Universitat Politécnica de Catalunya
Departament de Llenguatges i Sistemes Informatics
Master en Intel-ligéncia Atrtificial

Tesi de Master:
Adapting Agent Platforms to Web Service
Environments

Estudiant: Ignasi Gomez-Sebastia
Director: Javier Vazquez-Salceda

Data: 03 de Septembre de 2009

Contents

1

2

Introduction
1.1 Objectives of this master thesis
1.2 Structure of this document

Requirements of an Agent platform

2.1 FIPA-ABSTRACT Architecture
2.1.1 Architecture of FIPA-ABSTRACT

2.2 SUMIMATY oo e e e e e e

The PAWS agent platform
3.1 The CONTRACT Agent platform
3.1.1 Agent architecture definition
3.2 CONTRACT Agent components
3.2.1 Decision Maker L L
3.2.2 Contract manager
3.2.3 Workflow manager
3.2.4 Communication Manager
3.2.5 Dialogue Manager oL
3.2.6 Message Manager Lo
3.3 CONTRACT platform components
3.3.1 Contract Storer L
3.3.2 Observer
3.3.3 Manager
3.34 Notary oL e
3.3.5 Context Service
3.3.6 Domain Ontology Service
3.4 The PAWS Agent Platform
3.5 PAWS Agent components
3.5.1 Agent components directly re-used from the CONTRACT platform
3.5.2 Agent components generalized from the CONTRACT platform
3.5.3 Agent components removed from the CONTRACT platform
3.5.4 New agent components on the PAWS platform
3.6 PAWS Platform components
3.6.1 Platform components directly re-used from the CONTRACT platform
3.6.2 Platform components generalized from the CONTRACT platform
3.6.3 Platform components removed from the CONTRACT platform
3.6.4 New platform components on the PAWS platform
3.7 PAWS platform evaluation o

ii

3.8 Summary

A theoretical planning framework

4.1 Background
4.1.1 Planning systems
4.1.2 Argumentation

4.2 Description of the example
4.2.1 The scenario: activity recommendation
422 Workflow
4.2.3 Activities e
424 Resources e

4.3 Formal definition of the framework

4.4 Conflicting actions L L oo

4.5 Building the global plan L0

4.6 Global utilities for a global plan.

4.7 Coordination protocol o

4.8 Related and further work

4.9 Conclusion

Implementing the planning framework in PAWS

5.1 Protocol Modeling
5.1.1 Protocol Basic Concepts
5.1.2 High level model, .
5.1.3 INGENIAS Role model
5.1.4 INGENIAS Responsibilities model
5.1.5 INGENIAS Precedences model
5.1.6 INGENIAS Interaction Model

5.2 Protocol Implementation 0oL
5.2.1 PAWS protocol components: the protocol
5.2.2 PAWS protocol components: the behaviors
5.2.3 PAWS protocol components: the message types
5.2.4 PAWS protocol components: the roles
5.2.5 PAWS protocol components: the ontology
5.2.6 PAWS component generation procedure

5.3 Framework implementation
5.3.1 Use of agent directory
5.3.2 Enabling multiple participants
5.3.3 Adapting theontology
5.3.4 Framework implementation

54 Plan definition L oL o

5.5 Simple test scenario

5.6 Use case test scenario

5.7 Summary ...

Conclusions

6.1 Conclusions e

6.2 Summary of original contributions

6.3 Future Work
6.3.1 Future improvements on the PAWS platform

6.3.2 Future improvements on the theoretical planning framework

CONTENTS

CONTENTS iii

6.3.3 Applying the PAWS platform and the theoretical argumentation frame-

work to other scenarios L. 108

A The ALIVE Framework 111
A.1 Organizational Level L 112
A.2 Coordination Level 112

A.3 Service Level e 115

iv

CONTENTS

Acknowledgments

Before starting this master thesis document I would like to give a brief acknowledgment to
people who has made this document possible.

I would like to acknowledge my master thesis advisor Javier Vézquez-Salceda for the
support provided while developing this work, for the reviews of this document and for the
countless and recurrent grammatical errors pointed out during this process.

I also would like to acknowledge my colleagues Sergio Alvarez—Napagao and Roberto
Confalioneri for the support provided during the analyses of the CONTRACT agent plat-
form, and for the helping hand given while I was developing some of the components of
the platform. Thanks to them I have managed to achieve a deep understanding of the
CONTRACT platform. I also would like to congratulate them for the efforts done when
developing their own parts of the platform.

Juan Carlos Nieves also deserves a special acknowledgment, for introducing me to the
world of Argumentation Theory as well as for the support provided during the development
of the theoretical planning framework presented in this master thesis.

Last but not least I would like to mention the support provided by Rocio Diaz during
the development of this work. Without her moral boosts, this work would not had been
possible.

Ignasi Gémez-Sebastid. September 2009

CONTENTS

Chapter 1

Introduction

Service-oriented architectures (SOA) are becoming a main-stream approach for building
distributed systems, as they offer heterogeneous, open, scalable and distributed solutions.
The idea is encapsulating key (and very concrete) functionality in services that are remotely
accessible, able to discover each other, and able to communicate and combine in order to
offer more complex (and generic) functionalities. Thus, computing is not anymore the result
of an action in a single computer, but the result of a network of computers interacting with
each other (i.e. computation as interaction). Standards such as the OASIS Web Service
Reference Architecture [22] define how distributed services should be defined and composed,
focusing on interoperability issues. However, little attention has been paid to supporting
the engineering of collections of services.

