have been reported, for 

example long-term water resources planning and policy analysis (Simonovic et al., 1997),  

flood management studies (Ahmad and Simonovic, 2000; Simonovic and Li, 2003), 

water shortage mitigation studies (Yang et al., 2008; Qin et al., 2012), design a multi-
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purpose reservoir (Chu et al., 2010), weather forecasting system (Rajasekaram et al., 

2010), hydrological impact studies  (Sharifi et al., 2013) and many more. Wei et al., 

(2012) studied the interactions between water resources, environmental flow and socio-

economy of the water resources system using a system dynamics model (SDM). In this 

work, the SDM was used to assess socio-economic impacts for different levels of 

environmental flow allocation in the Weihe River Basin of China. Felfelani et al., (2013) 

developed a comprehensive SDM simulation model to study the operations of multi-

purpose Dez Reservoir in southwestern Iran. The reservoir operations were simulated 

using forecasted monthly inflow and water release demand for hydropower, irrigation, 

and urban water supply. A goal-seeking hedging policy was proposed to avoid severe 

deficits. It is reported that the reservoir operations improved significantly after applying 

the hedging rule and reached the most stable condition during the simulation process. 

Teegavarapu and Simonovic (2014) assessed the behavior of a hydraulically coupled 

multiple reservoir systems using system dynamics approach. The developed model was 

applied to a real-life hydropower reservoir system in the Province of Manitoba, Canada. 

The hydraulic coupling between the reservoirs in the system was represented using the 

tailwater curves. It was reported that system dynamics approach helped in understanding 

the dynamics of the operation of a hydraulically coupled multiple reservoir systems. 

Jahandideh-Tehrani et al., (2014) simulated the operations of a hydropower system using 

SDM approach to study the effects of the operation of upstream reservoirs on a 

downstream reservoir. Multi-reservoir operations were simulated for eight scenarios over 

44 years and the performance of the reservoirs was evaluated using reliability, resilience 

and vulnerability. It was reported that construction of additional reservoir increased the 



131 

 

power production without affecting the performance of other reservoirs in the system. 

Abadi et al., (2015) used the SDM approach to simulate the water resources system for 

different scenarios and different policy packages. The SDM model was developed with 

various sub-systems and the policies were ranked using analytical hierarchy method. 

Recently, Morrison and Stone (2015) developed a SDM model to assess the 

environmental flow alternatives on reservoir storage, releases, hydropower production 

and revenue in Rio Chama basin, Mexico. It was concluded that SDM simulation was a 

promising approach, especially for reservoir operation studies. Thus, system dynamics 

modeling approach provides considerable flexibility and is an appropriate tool to address 

the dynamic water resources systems for prospectively enhancing its resilience (Winz et 

al., 2009). Most of the reported studies (discussed above) are focused on reservoir 

operations using SDM approach. A climate change impact assessment on multi-reservoirs 

using SDM approach is not done in the past. Another important aspect of this study is the 

introduction of all primary sources of uncertainty in climate change impacts assessment 

process which could address the impacts future climate change on reservoir operation.         

5.2.1  System Dynamics Model of the Campbell River System 

The operation of the multi-reservoirs of Campbell River System (CRS) is simulated 

through system dynamics (SDM) approach. In the present study, the SDM simulation 

model is developed in Vensim software (Vensim, 2014). In Vensim, the reservoir 

components are modeled using stocks, flows, arrows and auxiliary variables. Stocks are 

used to represent state variables that accumulate over time. An example of stock variable 

could be reservoir storage. Flows represent the actions that change the stocks. Reservoir 

inflow and releases are examples of flows, since they change the amount of water stored 
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in the reservoir over time. Auxiliaries are dynamic variables that are computed from other 

variables during the simulation. Arrows are used to establish the relationship among 

variables in the model and they carry information from one variable to another variable. 

The direction of the arrow describes the dependency relationship between the connected 

variables. A positive sign indicates that an increase in the independent variable causes an 

increase in the dependent variable and vice versa. A negative sign indicates that an 

increase in the independent variable causes a decrease in the dependent variable and vice 

versa.   

The stock and flow representation of CRS is shown in Figure 5.5. All the three reservoirs 

are represented as stocks and their inflows and outflows are modelled as flows. The three 

reservoirs namely, Strathcona (SCA), Ladore (LDR) and John Hart (JHT), are in series. 

The Strathcona is the upstream and largest reservoir in the basin and regulates the flow to 

the downstream reservoirs. The outflow, both the power releases and spill from the 

Strathcona reservoir is the major inflow to the Ladore. Similarly, the outflow from the 

Ladore dam is the major inflow to the John Hart reservoir. During  average conditions, all 

the reservoirs in the system are operated with the intent to maintain the reservoir water 

level within the specified preferred storage zones. Thus,  releases from the upstream 

reservoir adjusted such that the downstream conditions are met. The SDM simulation 

model is developed with the objective of maintaining the reservoir storage level within 

the preferred storage zones. The storage in the reservoir at time t is computed using the 

continuity equation. In general, the continuity equation is expressed as: 

   
, , 1 , ,n t n t n t n tStorage Storage Inflow Outflow         (5.1) 
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where Storagen,t is the storage at the end of time ‘t’ of reservoir ‘n’; Storagen,t-1 is the 

storage at the beginning of time ‘t’; Inflown,t is the inflow during the time ‘t’; Outflown,t is 

the total releases from the reservoir, which includes power releases and spill during the 

time period ‘t’. It is to be noted that the outflow from the upstream reservoir is the 

addition inflow to the downstream reservoir apart from its natural inflow. The system 

constraints, reservoir operating rules and the release decisions are captured using IF-

THEN-ELSE statements in the simulation model.   

According to the water use plan (BC Hydro Generation Resource Management, 2012), 

the reservoir levels need to be maintained within the preferred operating zones of each 

reservoir (discussed in section 5.1). The preferred operating zones also vary for each 

reservoir for different time periods. Therefore, SDM simulation model is developed in 

such a way that the reservoir levels are maintained within the preferred operating zones 

and the releases are made accordingly. This is achieved by developing separate release 

rules for each reservoir as a function of its inflow, storage and downstream conditions. 

The downstream conditions may be the storage level of the downstream reservoir or the 

water level in the downstream river reach. These rules are developed using multiple 

linear regression (MLR) technique and three years of historical data from 2012. The 

present water use plan is operational from the year 2012 and hence data from 2012 is 

only used for developing the release rules. In addition to these rules, the deviation from 

the preferred zones is deducted or added. At the starting of the simulation, the deviations 

are set as zero and the releases are computed. Then the final storage and reservoir water 

levels for that time period are estimated. If the water levels are outside the preferred 

storage zones, the deviations are estimated. The water level above the maximum level of 
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the preferred zone will have positive deviation and below the minimum level of preferred 

zone will have negative deviation. These releases equations are solved simultaneously 

until the downstream condition is satisfied. Thus, the iteration is continued within the 

simulation time step unit the upstream and downstream conditions are met. The final 

equations for the releases from each reservoir are given below:  

 

Figure 5.5 System Dynamics simulation model of Campbell River system (after 

Arunkumar and Simonovic, 2017). 

 

For Strathcona reservoir: 
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For Ladore reservoir: 
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For John Hart reservoir: 
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            (5.4) 

For hydropower calculation the following equation is used in this study: 

   

69.81 10
2.725

3600*1000

t t
t t t

R H
MW R H





         (5.5) 

where MW is megawatts power is produced in time t, Rt  is total release in Mm3 in time 

period t, Ht is the net head of water available for power generation in meters during t time 

period and η is turbine efficiency. Here turbine efficiency (η) is taken as 0.80, 0.90 and 

0.90 for Strathcona, Ladore and John Hart power station respectively. Gross water head 

for all three reservoirs can be calculated from SDM outputs and tail water head elevation 

(174.35 m for Strathcona, 144.1 m for Ladore and 15.03 m for John Hart) is provided by 

BC Hydro. Subtracting tail water head elevation from gross head gives us the net head 

(Ht). The following sub-section provides projected reservoirs operation details using 

SDM model under different climate change emission scenarios.    
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5.2.2 Future Flow Generation 

As discussed above the SDM model connects all three reservoirs in a series where inflow 

data is needed for the first reservoir (Strathcona) to start the model simulation. 

Streamflow data from UBC watershed model (discussed in section 4.2) is used as input to 

the SDM model. We simulated the SDM model for both time periods i.e. historical 

(1984-2013) and future (2036-2065 & 2066-2095). The SDM model gives inflow, 

storage and release information for all three reservoirs (SCA, LDR & JHT). The SDM 

model tried to keep the storage level in between maximum level of preferred zone 

(WUPmax) and minimum level of preferred zone (WUPmin) specified by BC Hydro (BC 

Hydro Generation Resource Management, 2012). From release and storage information, 

we calculated power (plug into Eq. (5.5)). The SDM model simulated and observed 

historical (1984 to 2013) daily mean inflow (m3/s), storage (m) and release (m3/s) 

information of Strathcona reservoir are shown in Figure 5.6. From the Figure 5.6 (b), it 

can be conclude that the SDM model performance is satisfactory in terms of keeping 

simulated storage level in between WUPmax and WUPmin zone. The following subsection 

discussed simulated results for future time period (2036-2065) from the SDM model.      

5.2.2.1 Results  

Projected mean daily future simulated inflow (m3/s), storage (m) and release (m3/s) for 

near future (2036-2065) with historical (1984-2013) observed inflow (m3/s), storage (m) 

and release (m3/s) information from Strathcona dam under different emission scenarios 

are shown in Figure 5.7. The dark black line represents historical information in all 

subplots of Figure 5.7. Figure 5.8 and Figure 5.9 provide the same information as Figure 

5.7 but for LDR and JHT reservoir. As the inflow of SCA is decreasing in summer time 
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(Figure 5.7 (a-c)) and SDM model tries to keep the same operational strategies (storage 

level in between    

 

Figure 5.6 SDM model simulated and observed historical (1984-2013) daily mean (a) 

inflow (m3/s), (b) storage (m) and (c) release (m3/s) information of Strathcona reservoir, 

British Columbia, Canada (after Mandal et al., 2016a). 

WUPmax and WUPmin) specified by BC Hydro, the release from the SCA reservoir will be 

greatly affected in near future (2036-2065) (Figure 5.7 (g-i)). Simulated future releases 

(2036-2065) (Figure 5.7 (g-i)) for almost all scenarios are smaller than the observed 

historical (1984-2013). Similar kind of pattern can be found for other two downstream 

reservoirs i.e. LDR and JHT (Figure 5.8 and Figure 5.9). As it is found that due to climate 

change, inflow into the SCA reservoir is going to decrease for all seasons except winter 
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(Table 4.3), the release will also follow the similar decreasing trend. As the hydropower 

is directly proportional to reservoir storage level and release, it will also decrease.  Figure 

5.10 to Figure 5.12 describe projected future (2036-2065) with historical (1984-2013) 

hydropower production from SCA, LDR and JHT under different emission scenarios, 

respectively. As the release from SCA decreases from late spring to beginning of fall, the 

power production also decreases. This similar pattern can be found for LDR and JHT too 

(Figure 5.11 and Figure 5.12). A comparison of mean seasonal future (2036-2065 & 

2066-2095) power production and historical power production is given in Table 5.1 to 

Table 5.3 for SCA, JHT and LDR under different emission scenarios, respectively.  The 

results show that power production from all three reservoirs is going to decrease in both 

future time periods when compared to historical (1984-2013). In the near future (2036-

2065), -7% (RCP 4.5, winter) to -67% (RCP 8.5, summer) change and in the far future 

(2065-2066), -6% (RCP 4.5 RCP 8.5, winter) to -72% (RCP 8.5, summer) changes in 

power production are projected for SCA reservoir (Table 5.1). For LDR, -26% (RCP 2.6 

& RCP 4.5, spring) to -70% (RCP 8.5, summer) change in between 2036 to 2065 and -

27% (RCP 2.6, spring) to -74% (RCP 8.5, summer) change in between 2066 to 2095 are 

projected (Table 5.2).  Power production change from -11 % (RCP 4.5, spring) to -60% 

(RCP 8.5, summer) in between 2036-2065 and changes from -11% (RCP 2.6, spring) -

66% (RCP 8.5, summer) are predicted for JHT reservoir (Table 5.3). The negative 

changes in power production during summer and fall time are larger compared to winter 

and spring seasons for all three reservoirs in both future time periods. As discussed in 

Section 4.2, streamflow of the Campbell river will decrease during summer and fall, 

which has direct influence on the reservoir release as reflected in the present results.  
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Another important observation is that change in power production of the upstream 

reservoir (SCA) is smaller when compared to the downstream reservoirs (LDR & JHT).  

As the upstream reservoir gets lower inflow, maintaining the reservoir water level at 

certain position requires reduction of release (compared to historical release) which 

directly affects power production. In addition, these three reservoirs are connected in 

series, therefore if the first reservoir release deviate from target, the deviation will 

propagate through other two reservoirs - the reason behind higher percentage change in 

downstream reservoir power production. Projected mean daily future simulated inflow 

(m3/s), storage (m) and release (m3/s) for the far future (2066-2095) and with historical 

(1984-2013) observed inflow (m3/s), storage (m) and release (m3/s) information under 

different emission scenarios are given in Appendix-C. A similar trend can be found for 

the far future (2066 to 2095) as found for the near future (2036 to 2065). 
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Figure 5.7 Projected mean daily simulated inflow (m3/s) (a-c), storage level (m) (d-f) and 

release (m3/s) (g-i) for near future (2036-2065) with historical (1984-2013) observed 

inflow (m3/s), storage level (m) and release (m3/s) from Strathcona Dam, BC, Canada for 

different emission scenarios (after Mandal et al., 2016a). 
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Figure 5.8 Projected mean daily simulated storage level (m) (a-c) and release (m3/s) (d-f) 

for near future (2036-2065) with historical (1984-2013) observed storage level (m) and 

release (m3/s) from Ladore Dam, BC, Canada for different emission scenarios (after 

Mandal et al., 2016a). 
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Figure 5.9 Projected mean daily simulated storage level (m) (a-c) and release (m3/s) (d-f) 

for near future (2036-2065) with historical (1984-2013) observed storage level (m) and 

release (m3/s) from John Hart Dam, BC, Canada for different emission scenarios (after 

Mandal et al., 2016a). 
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Figure 5.10 Projected mean daily power production (megawatt) for near future (2036-

2065) with historical (1984-2013) power production (megawatt) from Strathcona Dam, 

BC, Canada for different emission scenarios (after Mandal et al., 2016a). 
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Figure 5.11 Projected mean daily power production (megawatt) for near future (2036-

2065) with historical (1984-2013) power production (megawatt) from Ladore Dam, BC, 

Canada for different emission scenarios (after Mandal et al., 2016a). 
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Figure 5.12 Projected mean daily power production (megawatt) for near future (2036-

2065) with historical (1984-2013) power production (megawatt) from John Hart Dam, 

BC, Canada for different emission scenarios (after Mandal et al., 2016a). 
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Table 5.1 Comparison of Historical (1984-2013) and future mean seasonal power 

production (megawatt) for different emission scenarios in Strathcona Dam, Campbell 

River System, BC, Canada (after Mandal et al., 2016a). 

