313 research outputs found

    CALoR: Context-Aware and Location Reputation model in AmI environments

    Get PDF
    Spatial conditions of observation are considerably important for some services. Existing distance between the requester and provider agents, while interacting, may influence in a significant way the quality of the provided services. In these cases, recommendations and direct evaluation of services have to take into account such distances. The contribution of this paper is the development of a reputation system that takes into account spatial and temporal properties of interactions for ambient intelligence environments. The system was defined as an extension of an already existing Protege ontology for Ambient Intelligence domains: suggested the corresponding equations (inspired in previous works from other authors): validated the proposal with a case of use, we implemented the corresponding behaviors of JADE agents: and executed simulations to show how considering distance may improve reputation accuracy in Ambient Intelligence domains.This work was supported in part by Projects CICYT TIN2011-28620-C02-01, CICYT TEC2011-28626- C02-02, CAM CONTEXTS (S2009/TIC-1485), DPS2008-07029-C02-02 and MINECO TEC2012- 37832-C02-01.Enviad

    Towards next generation coordination infrastructures

    Get PDF
    Coordination infrastructures play a central role in the engineering of multiagent systems. Since the advent of agent technology, research on coordination infrastructures has produced a significant number of infrastructures with varying features. In this paper, we review the the state-of-the-art coordination infrastructures with the purpose of identifying open research challenges that next generation coordination infrastructures should address. Our analysis concludes that next generation coordination infrastructures must address a number of challenges: (i) to become socially aware, by facilitating human interaction within a MAS; (ii) to assist agents in their decision making by providing decision support that helps them reduce the scope of reasoning and facilitates the achievement of their goals; and (iii) to increase openness to support on-line, fully decentralised design and execution. Furthermore, we identify some promising approaches in the literature, together with the research issues worth investigating, to cope with such challenges. © Cambridge University Press, 2015.The work presented in this paper has been partially funded by projects EVE (TIN2009-14702-C02-01), AT (CSD2007-0022), and the Generalitat of Catalunya grant 2009-SGR-1434Peer Reviewe

    Proof-of-Concept Application - Annual Report Year 1

    Get PDF
    In this document the Cat-COVITE Application for use in the CATNETS Project is introduced and motivated. Furthermore an introduction to the catallactic middleware and Web Services Agreement (WS-Agreement) concepts is given as a basis for the future work. Requirements for the application of Cat-COVITE with in catallactic systems are analysed. Finally the integration of the Cat-COVITE application and the catallactic middleware is described. --Grid Computing

    Towards next generation coordination infrastructures

    Get PDF
    Coordination infrastructures play a central role in the engineering of multiagent systems. Since the advent of agent technology, research on coordination infrastructures has produced a significant number of infrastructures with varying features. In this paper, we review the the state-of-the-art coordination infrastructures with the purpose of identifying open research challenges that next generation coordination infrastructures should address. Our analysis concludes that next generation coordination infrastructures must address a number of challenges: (i) to become socially aware, by facilitating human interaction within a MAS; (ii) to assist agents in their decision making by providing decision support that helps them reduce the scope of reasoning and facilitates the achievement of their goals; and (iii) to increase openness to support on-line, fully decentralised design and execution. Furthermore, we identify some promising approaches in the literature, together with the research issues worth investigating, to cope with such challenges

    An integrative framework for cooperative production resources in smart manufacturing