The engineering of service-based applications represents a new challenge if the field of
software engineering. Networked applications based on the notion of independent software
systems that can be dynamically deployed, modified and composed (resulting in more com-
plex systems) open the door to new types of software systems that have nothing to do with
the classic notion of software. Thus, the need for profound changes in the way in which
software systems are designed, deployed and maintained arises. These changes imply a shift
from a top-down design to design methodologies that allow integrating new functionalities
into existing running systems formed by active, distributed and independent processes. In
other words, shifting from seeing software systems as static and monolithic (in the sense of
homogeneous) pieces of software to seeing software as a compound of independent, heteroge-
neous, distributed, and changing small pieces of software that are inter-connected together
(and thus, interdependent) in order to form more complex systems. Methods to ensure
the robustness of individual software applications do not map effectively to service-based
applications.

A new point of view, taking into account not only the properties of individual applications
but also the objectives and dynamics of the system as a whole arises. In order to tackle
this issue, a wide range of research has emerged in the recent years, including among others,
multi-agent systems. This field tries to apply a wide range of social phenomena often seen
in human societies to computational systems, including:

e coordination patterns that are often used among humans to solve common problems
amongst individuals (e.g. coordination to sell goods in an auction). Interaction pat-
terns between limited sets of actors trying to achieve a particular goal can be modeled.
These models provide formal and sound foundation for the interactions that occur.
They also provide the basis for choreography and orchestration of service-oriented sys-

CHAPTER 1. INTRODUCTION

tems, and detail the interactions required for the execution of a particular workflow.

characterizing the nature of autonomous actors in a environment, modeling potential
rational behavior. For robust deployments it is critical to see services not as objects
which are invoked at will and owned by the invoker, but as potentially owned by third
parties (e.g. in a call to Google-calendar service) with its own terms, conditions of
service, and possible behavior.

What’s more, not only results from the research in multi-agent systems can be applied
to SOA, but both fields also show some common points. Even though multi-agent systems
have not been developed as part of the SOA, parallelisms can be found between both ap-
proaches. For instance, some agent applications use agents to distribute computation by
offering services to other agents in the domain. The SOA community has already identified
some potential in integrating agent research in SOA. For instance, in [23] they have identified
some significant short-comings in WS-Agreement which could benefit from some solutions
already existing in agent technologies:

WS-Agreement messages are limited to offer and agree types. What’s more, the WS-
Agreement specification is only used at the last stage of the interaction, where the
parties close their interaction as a contract specified as a WS-Agreement. Just two
messages cannot be enough for modeling the complex negotiations required on some
domains. Introducing additional semantics to the communication between services can
fill this gap. Such semantics are already available on the multi-agent systems world
(e.g. in the form of speech acts).

Even if a wider variety of messages would be available, WS-Agreement would still
suffer from the lack of an interaction protocol specified between the parties. Without
specifications on how to build interaction protocols, the interactions that can be mod-
eled are rather limited and simple. For instance, without protocols it is not possible
to model an iterative-contract net interaction.

In general, WS-Agreement is a specification with vague and unclear semantics. The
WS-Agreement focuses only on defining a high-level template for agreements and offers.
A language able to express the elements in the service description terms and guarantee
terms is required. Such languages are already available on the multi-agent systems
world in the form of ontologies.

As summary, two clear ideas can be extracted from this analysis:

Service-oriented architectures are becoming the standard for building distributed sys-
tems. As distributed systems are likely to become the future of software systems,
service-oriented architectures will be the standard for building software systems in the
future. Regarding this, service composition is key for service-oriented architectures to
be functional, as the capabilities provided by each isolated service are not enough for
solving complex problems.

Actual service-oriented architectures standards are trying to tackle some issues that
have been addressed long ago by researches in multi-agent systems. Integrating agent
research in service-oriented architectures is an approach for tackling this issue.

Thus integration between service-oriented architectures and multi-agent systems is a
cutting edge interesting issue.

1.1. OBJECTIVES OF THIS MASTER THESIS 5

1.1 Objectives of this master thesis

This master thesis tries to address the above-mentioned issues by creating an agent plat-
form suitable for encapsulating web-services into agents, providing them with typical
agent capabilities (such as learning or complex communication and reasoning mechanisms).
The objective of this point is to create a generic, modular agent platform that is able to
run lightweight agents. The agents should be able to easily invoke web-services, effectively
encapsulating them. They also should be able to easily coordinate for composing the invoked
services in order to perform complex tasks. Thus, the platform must provide facilities to
allow the agents perform these service invocations. The key points of the platform should
be:

e Simplicity: For providing basic agent capabilities to web-services heavy and complex
reasoning mechanisms are not required. A simple reasoner (implemented for instance
as a Java class) should be enough. What’s more, the platform is not to provide
many specific and advanced components either. It should be enough with the basic
components that every agent platform provides.

e Modularity: This need is generated by the first need. If the platform is to be generic
and simple (i.e. just the basic components are to be provided) it should be easy for
users of the platform to code new components and attach them to the platform. This
would allow users to adapt the platform to the needs of the domain where they are
going to apply it. It is desirable that components can be attached not only to the
platform, but also to the agents.

e Usability: Agents should be easy to code, deploy and maintain. The main effort of the
users of the platform should be in coding the encapsulated services, not the agents in
the platform.

e Service-oriented: Services should be easy to invoke to be effectively encapsulated. Ser-
vice discovery, adding the feature of finding substitutive services for unavailable ones,
is a desirable feature. What’s more, agent coordination should be easy to implement,
and coordination constraints should be specified in terms of web-services, when possi-
ble.