2036-2065 

 Historical RCP 2.6 RCP 4.5 RCP 8.5 

 mean mean 
Change in 

mean value (%) 
mean 

Change in mean 

value (%) 
mean 

Change in 

mean value (%) 

Winter 29.46 26.82 -9 27.30 -7 27.09 -8 

Spring 24.53 22.44 -8 22.50 -8 22.12 -9 

Summer 22.66 8.50 -61 7.85 -65 7.14 -67 

Fall 25.93 18.22 -27 18.37 -27 17.70 -30 

2066-2095 

Winter 29.46 27.04 -8 27.50 -6 27.48 -6 

Spring 24.53 22.42 -8 21.73 -11 21.32 -12 

Summer 22.66 8.25 -62 6.70 -70 5.97 -72 

Fall 25.93 18.07 -28 18.11 -28 17.88 -29 

 

Table 5.2 Comparison of Historical (1984-2013) and future mean seasonal power 

production (megawatt) for different emission scenarios in Ladore Dam, Campbell River 

System, British Columbia, Canada (after Mandal et al., 2016a). 

2036-2065 

 Historical RCP 2.6 RCP 4.5 RCP 8.5 

 mean mean 

Change in 

mean value 

(%) 

mean 

Change in 

mean value 

(%) 

mean 
Change in 

mean value (%) 

Winter 31.56 20.90 -33 21.45 -32 21.35 -32 

Spring 27.00 19.79 -26 19.97 -26 19.65 -27 

Summer 20.76 7.02 -65 6.55 -68 5.94 -70 

Fall 25.13 15.24 -38 15.38 -37 14.90 -40 

2066-2095 

Winter 31.56 21.22 -32 21.76 -31 21.87 -30 

Spring 27.00 19.66 -27 19.45 -28 19.06 -29 

Summer 20.76 6.87 -65 5.56 -73 5.01 -74 

Fall 25.13 15.20 -38 15.22 -38 15.00 -40 
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Table 5.3 Comparison of Historical (1984-2013) and future mean seasonal power 

production (megawatt) for different emission scenarios in John Hart Dam, Campbell 

River System, British Columbia, Canada (after Mandal et al., 2016a). 

2036-2065 

 Historical RCP 2.6 RCP 4.5 RCP 8.5 

 mean mean 

Change in 

mean value 

(%) 

mean 

Change in 

mean value 

(%) 

mean 

Change in 

mean value 

(%) 

Winter 106.42 87.82 -17 88.63 -16 87.92 -17 

Spring 92.05 80.94 -12 81.53 -11 80.54 -12 

Summer 68.73 30.51 -54 28.36 -58 25.94 -60 

Fall 84.56 59.32 -28 59.51 -28 57.40 -31 

2066-2095 

Winter 106.42 87.88 -17 88.62 -16 88.20 -17 

Spring 92.05 81.47 -11 79.55 -13 78.47 -14 

Summer 68.72 29.93 -55 24.23 -64 21.87 -66 

Fall 84.56 58.51 -29 58.31 -30 57.38 -31 

 

5.3 Summary 

In this Chapter, a system dynamics simulation (SDM) model is used to assess climate 

change impacts on multiple reservoirs in the Campbell River System. Results are 

analyzed under different GHG emission scenarios. The output from UBC watershed 

model is used as an input to the SDM model. The SDM model provides historical and 

future inflow, storage and release information for all three reservoirs (SCA, LDR, JHT) 

in the CRS. Using this information, we calculated hydropower and compared with 

historical hydropower produced by reservoirs.  
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The results show that the release from all three reservoirs is projected to decrease; 

consequently power production is also projected to decrease. Power production during 

summer and fall will be more drastically effected due to climate change as compared to 

winter and spring seasons. Deviation of hydropower production from target in the 

upstream reservoir (SCA) is smaller when compared to downstream reservoirs (LDR & 

JHT). It should be noted that we have only discussed the variation of hydropower 

production under different emission scenarios. The uncertainty analysis of hydropower 

production under different GCMs and DSMs can be considered for future work. The 

summary and conclusions are presented in the following chapter.      
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Chapter 6 

6 Summary and Conclusions 

The research reported in this thesis contributes towards the general methodology for the 

analyses of uncertainties within the climate change impact assessment process in 

managing water resources. This process includes selecting GCMs, selecting emission 

scenarios, downscaling hydro-climatic variables (e.g. precipitation, temperature), 

streamflow analysis and reservoir storage-release analyses. The following paragraphs 

provide a summary and the conclusions of the study presented in this thesis: 

The first research question was related to the development of an efficient and robust 

multisite and multivariate statistical downscaling model for predicting precipitation at 

local scales. In this study a new beta regression based multisite and multivariate statistical 

downscaling method is developed for generating synthetic precipitation time series. This 

model can capture the temporal and spatial variability of the predictand at each 

downscaled location. The proposed model was compared with existing downscaling 

models and was found to be computationally inexpensive and ideal for practical 

engineering application.      

The second objective was the quantification of climate change impacts on projected 

hydro-climatic variables and streamflow. This study investigated climate change impacts 

on precipitation in the Campbell River System, BC, Canada and also projected 

streamflow of the Campbell River under different climate change emission scenarios. 

This work is conducted for two different future time periods (2036 to 2065 and 2066 to 

2095). Results show that the summer months (June, July and August) are typically drier 
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in comparison to the other seasons in the Campbell river basin. However, there is a 

potential for more extreme events in the spring (March, April and May). The median total 

monthly precipitation is higher for the winter months and there is potential  for larger 

amounts of precipitation in the early spring in the future.  Apart from these results we 

also found that climate change has a significant influence on streamflow variation. It is 

projected that the summer flow in the Campbell River will decrease and winter flows will 

increase in both future time periods. The generalized extreme value (GEV) distribution is 

used for the streamflow frequency analysis. Flow frequency analysis shows that the 

changes in the flow magnitude become more significant for higher return periods under 

climate change.  

The third objective was the quantification of uncertainties in climate change impact 

assessment process. For this purpose, four global climate models (GCMs), three 

greenhouse gas emission scenarios (RCPs), six downscaling models (DSMs) and a 

hydrologic model (UBCWM) were used. Using these downscaling models, hydro-

climatic variables (precipitation, maximum, and minimum temperature) are downscaled 

for different emission scenarios. The streamflow is generated using a hydrologic model 

(UBC watershed model) where downscaled hydro-climatic variables are used as an input 

into the hydrologic model. As we used three emission scenarios, four GCMs and six 

downscaling models for streamflow generation, the assessment process resulted in 72 

different experiments (Figure 1.5). The 72 different streamflow time series are all 

considered as possible extreme scenarios for the assessment of three sources of 

uncertainty (choice of RCPs, GCMs and downscaling models). We analyzed uncertainty 

in projected precipitation, streamflow, and reservoir operation. Results were analyzed 
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temporally (monthly and quarterly) and spatially for two future time periods (2036 to 

2065 and 2066 to 2095). An uncertainty metric was calculated using the variation in 

simulated precipitation due to choice of GCMs, emission scenarios and downscaling 

models. The results show that the selection of a downscaling method provides the largest 

amount of uncertainty when compared to the choice of GCM and/or emission scenario. 

However, the choice of GCM provides a significant amount of uncertainty if the choice 

of downscaling method is not considered. Similar conclusions have been found for future 

streamflow projections.  

The fourth objective was to study climate change impacts on reservoir operation under 

uncertainty in hydrologic impacts of climate change. To address this objective we used a 

system dynamics simulation model (SDM) to connect all three reservoirs in the river 

basin. In this model, the reservoir components were modeled using stocks, flows, arrows, 

and auxiliary variables. The SDM model provides inflow, storage and release information 

for all three reservoirs (SCA, LDR & JHT). Streamflow predicted using UBC watershed 

model was used as an input to the SDM. The SDM model attempted to keep reservoirs 

storage levels within certain specified (WUPmax and WUPmin) zone established by BC 

Hydro (BC Hydro Generation Resource Management, 2012). The Campbell river flow 

originates from the mix of snow and rain. As the temperature increases, the snow and ice 

start melting faster and that affects the temporal distribution of contributing sources of 

streamflow. As the projected streamflow carries all different scenarios of climate change, 

the SDM model outputs also showed wide variations due to climate change. Since the 

future inflow of SCA varies seasonally and SDM model attempted to keep storage levels 

within the fixed range (WUPmax and WUPmin), release of SCA decreases compared to 
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historical (1984-2013). This situation creates inflow deficit in the LDR because LDR 

inflow is directly related to the release from SCA. It has been found that LDR and JHT 

release have a decreasing trend similar to SCA. The three reservoirs (SCA, LDR, and 

JHT) connect in a series. Therefore, it is obvious if one’s release is affected due to low 

inflow others will be face the same fate. Results show that during late spring and summer 

seasons future release (2036 to 2065 and 2066 to 2095) will be lower compared to fall or 

winter seasons for all three reservoirs. Based on the results of this study re-evaluation of 

reservoir level targets and operating rules is suggested in order to address the potential 

impacts of changing climatic conditions.           

The final objective of the study was to assess hydropower generation under changing 

climate conditions. The system dynamics simulation model used in this study provides 

storage and release information for all three reservoirs in the Campbell River System. 

From this information, future hydropower production rates are projected and compared 

with the historically obtained hydropower from the three reservoirs. Results show that in 

all season future hydropower production will be lower when compared to present 

production (1984-2013). The lower predicted future flows result in the decreases of 

reservoir releases and they result in lower power production. Another important 

observation is that the downstream reservoirs (LDR & JHT) are affected more in terms of 

power production compared to the upstream one (SCA).  

As presented in Figure 1.5, the whole climate change impacts assessment process has 

multiple steps. Each step contributes some amount of uncertainty that propagates towards 

the final results. The careful observation points to the fact that the climate variables have 

uncertainty possess from different emission scenarios. However this uncertainty is larger 
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when GCMs simulated climate data is used because GCMs simulate climate variables 

mathematically considering multiple assumptions (Dobler et al., 2012). Another source 

of variation results from downscaling the climate information to the regional scale. To 

quantify these uncertainties in climate variables, a simple relative matrix is calculated in 

this study (section 3.3.2). Based on this matrix, propagated uncertainties showed in 

different temporal and spatial scale (section 3.3.2). Later on we calculated uncertainty in 

streamflow using cdf and seasonal mean changes. Propagated uncertainty in reservoir 

storage and release is calculated using mean daily statistics. As discussed before, all three 

relative sources of uncertainty (RCPs, GCMs & DSMs) contribute towards the total 

uncertainty associated with the climate change impact assessment process. But one 

question still remains, what is the highest source of uncertainty? To answer this question, 

variations in streamflow for different GHGs emission scenarios, GCMs and downscaling 

models (Table 4.3 to Table 4.5) are analyzed. The results show that that largest source of 

uncertainty is from the choice of downscaling model, while emission scenarios contribute 

less uncertainty to the final results. However, all of these relative uncertainties 

accumulate and cause a significant variation in the end result which is reflected here in 

reservoirs release or power production. For example, in the near future (2036-2065) 

power production of SCA for RCP 2.6, varies from -9% to -61% (Table 5.1). 

The results presented in this research considered consistency, not “certainty”. This relates 

to the key analytical characters of “precision” versus “accuracy”. A method may be very 

precise, in always providing the same outcome, but in fact, it may be inaccurate as the 

outcome is consistently biased. Thus, downscaling may result in more variable results, 

but the emission scenarios may be too conservative and/or the four GCMs may be highly 
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consistent, not because they are correct, but because they are based on the same analytical 

sequence and even often share the same equations. So these GCMs may be consistent, but 

all four may be quite incorrect. Therefore selection of GCMs is crucial for uncertainty 

analysis. 

An extensive study is presented in this thesis to capture uncertainties in climate change 

impact assessment process. In a nutshell, adequate knowledge is needed regarding future 

climate impacts. Without adequate information, it is very difficult to connect climate 

impacts with adaptation actions. Water resource planners and managers are interested in 

information regarding adaptive and risk-based planning approaches for management of 

water resources systems. Appropriate management procedures are needed for projecting 

hydrological change. This present study could be used as a stepping stone for the 

management of water resource system under climate change. In addition, this work has 

also opened up several potential research areas that can be considered as the future scope 

of the present work. Details of potential future research areas are described in the 

following section.   

6.1 Scope of Future Studies 

The beta regression downscaling model developed here is a data-driven method which 

builds a stationary relationship between climate variables and daily precipitation which 

may not always be accurate. Salvi et al.,(2015) observed that a regression (kernel 

regression) based statistical downscaling models fail to capture the changes in mean 

precipitation under non-stationary climate. Therefore testing the present beta regression 

based downscaling model under non-stationary climate conditions can be considered as a 

future research topic.   
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Another limitation of this study is “link” function in the beta regression model. Here only 

the logit link function is used. Several link functions are available such as probit, log–log 

link etc. Hence, testing the model using different link functions can improve model 

robustness.  

The present study includes a single river system, and we do not really know if the 

consistency, especially across GCMs is typical. It will be appropriate for the comparison 

to be undertaken with other river systems and particularly in other hydro-geographical 

regions. The literature that the consistency of GCMs varies substantially across regions 

(Rupp et al., 2013). 

Use of a single hydrologic model (UBCWM) in this work is a limitation at this stage. 

Streamflow generation using multiple hydrological models with multiple emission 

scenarios, GCMs and downscaling models should be considered for the continuation of 

the presented work. 

The final suggestion is related to the use of a system dynamics simulation model for 

reservoirs operation analysis. The model provides future storage release information 

under climate change. Results show that future release will be lower if the present 

reservoir operation policy is followed in the future.  Release and storage reservoir targets 

are dependent on the functional requirements of the reservoir system. In order to adapt to 

the effects of climate change on stream flows and meet various reservoir water demands 

and flood control requirements, an optimization analysis is suggested to derive operating 

rules that will be better adapted to changing climate conditions.   
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The programming code of the beta regression model is given in Appendix-D and 

Appendix-E provides flow frequency analysis code.    



157 

 

References 

Abadi LSK, Shamsai A, Goharnejad H. 2015. An Analysis of the Sustainability of Basin 

Water Resources using Vensim Model. KSCE Journal of Civil Engineering 19 (6): 

1941–1949 DOI: 10.1007/s12205-014-0570-7 

Ahmad S, Simonovic SP. 2000. System Dynamics Modeling of Reservoir Operations for 

Flood Management. Journal of Computing in Civil Engineering 14 (3): 190–198 

DOI: 10.1061/(ASCE)0887-3801(2000)14:3(190) 

Ahmadi M, Haddad OB, Loáiciga HA. 2014. Adaptive Reservoir Operation Rules Under 

Climatic Change. Water Resources Management 29 (4): 1247–1266 DOI: 

10.1007/s11269-014-0871-0 

Ahmed KF, Wang G, Silander J, Wilson AM, Allen JM, Horton R, Anyah R. 2013. 

Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate 

Change Impact Assessment in The U.S. Northeast. Global and Planetary Change 

100: 320–332 DOI: 10.1016/j.gloplacha.2012.11.003 

Anandhi A, Frei A, Pierson DC, Schneiderman EM, Zion MS, Lounsbury D, Matonse 

AH. 2011. Examination of Change Factor Methodologies for Climate Change 

Impact Assessment. Water Resources Research 47: 1–10 DOI: 

10.1029/2010WR009104 

Arunkumar R, Simonovic SP. 2017. Dynamic resilience of a multi-reservoir system for 

various failure events (manuscript under preparation) 

Asokan SM, Dutta D. 2008. Analysis of Water Resources in the Mahanadi River Basin, 

India Under Projected Climate Conditions. Hydrological Processes 22: 3589–3603 

DOI: 10.1002/hyp 

Bardossy A, Duckstein L, Bogardi I. 1995. Fuzzy Rule-Based Classification of 

Atmospheric Circulation Patterns. International Journal of Climatology 15 (10): 

1087–1097 DOI: 10.1002/joc.3370151003 



158 

 

BC Hydro Generation Resource Management. 2012. Campbell River System Water Use 

Plan Available at: 

http://www.bchydro.com/content/dam/hydro/medialib/internet/documents/planning_

regulatory/wup/vancouver_island/2012q4/campbell_river_WUP_accept_2012_11_2

1.pdf 

Brandsma T, Buishand TA. 1998. Simulation of Extreme Precipitation in the Rhine Basin 

by Nearest-Neighbour Resampling. Hydrology and Earth System Sciences 2 (2–3): 

195–209 DOI: 10.5194/hess-2-195-1998 

Brock G, Pihur V, Datta S, Datta S. 2008. clValid , an R Package for Cluster Validation. 

Journal of Statistical Software 25(4) (4) 

Brown RD, Mote PW. 2009. The Response of Northern Hemisphere Snow Cover to a 

Changing Climate. Journal of Climate 22 (8): 2124–2145 DOI: 

10.1175/2008JCLI2665.1 

Bürger G, Sobie SR, Cannon AJ, Werner AT, Murdock TQ. 2012. Downscaling 

Extremes: An Intercomparison of Multiple Methods for Future Climate. Journal of 

Climate 26: 3429–3449 DOI: 10.1175/JCLI-D-12-00249.1 

Burn DH, Simonovic SP. 1996. Sensitivity of Reservoir Operation Performance to 

Climatic Change. Water Resources Management 10: 463–478 

Canadian Council of Professional Engineers. 2008. Adapting to Climate Change: 

Canada’s First national Engineering Vulnerability Assessment of Public 

Infrastructure Available at: 

http://www.pievc.ca/e/Adapting_to_climate_Change_Report_Final.pdf 

Canadian Institute of Actuaries. 2014. Water Damage Risk and Canadian Property 

Insurance Pricing Available at: http://www.cia-ica.ca/docs/default-

source/2014/214020e.pdf 

Carven P, Wahba G. 1979. Smoothing Noisy Data with Spline Functions. Numerische 

Mathematik: 377–403 



159 

 

Chen J, Brissette FP, Leconte R. 2014. Assessing Regression-Based Statistical 

Approaches for Downscaling Precipitation over North America. Hydrological 

Processes 28 (9): 3482–3504 DOI: 10.1002/hyp.9889 

Chen J, Brissette FP, Poulin A, Leconte R. 2011. Overall Uncertainty Study of the 

Hydrological Impacts of Climate Change for a Canadian Watershed. Water 

Resources Research 47: W12509 DOI: 10.1029/2011WR010602 

Christensen NS, Wood AW, Voisin N, Lettenmaier DP, Palmer RN. 2004. The Effects of 

Climate Change on the Hydrology and Water Resources of the Colorado River 

Basin. Climate Change 62: 337–363 DOI: 10.1023/B:CLIM.0000013684.13621.1f 

Chu H-J, Chang L-C, Lin Y-P, Wang Y-C, Chen Y-W. 2010. Application of System 

Dynamics on Shallow Multipurpose Artificial Lakes: A Case Study of Detention 

Pond at Tainan, Taiwan. Environmental Modeling & Assessment 15 (3): 211–221 

DOI: 10.1007/s10666-009-9196-4 

Coulibaly P, Dibike YB, Anctil F. 2005. Downscaling Precipitation and Temperature 

with Temporal Neural Networks. Journal of Hydrometeorology 6 (4): 483–496 DOI: 

10.1175/JHM409.1 

Craig JR, Snowdon AP. 2010. Raven: A Rigorously Formalized Modular Hydrological 

Model. Environmental Modeling and Software 2 (20) Available at: 

http://www.civil.uwaterloo.ca/jrcraig/Raven/files/RavenManual_v2.6.pdf 

Das S, Simonovic SP. 2012. Assessment of Uncertainty in Flood Flows Under Cliamte 

Change: The Upper Thames River Basin (Ontario, Canada). Department of Civil 

and Environmental Engineering, University of Western Ontario, London, Ontario. 

Available at: http://www.eng.uwo.ca/research/iclr/fids/publications/products/79.pdf 

Das S, Millington N, Simonovic SP. 2013. Distribution Choice for the Assessment of 

Design Rainfall for the City of London (Ontario, Canada) Under Climate Change. 

Canadian Journal of Civil Engineering 40 (2): 121–129 DOI: 10.1139/cjce-2011-

0548 



160 

 

Dibike YB, Coulibaly P. 2005. Hydrologic Impact of Climate Change in the Saguenay 

Watershed: Comparison of Downscaling Methods and Hydrologic Models. Journal 

of Hydrology 307 (1–4): 145–163 DOI: 10.1016/j.jhydrol.2004.10.012 

Dobler C, Hagemann S, Wilby RL, StÃtter J. 2012. Quantifying different sources of 

uncertainty in hydrological projections in an Alpine watershed. Hydrology and 

Earth System Sciences 16 (11): 4343–4360 DOI: 10.5194/hess-16-4343-2012 

Eamer J, Hayes T, Simth R. 2010. Canadian Biodiversity: Ecosystem Status and Trends 

2010 Available at: http://www.biodivcanada.ca/A519F000-8427-4F8C-9521-

8A95AE287753/EN_CanadianBiodiversity_FULL.pdf 

Eum H, Simonovic SP, Kim Y. 2010. Climate Change Impact Assessment Using K-

Nearest Neighbor Weather Generator: Case Study of the Nakdong River Basin in 

Korea. Journal of Hydrologic Engineering 15 (10): 772–785 DOI: 

10.1061/(ASCE)HE.1943-5584.0000251 

Eum H-I, Simonovic SP. 2012. Assessment on Variability of Extreme Climate Events for 

the Upper Thames River Basin in Canada. Hydrological Processes 26 (4): 485–499 

DOI: 10.1002/hyp.8145 

Eum H-I, Arunachalam V, Simonovic SP. 2009. Integrated Reservoir Management 

System for Adaptation to Climate Change Impacts in the Upper Thames River Basin 

Available at: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.668.3450&rep=rep1&typ

e=pdf 

Felfelani F, Movahed AJ, Zarghami M. 2013. Simulating Hedging Rules for Effective 

Reservoir Operation by using System Dynamics: A Case Study of Dez Reservoir, 

Iran. Lake and Reservoir Management 29 (2): 126–140 DOI: 

10.1080/10402381.2013.801542 

Ferrari SLP, Cribari-Neto F. 2004. Beta Regression for Modelling Rates and Proportions. 

Journal of Applied Statistics 31: 799–815 DOI: 10.1080/0266476042000214501 



161 

 

Fowler HJ, Wilby RL. 2010. Detecting Changes in Seasonal Precipitation Extremes using 

Regional Climate Model Projections: Implications for Managing Fluvial Flood Risk. 

Water Resources Research 46 (3): 1–17 DOI: 10.1029/2008WR007636 

Gates WL, Boyle JS, Covey C, Dease CG, Doutriaux CM, Drach RS, Fiorino M, 

Gleckler PJ, Hnilo JJ, Marlais SM, et al. 1999. An Overview of the Results of the 

Atmospheric Model Intercomparison Project (AMIP I). Bulletin of the American 

Meteorological Society 80 (1): 29–55 DOI: 10.1175/1520-

0477(1999)080<0029:AOOTRO>2.0.CO;2 

Gaur A, Simonovic PS. 2013. Climate Change Impact on Flood Hazard in the Grand 

River Basin, Ontario, Canada Available at: 

http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=2592&context=etd 

Ghosh S. 2010. SVM-PGSL Coupled Approach for Statistical Downscaling to Predict 

Rainfall from GCM Output. Journal of Geophysical Research 115 (D22): D22102 

DOI: 10.1029/2009JD013548 

Ghosh S, Mujumdar PP. 2006. Future Rainfall Scenario over Orissa with GCM 

Projections by statistical Downscaling. Current Science 90 (3) 

Goyal MK, Ojha CSP. 2010. Evaluation of Various Linear Regression Methods for 

Downscaling of Mean Monthly Precipitation in Arid Pichola Watershed. Natural 

Resources 1 (1): 11–18 DOI: 10.4236/nr.2010.11002 

Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah 

R, Page CM, Wibig J, Krzysztof, Fortuniak Vyacheslav RN, et al. 1999. Changes in 

the Probability of Heavy Precipitation. Important Indicators of Climate Change. 

Climate Change 42: 243–283 

Gyalistras D, Storch H Von, Fischlin A, Beniston M. 1994. Linking GCM-Simulated 

Climatic Changes to Ecosystem Models: Case Studies of Statistical Downscaling in 

the Alps. Climate Res. 4: 167–189 

Hashmi MZ, Shamseldin AY, Melville BW. 2009. Statistical Downscaling of 



162 

 

Precipitation: State-of-the-Art and Application of Bayesian Multi-model Approach 

for Uncertainty Assessment. Hydrology and Earth System Sciences 6: 6535–6579 

DOI: 10.5194/hessd-6-6535-2009 

Hay LE, McCabe GJ, Wolock DM, Ayers MA. 1991. Simulation of Precipitation by 

Weather Type Analysis. Water Resources Research 27 (4): 493–501 DOI: 

10.1029/90WR02650 

Heffernan JE. 2016. An Introduction to Statistical Modeling of Extreme Values: 1–33 

Available at: http://www.ral.ucar.edu/~ericg/softextreme.php 

Hertig E, Jacobeit J. 2013. A Novel Approach to Statistical Downscaling Considering 

Nonstationarities: Application to Daily Precipitation in the Mediterranean Area. 

Journal of Geophysical Research: Atmospheres 118 (2): 520–533 DOI: 

10.1002/jgrd.50112 

Hewitson BC, Crane RG. 1996. Climate Downscaling : Techniques and Application. 

Climate Research 7: 85–95 

Hosking JRM, Wallis JR. 1997. Regional Frequency Analysis: An approach based on L-

moments. United States of America by Cambridge University Press, New York. 

Available at: 

https://books.google.com.pe/books?hl=es&lr=&id=gurAnfB4nvUC&oi=fnd&pg=P

P1&dq=Regional+frequency+analysis+an+approach+based+on+l-

moments&ots=7Re17uu4PZ&sig=cQloBXfu6O-

1BS3wGAj_pUvSJYI#v=onepage&q&f=false 

Hughes JP, Guttorp P. 1994. A Class of Stochastic Models for Relating Synoptic 

Atmospheric Patterns to Regional Hydrologic Phenomena. Water Resources 

Research 30 (5): 1535–1546 DOI: 10.1029/93WR02983 

Hughes JP, Guttorp P, Charles SP. 1999. A Non-homogeneous Hidden Markov Model 

for Precipitation Occurrence. Applied Statistics 48(1) (1): 15–30 Available at: 

http://doi.wiley.com/10.1111/1467-9876.00136 



163 

 

Hutchinson MF, de Hoog FR. 1985. Smoothing noisy data with spline functions. 

Numerische Mathematik 47 (1): 99–106 DOI: 10.1007/BF01389878 

Hutchinson MF, Xu T. 2013. Anusplin Version 4.4 User Guide. (August) Available at: 

http://fennerschool.anu.edu.au/files/anusplin44.pdf 

IPCC. 2000. Summary for Policymakers Emissions Scenarios 

IPCC. 2007. Climate change 2007: The Physical Science Basis.Basis. Contribution of 

Working Group I to the Fourth Assesment Report of the Intergovernmental Panel on 

Climate Change DOI: 10.1038/446727a 

IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change. Cambridge University Press, Cambridge, United Kingdom and New York, 

NY, USA, 1535 pp. 

Irwin S, Srivastav RK, Simonovic SP, Burn DH. 2016. Delineation of Precipitation 

Regions using Location and Atmospheric Variables : The Role of Attribute 

Selection. Hydrological Sciences Journal 62 (2) DOI: 

10.1080/02626667.2016.1183776 

Jahandideh-Tehrani M, Bozorg Haddad O, Mariño MA. 2014. Power Generation 

Simulation of a Hydropower Reservoir System Using System Dynamics: Case Study 

of Karoon Reservoir System. Journal of Energy Engineering 140 (4): 4014003 DOI: 

10.1061/(ASCE)EY.1943-7897.0000179 

James G, Witten D, Hastie T, Tibshirani R. 2013. An Introduction to Statistical Learning 

with Applications in R. DOI: 10.1007/978-1-4614-7138-7 

Jiang T, Chen YD, Xu C yu, Chen X, Chen X, Singh VP. 2007. Comparison of 

Hydrological Impacts of Climate Change Simulated by Six Hydrological Models in 

the Dongjiang Basin, South China. Journal of Hydrology 336 (3–4): 316–333 DOI: 

10.1016/j.jhydrol.2007.01.010 



164 

 

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, 

White G, Woollen J, et al. 1996. The NCEP/NCAR 40-year reanalysis project. 

Bulletin of the American Meteorological Society 77 (3): 437–471 DOI: 

10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 

Kannan S, Ghosh S. 2010. Prediction of Daily Rainfall State in a River Basin using 

Statistical Downscaling from GCM Output. Stochastic Environmental Research and 

Risk Assessment 25 (4): 457–474 DOI: 10.1007/s00477-010-0415-y 

Kannan S, Ghosh S. 2013. A Nonparametric Kernel Regression Model for Downscaling 

Multisite Daily Precipitation in The Mahanadi Basin. Water Resources Research 49: 

1360–1385 DOI: 10.1002/wrcr.20118 

Kay AL, Davies HN, Bell VA, Jones RG. 2009. Comparison of Uncertainty Sources for 

Climate Change Impacts: Flood Frequency in England. Climatic Change 92: 41–63 

DOI: 10.1007/s10584-008-9471-4 

King LM, Mcleod IA, Simonovic SP. 2014. Simulation of Historical Temperatures Using 

A Multi-site, Multivariate Block Resampling Algorithm with Perturbation. 