    Get PDF
    Under the push of Industry 4.0 paradigm modern manufacturing companies are dealing with a significant digital transition, with the aim to better address the challenges posed by the growing complexity of globalized businesses (Hermann, Pentek, & Otto, Design principles for industrie 4.0 scenarios, 2016). One basic principle of this paradigm is that products, machines, systems and business are always connected to create an intelligent network along the entire factory\u2019s value chain. According to this vision, manufacturing resources are being transformed from monolithic entities into distributed components, which are loosely coupled and autonomous but nevertheless provided of the networking and connectivity capabilities enabled by the increasingly widespread Industrial Internet of Things technology. Under these conditions, they become capable of working together in a reliable and predictable manner, collaborating among themselves in a highly efficient way. Such a mechanism of synergistic collaboration is crucial for the correct evolution of any organization ranging from a multi-cellular organism to a complex modern manufacturing system (Moghaddam & Nof, 2017). Specifically of the last scenario, which is the field of our study, collaboration enables involved resources to exchange relevant information about the evolution of their context. These information can be in turn elaborated to make some decisions, and trigger some actions. In this way connected resources can modify their structure and configuration in response to specific business or operational variations (Alexopoulos, Makris, Xanthakis, Sipsas, & Chryssolouris, 2016). Such a model of \u201csocial\u201d and context-aware resources can contribute to the realization of a highly flexible, robust and responsive manufacturing system, which is an objective particularly relevant in the modern factories, as its inclusion in the scope of the priority research lines for the H2020 three-year period 2018-2020 can demonstrate (EFFRA, 2016). Interesting examples of these resources are self-organized logistics which can react to unexpected changes occurred in production or machines capable to predict failures on the basis of the contextual information and then trigger adjustments processes autonomously. This vision of collaborative and cooperative resources can be realized with the support of several studies in various fields ranging from information and communication technologies to artificial intelligence. An update state of the art highlights significant recent achievements that have been making these resources more intelligent and closer to the user needs. However, we are still far from an overall implementation of the vision, which is hindered by three major issues. The first one is the limited capability of a large part of the resources distributed within the shop floor to automatically interpret the exchanged information in a meaningful manner (semantic interoperability) (Atzori, Iera, & Morabito, 2010). This issue is mainly due to the high heterogeneity of data model formats adopted by the different resources used within the shop floor (Modoni, Doukas, Terkaj, Sacco, & Mourtzis, 2016). Another open issue is the lack of efficient methods to fully virtualize the physical resources (Rosen, von Wichert, Lo, & Bettenhausen, 2015), since only pairing physical resource with its digital counterpart that abstracts the complexity of the real world, it is possible to augment communication and collaboration capabilities of the physical component. The third issue is a side effect of the ongoing technological ICT evolutions affecting all the manufacturing companies and consists in the continuous growth of the number of threats and vulnerabilities, which can both jeopardize the cybersecurity of the overall manufacturing system (Wells, Camelio, Williams, & White, 2014). For this reason, aspects related with cyber-security should be considered at the early stage of the design of any ICT solution, in order to prevent potential threats and vulnerabilities. All three of the above mentioned open issues have been addressed in this research work with the aim to explore and identify a precise, secure and efficient model of collaboration among the production resources distributed within the shop floor. This document illustrates main outcomes of the research, focusing mainly on the Virtual Integrative Manufacturing Framework for resources Interaction (VICKI), a potential reference architecture for a middleware application enabling semantic-based cooperation among manufacturing resources. Specifically, this framework provides a technological and service-oriented infrastructure offering an event-driven mechanism that dynamically propagates the changing factors to the interested devices. The proposed system supports the coexistence and combination of physical components and their virtual counterparts in a network of interacting collaborative elements in constant connection, thus allowing to bring back the manufacturing system to a cooperative Cyber-physical Production System (CPPS) (Monostori, 2014). Within this network, the information coming from the productive chain can be promptly and seamlessly shared, distributed and understood by any actor operating in such a context. In order to overcome the problem of the limited interoperability among the connected resources, the framework leverages a common data model based on the Semantic Web technologies (SWT) (Berners-Lee, Hendler, & Lassila, 2001). The model provides a shared understanding on the vocabulary adopted by the distributed resources during their knowledge exchange. In this way, this model allows to integrate heterogeneous data streams into a coherent semantically enriched scheme that represents the evolution of the factory objects, their context and their smart reactions to all kind of situations. The semantic model is also machine-interpretable and re-usable. In addition to modeling, the virtualization of the overall manufacturing system is empowered by the adoption of an agent-based modeling, which contributes to hide and abstract the control functions complexity of the cooperating entities, thus providing the foundations to achieve a flexible and reconfigurable system. Finally, in order to mitigate the risk of internal and external attacks against the proposed infrastructure, it is explored the potential of a strategy based on the analysis and assessment of the manufacturing systems cyber-security aspects integrated into the context of the organization\u2019s business model. To test and validate the proposed framework, a demonstration scenarios has been identified, which are thought to represent different significant case studies of the factory\u2019s life cycle. To prove the correctness of the approach, the validation of an instance of the framework is carried out within a real case study. Moreover, as for data intensive systems such as the manufacturing system, the quality of service (QoS) requirements in terms of latency, efficiency, and scalability are stringent, an evaluation of these requirements is needed in a real case study by means of a defined benchmark, thus showing the impact of the data storage, of the connected resources and of their requests