The requirement of coordination mechanisms in the platform arises a second objective
for the thesis: integrate into the agent platform a planning framework that allows
agents to coordinate deciding how to enact sets of actions in a collaborative
way. This planning framework is to be defined formally, implemented and integrated in the
agent platform. The planning framework should be generic, rather than oriented to service
composition. That is, the framework should be usable to coordinate any set of actions given
a group of intelligent actors enacting them and a set of constraints to be met when between
the actions. As there is a good number of planning frameworks already defined, implemented
and running, the framework created for this objective should provide a new contribution to
the planning world. The contribution chosen has been trying to create a planner that, based
on argumentation theory, is able to provide a conflict-free global plan, given:

e A group of local plans formed by sets of alternative chains of actions. This is meant
to model the set of actions to be coordinated.

e The definition of the resources consumed by the execution of each of the actions in the
local plans. This is meant to model the restrictions that the global plan should meet.

6 CHAPTER 1. INTRODUCTION

1.2 Structure of this document

The rest of this document is structured as follows:

e Chapter 2: Analysis of the FIPA-ABSTRACT standard. This standard defines the
components agent platforms should implement, and the minimal functionalities they
should provide. It is important analyzing this standard because the developed agent
platform should be compliant with it. At the same time, the standard provides a
complete overview on agent platforms.

e Chapter 3: Development of the PAWS (Platform for Agentified Web Services) agent
platform. This chapter presents in depth how the platform has been developed. The
chapter starts by explaining an existing web-service oriented agent platform which is
domain-bound, the CONTRACT agent platform. The chapter goes on by describing
how the CONTRACT platform has been modified in order to fit more general needs,
and how the PAWS platform has been developed based on these modifications. During
the process, the architecture and the components of the PAWS platform (along with
their functionalities) are described.

e Chapter 4: Formal definition of the planning framework. This chapter introduces the
planning framework to be integrated in the agent platform from a theoretical point of
view. The chapter also provides an example (inspired on a real scenario) of an action
coordination problem that is used to help the reader understand the formal concepts
introduced in the chapter. The example is also used as a test-case when analyzing the
implementation of the framework in the next chapter.

e Chapter 5: Implementation of the formal framework and integration in PAWS. This
chapter explains the process followed to model, implement and integrate the theoretical
planning framework in the PAWS platform. The chapter is meant to explain not only
how the framework has been implemented, but also how the PAWS agents have been
designed and coded in order to integrate the planning framework, and how the planning
module resulting from the implementation of the theoretical planning framework has
been integrated in PAWS. This chapter could be used as reference for future PAWS
users for understanding how to integrate new modules on PAWS and how to design
and adapt PAWS agents to the needs of their domain. The chapter also introduces
a graphical tool for defining plans, and a couple of test-cases applied to the planning
framework.

e Chapter 6: Conclusions and further work: This chapter explains the conclusions ex-
tracted from the development of the work presented in this master thesis, the con-
tributions of the work, and how could it be applied to some existing scenarios. This
chapter also gives an overview about how the work could be continued, how could it
be improved and how new lines of work can arise from it.

e Appendix A: The ALIVE framework: This appendix gives an overview of the ALIVE
framework which is being developed in collaboration with several universities and
enterprises within the frame of the FP7 project ALIVE (ICT-215890) funded by the
European Commission.

Chapter 2

Requirements of an Agent
platform

This chapter analyzes the FIPA-ABSTRACT agent platform architecture. This will fulfill
three main goals. First of all, analyzing an standard like FIPA-ABSTRACTS will show
the properties an agent platform should meet. Second, it gives a quick overview on agent
platforms, introducing some concepts (e.g. Directory Facilitator, performative, etc.) that
are used later in this document. Last but least, it provides an overview of an abstract agent
platform, describing components that are common on all platforms. Understanding this
abstract platform also helps understanding our agent platform that will be introduced in
Chapter 3

An agent platform is a set of software entities (e.g. Java processes) that run the agents
and services in the platform. Agents are autonomous software entities with intelligent ca-
pabilities (e.g. learning, communication and cooperation, etc.). Agents get support from
services in tasks such as obtaining an unique identifier, sending messages to other agents,
storing data in persistent bases or finding out which other agents are on the platform.

The Foundation for Intelligent Physical Agents (FIPA from now on) is an international
organization aimed to developing open specifications([13]) for agent systems. Such specifi-
cations focus on enabling interoperability between agents and agent-based applications. By
developing these specifications FIPA wants to promote the industry of Intelligent Agents.

The FIPA specifications define agent infrastructure, including agent communication lan-
guage (that is, how messages are transferred and represented) as well as some optional
properties (such as how to encrypt them). Agent services and support for management on-
tologies are also specified. Specifications also include agent applications by defining several
application domains (e.g. network management).

2.1 FIPA-ABSTRACT Architecture

FIPA-ABSTRACT, the last version of the specifications, aims to reach interoperability via
architectural abstractions, that is, common characteristics that can be found in different
agent technologies. Such abstractions should be formally related to every valid implemen-
tation, because, if every concrete agent architecture follows this specification, it will be able
to inter-operate with other architectures. This property can be ensured because of the fact
that following these architectural abstractions will make every agent architecture present a
common abstract design.

8 CHAPTER 2. REQUIREMENTS OF AN AGENT PLATFORM

Even though FIPA specifications aim at defining an inter-operable agent architecture,
revisions of the specifications lack backwards compatibility. Architectures built using FIPA-
97 and FIPA-98 specifications have limited interoperability with FIPA-Abstract. However,
architectures built using FIPA-2000 are fully inter-operable with FIPA-Abstract.