Hydrological Processes 28: 905–912 DOI: 10.1002/hyp.9596 

King LM, Mcleod IA, Simonovic SP. 2015. Improved Weather Generator Algorithm for 

Multisite Simulation of Precipitation and Temperature. Journal of the American 

Water Resources Association 7: 1–16 DOI: 10.1111/1752-1688.12307 

Kishtawal CM, Niyogi D, Tewari M, Pielke RA, Shepherd JM. 2010. Urbanization 

Signature in the Observed Heavy Rainfall Climatology over India. International 

Journal of Climatology 30 (13): 1908–1916 DOI: 10.1002/joc.2044 

Labat D, Goddéris Y, Probst JL, Guyot JL. 2004. Evidence for Global Runoff Increase 

Related to Climate Warming. Advances in Water Resources 27 (6): 631–642 DOI: 

10.1016/j.advwatres.2004.02.020 

Leclerc M, Ouarda TBMJ. 2007. Non-Stationary Regional Flood Frequency Analysis at 

Ungauged Sites. Journal of Hydrology 343 (3–4): 254–265 DOI: 



165 

 

10.1016/j.jhydrol.2007.06.021 

Lee T, Ouarda TBMJ, Jeong C. 2012. Nonparametric Multivariate Weather Generator 

and an Extreme Value Theory for Bandwidth Selection. Journal of Hydrology 452–

453: 161–171 DOI: 10.1016/j.jhydrol.2012.05.047 

Li L, Xu H, Chen X, Simonovic SP. 2010. Streamflow Forecast and Reservoir Operation 

Performance Assessment under Climate Change. Water Resources Management 24: 

83–104 DOI: 10.1007/s11269-009-9438-x 

Liang XZ, Kunkel KE, Meehl GA, Jones RG, Wang JXL. 2008. Regional Climate 

Models Downscaling Analysis of General Circulation Models Present Climate 

Biases Propagation into Future Change Projections. Geophysical Research Letters 

35 (8): 1–5 DOI: 10.1029/2007GL032849 

Mandal S, Simonovic SP. 2017. Quantification of Uncertainty in the Assessment of 

Future Streamflow under Changing Climate Conditions. Hydrological Processes (in 

press) DOI: 10.1002/hyp.11174 

Mandal S, Arunkumar R, Breach PA, Simonovic SP. 2016a. Reservoir operation under 

climate change : a system dynamics approach. (manuscript under preparation) 

Mandal S, Breach PA, Simonovic SP. 2016b. Uncertainty in Precipitation Projection 

under Changing Climate Conditions: A Regional Case Study. American Journal of 

Climate Change 5 (1): 116–132 DOI: 10.4236/ajcc.2016.51012 

Mandal S, Srivastav RK, Simonovic SP. 2016c. Use of Beta Regression for Statistical 

Downscaling of Precipitation in the Campbell River Basin, Brithish Columbia, 

Canada. Journal of Hydrology 538: 49–62 

Mandal S, Srivastav RK, Simonovic SP. 2016d. Use of beta regression for statistical 

downscaling of precipitation in the Campbell River basin, British Columbia, 

Canada. Journal of Hydrology 538: 49–62 DOI: 10.1016/j.jhydrol.2016.04.009 

Marshall SJ, White EC, Demuth MN, Bolch T, Wheate R, Menounos B, Beedle MJ, Shea 



166 

 

JM. 2011. Glacier Water Resources on the Eastern Slopes of the Canadian Rocky 

Mountains. Canadian Water Resources Journal 36 (March 2010): 109–134 DOI: 

10.4296/cwrj3602823 

Martin E, Timbal B, Brun E. 1997. Downscaling of General Circulation model Outputs: 

Simulation of the Snow Climatology of the French Alps and Sensitivity to Climate 

Change. Climate Dynamics 13 (1): 45–56 DOI: 10.1007/s003820050152 

Maurer EP. 2007. Uncertainty in Hydrologic Impacts of Climate Change in the Sierra 

Nevada, California, Under Two Emissions Scenarios. Climatic Change 82 (3–4): 

309–325 DOI: 10.1007/s10584-006-9180-9 

McCuen RH. 2016. Assessment of Hydrological and Statistical Significance. Journal of 

Hydrologic Engineering 21 (4): 2516001 DOI: 10.1061/(ASCE)HE.1943-

5584.0001340 

Mehrotra R, Sharma A. 2005. A Nonparametric Nonhomogeneous Hidden Markov 

Model for Downscaling of Multisite Daily Rainfall Occurrences. Journal of 

Geophysical Research 110 (16): 1–13 DOI: 10.1029/2004JD005677 

Mehrotra R, Sharma A. 2006. Conditional Resampling of Hydrologic Time Series using 

Multiple Predictor Variables: A K-nearest Neighbour Approach. Advances in Water 

Resources 29 (7): 987–999 DOI: 10.1016/j.advwatres.2005.08.007 

Mehrotra R, Sharma A. 2007. A Semi-Parametric Model for Stochastic Generation of 

Multi-site Daily Rainfall Exhibiting Low-Frequency Variability. Journal of 

Hydrology 335: 180–193 DOI: 10.1016/j.jhydrol.2006.11.011 

Mehrotra R, Sharma A. 2010. Development and Application of a Multisite Rainfall 

Stochastic Downscaling Framework for Climate Change Impact Assessment. Water 

Resources Research 46: 1–17 DOI: 10.1029/2009WR008423 

Mekis É, Vincent LA. 2011. An overview of the second generation adjusted daily 

precipitation dataset for trend analysis in Canada. Atmosphere-Ocean 49(2) (2): 

163–177 DOI: 10.1080/07055900.2011.583910 



167 

 

Micovic Z, Quick MC. 1999. A rainfall and snowmelt runoff modelling approach to flow 

estimation at ungauged sites in British Columbia. Journal of Hydrology 226 (1–2): 

101–120 DOI: 10.1016/S0022-1694(99)00172-9 

Micovic Z, Quick MC. 2009. Investigation of the model complexity required in runoff 

simulation at different time scales / Etude de la complexité de modélisation requise 

pour la simulation d’écoulement à différentes échelles temporelles. Hydrological 

Sciences Journal 54 (5): 872–885 DOI: 10.1623/hysj.54.5.872 

Minville M, Brissette F, Krau S, Leconte R. 2009. Adaptation to climate change in the 

management of a Canadian water-resources system exploited for hydropower. Water 

Resources Management 23 (14): 2965–2986 DOI: 10.1007/s11269-009-9418-1 

Minville M, Brissette F, Leconte R. 2008. Uncertainty of The Impact of Climate Change 

on The Hydrology of A Nordic Watershed. Journal of Hydrology 358: 70–83 DOI: 

10.1016/j.jhydrol.2008.05.033 

Morrison RR, Stone MC. 2015. Evaluating the Impacts of Environmental Flow 

Alternatives on Reservoir and Recreational Operations Using System Dynamics 

Modeling. JAWRA Journal of the American Water Resources Association 51 (1): 

33–46 DOI: 10.1111/jawr.12231 

Najafi MR, Moradkhani H, Jung IW. 2011. Assessing the uncertainties of hydrologic 

model selection in climate change impact studies. Hydrological Processes 25 (18): 

2814–2826 DOI: 10.1002/hyp.8043 

Pacific Climate Impacts Consortium U of V. 2014. Statistically Downscaled Climate 

Scenarios Available at: https://pacificclimate.org/data/statistically-downscaled-

climate-scenarios [Accessed 23 July 2015] 

Payne J, Wood A, Hamlet A. 2004. Mitigating the effects of climate change on the water 

resources of the Columbia River basin. Climatic Change 62 (1–3): 233–256 DOI: 

10.1023/B:CLIM.0000013694.18154.d6 

Piani C, Weedon GP, Best M, Gomes SM, Viterbo P, Hagemann S, Haerter JO. 2010. 



168 

 

Statistical bias correction of global simulated daily precipitation and temperature for 

the application of hydrological models. Journal of Hydrology 395 (3–4): 199–215 

DOI: 10.1016/j.jhydrol.2010.10.024 

Pina J, Tilmant A, Ph D, Anctil F, Ph D. 2017. Horizontal Approach to Assess the Impact 

of Climate Change on Water Resources Systems: 1–11 DOI: 

10.1061/(ASCE)WR.1943-5452.0000737. 

Poulin A, Brissette F, Leconte R, Arsenault R, Malo J-S. 2011. Uncertainty of 

hydrological modelling in climate change impact studies in a Canadian, snow-

dominated river basin. Journal of Hydrology 409 (3–4): 626–636 DOI: 

10.1016/j.jhydrol.2011.08.057 

Pour S, Harun S, Shahid S. 2014. Genetic Programming for the Downscaling of Extreme 

Rainfall Events on the East Coast of Peninsular Malaysia. Atmosphere 5: 914–936 

DOI: 10.3390/atmos5040914 

Prudhomme C, Davies H. 2008a. Assessing uncertainties in climate change impact 

analyses on the river flow regimes in the UK. Part 2: future climate. Climatic 

Change 93 (1–2): 197–222 DOI: 10.1007/s10584-008-9461-6 

Prudhomme C, Davies H. 2008b. Assessing Uncertainties in Climate Change Impact 

Analyses on The River Flow Regimes in The UK. Part 1: Baseline Climate. Climatic 

Change 93: 177–195 DOI: 10.1007/s10584-008-9464-3 

Qin H, Sun AC, Liu J, Zheng C. 2012. System dynamics analysis of water supply and 

demand in the North China Plain. Water Policy 14 (2): 214 DOI: 

10.2166/wp.2011.106 

Quick MC, Pipes A. 1977. U.B.C. WATERSHED MODEL / Le modèle du bassin 

versant U.C.B. Hydrological Sciences Bulletin 22:1: 153–162 DOI: 

10.1080/02626667709491701 

Racherla PN, Shindell DT, Faluvegi GS. 2012. The added value to global model 

projections of climate change by dynamical downscaling: A case study over the 



169 

 

continental U.S. using the GISS-ModelE2 and WRF models. Journal of Geophysical 

Research: Atmospheres 117: D20118 DOI: 10.1029/2012JD018091 

Rajasekaram V, McBean GA, Simonovic SP. 2010. A systems dynamic modelling 

approach to assessing elements of a weather forecasting system. Atmosphere-Ocean 

48 (1): 1–9 DOI: 10.3137/AO931.2010 

Raje D, Mujumdar PP. 2009. A conditional random field-based downscaling method for 

assessment of climate change impact on multisite daily precipitation in the 

Mahanadi basin. Water Resources Research 45 (10): W10404 DOI: 

10.1029/2008WR007487 

Raje D, Mujumdar PP. 2010. Reservoir performance under uncertainty in hydrologic 

impacts of climate change. Advances in Water Resources 33 (3): 312–326 DOI: 

10.1016/j.advwatres.2009.12.008 

Refsgaard JC. 1997. Parameterisation, calibration and validation of distributed 

hydrological models. Journal of Hydrology 198 (1–4): 69–97 DOI: 10.1016/S0022-

1694(96)03329-X 

Rupp DE, Abatzoglou JT, Hegewisch KC, Mote PW. 2013. Evaluation of CMIP5 20 th 

century climate simulations for the Pacific Northwest USA. Journal of Geophysical 

Research: Atmospheres 118 (19): 10,884-10,906 DOI: 10.1002/jgrd.50843 

Salvi K, Ghosh S, Ganguly AR. 2015. Credibility of statistical downscaling under 

nonstationary climate. Climate Dynamics 46 (5): 1991–2023 DOI: 10.1007/s00382-

015-2688-9 

Salvi K, Kannan S, Ghosh S. 2013. High-resolution multisite daily rainfall projections in 

India with statistical downscaling for climate change impacts assessment. Journal of 

Geophysical Research: Atmospheres 118 (9): 3557–3578 DOI: 10.1002/jgrd.50280 

Schmid M, Wickler F, Maloney KO, Mitchell R, Fenske N, Mayr A. 2013. Boosted Beta 

Regression. PLoS ONE 8 (4) DOI: 10.1371/journal.pone.0061623 



170 

 

Schnorbus M, Bennett A, Werner A, Berland A. 2011. Hydrologic Impacts of Climate 

Change in the Peace , Campbell and Columbia Watersheds , British Columbia , 

Canada Available at: 

https://pacificclimate.org/sites/default/files/publications/Schnorbus.HydroModelling

.FinalReport2.Apr2011.pdf 

Schoof JT, Pryor SC. 2001. Downscaling temperature and precipitation: A comparison of 

regression-based methods and artificial neural networks. International Journal of 

Climatology 21: 773–790 DOI: 10.1002/joc.655 

Seiller G, Anctil F. 2014. Climate change impacts on the hydrologic regime of a 

Canadian river: Comparing uncertainties arising from climate natural variability and 

lumped hydrological model structures. Hydrology and Earth System Sciences 18 (6): 

2033–2047 DOI: 10.5194/hess-18-2033-2014 

Sharif M, Burn DH. 2006. Simulating climate change scenarios using an improved K-

nearest neighbor model. Journal of Hydrology 325: 179–196 DOI: 

10.1016/j.jhydrol.2005.10.015 

Sharifi A, Kalin L, Tajrishy M. 2013. System Dynamics Approach for Hydropower 

Generation Assessment in Developing Watersheds: Case Study of Karkheh River 

Basin, Iran. Journal of Hydrologic Engineering 18 (8): 1007–1017 DOI: 

10.1061/(ASCE)HE.1943-5584.0000711 

Sharma A, O’Neill R. 2002. A nonparametric approach for representing interannual 

dependence in monthly streamflow sequences. Water Resources Research 38(7) (7) 

DOI: 10.1029/2001WR000953 

Shastri H, Paul S, Ghosh S, Karmakar S. 2015. Impacts of urbanization on Indian 

summer monsoon rainfall extremes. Journal of Geophysical Research Atmospheres 

120: 495–516 DOI: 10.1002/2014JD022061 

Sheil D, Murdiyarso D. 2009. How forests attract rain: an examination of a new 

hypothesis. Bio Science 59 (4): 341–347 DOI: 10.1525/bio.2009.59.4.12 



171 

 

Shepard D. 1968. A two-dimensional interpolation function for irregularly-spaced data. 