    An integrative framework for cooperative production resources in smart manufacturing

    Get PDF
    Under the push of Industry 4.0 paradigm modern manufacturing companies are dealing with a significant digital transition, with the aim to better address the challenges posed by the growing complexity of globalized businesses (Hermann, Pentek, & Otto, Design principles for industrie 4.0 scenarios, 2016). One basic principle of this paradigm is that products, machines, systems and business are always connected to create an intelligent network along the entire factory’s value chain. According to this vision, manufacturing resources are being transformed from monolithic entities into distributed components, which are loosely coupled and autonomous but nevertheless provided of the networking and connectivity capabilities enabled by the increasingly widespread Industrial Internet of Things technology. Under these conditions, they become capable of working together in a reliable and predictable manner, collaborating among themselves in a highly efficient way. Such a mechanism of synergistic collaboration is crucial for the correct evolution of any organization ranging from a multi-cellular organism to a complex modern manufacturing system (Moghaddam & Nof, 2017). Specifically of the last scenario, which is the field of our study, collaboration enables involved resources to exchange relevant information about the evolution of their context. These information can be in turn elaborated to make some decisions, and trigger some actions. In this way connected resources can modify their structure and configuration in response to specific business or operational variations (Alexopoulos, Makris, Xanthakis, Sipsas, & Chryssolouris, 2016). Such a model of “social” and context-aware resources can contribute to the realization of a highly flexible, robust and responsive manufacturing system, which is an objective particularly relevant in the modern factories, as its inclusion in the scope of the priority research lines for the H2020 three-year period 2018-2020 can demonstrate (EFFRA, 2016). Interesting examples of these resources are self-organized logistics which can react to unexpected changes occurred in production or machines capable to predict failures on the basis of the contextual information and then trigger adjustments processes autonomously. This vision of collaborative and cooperative resources can be realized with the support of several studies in various fields ranging from information and communication technologies to artificial intelligence. An update state of the art highlights significant recent achievements that have been making these resources more intelligent and closer to the user needs. However, we are still far from an overall implementation of the vision, which is hindered by three major issues. The first one is the limited capability of a large part of the resources distributed within the shop floor to automatically interpret the exchanged information in a meaningful manner (semantic interoperability) (Atzori, Iera, & Morabito, 2010). This issue is mainly due to the high heterogeneity of data model formats adopted by the different resources used within the shop floor (Modoni, Doukas, Terkaj, Sacco, & Mourtzis, 2016). Another open issue is the lack of efficient methods to fully virtualize the physical resources (Rosen, von Wichert, Lo, & Bettenhausen, 2015), since only pairing physical resource with its digital counterpart that abstracts the complexity of the real world, it is possible to augment communication and collaboration capabilities of the physical component. The third issue is a side effect of the ongoing technological ICT evolutions affecting all the manufacturing companies and consists in the continuous growth of the number of threats and vulnerabilities, which can both jeopardize the cybersecurity of the overall manufacturing system (Wells, Camelio, Williams, & White, 2014). For this reason, aspects related with cyber-security should be considered at the early stage of the design of any ICT solution, in order to prevent potential threats and vulnerabilities. All three of the above mentioned open issues have been addressed in this research work with the aim to explore and identify a precise, secure and efficient model of collaboration among the production resources distributed within the shop floor. This document illustrates main outcomes of the research, focusing mainly on the Virtual Integrative Manufacturing Framework for resources Interaction (VICKI), a potential reference architecture for a middleware application enabling semantic-based cooperation among manufacturing resources. Specifically, this framework provides a technological and service-oriented infrastructure offering an event-driven mechanism that dynamically propagates the changing factors to the interested devices. The proposed system supports the coexistence and combination of physical components and their virtual counterparts in a network of interacting collaborative elements in constant connection, thus allowing to bring back the manufacturing system to a cooperative Cyber-physical Production System (CPPS) (Monostori, 2014). Within this network, the information coming from the productive chain can be promptly and seamlessly shared, distributed and understood by any actor operating in such a context. In order to overcome the problem of the limited interoperability among the connected resources, the framework leverages a common data model based on the Semantic Web technologies (SWT) (Berners-Lee, Hendler, & Lassila, 2001). The model provides a shared understanding on the vocabulary adopted by the distributed resources during their knowledge exchange. In this way, this model allows to integrate heterogeneous data streams into a coherent semantically enriched scheme that represents the evolution of the factory objects, their context and their smart reactions to all kind of situations. The semantic model is also machine-interpretable and re-usable. In addition to modeling, the virtualization of the overall manufacturing system is empowered by the adoption of an agent-based modeling, which contributes to hide and abstract the control functions complexity of the cooperating entities, thus providing the foundations to achieve a flexible and reconfigurable system. Finally, in order to mitigate the risk of internal and external attacks against the proposed infrastructure, it is explored the potential of a strategy based on the analysis and assessment of the manufacturing systems cyber-security aspects integrated into the context of the organization’s business model. To test and validate the proposed framework, a demonstration scenarios has been identified, which are thought to represent different significant case studies of the factory’s life cycle. To prove the correctness of the approach, the validation of an instance of the framework is carried out within a real case study. Moreover, as for data intensive systems such as the manufacturing system, the quality of service (QoS) requirements in terms of latency, efficiency, and scalability are stringent, an evaluation of these requirements is needed in a real case study by means of a defined benchmark, thus showing the impact of the data storage, of the connected resources and of their requests