2.1.0.1 Aims of FIPA-ABSTRACT

FIPA-ABSTRACT focuses on providing inter-operable message exchange between agents in
different architectures. Such architectures might be using different implementations of the
following abstractions and yet be interoperable:

e Set of services available to agents and services in the platform, with special mention
to ’Service Discovery’ and ’Directory Service’ services.

e Message transport abstraction
e Agent communication language abstraction
e Content language abstraction
However, FIPA-ABSTRACT does not cover the following abstract areas:
e Agent lifecycle and management
e Agent mobility and Identity
e Agent Domains
e Conversational policy

The FIPA-ABSTRACT architecture defines two basic elements: opaque typed elements
and associations. Opaque typed elements can be understood by specific implementations
of a service while being meaningless (that is, opaque) to other components, or even other
implementations of the same component. Thus, in order to add a new service, or a new
implementation for an existing service, all that is to be done is to define a new opaque typed
element and associate it to the incoming service. Associations between an agent and a
service allow the agent to invoke the service via handler structures. This concept resembles
factory design pattern [12].

2.1.0.2 Why to analyze FIPA-ABSTRACT

Analyzing and understanding these specifications is key for our work, because an agent plat-
form that complies with the specifications will be able to freely operate with other platforms
(as long as these platforms also comply with the specifications), regardless implementation
details used in the platforms. This is a very desirable property, taking into account interop-
erability is a key concept in open, distributed and heterogeneous scenarios, that is, scenarios
where agent-based technologies fit perfectly.

It must be noticed that FIPA specifications in general, and FIPA-ABSTRACT in partic-
ular, describe an abstract architecture that cannot be directly implemented, it just provides
the basic guides on how to build an agent system. In this scope, a realization of an element
denotes the definition of an abstract element in terms of a concrete architecture implementa-
tion. Designers must bear in mind that FIPA specifications describe the minimum required
elements of an agent architecture, they do not prohibit the introduction of new elements.

2.1. FIPA-ABSTRACT ARCHITECTURE 9

2.1.1 Architecture of FIPA-ABSTRACT

The FIPA-ABSTRACT Architecture defines the architectural elements (and their relation-
ships) required in order to allow agents to locate each other and communicate with each
other.

2.1.1.1 Basic concepts

Agents communicate interchanging messages encoded in Agent Communication Language
(ACL). These messages represent speech acts [27], and include the concept of performative.
Services denote a set of services(e.g. web-services) providing support functionalities for
agents. Such functionalities include agent directory, message transport and service direc-
tory. Services can be agents or pieces of software that are accessed via method invocation
procedures. However, it must be noticed that an agent providing a service is more restricted
in its behavior than a general purpose agent, due to having to preserve the semantics of the
service.

2.1.1.2 Directory facilities

Directory facilities are services that allow agents to register their descriptions, as well as
to query existing descriptions in order to find agents with which they can interact. The
main directory facility defined in FIPA-ABSTRACT is the agent directory, also known as
Directory Facilitator.

contains [Agentdirectory-entry| contains
a.n 1

confains [1

|Agent-attributes |Agent-locator IAgent-nams

contains | 1.n

contains [Transport-description| contains

o.n 1

Trarepot-spedc-addrass I
. lard Transport-s pecic-propertes
contains | 1 are contentuallzsd by

Transport-hps

Transpor-specific-properties| [Transport-typel (Transport-specific-addrass

Figure 2.1: Agent-directory UML relationships elements

When an agent wants to register itself in the agent directory it binds itself to one or more
transports that will allow other agents to reach him. This operation can be performed via the
message transport service. Once transport information is available, an agent directory entry
can be built and the agent can publish it on the agent directory. Using this procedure an

10 CHAPTER 2. REQUIREMENTS OF AN AGENT PLATFORM

agent can make itself, along with its capabilities, public to other agents in the environment.
At this point, other agents can query agent directory, retrieving information about the agent
that has registered (possibly along with information from other agents) and if they consider
it convenient, contact it. Agent-directory-entries consist in: a) an agent-name b) an agent-
locator c) a set of zero or more agent-attributes. Agents have not the obligation of publishing
themselves on directories, they can exchange agent-directory-entries via other means. For
instance agents involved in a negotiation protocol can exchange their agent-directory-entries
without publishing it on agent-directories.
Agent-directories provide the following functionalities for agents:

e Register: By providing an agent-directory-entry an agent can publish itself in one or
more agent-directories. The operation might fail if the agent has no rights to register in
the selected agent-directory or if the provided agent-directory-entry is not valid. The
operation will also fail if the agent-directory already contains an agent-directory-entry
with the same agent-name ! as the entry to be registered.

e Modify: By providing a new agent-directory-entry an agent can modify an existing
agent-directory-entry in a given agent-directory. The directory will search for an entry
with the same agent-name as the entry provided. If it is not found, the operation
returns an error. The directory will also make sure the provided entry is valid, and
the agent has permissions to modify the entry in the directory. Once these conditions
are checked, the directory proceeds to update the entry value. For each key-value pair
in the provided entry, if the pair is found in the existing entry, the new value is set. If
the pair exists and the value in the provided entry is null, the pair is deleted from the
existing entry. If the pair is not found, the pair is added to the existing entry.

e Deregister: By providing an agent-directory-entry an agent can delete an existing
agent-directory-entry in a given agent-directory. The directory will search for an entry
with the same agent-name as the entry provided. If it is not found, operation returns
an error. The directory will also make sure the agent has permissions to delete the
entry in the directory. Once these conditions are checked, the directory proceeds to
delete the entry value. Notice that, in the provided entry, only the agent-name value
is significant, other values are not checked at all.

e Search: By providing an agent-directory-entry an agent can search a given agent-
directory for entries that match searching criteria. The directory will make sure the
provided entry is valid, and the agent has permissions to search for entries in the
directory. Once these conditions are checked, the directory proceeds to search for
entries matching the searching criteria. The provided agent-directory-entry is treated
as a search pattern, thus, a given entry existing in the agent-directory is returned if
all key-value pairs in the provided entry are equal to the pairs in the existing entry.
FIPA-ABSTRACT recommends implementing, at least, matching criteria of ’same
value’ (i.e., value of the pair in the provided entry is equal to the value of the pair in
the existing entry) and ’any value’ (i.e., value of the pair in the existing entry does
not matter for matching condition).