In 23rd ACM National Conference517–524. DOI: 10.1145/800186.810616 

Simas AB, Barreto-Souza W, Rocha A V. 2010. Improved Estimators for A General 

Class of Beta Regression Models. Computational Statistics and Data Analysis 54: 

348–366 DOI: 10.1016/j.csda.2009.08.017 

Simonovic SP. 1992. Reservoir systems analysis: closing gap between theory and 

practice. Journal of Water Resources Planning and Management 118 (3): 262–280 

DOI: 10.1061/(ASCE)0733-9496(1992)118:3(262) 

Simonovic SP. 2008. Engineering Literature Review: Water Resources - Infrastructure 

Impacts, Vulnerabilities and Design Considerations for Future Climate Change.In 

Adapting to Climate Change, Canada’s First National Engineering Vulnerability 

Assessment of Public Infrastructu DOI: 10.1017/CBO9781107415324.004 

Simonovic SP. 2009. Managing Water Resources: Methods and Tools for a Systems 

Approach. Available at: https://www.amazon.ca/Managing-Water-Resources-

Methods-Approach/dp/1844075540 

Simonovic SP, Fahmy H. 1999. A new modeling approach for water resources policy 

analysis. Water Resources Research 35 (1): 295–304 DOI: 10.1029/1998WR900023 

Simonovic SP, Li L. 2003. Methodology for Assessment of Climate Change Impacts on 

Large-Scale Flood Protection System. Journal of Water Resources Planning and 

Management 129 (October): 361–371 DOI: 10.1061/(ASCE)0733-

9496(2003)129:5(361) 

Simonovic SP, Fahmy H, El-Shorbagy A. 1997. The Use of Object-Oriented Modeling 

for Water Resources Planning in Egypt. Water Resources Management 11 (4): 243–

261 DOI: 10.1023/A:1007988424353 

Srivastav RK, Simonovic SP. 2014. Multi-site, Multivariate Weather Generator Using 

Maximum Entropy Bootstrap. Climate Dynamics DOI: 10.1007/s00382-014-2157-x 



172 

 

Stahl K, Moore RD, Shea JM, Hutchinson D, Cannon AJ. 2008. Coupled modelling of 

glacier and streamflow response to future climate scenarios. Water Resources 

Research 44 (2): 1–13 DOI: 10.1029/2007WR005956 

Stern RD, Coe R. 1984. A Model fitting Analysis of Daily Rainfall Data. Journal of the 

Royal Statistical Society 147 (1): 1–34 

Stewart IT, Cayan DR, Dettinger MD. 2004. Changes in Snowmelt Runoff Timing in 

Western North America under a ‘Business As Usual’ Climate Change Scenario. 

Climatic Change 62: 217–232 

Von Storch H, Zorita E, Cubasch U. 1993. Downscaling of global climate change 

estimates to regional scales: an application to Iberian rainfall in wintertime. Journal 

of Climate 6: 1161–1171 DOI: 10.1175/1520-

0442(1993)006<1161:DOGCCE>2.0.CO;2 

Teegavarapu RS V., Simonovic SP. 2014. Simulation of Multiple Hydropower Reservoir 

Operations Using System Dynamics Approach. Water Resources Management 28 

(7): 1937–1958 DOI: 10.1007/s11269-014-0586-2 

Tripathi S, Srinivas V V., Nanjundiah RS. 2006. Downscaling of precipitation for climate 

change scenarios: A support vector machine approach. Journal of Hydrology 330 

(3–4): 621–640 DOI: 10.1016/j.jhydrol.2006.04.030 

Vensim. 2014. Vensim Reference Manual. Ventana Systems Inc.: MA, USA. 

Vrac M, Paillard D, Naveau P. 2007. Non-linear statistical downscaling of present and 

LGM precipitation and temperatures over Europe. Climate of the Past 3 (4): 669–

682 DOI: 10.5194/cpd-3-899-2007 

Vuuren DP van, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, 

Kram T, Krey V, Lamarque JF, et al. 2011. The representative concentration 

pathways: An overview. Climatic Change 109 (1): 5–31 DOI: 10.1007/s10584-011-

0148-z 



173 

 

Warren FJ, Lemmen DS. 2014. Canada in a Changing Climate :Sector Perspectives on 

Impacts and Adaptation; Government of Canada, Ottawa, ON, 286p. 

Wei S, Yang H, Song J, Abbaspour KC, Xu Z. 2012. System dynamics simulation model 

for assessing socio-economic impacts of different levels of environmental flow 

allocation in the Weihe River Basin, China. European Journal of Operational 

Research 221 (1): 248–262 DOI: 10.1016/j.ejor.2012.03.014 

Werner AT. 2011. BCSD Downscaled Transient Climate Projections for Eight Select 

GCMs over British Columbia, Canada. Hydrologic Modelling Project Final Report 

(Part I) Available at: 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:BCSD+Downscal

ed+Transient+Climate+Projections+for+Eight+Select+GCMs+over+British+Colum

bia,+Canada#0%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=inti

tle:BCSD+downscaled+transient+cl 

Werner AT, Cannon AJ. 2015. Hydrologic Extremes – An Intercomparison of Multiple 

Gridded Statistical Downscaling Methods. Hydrology and Earth System Sciences 

Discussions 12: 6179–6239 DOI: 10.5194/hessd-12-6179-2015 

Wetterhall F, Halldin S, Xu CY. 2005. Statistical precipitation downscaling in central 

Sweden with the analogue method. Journal of Hydrology 306: 174–190 DOI: 

10.1016/j.jhydrol.2004.09.008 

Wilby R., Dawson C., Barrow E. 2002. SDSM — a decision support tool for the 

assessment of regional climate change impacts. Environmental Modelling & 

Software 17 (2): 147–159 DOI: 10.1016/S1364-8152(01)00060-3 

Wilby RL. 2005. Uncertainty in water resource model parameters used for climate 

change impact assessment. Hydrological Processes 19: 3201–3219 DOI: 

10.1002/hyp.5819 

Wilby RL, Harris I. 2006. A Framework for Assessing Uncertainties in Climate Change 

Impacts: Low-Flow Scenarios for The River Thames, UK. Water Resources 



174 

 

Research 42: W02419 DOI: 10.1029/2005WR004065 

Wilby RL, Wigley TML. 1997. Downscaling general circulation model output: a review 

of methods and limitations. Progress in Physical Geography 21(4): 530–548 DOI: 

10.1177/030913339702100403 

Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO. 2004. Guidelines for 

use of climate scenarios developed from statistical downscaling methods Available 

at: http://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf 

Wilby RL, Hay LE, Leavesley GH. 1999. A Comparison of Downscaled and Raw GCM 

Output: Implications for Climate Change Scenarios in The San Juan River Basin, 

Colorado. Journal of Hydrology 225: 67–91 DOI: 10.1016/S0022-1694(99)00136-5 

Wilby RL, Whitehead PG, Wade AJ, Butterfield D, Davis RJ, Watts G. 2006. Integrated 

Modelling of Climate Change Impacts on Water Resources and Quality in A 

Lowland Catchment: River Kennet, UK. Journal of Hydrology 330: 204–220 DOI: 

10.1016/j.jhydrol.2006.04.033 

Wilks DS. 1999. Multisite downscaling of daily precipitation with a stochastic weather 

generator. Climate Research 11: 125–136 DOI: 10.3354/cr011125 

Wilks DS, Wilby RL. 1999. The weather generation game: a review of stochastic weather 

models. Progress in Physical Geography 23 (3): 329–357 DOI: 

10.1191/030913399666525256 

Winz I, Brierley G, Trowsdale S. 2009. The Use of System Dynamics Simulation in 

Water Resources Management. Water Resources Management 23 (7): 1301–1323 

DOI: 10.1007/s11269-008-9328-7 

Wood AW, Leung LR, Sridhar V, Lettenmaier DP. 2004. Hydrologic Implications of 

Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. 

Climatic Change 62: 189–216 DOI: 10.1023/B:CLIM.0000013685.99609.9e 

Wood AW, Maurer EP, Kumar A, Lettenmaier DP. 2002. Long-Range Experimental 



175 

 

Hydrologic Forecasting for The Eastern United States. Journal of Geophysical 

Research : Atmospheres 107: 1–15 DOI: 10.1029/2001JD000659 

World Climate Research Programme. 2009. ETCCDI/CRD climate change indices: 

definitions of the 27 core indices Available at: 

http://etccdi.pacificclimate.org/list_27_indices.shtml [Accessed 4 September 2015] 

Yang C-C, Chang L-C, Ho C-C. 2008. Application of System Dynamics with Impact 

Analysis to Solve the Problem of Water Shortages in Taiwan. Water Resources 

Management 22 (11): 1561–1577 DOI: 10.1007/s11269-008-9243-y 

Yeh W. 1985. Reservoir Management and Operations Models ’. Water Resource 

Reasearch 21 (12): 1797–1818 

Young KC. 1994. A multivariate chain model for simulating climatic parameters from 

daily data. Journal of Applied Meteorology 33 (6): 661–671 DOI: 10.1175/1520-

0450(1994)033<0661:AMCMFS>2.0.CO;2 

Zwiers F, Schnorbus MA, Maruszeczka GD. 2011. Hydrologic impacts of climate change 

on BC water resources: summary report for the Campbell, Columbia and Peace river 

watersheds: 1–24 Available at: http://pacificclimate.org/news/2011/new-publication-

hydrologic-impacts-climate-change-bc-water-resources-summary-report 

  



176 

 

Appendices 

Appendix A: ANUSPLIN and NCEP/NCAR data set details 

ANUSPLIN Data: ANUSPLIN data sets have been developed by Dr. Michael 

Hutchinson of The Australian National University using thin plate spline smoothing 

algorithm. Thin plate smoothing splines is a generalization of standard multi-variate 

linear regression (Hutchinson and de Hoog, 1985). In this spline algorithm, the 

parametric model is substituted by a suitably smooth non-parametric function. The degree 

of complexity or the degree of smoothness of the fitted function is usually calculated 

from the data by optimizing a measure of predictive error of the fitted surface specified 

by the generalized cross validation (GCV) (Carven and Wahba, 1979). A brief overview 

of the basic theory and applications to spatial interpolation of climate data is given in 

Hutchinson and Xu (2013).  

These datasets are very useful in climate studies or hydrology because climate station 

data are rarely available in remote forest locations of Canada.  ANUSPLIN data set 

contains daily maximum and minimum temperature and total precipitation data with a 

grid spacing of 10 km. Grids were interpolated from daily Environment Canada climate 

station observations utilizing thin plate smoothing spline surface fitting method. Daily 

ANUSPLIN dataset is available from 1950 to 2013. For ANUSPLIN data access please 

follow the link: http://open.canada.ca/data/en/dataset/d432cb3d-8266-4487-b894-

06224a4dfd5b. 

 

http://open.canada.ca/data/en/dataset/d432cb3d-8266-4487-b894-06224a4dfd5b
http://open.canada.ca/data/en/dataset/d432cb3d-8266-4487-b894-06224a4dfd5b
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NCEP/NCAR data: In 1991, The National Centers for Environmental Prediction (NECP) 

and National Centre for Atmospheric Research (NCAR) cooperated in Climate Data 

Assimilation System (CDAS) project (denoted “reanalysis”) to produce a 40-year record 

of global analyses of atmospheric variables to support research and climate communities 

(Kalnay et al., 1996). The main objective of this project was to use a state-of-the-art 

analysis/forecast system and simulated climate data using historical dataset from 1948 to 

present. The NCEP/NCAR Reanalysis data set is globally gridded data set which 

describes the state of the Earth's atmosphere. These data sets are available in 6-hourly, 

daily and monthly and have approximately 2.5° x 2.5° spatial resolution. Data is available 

in 17 different pressure levels and 28 sigma levels. There are large numbers of climate 

variables (e.g., precipitation, temperature, relative humidity, u-wind, v-wind etc.) are 

available in several heights and pressure levels. In NCEP/NCAR website, climate 

variables are divided into seven different groups based on level or properties: (1) pressure 

level; (2) surface; (3) surface fluxes; (4) other fluxes; (5) tropopause; (6) derived data and 

(7) spectral coefficient. NCEP/NCAR data set distributed in Netcdf and GRIB files. 

These data sets are freely available from NOAA Earth System Research Laboratory 

website (https://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml). 

   

  

 

 

https://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml
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Appendix B: RAVEN and hydrologic model details  

RAVEN is a hydrological modeling framework, a software package for hydrologic 

modeling(Craig and Snowdon, 2010). RAVEN uses a “generic discretization approach” 

where a river basin subdivided into multiple subbasins and act as hydrological response 

units (HRUs) (Figure B.1). Within HRU, flow distributed vertically and redistributed 

laterally through routing. Each HRU consists of a single combination of vegetation cover, 

land use/land type, terrain type, stratified aquifer and a defined soil profile.        

 

Figure B.1 Land surface partitioning in Raven (after Craig and Snowdon, 2010) 

Each HRU is defined by a finite number of storage components i.e. snowpack, soil, 

canopy, in which energy and water stored. Given a set of user specified hydrologic 

process (e.g. precipitation, snowmelt, evaporation etc.) data, RAVEN solves the resultant 
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zero and one-dimensional energy and water balance problem for a single HRU. Each 

HRU has defined geometric properties (latitude, longitude, area, and parent sub-basin), 

subterranean soil profile and topography (slope, aspect). In RAVEN modeler have 

flexibility to determine the degree of model complexity. For example, a watershed can be 

treated as a single giant HRU where precipitation and temperature data is needed for 

streamflow simulation. In other side, RAVEN could be integration of thousands of HRUs 

with multiple storage components and forced (e.g. longwave radiation, wind velocity, air 

pressure etc.) measured hourly basis. 

The simulation of RAVEN is fundamentally straight forward. It starts with some initial 

conditions of a watershed and moves forward with time. With respect to time the model 

starts simulate the distribution of energy, mass and water within and in between HRUs in 

response to physical forcing (i.e. precipitation, laterally routing of water and energy 

downstream to the catchment outlet). The entire system simulates based on one time steps 

specified by users. RAVEN has large user-customized subroutines which help to emulate 

a number of existing hydrological models. RAVEN has achieved near perfect emulation 

of UBC watershed model (used in this study) and HBV model (Bergstrom, 1995) used by 

Environment Canada.          

To run this RAVEN, five input files are needed, which contain information regarding 

hydrological processes of a watershed and features of HRUs. The details about input files 

are given below: 

• modelname.rvi: It is a primary input file. It contains information regarding 

numerical algorithm options (e.g. simulation duration, start time, time step, 
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routing method, etc.) and model structure (primarily, representation of soil 

column). 

• modelname.rvh – It is a HRU definition file. This file specifies details about 

HRU properties and connects between HRUs and subbasins.  

• modelname.rvt- This file is a time series/forcing function file. This file 

specifically describes temperature, precipitation, and other environmental 

forcing functions in the basin.  

• modelname.rvp- This file is a class parameter file which contains information 

about user specified model parameters (e.g. vegetation class, land use, aquifer 

class, soil profile for each HRU). 

• modelname.rvc - This is an initial condition file for all HRUs in a basin. This 

file holds information about user-specified initial conditions for all state 

variables in all HRUs and subbasins.  