    NoMoDEI : A framework for Norm Monitoring on Dynamic Electronic Institutions

    Get PDF
    With the growth of the Internet, computational systems have become more and more complex, often including complicate interconnected networks of autonomous components. The need to bring some organisational structure into autonomous systems becomes urgent, as this allows regulating the behaviour of the different autonomous components to ensure their objectives are aligned with the holistic objectives of the system. Normative Systems are one of the mechanisms that can be applied to define and enforce acceptable behaviour within distributed electronic systems which should comply with some (human) regulations. One of the requirements to effectively implement Normative Systems is to be able to assess, at runtime, the state of the normative environment. Existing lines of research have already tried to tackle this issue on some simple scenarios. However, more complex scenarios may appear, for instance, scenarios where the normative context is not static, but it expands and contracts as new norms are added to the institution and removed from it respectively. As in human legal systems, it is easy to foresee that some of these electronic normative environments will not be static. They should be able to evolve through time as regulations change, effectively adapting to new situations and behaviours. Under these conditions, a monitoring system must be able to continue computing the state of the normative environment at runtime, as often we can not afford to perform the changes on the normative context off-line. Furthermore, it must be guaranteed the monitoring system can keep producing states of the normative environment that are consistent with the changes performed on the normative context. For instance, if a norm has been removed from the normative context, it does not make sense anymore to compute normative states where the norm has been violated. In this thesis we present NoMoDEI, a normative monitoring framework for dynamic Electronic Institutions. We formalize and develop an extended normative framework and architecture to cope with scenarios where the normative context is dynamic, therefore norms can be added, removed and updated. The operations are to be performed at run-time, without having to stop computing the normative state. The normative states computed are consistent with the expansion and contraction operations. NoMoDEI is introduced in three steps. First, we formally define the operations to be supported in order to allow for expanding and contracting the normative context. Then, we instantiate the formal operations, providing implementation details. Finally, we demonstrate our framework by applying it to two use cases: E-health systems and waste-water management on a river basin.Amb l'expansió d'Internet els sistemes computacionals han esdevingut més complexos, sovint incorporant complicades xarxes interconnectades de components autònoms. Es per això que la necessitat d'incorporar estructures organitzacionals en el sistemes autònoms s 'accentua, donat que aquestes estructures permeten regular el comportament dels diferents components autònoms, tot assegurant que els seus objectius es troben alineats amb els objectius generals del sistema. Els Sistemes Normatius (i.e. Normative Systems) són un dels mecanismes que podem aplicar per definir i imposar patrons