FIPA contemplates the possibility of an agent directory registering into other agent
directories to form federations. A search for a service in an agent directory that has another
directories registered is performed, first of all locally (that is, in the directory where search
operation is invoked) and then extended to other directories among the same federation.

IFIPA-ABSTRACT contemplates the possibility of adding more constraints

2.1. FIPA-ABSTRACT ARCHITECTURE 11

This arises the need of providing additional parameters to the search operation (such as
searching in other directories only if local search returns no results, or searching only until a
limited number of results have been obtained, or until a limited number of directories have
been queried) in order to avoid high cost (or even infinite) searches.

Another directory facility defined by FIPA-ABSTRACT is the service directory. A Ser-
vice directory can be seen as analogous to an agent directory with the difference that both
agents and services can register in it or query it. Many FIPA-ABSTRACT implementations
model the service directory as a simple local table of fixed size, whereas using more complex
and distributed technologies (such as LDAP) for the agent directory. A service-root is pro-
vided to every starting-up agent. This service-root is no more than a list of basic services
(agent-directory, message-transport, etc.) that connect the agent with the environment.

A directory facility which is analogous to agent directory is the Agent Discovery Service,
or ADS. The ADS provides the same functionalities as the agent directory, but is specially
suited for ad hoc networks, where network nodes are not very stable (that is, they join
or leave very frequently). In such cases, the agents use the agent directory for discovering
(and be discovered by) agents that are on the same Agent Platform, whereas the ADS is
used for discovering (and be discovered by) agents residing on remote devices of the ad hoc
network. The only functional difference between the ADS and the agent directory is that
ADS provides subscription and de-subscription procedures. Subscription allows agents to
pass an agent-directory-entry template with the generic characteristics of the agents they
want to be notified about. When agent whose agent-directory-entry matches the template
registers on the A DS, subscribed agents will be notified. The same happens when the agent
de-registers from the ADS. A de-subscription procedure is available to allow agents to stop
receiving notifications. Subscription and de-subscription procedures are specially fit on the
ADS due to the high volatility of the agents registered on this component, that is, they are
expected to register and de-register more often than the agents on the agent directory.

The last directory facility is the Agent Management System which is similar to the agent
directory. The Agent Management System keeps a list of all agents in the system (either they
are registered on the agent directory or not) along with their names and transports they can
be reached by. The Agent Management System does not contain any additional information
about services offered by the agents. Thus, Agent Management System is usually known as
White pages service whereas agent directory is usually known as yellow pages service.

2.1.1.3 Agent Messages

An Agent message is typically written in the Agent Communication Language (ACL) and,
basically, consists in a sender, any number of receivers, the type of communicative act
represented (as denoted on Section 2.1.1.4) and some content. Along with the content the
ontology 2 that is to be used to interpret the content must be provided. The complete list
of components in the messages is as follows:

e performative: denotes the type of communicative act of the message. Should be a
FIPA standard communicative act as denoted on Section 2.1.1.4

e sender: identifies sender of the message. FIPA-ABSTRACT allows omitting this field,
in the case an anonymous message is sent. Will be, typically, an agent name.

e receiver: identifies the intended recipient of the message. FIPA-ABSTRACT allows
a set of values in this parameter for multi-cast messages. FIPA-ABSTRACT allows

2An ontology is a vocabulary for representing knowledge about entities and the relationships between
them

12

CHAPTER 2. REQUIREMENTS OF AN AGENT PLATFORM

omitting this field, in the case a broadcast message to all agents is to be sent. Will be,
typically, an agent name.

reply-to: indicates that the next messages to be sent in this conversation are to be
directed to the agent specified in this parameter (via agent name) and not to the
sender of the message.

content: domain-specific part of the communication.

language: used to express the content. In order to be able to use FIPA performatives,
the language must be able to represent propositions, actions and terms. Languages
such as KIF and SL comply with this condition.

encoding: used to specify the encoding of the content. If ommited, the encoding will
be specified in the envelope of the message.

ontology: specifies the ontology used to give meaning to the content. Can be omitted
if the receiver of the message can have no misundersting about the ontology being
used.

protocol: interaction protocol that the sender of the message expects to be employed
during the conversation. Can be set to null, but FIPA recommends using protocols in
all cases in order to reduce the ambiguity of the interaction.

conversation-id: identifies the set of both past and incoming messages belonging to
the same conversation. If the protocol parameter is used, initiator of the protocol is
obliged to specify a valid value for this parameter. This value will remain unchanged
in all the messages sent in the scope of the protocol.

reply-with: sets a value to be used in the parameter in-reply-to by responding agent.

in-reply-to: denotes the message as a reply of a former one. Typically, if an agent
receives a message with the reply-with parameter set to value ’'this is a reply’, it will
respond with the in-reply-to parameter set to value ’this is a reply’.

reply-by: sets a deadline after which the sender of the message does not want to receive
a reply for the message.