More details about RAVEN and how to run this model are given in “Raven: User’s and 

Developer’s Manual” prepared by  Craig and Snowdon(2010). For our study we used 

UBC watershed model calibrated by BC Hydro. Therefore, all input files are provided, 

we only had to change the “modelname.rvt” according to our data. The details about 

input files used for this study given below: 

modelname.rvi: 

:FileType rvi ASCII Raven 1.0 

# DataType         Raven Input File 

# 

:Application       GreenKenue 

:Version           3.4.19 

:WrittenBy         gjost 

:CreationDate      Tue, Aug 12, 2014 11:44 AM 

# 

#------------------------------------------------------------------------ 

# Converted from UBCWM WAT file 
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:SourceFile  C:\Users\Sohom Mondal\Desktop\RavenSCA\RavenSCA\Raven\SCA2010_100.wat 

# 

:RunName               BR_2066-2095_CanESM2_rcp26 

:StartDate          2066-01-01 00:00:00 

:Duration           43800 00:00:00 

:TimeStep           24:00:00 

:Method             ORDERED_SERIES 

:Interpolation      FROM_FILE SCA2010_100_GaugeWeights.txt 

:Routing            NONE 

:CatchmentRoute     DUMP 

:Evaporation        MONTHLY_FACTOR 

:OW_Evaporation     MONTHLY_FACTOR 

:SWRadiationMethod  UBC 

:SWCanopyCorrect    UBC 

:LWRadiationMethod  UBC 

:WindspeedMethod    UBC 

:RainSnowFraction   UBC 

:PotentialMeltMethod UBC 

:OroTempCorrect     UBC 

:OroPrecipCorrect   UBC_2 

:CloudCoverMethod   UBC 

:SnapshotHydrograph  

:PrecipIceptFract   USER_SPECIFIED 

:MonthlyInterpolationMethod    LINEAR_21 

:SoilModel          SOIL_MULTILAYER 5 

:DebugMode          no 

:EndPause           no 

:WriteEnsimFormat   no 

#------------------------------------------------------------------------ 

# Soil Layer Alias Definitions  

# 

:Alias TOP_SOIL      SOIL[0] 

:Alias INT_SOIL      SOIL[1] 

:Alias SHALLOW_GW    SOIL[2] 

:Alias DEEP_GW       SOIL[3] 

:Alias INT_SOIL2     SOIL[4] 

#------------------------------------------------------------------------ 

# Hydrologic process order for UBCWM Emulation 

# 

:HydrologicProcesses 

:SnowAlbedoEvolve  UBC 

:SnowBalance       UBC 

:Precipitation 

:GlacialMelt       UBC 

:Infiltration      INF_UBC        TOP_SOIL 

:SoilEvaporation   SOILEVAP_UBC 

:Flush             PONDED_WATER   SURFACE_WATER 

:-->Conditional    HRU_TYPE       IS_NOT GLACIER 

:Flush             PONDED_WATER   GLACIER 

:-->Conditional    HRU_TYPE       IS GLACIER 

:Flush             SURFACE_WATER  INT_SOIL 

:-->Conditional    HRU_TYPE       IS_NOT GLACIER 

:Percolation       PERC_LINEAR    INT_SOIL INT_SOIL2 

:Baseflow          LINEAR_STORAGE INT_SOIL2 

:Baseflow          LINEAR_STORAGE SHALLOW_GW 

:Baseflow          LINEAR_STORAGE DEEP_GW 
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:GlacierRelease    LINEAR_STORAGE 

:EndHydrologicProcesses 

#--------------------------------------------------------- 

# HRU Groups 

# - one for each elevation band  

# - required for UBCWM emulation: 

#   - because UBCWM aggregates the TOP_SOIL state variable over each band 

# NOTE: only required for strict UBCWM emulation 

# 

:DefineHRUGroups Band1, Band2, Band3, Band4, Band5, Band6, Band7, Band8, Band9 

:AggregatedVariable TOP_SOIL Band1 

:AggregatedVariable TOP_SOIL Band2 

:AggregatedVariable TOP_SOIL Band3 

:AggregatedVariable TOP_SOIL Band4 

:AggregatedVariable TOP_SOIL Band5 

:AggregatedVariable TOP_SOIL Band6 

:AggregatedVariable TOP_SOIL Band7 

:AggregatedVariable TOP_SOIL Band8 

:AggregatedVariable TOP_SOIL Band9 

    

modelname.rvh 

:FileType rvh ASCII Raven 1.0 

# DataType         Raven HRU file 

:Application       GreenKenue 

:Version           3.4.19 

:WrittenBy         gjost 

:CreationDate      Tue, Aug 12, 2014 11:44 AM 

#------------------------------------------------------------------------ 

# Converted from UBCWM WAT file 

:SourceFile  SCA2010_100.wat 

#--------------------------------------------------------- 

# Sub basins 

#    WATfile mapping:  

#       (hardcoded except for NAME) 

:SubBasins 

 :Attributes, ID,   NAME, DOWNSTREAM_ID, PROFILE, REACH_LENGTH, GAUGED 

 :Units,      none, none, none,          none,    km,           none 

  1,  SCA2010_100,  -1,  NONE,  _AUTO,  1 

:EndSubBasins 

 

#--------------------------------------------------------- 

# Sub basin properties 

#    WATfile mapping:  

#       1  -log(P0FRTK/(1+P0FRTK))  N0FASR 

:SubBasinProperties 

 :Parameters, RES_CONSTANT, NUM_RESERVOIRS 

 :Units,      1/d,          none 

     1,  1.31681,  2 

:EndSubBasinProperties 

#--------------------------------------------------------- 

# Hydrologic Response Units 

#    WATfile mapping:   
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:HRUs 

 :Attributes, ID,   AREA, ELEVATION, LATITUDE, LONGITUDE, BASIN_ID, 

LAND_USE_CLASS, VEG_CLASS, SOIL_PROFILE, AQUIFER_PROFILE, 

TERRAIN_CLASS, SLOPE, ASPECT 

 :Units,      none, km2,  m,         deg,      deg,       none,     none,           none,      none,         none,            

none,          ratio, deg 

     1,  22.7358,  256.9,  49.75,  -100,  1,  OPEN_1,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     2,  85.5298,  256.9,  49.75,  -100,  1,  OPEN_1,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     3,  36.4745,  256.9,  49.75,  -100,  1,  FOREST_1,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  142.2 

     6,  26.2009,  455.2,  49.75,  -100,  1,  OPEN_2,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     7,  46.5794,  455.2,  49.75,  -100,  1,  OPEN_2,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     8,  67.5597,  455.2,  49.75,  -100,  1,  FOREST_2,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  115.2 

     11,  24.4882,  653.5,  49.75,  -100,  1,  OPEN_3,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     12,  43.5345,  653.5,  49.75,  -100,  1,  OPEN_3,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     13,  70.3473,  653.5,  49.75,  -100,  1,  FOREST_3,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  115.2 

     16,  26.2023,  839.7,  49.75,  -100,  1,  OPEN_4,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     17,  44.6147,  839.7,  49.75,  -100,  1,  OPEN_4,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     18,  60.8131,  839.7,  49.75,  -100,  1,  FOREST_4,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  113.4 

     21,  24.9199,  989.3,  49.75,  -100,  1,  OPEN_5,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     22,  44.3021,  989.3,  49.75,  -100,  1,  OPEN_5,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     23,  40.168,  989.3,  49.75,  -100,  1,  FOREST_5,  FOREST,  

DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  115.2 

     24,  0.1125,  989.3,  49.75,  -100,  1,  GLACIER,  FOREST,  

GLACIER,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     25,  0.0375,  989.3,  49.75,  -100,  1,  GLACIER,  FOREST,  

GLACIER,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     26,  37.7402,  1125.7,  49.75,  -100,  1,  OPEN_6,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     27,  67.0937,  1125.7,  49.75,  -100,  1,  OPEN_6,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     28,  35.506,  1125.7,  49.75,  -100,  1,  FOREST_6,  FOREST,  

DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  115.2 

     29,  0.0759,  1125.7,  49.75,  -100,  1,  GLACIER,  FOREST,  

GLACIER,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     30,  0.0341,  1125.7,  49.75,  -100,  1,  GLACIER,  FOREST,  

GLACIER,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     31,  50.6053,  1286.7,  49.75,  -100,  1,  OPEN_7,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     32,  89.965,  1286.7,  49.75,  -100,  1,  OPEN_7,  FOREST,  

DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     33,  19.4596,  1286.7,  49.75,  -100,  1,  FOREST_7,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  115.2 
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     34,  0.2132,  1286.7,  49.75,  -100,  1,  GLACIER,  FOREST,  

GLACIER,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     35,  0.0468,  1286.7,  49.75,  -100,  1,  GLACIER,  FOREST,  

GLACIER,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     36,  54.1244,  1477.1,  49.75,  -100,  1,  OPEN_8,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     37,  96.2212,  1477.1,  49.75,  -100,  1,  OPEN_8,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     38,  5.03431,  1477.1,  49.75,  -100,  1,  FOREST_8,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  115.2 

     39,  0.748,  1477.1,  49.75,  -100,  1,  GLACIER,  FOREST,  

GLACIER,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     40,  0.132,  1477.1,  49.75,  -100,  1,  GLACIER,  FOREST,  

GLACIER,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     41,  23.8486,  1720.7,  49.75,  -100,  1,  OPEN_9,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     42,  44.2903,  1720.7,  49.75,  -100,  1,  OPEN_9,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

     43,  0.301136,  1720.7,  49.75,  -100,  1,  FOREST_9,  

FOREST,  DEFAULT_P,  DEFAULT_AQ,  DEFAULT_T,  0,  117 

     44,  2.3035,  1720.7,  49.75,  -100,  1,  GLACIER,  FOREST,  

GLACIER,  DEFAULT_AQ,  DEFAULT_T,  0,  0 

     45,  0.4065,  1720.7,  49.75,  -100,  1,  GLACIER,  FOREST,  

GLACIER,  DEFAULT_AQ,  DEFAULT_T,  0,  180 

:EndHRUs 

 

#--------------------------------------------------------- 

# HRU Groups 

# - one for each elevation band  

# - required because UBCWM aggregates the TOP_SOIL state variable over each band 

# # - also implemented for land class types for reporting.  

# NOTE: only required for strict UBCWM emulation 

# 

#--------------------------------------------------------- 

# Elevation Bands 

# 

:HRUGroup Band1 

 1, 2, 3 

:EndHRUGroup 

:HRUGroup Band2 

 6, 7, 8 

:EndHRUGroup 

:HRUGroup Band3 

 11, 12, 13 

:EndHRUGroup 

:HRUGroup Band4 

 16, 17, 18 

:EndHRUGroup 

:HRUGroup Band5 

 21, 22, 23, 24, 25 

:EndHRUGroup 

:HRUGroup Band6 

 26, 27, 28, 29, 30 

:EndHRUGroup 

:HRUGroup Band7 

 31, 32, 33, 34, 35 
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:EndHRUGroup 

:HRUGroup Band8 

 36, 37, 38, 39, 40 

:EndHRUGroup 

:HRUGroup Band9 

 41, 42, 43, 44, 45 

:EndHRUGroup 

#--------------------------------------------------------- 

# Land Classes 

:HRUGroup Open_N 

 1, 6, 11, 16, 21, 26, 31, 36, 41 

:EndHRUGroup 

:HRUGroup Open_S 

 2, 7, 12, 17, 22, 27, 32, 37, 42 

:EndHRUGroup 

:HRUGroup Forest 

 3, 8, 13, 18, 23, 28, 33, 38, 43 

:EndHRUGroup 

:HRUGroup Glacier 

 24, 25, 29, 30, 34, 35, 39, 40, 44, 45 

:EndHRUGroup 

 modelname.rvt: 
 :FileType rvt ASCII Raven 1.0 

 # DataType         Raven Met Station File 

 :Application       GreenKenue 

 :Version           3.4.19 

 :WrittenBy         gjost 

 :CreationDate      Tue, Aug 12, 2014 11:44 AM 

 # Converted from UBCWM WAT file 

 :SourceFile  SCA2010_100.wat 

 :Gauge SCAComp 

 :Latitude 49.75  #  

 :Longitude -100  #  

 :Elevation 1283.06  # C0ELPT 

 :RainCorrection 1.23189  # 1+P0RREP 

 :SnowCorrection 1.78912  # 1+P0SREP 

 :CloudTempRanges 8 14  # A0FOGY A0SUNY 

 :MonthlyEvapFactor 0.2, 0.2, 0.2, 0.2, 0.246, 0.258, 0.232, 0.218, 0.2, 0.2, 0.2, 0.2,  # 

 V0EMOF(12) * A0EDDF 

 :EnsimTimeSeries futmodel.tb0 

 :EndGauge 

 modelname.rvp 
 :FileType rvp ASCII Raven 1.0 

 # DataType         Raven Parameters file 

 :Application       GreenKenue 

 :Version           3.4.19 

 :WrittenBy         gjost 

 :CreationDate      Tue, Aug 12, 2014 11:44 AM 

 #------------------------------------------------------------------------ 

 # Converted from UBCWM WAT file 

 :SourceFile  SCA2010_100.wat 

 #------------------------------------------------------------------------ 

 # Orographic Corrections 



186 

 

 :AdiabaticLapseRate   4.5    # A0TLZZ 

 :WetAdiabaticLapse    5.14635 5    # A0TLZP A0PPTP 

 :ReferenceMaxTemperatureRange    20    # A0TERM(1) 

 :UBCTempLapseRates    9.76867 0.17731 6.4 2 9.60412 0.180804    # A0TLXM A0TLNM 

 A0TLXH A0TLNH P0TEDL P0TEDU 

:UBCPrecipLapseRates  256.9 522.648 1088.02 8.26314 5.09852 12.1289 0    # C0ELEM(1) 

E0LMID  E0LHI P0GRADL P0GRADM P0GRADU A0STAB 

:UBCEvapLapseRates    0.9    # A0PELA 

:UBCExposureFactor    0.15    # F0ERGY 

:UBCCloudPenetration  0.25    # P0CAST 

:UBCLWForestFactor    0.76    # P0BLUE*P0LWVF 

:UBCNorthSWCorr       0.4 0.4 0.4 0.7 0.9 1 0.9 0.7 0.4 0.4 0.4 0.4    # V0NOTH 

:UBCSouthSWCorr       1 1 1 1 1 1 1 1 1 1 1 1    # V0SOTH 

#------------------------------------------------------------------------ 

# Global snow parameterss 

:RainSnowTransition 1.5 1    # (A0FORM+P0TASR)/2  A0FORM-P0TASR 

:UBCSnowParams        0.201606 0.95 0.9 0.65 15 3500    # P0ALBMIN P0ALBMAX 

P0ALBREC P0ALBASE P0ALBSNW P0ALBMLX 

:IrreducibleSnowSaturation    0.05    # A0WEHO (= A0WEHF) 