acceptables de comportament dintre de sistemes electrònics distribuïts. Això esdevé especialment important quan el sistema es troba regimentat per regulacions (normalment humanes). Un dels requeriments per implementar Sistemes Normatius és ser capaços de determinar, en temps d'execució, l'estat de l'entorn normatiu. Existeixen línies de recerca que ja han tractat aquest problema en alguns escenaris simples. El món real però ens ofereix escenaris més complexes, com per exemple, escenaris on el context normatiu no és estàtic, si no que s'expandeix i contrau a mesura que noves normes són afegides o eliminades de la institució. Tal com passa als sistemes legals humans, és fàcil preveure que alguns contextos normatius electrònics no seran estàtics. Aquests contextos haurien de ser capaços d'evolucionar a través del temps a mesura que les regulacions canvien, adaptant-se a noves situacions i comportaments. Sota aquestes condicions, un sistema de monitorització ha de ser capaç de continuar calculant l'estat de l'entorn normatiu en temps d'execució, ja que sovint no ens podem permetre realitzar els canvis a l'entorn normatiu aturant el procés de monitorització. És més s'ha de garantir que el sistema de monitorització sigui capaç de continuar produint es tats de l’entorn normatiu de forma consistent amb els canvis realitzats. Per exemple, el fet d'eliminar una norma fa que no tingui gaire sentit continuar calculant es tats normatius on aquesta norma ha es tat violada. A aquesta Tesi presentem NoMoDEI, una infraestructura de monitorització normativa per institucions electròniques dinàmiques. Formalitzem i desenvolupem una infraestructura de monitorització normativa estesa capaç d'operar en escenaris on el context normatiu es dinàmic. Es a dir, diverses normes poden ser introduïdes, eliminades o actualitzades del context normatiu en qualsevol moment. Aquestes operacions s'han de poder realitzar en temps d'execució, es a dir, sense deixar de calcular l'estat normatiu. Es més, els estats normatius calculats han de ser consistents amb les respectives operacions d'extensió o contracció del context. Durant la Tesi presentem NoMoDEI en tres passos. Primer proporcionem una definició formal de les operacions que la infraestructura ha de suportar per permetre expandir i contraure el context normatiu. A continuació instanciem aquestes operacions proporcionant detalls d'implementació. Finalment demostrem que la nostra infraestructura pot ser aplicada a casos d'ús del món real introduint dos casos: sistemes de salut electrònics (i.e. E-health) i sistemes de tractament d’aigües residuals a la conca d’un riuPostprint (published version

    Adapting Agent Platforms to Web Service Environments

    Get PDF
    This master thesis tries to address the above-mentioned issues by creating an agent plat- form suitable for encapsulating web-services into agents, providing them with typical agent capabilities (such as learning or complex communication and reasoning mechanisms). The objective of this point is to create a generic, modular agent platform that is able to run lightweight agents. The agents should be able to easily invoke web-services, e ectively encapsulating them. They also should be able to easily coordinate for composing the invoked services in order to perform complex tasks. Thus, the platform must provide facilities to allow the agents perform these service invocations
    corecore