When a message is interchanged between agents, it is encoded into a payload (using an
appropriate encoding-representation) and included in an envelope. The encoding-service is

the component responsible of transforming messages into payloads for sending them, and
transforming payloads to messages upon reception. The envelope in which the payload is

included defines transport-descriptions (how to send the message, via what transport, to
which address, etc.) of both sender and receiver. A set of transport descriptions, specifying

how to reach a given agent via different transport protocols, is held in an agent-directory
service. Envelope can also include optional fields such as encoding-representation or security
data. Such optional fields allow, for instance, the inclusion of a public key in the envelope,
then by encrypting pay-load and message it can be assured that message has no meaning
for entities without the private key. Once the message is into the envelope, the message-
transport-service takes care of sending it using the selected transport protocol.

It must be noted that :

e While the enwvelope can add additional data to the message, the payload cannot, it

only encodes the message in a suitable representation.

2.1.

FIPA-ABSTRACT ARCHITECTURE 13

sander [Messagedransportservice| 4 [Transport-description)
0.1 uses
salects |1
[Transper-message 0.1 | Transport | g one
sant 1.n

transtormed by [0.1

Encoding-representation

0.1 Encoding-servic

franstorms usas

Figure 2.2: Transport UML relationships element

e An agent’s name is preserved through the agent’s lifetime, however transports used to

communicate with it can change. New transports can be added or removed, or existing
ones can change.

2.1.1.4 Communicative Acts

FIPA defines standard communicative acts (also known as performatives) for helping to reach
interoperability by providing standard composite communicative acts that can be used in
ACL messages. Two agents developed in different contexts will be able to interact more
easily if they use the same communicative acts, and give them the same meaning, in the
messages they exchange. FIPA defines the following standard communicative acts, although
it encourages developers to define their own composite acts and make them available to the
community:

e Propose: to send a proposal to perform a certain action given certain preconditions.

This act includes both the action that is proposed and the preconditions that must be
met before performing the action. Can be sent as a reply to a previous proposal in a
negotiation protocol.

Call for proposals (cfp): a sender requests proposals to perform a given action. The
act includes the action requested and the preconditions that must be met before the
action is performed. Such preconditions include, at least, one value-free parameter.
Replies to the request are communicative acts (typically propose) that have a value set
on this parameter. As the general purpose of the cfp is to start a negotiation process,
the act can also include a protocol parameter, specifying the conversational structure
to be followed during the negotiation. Notice that c¢fp can be started by agents that
do not intend the action to be performed, but just want to know the availability or
disposition of other agents to perform it.

Request: to ask the receiver to perform a given action. The act includes the action as
parameter. Notice this action can be another communicate act, such as requesting to
inform about a given believe.

14

Message Content
KIF or SL

Agent A

« Message Content
KIF or SL

Agent B

CHAPTER 2. REQUIREMENTS OF AN AGENT PLATFORM

Envelope

Sender
Type: FIPA-SMTP
Adress: A@192.168.0.1

Receiver

Type: FIPA-SMTP
Mess;?:rﬁfl_ Adress: B@upc.edu
or Message ACL
Receiver: B
H Payload
Act: Request 'R‘Senéer. 'AB Y
Ontology. SimpleOnto ~ Receivers
Message ACL
Message Content Sender: A
Message Content
K or SL KIF or SL Receiver: B

Payload

Message Content
KIF or SL

Agent Directory Service

Name: A
Locator-1 :

Type: SMTP

Adress: A@192.168.0.1
Locator-2 :

Type: HTTP

Adress: http://www.upc.edu/b

Agent Directory Service

Name: B ,/'
Locator-1: Og;
Type: SMTP N &
Adress: B@upc.edu “ Q

‘ Message Transport Service ‘

{

Envelope

Sender
Type: FIPA-SMTP
Adress: A@192.168.0.1

‘ V' Payload
Message ACL
Sender: A
Receiver: B
Act: Request
Ontology. SimpleOnto

Message ACL

: Receiver
Sender: A
Receiver: B Type: FIPA-SMTP

« Adress: B@upc.edu

Message Content
Message Content Kllgor SL Payload

KIF or SL

Message ACL
Sender: A
Receiver: B

Message Content
KIF or SL

Figure 2.3: Message Interchange Flow Diagram

Request when: to ask the receiver to perform a given action when some conditions are
met. Very similar to the request act, this act includes also a parameter for specifying
the conditions.

Request whenever: to ask the receiver to perform a given action each time some
conditions are met. Very similar to the request act, this act includes also a parameter
for specifying the conditions.

Accept Proposal: a sender accepts a previously received proposal (via propose act).
The message includes the action that the sender intends to do at some point in the
future, and some preconditions that must be met before the sender performs the action.

Agree: a sender accepts a previously received request (via request act). The message
includes the action that the sender intends to do at some point in the future, and
some preconditions that must be met before the sender performs the action. The
message can also include some qualifiers regarding how the action will be performed.
For instance, when agreeing to perform a requested task, the sender can specify that
it will perform such task with low priority.

Cancel: a sender informs the receiver that he does not hold any more the intention
to perform a previously requested, and agreed, action. The act includes the request
to be canceled. Notice that the receiver is free to ignore the cancellation. Also notice

2.1.

FIPA-ABSTRACT ARCHITECTURE 15

that, in order to send this message, sender must believe that the action to be canceled
is either ongoing or planned, but not fully executed yet.

Failure: a sender tells another agent that an action has been attempted to perform,
and the attempt has failed. The act includes the reason of the failure. The receiver is
encouraged to believe the action has not been done yet, and that the sender believes
(or believed at the time of attempting it) the action is feasible. However, if this reason
of the failure is the constant true, it means the sender believes there is little any agent
can do to re-attempt the action with success.

Refuse: to refuse performing a given action. Act includes the action as parameter.
Optionally, an explanation for the refusal can be provided. Receiver of this message
is encouraged to believe that the action has not been performed, and that it is not
feasible according to the sender’s beliefs.