:UBCGroundwaterSplit    0.59267    # P0DZSH 

#--------------------------------------------------------- 

# Soil classes 

#    WATfile mapping:  

#       (hardcoded) 

:SoilClasses 

 :Attributes, SAND, CLAY, ORGANIC 

 :Units,      frac, frac, frac 

   TOPSOIL,   1, 0, 0 

   INT_SOIL,  1, 0, 0 

   GWU_SOIL,  1, 0, 0 

   GWL_SOIL,  1, 0, 0 

:EndSoilClasses 

#--------------------------------------------------------- 

# Soil parameters 

#    WATfile mapping:  

#       0.5   P0PERC   P0EGEN   P0AGEN 

:SoilParameterList 

 :Parameters, POROSITY, MAX_PERC_RATE, UBC_EVAP_SOIL_DEF, 

UBC_INFIL_SOIL_DEF 

 :Units,      none,     mm_per_d,      mm,                mm 

   [DEFAULT], 0.5, 22.7411, 100, 100 

:EndSoilParameterList 

#--------------------------------------------------------- 

# Soil parameters 

#    WATfile mapping:  

#       0.0                     0.0 

#       -ln(P0IRTK/(1+P0IRTK))   -ln(P0IRTK/(1+P0IRTK)) 

#       -ln(P0UGTK/(1+P0UGTK))   0.0 

#       -ln(P0DZTK/(1+P0DZTK))   0.0 

:SoilParameterList 

 :Parameters, BASEFLOW_COEFF, PERC_COEFF 

 :Units,      1/d,            1/d 

   [DEFAULT],   0,   0 

   INT_SOIL,   1.20393,  0.708193 

   GWU_SOIL,   0.0795053,  0 

   GWL_SOIL,   0.0116554,  0 
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:EndSoilParameterList 

#--------------------------------------------------------- 

# Soil profiles 

#    WATfile mapping:  

#       (hardcoded) 

# name, layers, {soilClass, thickness} x layers 

# 

:SoilProfiles 

   LAKE, 0 

   GLACIER, 0 

   DEFAULT_P, 5, TOPSOIL,10.0, INT_SOIL,10.0, GWU_SOIL,10.0, GWL_SOIL,10.0, INT_SOIL,10.0 

:EndSoilProfiles 

#--------------------------------------------------------- 

# Vegetation classes 

#    WATfile mapping:  

#       (hardcoded) 

# - these parameters are required but have no affect in UBCWM emulation mode 

# 

:VegetationClasses 

 :Attributes,   MAX_HT, MAX_LAI, MAX_LEAF_COND 

 :Units,        m,      none,    mm_per_s 

   FOREST,      25,     6.0,     5.3 

:EndVegetationClasses 

#--------------------------------------------------------- 

# Vegetation parameters 

#    WATfile mapping:  

#       (1-POPINT)   (1-POPINT)   P0PINX 

:VegetationParameterList 

 :Parameters,  TFRAIN, TFSNOW, MAX_INTERCEPT_RATE 

 :Units,       frac,   frac,   mm/d 

   FOREST,     0.88,   0.88,   10 

:EndVegetationParameterList 

#--------------------------------------------------------- 

# LandUse classes 

#    WATfile mapping:  

#       {OpenN,OpenS,Forest,GlacierN,GlacierS}Band#   C0IMPA   (C0CANY if forest, otherwise 0) 

:LandUseClasses 

 :Attributes, IMPERM, FOREST_COV 

 :Units,      frac,   frac 

               OPEN_1, 0.58804,   0 

             FOREST_1, 0.58804,   1 

               OPEN_2, 0.46901,   0 

             FOREST_2, 0.46901,   1 

               OPEN_3, 0.0902974,   0 

             FOREST_3, 0.0902974,   1 

               OPEN_4, 0.102789,   0 

             FOREST_4, 0.102789,   1 

               OPEN_5, 0.00965001,   0 

             FOREST_5, 0.00965001,   1 

              GLACIER, 0.00965001,   0 

               OPEN_6, 0.346535,   0 

             FOREST_6, 0.346535,   1 

               OPEN_7, 0.144307,   0 

             FOREST_7, 0.144307,   1 

               OPEN_8, 0.122393,   0 

             FOREST_8, 0.122393,   1 
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               OPEN_9, 0.195882,   0 

             FOREST_9, 0.195882,   1 

:EndLandUseClasses 

#--------------------------------------------------------- 

# LandUse parameters 

#    WATfile mapping:  

#       [DEFAULT]  -ln(P0CLDG/(1+P0CLDG)   A0PEFO   -ln(P0GLTK/(1+P0GLTK)  S0PATS  

#                 (or 10000 if P0CLDG <= 0) 

:LandUseParameterList 

 :Parameters, CC_DECAY_COEFF, FOREST_PET_CORR, GLAC_STORAGE_COEFF, 

SNOW_PATCH_LIMIT 

 :Units,      1/d,            none,            1/d,                mm 

   [DEFAULT], 0.0953102,             1,              1.17942,              200 

:EndLandUseParameterList 

#--------------------------------------------------------- 

# Terrain classes 

#    WATfile mapping:  

#       (hardcoded) 

# - these parameters required but have no affect in UBCWM emulation mode 

:TerrainClasses 

 :Attributes, NAME, HILLSLOPE_LEN, DRAINAGE_DENS 

 :Units,      none, none,          m/m 

         DEFAULT_T, 100,           1.0 

:EndTerrainClasses 

 

modelname.rvc 

:FileType rvc ASCII Raven 1.0 

# DataType         Raven Initial Conditions file 

# 

:Application       GreenKenue 

:Version           3.4.19 

:WrittenBy         gjost 

:CreationDate      Tue, Aug 12, 2014 11:44 AM 

# 

#------------------------------------------------------------------------ 

# Converted from UBCWM WAT file 

:SourceFile  C:\Users\Sohom Mondal\Desktop\RavenSCA\RavenSCA\Raven\SCA2010_100.wat 

#--------------------------------------------------------- 

# Initial basin conditions 

#    WATfile mapping:  

#       1  O0GWUZ+O0GWDZ 

:BasinInitialConditions 

 :Attributes, ID,   Q 

 :Units,      none, m3/s 

   1, 17 

:EndBasinInitialConditions 

#--------------------------------------------------------- 

# Soil moisture content - for each HRU 

#    WATfile mapping:  

#       5000-S0SOIL 

:InitialConditions SOIL[0] 
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 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 

5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 

5000, 5000, 5000, 

:EndInitialConditions 

 

#--------------------------------------------------------- 

# Initial Upper groundwater storage - for each HRU 

#    WATfile mapping:  

#       O0GWUZ*86.4/(total watershed area, in km2)/(BASEFLOW_COEFF for GWU_SOIL) 

:InitialConditions SOIL[2] 

 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 

10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 

10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 10.022, 

:EndInitialConditions 

#--------------------------------------------------------- 

# Initial Lower groundwater storage - for each HRU 

#    WATfile mapping:  

#       O0GWDZ*86.4/(total watershed area, in km2)/(BASEFLOW_COEFF for GWL_SOIL) 

:InitialConditions SOIL[3] 

 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 

37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 

37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 37.2889, 

37.2889, 37.2889, 37.2889, 37.2889, 

:EndInitialConditions 

#--------------------------------------------------------- 

# Snow water equivalent - for each HRU 

#    WATfile mapping:  

#       oneof {S0SWEON,S0SWEOS,S0SWEF,0,0} for 

{OpenNorth,OpenSouth,Forest,GlacierNorth,GlacierSouth} 

:InitialConditions SNOW 

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  

:EndInitialConditions 

#--------------------------------------------------------- 

# Snow albedo - for each HRU 

#    WATfile mapping:  

#       oneof {ALBOPNN,ALBOPNS,ALBFOR,ALBOPNN,ALBOPNS} for 

{OpenNorth,OpenSouth,Forest,GlacierNorth,GlacierSouth} 

:InitialConditions SNOW_ALBEDO 

 0.3, 0.3, 0.65, 0.3, 0.3, 0.65, 0.3, 0.3, 0.65, 0.3, 0.3, 0.65, 0.3, 0.3, 0.65, 0.3, 0.3, 0.3, 0.3, 0.65, 0.3, 0.3, 

0.3, 0.3, 0.65, 0.3, 0.3, 0.3, 0.3, 0.65, 0.3, 0.3, 0.3, 0.3, 0.65, 0.3, 0.3, 

:EndInitialConditions 

#--------------------------------------------------------- 

# Snow snowmelt - for each HRU 

#    WATfile mapping:  

#       oneof {S0MEOSN,S0MEOSS,S0MEFS,S0MEOSN,S0MEOSS} for 

{OpenNorth,OpenSouth,Forest,GlacierNorth,GlacierSouth} 

:InitialConditions CUM_SNOWMELT 

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

:EndInitialConditions 

#--------------------------------------------------------- 

# Snow liquid - for each HRU 

#    WATfile mapping:  

#     oneof 

#       {0.05*(S0SWEON-S0WEDON),0.05*(S0SWEOS-S0WEDOS),0.05*(S0SWEF-

S0WEDF),0.05*(S0SWEON-S0WEDON),0.05*(S0SWEOS-S0WEDOS)} 

#     for 
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#       {OpenNorth,OpenSouth,Forest,GlacierNorth,GlacierSouth} 

:InitialConditions SNOW_LIQ 

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  

:EndInitialConditions 

To run the RAVEN user need to download executable Raven.exe from here: 

http://www.civil.uwaterloo.ca/jrcraig/Raven/Downloads.html and unzip to a local drive. 

The unzip folder should has “Raven.exe”, “model.rvc”, “model.rvh”, 

“model.rvi”,”model.rvp”, “model.rvt”, “model.wat” and “model.tb0” file. The 

“model.tb0” needs to be update with user specified precipitation and temperature data 

and run the “Raven.exe” file from command window or simply click on it. By default 

RAVEN will generate a hydrograph file, watershed diagnostic file, a complete state of 

the system simulation file and an error file. Error file contains errors and warnings for a 

particular run. The “model.tb0” looks like: 

############### 
:ColumnMetaData                                                           

:ColumnName MAX_TEMPERATURE MIN_TEMPERATURE PRECIP                        

:ColumnUnits DegC DegC mm                                                 

:ColumnType float float float                                             

:EndColumnMetaData                                                                                                                              

:StartTime       2036-01-01 00:00:00                                      

:DeltaT          24:00:00                                                 

:EndHeader                                                                

Max Temp Min Temp PRECIP     

11              5.9           1.3                                                  

11           -3.9             0                                                  

11           -0.88           1.5                                                  

5.9           1.50           0.029         

 

 

 

http://www.civil.uwaterloo.ca/jrcraig/Raven/Downloads.html
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Appendix C: Reservoirs inflow, storage, release and power details for far future 

time period (2066-2065) 

 

Figure C.1 Projected mean daily simulated inflow (m3/s) (a-c), storage level (m) (d-f) 

and release (m3/s) (g-i) for near future (2066-2095) with historical (1984-2013) observed 

inflow (m3/s), storage level (m) and release (m3/s) from Strathcona Dam, BC, Canada for 

different emission scenarios 
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Figure C.2 Projected mean daily power production (megawatt) for near future (2066-

2095) with historical (1984-2013) power production (megawatt) from Strathcona Dam, 

BC, Canada for different emission scenarios 
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Figure C.3  Projected mean daily simulated storage level (m) (a-c) and release (m3/s) (d-

f) for near future (2066-2095) with historical (1984-2013) observed storage level (m) and 

release (m3/s) from Ladore Dam, BC, Canada for different emission scenarios 
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Figure C.4 Projected mean daily power production (megawatt) for near future (2066-

2095) with historical (1984-2013) power production (megawatt) from Ladore Dam, BC, 

Canada for different emission scenarios 
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Figure C.5 Projected mean daily simulated storage level (m) (a-c) and release (m3/s) (d-

f) for near future (2066-2095) with historical (1984-2013) observed storage level (m) and 

release (m3/s) from John Hart Dam, BC, Canada for different emission scenarios 
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Figure C.6 Projected mean daily power production (megawatt) for near future (2066-

2095) with historical (1984-2013) power production (megawatt) from John Hart Dam, 

BC, Canada for different emission scenarios 
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Appendix D: Beta Regression Model Code and Installation Details 

The beta regression model developed in MATLAB environment. For this model we have 

three function files (CRAT.m, betalik.m and betareg_main.m) and an Input-Output file 

(Input and output file for Downscaling Beta Regression.m). “betalik.m” is link function 

file where “betareg_main.m” is regression function file. CART.m processes the input 

data using PCA and CART. To run this model all four files should be in a same folder 

with an input file (.csv) contains future climate variables. The .csv file structure should 

look like: 

Variable   Tasmax Tasmax Tasmax Tasmin Tasmin Tasmin 

Station   ELK ERC WOL ELK ERC WOL 

Year Month Day 

1990  01   01  xx xx xx xx xx xx 

1990  01   02  xx xx xx xx xx xx  

 

Apart from that user need historical observed precipitation file and predictor variables 

(Tmax,Tmin, hus, mslp,u-wind and v-wind) file similar format as shown above. Keep all 

of these files in a same folder and run the “Input and output file for Downscaling Beta 

Regression.m” file in MATLAB. It will simulate the future precipitation data in a 

catchment scale. The details MATLAB codes are given below: 

Input and output file for Downscaling Beta Regression.m 
clc 

clear 

[x header]=xlsread('Training Predictor NCEP data 1960-1990.csv'); 

y=xlsread('Training_Predictand Anusplin Precipitation 1960-1990.csv'); 

k=dir('*tmaxtminhuspsluava*.csv'); 

for i=1:length(k) 

z=xlsread(k(i).name); 

Simulated_Precipitation=Beta_Regression(x,y,z); 
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expression = ('\_'); 

splitStr=regexp(k(i).name,expression,'split'); 

filename=num2str(cell2mat(strcat('Simulated_Pr_BR','_',splitStr(2),'_',splitStr(3),'_',splitStr(4),'_',splitStr(5

),'_',splitStr(6)))); 

col_header={'Year', 'Month', 'Day', header{2,4:13}}; 

xlswrite(filename,Simulated_Precipitation,'Sheet1','A2');     %Write data 

xlswrite(filename,col_header,'Sheet1','A1');     %Write column header 

end 

betalik.m    

function y = betalik(vP, mX, vy) 

k = length(vP); 

eta = mX*vP(1:k-1);  

mu = exp(eta) ./ (1+exp(eta));  

phi = vP(k); 

y = -sum( gammaln(phi) - gammaln(mu*phi)- gammaln(abs(1-mu)*phi) + ((mu*phi-1) .* log(vy)) + ( (1-

mu)*phi-1 ) .* log(1-vy) );  

betareg_main.m  

function [vP, muhat]= betareg(vy, mX) 

format short g; 

n = length(vy); 

p = size(mX,2); 

if(max(vy) >= 1 || min(vy) <= 0)  

    error(sprintf('\n\nERROR: DATA OUT OF RANGE (0,1)!\n\n'));  

end 

if(p >= n)  

     error(sprintf('\n\nERROR: NUMBER OF COVARIATES CANNOT EXCEED NUMBER OF 

OBSERVATIONS!\n\n')); 

end 

ynew = log( vy ./ (1-vy) ); 

if(p > 1)  

     betaols = (mX \ ynew);  

elseif(p==1)  

     betaols = (mean(ynew)); 

end 

olsfittednew = mX*betaols;  

olsfitted = exp(olsfittednew) ./ (1 + exp(olsfittednew));  

olserrorvar = sum((ynew-olsfittednew).^2)/(n-p);  

ybar = mean(vy);  

yvar = var(vy);    