Reject proposal: the sender rejects a proposal to perform some action. Used in the
scope of a negotiation process. The act includes both the rejected action and the act
representing the proposal being rejected. Can also include the reason of the rejection.

Query if: the sender asks another agent if a given proposition is true or not, according
to its beliefs. The act includes the proposition as parameter. The sender has not
knowledge of the truth value of the proposition and believes the receiver does have
this knowledge. Receiver will either reply with inform or refuse acts.

Query ref: to query the receiver about the object that corresponds to a descriptor,
typically a name. Very similar to a query if act, it is used when the proposition
provided is an expression matching an object with its identifier.

Subscribe: the sender requests the receiver to inform it about the value of a variable,
and inform again whenever this value changes. The act includes an expression de-
scribing the variable as a parameter. Note this act is a persistent version of query ref
act.

Confirm: to inform the receiver that a given proposition is true. The act includes the
proposition as parameter. The sender must believe the proposition to be true and
intend the receiver to believe it to be true (although it is up to the receiver to update
its mental state or not upon message reception). The sender must also believe the
receiver to have uncertainty about the proposition, otherwise, other communicative
acts (such as inform) must be used.

Disconfirm: to inform the receiver that a given proposition is false. The act includes
the proposition as parameter. The sender must believe the proposition to be false and
intend the receiver to believe it to be false (although it is up to the receiver to update
its mental state or not upon message reception). The sender must also believe the
receiver to have uncertainty about the proposition or to believe it is true.

Inform: to inform the receiver that a given proposition is true. The act includes
the proposition as parameter. The sender must believe the proposition to be true
and intend the receiver to believe it to be true (although it is up to the receiver to
update its mental state or not upon message reception). The sender must also believe
the receiver to have no knowledge of the truth of the proposition, otherwise, other
communicative acts (such as confirm) must be used.

16

CHAPTER 2. REQUIREMENTS OF AN AGENT PLATFORM

Inform if: to request the receiver if a given proposition is believed to be true or not.
The act includes the proposition as parameter. The receiver replies with an inform
act stating the truth value of the proposition. If the receiver holds no truth value for
the proposition (or does not want to share the value with the sender) a refuse act is
sent as reply instead.

Inform ref: to inform the receiver of the object that correspond to a descriptor, typi-
cally a name. Very similar to inform act, it is used when the proposition provided is
an expression matching an object with its identifier.

not understood: the sender informs the receiver that it did not understood an action
performed by receiver. Typically, this action is the sending of a message. The act
includes the action that has not been understood (for instance, a communicative act)
and can optionally include the reason why it has not been understood.

Propagate: to request the receiver to interpret an embedded message, and send it to
other agents. The act includes the set of agents that must receive the propagated
message and the ACL message to propagate. Optionally, conditions for propagation
(for instance, a timeout or a precondition that must be met before the message is
propagated) can also be included.

Proxy: similar to the propagate. The difference is that this act will not include a set
of explicit agent names as a parameter, but a set of abstract agent descriptions. The
receiver of this act will identify agents that meet the conditions specified in the set of
agent descriptions and send the embedded message to them.

2.1.1.5 Agent

An Agent is a computational process that implements the functionality of an application
autonomously and communicating with other agents. An agent can be instantiated via
Java components, COM objects, C++ programs, etc. It can run on a process in a physical
computer or on some interpreter (such as a Java Virtual Machine). Agents communicate
using the Agent Communication Language.

re-;ister| .
deregister
Agent | modify
search
creatas
1.n
[Transport-massage Agent-directory-service
is sentreceived by |0.n 0..n | contains
o.n o.n
Massage-transport-service IAgent-directory-entry|

Figure 2.4: Agent UML relationships element

2.1. FIPA-ABSTRACT ARCHITECTURE 17

Agents have an unique agent-name. Means to ensure this name is not altered, forged
or duplicated must be provided. An agent-name should not denote any properties about
the agent, FIPA-ABSTRACT provides the concept of nickname for this purpose. The agent
must also have one associated owner, either an organizational affiliation or human ownership.

Agents also have zero or more Agent-attributes. Such attributes are one of the compo-
nents on the agent-directory-entries in agent-directories. These attributes allow other agents
to search the directory for agents that meet special properties (that is, agents that under-
stand certain ontologies or provide certain functionalities). Agents have an agent-locator,
with one or more transport-descriptions (one per supported protocol). The agent-locator is
used by the message-transport-service to select a transport for communicating with a given
agent.

2.1.1.6 Agent Platform

An Agent Platform provides the infrastructure in which agents can reside. The Agent
Platform contains the agents, support software (such as the operating system, security
algorithms, support tools and other) and the management components (that is, one Message
Transport Service, one or more Directory Facilitator and one Agent Management System).
An agent system can be composed of several Agent platforms.

Note that FIPA-ABSTRACT only defines how communication between agents in differ-
ent platforms is performed. Agents on the same platform can interchange their messages by
any means they have available.

Agent Platform A
. n 1
‘ Directory Agent L
Agent - Management
Facilitator
System
A : A
A4 A4
’ Message Transport Service l
A
A
v
Support | *
Software
\ Agent Platform B
’ Message Transport Service b
A t A
i =1
) . L Agent | !
Agent Dlrootory Management
Facilitator
System

Figure 2.5: FIPA Agent Platform Diagram

2.1.1.7 Agent Naming

As seen in Section 2.1.1.5, agent names are unique identifiers for agents. However, this is
true only between agents on the same Agent Platform. Notice that, Section 2.1.1.6 does not
define inter-platform Agent Management System, so nothing guarantees that two different
platforms do not host an agent with the same name. Thus, the need for a more complex
identifier arises.