% starting values 

vps = [betaols;(mean(((olsfitted .* (1-olsfitted))./olserrorvar)-1))]; 

vP = fminsearch(@(vP) betalik(vP, mX, vy), abs(vps)); 

etahat = mX*vP(1:p);  

muhat = exp(etahat ) ./ (1+exp(etahat));  

phihat = vP(p+1);  

end  
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CRAT.m  

function [Simulated_Precipitation] = Beta_Regression(x,y,z) 

%x=Training period Predictor Variables e.g. tasmax, tasmin,psl,mslp,ua,va 

%y=Training period Predictand Variable e.g. Precipitation 

%z=Testing period Predictor Variables (data points where regression value 

%will be calculated)   

% Length of Tranning predictor data and predictand should be same 

if length(x)~=length(y); 

    disp('Input Matrix length should be same for Predictor and Predictand ') 

end 

% Matrix dimension should be same for training period and testing period predictors 

if size(x,2)~=size(z,2) 

    disp('Training and Testing period predictors dimension is not same') 

end 

Traning_Predictor=x(:,4:end); 

Tranning_Predictand=y(:,4:end); 

Testing_Predictor=z(:,4:end);   

Testing_Predictor_Date=z(:,1:3); 

% Kmeans clustering for rainfall state 

rand('state',0); 

% Three clusters has taken for clustering, do cluster validation before 

% choose the no of clusters 

k=3; 

[IDX,C,sumd,D]= kmeans(Tranning_Predictand,k); % IDX is the rainfall state for observed data 

% Normaization of the Predictor variable (1960-1990) 

[Z,mu,sigma] = zscore(Traning_Predictor); 

%PCA  

[pc,score1,latent1] = princomp(Z); 

Var=(cumsum((latent1)./sum(latent1))*100); 

% Find the variance which is less or equal to 98% 

Ln_var_explained=length(find(Var<=98)); 

%Buliding classification Tree 

T=classregtree(score1(2:end,1:Ln_var_explained),IDX(1:end-1,:)); 

Temp_val=zscore(Testing_Predictor)*pc; 

Rain_state_Prediction_Traning_Period=T(Temp_val(:,1:Ln_var_explained)); 

% Vector Space of observed data pr on the basis of rainfall state tranning 

% period 

Observed_data_pr_Rainfall_state=[Tranning_Predictand IDX]; 

observed_pr_data_state_1=(Observed_data_pr_Rainfall_state(Observed_data_pr_Rainfall_state(:,end)==1, 

1:end-1)); 

% Scaling the data in range (0,1) 

Pr_tranning_1=bsxfun(@times,(bsxfun(@minus, observed_pr_data_state_1, 

min(observed_pr_data_state_1))), (1./(max(observed_pr_data_state_1)-min(observed_pr_data_state_1)))); 

Tranning_Predictand_state1=((Pr_tranning_1*(length(Pr_tranning_1)-1))+0.5)/length(Pr_tranning_1); 

observed_pr_data_state_2=(Observed_data_pr_Rainfall_state(Observed_data_pr_Rainfall_state(:,end)==2, 

1:end-1)); 

% Scaling the data in range (0,1) 

Pr_tranning_2=bsxfun(@times,(bsxfun(@minus, observed_pr_data_state_2, 

min(observed_pr_data_state_2))), (1./(max(observed_pr_data_state_2)-min(observed_pr_data_state_2)))); 

Tranning_Predictand_state2=((Pr_tranning_2*(length(Pr_tranning_2)-1))+0.5)/length(Pr_tranning_2); 

observed_pr_data_state_3=(Observed_data_pr_Rainfall_state(Observed_data_pr_Rainfall_state(:,end)==3, 

1:end-1)); 

% Scaling the data in range (0,1) 
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Pr_tranning_3=bsxfun(@times,(bsxfun(@minus, observed_pr_data_state_3, 

min(observed_pr_data_state_3))), (1./(max(observed_pr_data_state_3)-min(observed_pr_data_state_3)))); 

Tranning_Predictand_state3=((Pr_tranning_3*(length(Pr_tranning_3)-1))+0.5)/length(Pr_tranning_3); 

%Vector Space of observed data predictor(Temp) on the basis of rainfall 

%state tranning period 

Observed_data_predictor_Rainfall_state=[score1(:,1:Ln_var_explained) IDX]; 

Observed_predictor_data_state_1=(Observed_data_predictor_Rainfall_state(Observed_data_predictor_Rai

nfall_state(:,end)==1, 1:end-1)); 

Observed_predictor_data_state_2=(Observed_data_predictor_Rainfall_state(Observed_data_predictor_Rai

nfall_state(:,end)==2, 1:end-1)); 

Observed_predictor_data_state_3=(Observed_data_predictor_Rainfall_state(Observed_data_predictor_Rai

nfall_state(:,end)==3, 1:end-1)); 

%Vector Space of testing data(Predictor:Temp)on the basis of rainfall state 

Testdata_predictor_Rainfall_state=[Testing_Predictor_Date Temp_val(:,1:Ln_var_explained) 

Rain_state_Prediction_Traning_Period]; 

Testdata_state_1= Testdata_predictor_Rainfall_state(Testdata_predictor_Rainfall_state(:,end)==1, 1:end-

1); 

Testdata_state_2= Testdata_predictor_Rainfall_state(1<Testdata_predictor_Rainfall_state(:,end) & 

Testdata_predictor_Rainfall_state(:,end)<=2, 1:end-1); 

Testdata_state_3= Testdata_predictor_Rainfall_state(Testdata_predictor_Rainfall_state(:,end)>2, 1:end-1); 

for i=1:10 

 %Bulid regression for state I 

mX1=[ones(length(Observed_predictor_data_state_1),1) Observed_predictor_data_state_1]; 

vy1=Tranning_Predictand_state1(:,i); 

vP1=betareg_main(vy1,mX1); 

%Bulid regression for state II 

mX2=[ones(length(Observed_predictor_data_state_2),1) Observed_predictor_data_state_2]; 

vy2=Tranning_Predictand_state2(:,i); 

vP2=betareg_main(vy2,mX2); 

%Bulid regression for state III 

mX3=[ones(length(Observed_predictor_data_state_3),1) Observed_predictor_data_state_3];; 

vy3=Tranning_Predictand_state3(:,i); 

vP3=betareg_main(vy3,mX3); 

% Calculate the precipitation for Testin period or Validation period 

Predicted_Rain_State1=[ones(length(Testdata_state_1),1) Testdata_state_1(:,4:8)]*vP1(2:end); 

Predicted_Rain_State2=[ones(length(Testdata_state_2),1) (Testdata_state_2(:,4:8))]*vP2(2:end); 

Predicted_Rain_State3=[ones(length(Testdata_state_3),1) (Testdata_state_3(:,4:8))]*vP3(2:end); 

Rain(:,i)=[Predicted_Rain_State1;Predicted_Rain_State2;Predicted_Rain_State3]; 

Rain(Rain<0)=0; 

end 

% Arrange the Date for Validation or Testing period 

Date=[datenum(Testdata_state_1(:,1:3));datenum(Testdata_state_2(:,1:3));datenum(Testdata_state_3(:,1:3)

)]; 

%combine the data (simulated precipiation with date) 

Predcited_Precipitation=[Date Rain]; 

%sort the data based date 

Precipitation=sortrows(Predcited_Precipitation,1); 

% Final bind of simulated precipitation data with time  

Simulated_Precipitation=[Testing_Predictor_Date Precipitation(:,2:end)]; 

end  
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Appendix E: Code for flow frequency analysis 

For Campbell River flow frequency analysis we used GEV distribution. To do so we used 

“ismev” package from R in python environment. For this analysis, flow information 

generated by UBCWM is used as input to the code. The details of the code are given 

below: 

""" 

Created on Thu May 26 14:51:54 2016 

@author: Sohom Mondal & Patrick A. Breach  

""" 

 

from scipy.stats import genextreme as gev 

import os 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import rpy2.robjects as R 

from rpy2.robjects.packages import importr 

import glob 

os.chdir('E:/RCP 26/New folder') 

files=glob.glob('*rcp26*') 

ismev = importr('ismev') 

result = {} 

Tr = np.array(np.arange(2, 301), dtype=np.float32) 

hist=pd.read_excel('E:/Data and Code/Hydrological Modeling/CampbellData-ForSohom -1984-

2013.xlsx',index_col=0,usecols=[3,4]) 

df_hist=hist.resample('A').max().sort_index(axis=1) 

x1 = R.FloatVector(df_hist.values) 

a1, b1, c1 = list(ismev.gev_fit(x1)[6]) 

result1 = gev.isf(Tr**-1, c1, a1, b1) 

k=pd.DataFrame.from_dict(result1) 

for i, fl in enumerate(files): 

    df = pd.read_csv(fl, index_col=0,usecols=[1,4],parse_dates=True) 

    df = df.resample('A').max().sort_index(axis=1) 

    for col in df.columns: 

        x = R.FloatVector(df[col].values) 

        a, b, c = list(ismev.gev_fit(x)[6]) 

        result[i] = gev.isf(Tr**-1, c, a, b) 

k1=pd.DataFrame.from_dict(result) 

fig, ax = plt.subplots(3)   

line=ax[0].plot(k1) 

l,=ax[0].plot(k,'r--',linewidth=5,label="Historical (1984-2013)") 

ax[0].legend(handles=[l],fontsize=10,frameon=False,loc=2) 

#ax[0].set_ylabel('Streamflow Q ($m^3$/s)',fontsize=10)   

ax[0].set_ylim([0,7000]) 

ax[0].set_title("RCP 2.6",position=(0.5, 0.8),fontsize=10) 

 

files1=glob.glob('*rcp45*') 

result2 = {} 

for i, fl in enumerate(files1): 
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    df = pd.read_csv(fl, index_col=0,usecols=[1,4],parse_dates=True) 

    df = df.resample('A').max().sort_index(axis=1) 

    for col in df.columns: 

        x = R.FloatVector(df[col].values) 

        a, b, c = list(ismev.gev_fit(x)[6]) 

        result2[i] = gev.isf(Tr**-1, c, a, b) 

k2=pd.DataFrame.from_dict(result2) 

line1=ax[1].plot(k2) 

l1,=ax[1].plot(k,'r--',linewidth=5,label="Historical (1984-2013)") 

ax[1].legend(handles=[l1],fontsize=10,frameon=False,loc=2) 

#ax[1].set_ylabel('Streamflow Q ($m^3$/s)',fontsize=10)   

ax[1].set_ylim([0,7000]) 

ax[1].set_title("RCP 4.5",position=(0.5, 0.8),fontsize=10) 

 

files2=glob.glob('*rcp85*') 

result3 = {} 

for i, fl in enumerate(files2): 

    df = pd.read_csv(fl, index_col=0,usecols=[1,4],parse_dates=True) 

    df = df.resample('A').max().sort_index(axis=1) 

    for col in df.columns: 

        x = R.FloatVector(df[col].values) 

        a, b, c = list(ismev.gev_fit(x)[6]) 

        result3[i] = gev.isf(Tr**-1, c, a, b) 

k3=pd.DataFrame.from_dict(result3) 

line2=ax[2].plot(k3) 

l2,=ax[2].plot(k,'r--',linewidth=5,label="Historical (1984-2013)") 

ax[2].legend(handles=[l2],fontsize=10,frameon=False,loc=2) 

#ax[2].set_ylabel('Streamflow Q ($m^3$/s)',fontsize=10)   

plt.xlabel('Retrun period, T (years)')   

ax[2].set_ylim([0,7000]) 

ax[2].set_title("RCP 8.5",position=(0.5, 0.8),fontsize=10) 

#fig.savefig('2066-2095 flow frequency.tiff', dpi=700) 

m1=k1.mean(axis=1) 

m2=k2.mean(axis=1) 

m3=k3.mean(axis=1) 

m=k.mean(axis=1)    



203 

 

Curriculum Vitae 

 

Name:   Sohom Mandal 

 

Post-secondary  Bidhan Chandra Krishi Viswavidyalaya 

Education and  Mohanpur, Nadia, West Bengal, India 

Degrees:   2006-2010 Bachelor of Technology. 

 

Indian Institute of Technology Bombay  

Powai, Mumbai, India 

2010-2012 Master of Technology. 

 

 

Honours and   Graduate Research Scholarship 

Awards:   University of Western Ontario 

   2013-2017  

 

 

Related Work  Teaching Assistant 

Experience   The University of Western Ontario 

2013-2016 

 

Publications: 

 
1. Sohom Mandal, Roshan K. Srivastava and Slobodan Simonovic (2015), "Use of beta 

regression for statistical downscaling of precipitation in the Campbell river basin, British 

Columbia, Canada" Journal of Hydrology, 538, 49-62. doi:10.1016/j.jhydrol.2016.04.009 

 
2. Sohom Mandal, Patrick Breach and Slobodan Simonovic (2016), "Uncertainty in 

precipitation projection under changing climate conditions: A regional case study", 

American Journal of Climate Change, 5, 116-132. doi:10.4236/ajcc.2016.51012. 

 

3. Sohom Mandal and Slobodan Simonovic (2017), “Assessment of future streamflow 

under changing climate condition: comparison of various sources of uncertainty”. 

Hydrological Processes (In Press). doi: 10.1002/hyp.11174 


	Uncertainty Modeling in The Assessment of Climate Change Impacts on Water Resources Management
	Recommended Citation

	OLE_LINK31
	OLE_LINK32
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK8
	OLE_LINK9
	OLE_LINK4
	OLE_LINK7
	OLE_LINK25
	OLE_LINK26
	OLE_LINK27
	OLE_LINK28
	OLE_LINK29
	OLE_LINK30
	OLE_LINK71
	OLE_LINK72
	OLE_LINK73
	OLE_LINK14
	OLE_LINK15
	OLE_LINK16
	OLE_LINK48
	OLE_LINK49
	OLE_LINK50
	OLE_LINK56
	OLE_LINK57
	OLE_LINK58
	OLE_LINK17
	OLE_LINK18
	OLE_LINK19
	OLE_LINK20
	OLE_LINK21
	OLE_LINK22
	OLE_LINK23
	OLE_LINK24
	Table1
	OLE_LINK34
	OLE_LINK35
	OLE_LINK36
	OLE_LINK37
	OLE_LINK5
	OLE_LINK6