18 CHAPTER 2. REQUIREMENTS OF AN AGENT PLATFORM

These denotes an agent identifier through a collection of parameters known as AID. This
parameters include:

e Name: Commonly this parameter contains the name of the agent (as defined in Section
2.1.1.5) followed by the character '@’ and by the address of the platform containing
the agent. This should be enough to identify an unique agent across all the available
platforms, because it is guaranteed that the same platform will not host two agents
with the same name, and two different platforms will not have the same adress.

e Address: List of transport addresses where agent can be reached via message sending.

e Resolver: List of services where transport addresses for reaching a given agent can
be obtained. To be used in the case Address parameter of the AID does not provide
this information. Notice that,typically, this parameter is the adress of a single service
provided by the Agent Management System component of the platform where the
agent associated to the AID resides.

If several Agent platforms are involved, the fields where agent name is used as identifier
(envelope, Directory Facilitator and such) will use AID as identifier instead of just the name.

2.1.1.8 Agent Life Cycle

The agent, as a physical software process that resides in the hosts of a given Agent Platform,
has a life cycle that must be managed by the platform. This management is performed by
functionalities that allow the software process to start, stop, suspend or migrate to another
host or platform. Such functionalities are typically provided by the Agent Management
System.

Suspended

Wake Up Suspend

Unknown
Destroy

Move

Invoke

S/

Figure 2.6: Agent Life Cycle Diagram

Here is the list of the functionalities provided by the Agent Management System for the
agent life cycle. Notice such functionalities represent the nodes between the possible states
of the agent as seen in Figure 2.6.

2.1. FIPA-ABSTRACT ARCHITECTURE 19

Create: Creates a new Agent. The software process associated to the agent can be
pre-started (for instance, loaded in memory) but is not run yet.

Invoke: The agent is invoked. The software process associated to the agent starts to
run.

Destroy: The platform forces the agent to terminate. This process is initiated by the
Agent Management System, and the agent is forced to finish its execution. After a
small time-out, the process associated to the agent stops running, all the information
related to the process can be removed from the host.

Quit: The agent terminates by its own will. After a small time-out, the process
associated to the agent stops running, all the information related to the process can
be removed from the host.

Suspend: The agent goes into a suspension state by its own will. After a small time-
out, the process associated to the agent stops running, information related to the
process must be maintained on the host because the process is supposed to go back
into running state soon.

Wait: The agent goes into a waiting state by its own will. The process associated to
the agent keeps running, but the platform can apply some special measures to it (for
instance, lowering its priority).

Resume: The agent goes back from Suspended state into Running state again. The
process associated to the agent starts running again.

Wake Up: The agent goes back from Waiting state into Running state again. The
process associated to the agent starts running normally again (for instance, priorities
are restored).

Move: The agent goes into a transition state by its own will. Platform starts required
actions (such as stopping process, moving data associated to process, etc.) to move
agent and the process from one Agent Platform to another.

Execute: The platform brings the agent back from a Transition state. Platform starts
required actions (such as starting process, loading agent and process data into the new
host, etc.) to resume the process in the new platform.

The cycle also involves the Message Transport Service component, because different
states of the software process associated to the agent will require different treatment of the
messages addressed to the agent. Here is the list of how messages addressed to the agent
should be processed according to the agent’s states:

Active: Messages are delivered to agent as normal

Initiated: Messages are buffered. Will be sent to agent when it becomes Active again.
Agents have the possibility to forward messages sent to them to another agent when
they are not in Active state.

Waiting: Messages receive the same treatment as in Initiated state.
Suspended: Messages receive the same treatment as in Initiated state.

Transit: Messages receive the same treatment as in Initiated state. Note that, in this
case, messages can be forwarded to the same agent, on the new location.

20 CHAPTER 2. REQUIREMENTS OF AN AGENT PLATFORM

e Unknown: Message Transport Service decides whether it will buffer the messages and
send them to the agent when it becomes active, or reject them.

2.2 Summary

In this chapter the main requirements needed to develop FIPA compliant agent platforms
have been reviewed. We have focused on the latest specification, FIPA-ABSTRACT, that
defines architectural abstractions, i.e., common characteristics that should be found in agent
technologies if they are to be able to inter-operate with each other. Even though FIPA-
ABSTRACT lacks compatibility with older FIPA specifications, it has backwards compati-
bility with new ones (e.g. FIPA-2000).

While reviewing FIPA-ABSTRACT we have also gone through the main concepts and
components that are common on all agent architectures.

FIPA-ABSTRACT specifications are the basis for the PAWS platform we will present in
Chapter 3.

Chapter 3

The PAWS agent platform

This chapter introduces the PAWS (Platform for Agentified Web Services) [24] agent plat-
form. The PAWS platform aims to provide an agent platform where agents are acting as
proxies for web services, effectively providing web-services with agent capabilities such as
coordination, protocol-based communication, etc.

It is relevant to understand the PAWS platform for two reasons. First of all, an important
part of the effort invested in developing the work presented in this master thesis has been
devoted to creating the PAWS platform. Second, as we will see in Chapter 5 the PAWS
platform supports the implementation of the theoretical planning framework.

The PAWS platform parts from the agent platform [4] developed for the IST-CONTRACT
project [3], which will be referred to as CONTRACT platform from now on. The CON-
TRACT platform is well-suited for distributed, contract-oriented applications, but it is not
suited for more general applications. Thus, in this chapter the CONTRACT agent platform
is generalized in order to create a more flexible (and widely usable) agent platform, the
PAWS platform.

This chapter first explains the architecture of the CONTRACT platform, as well as the
components of the architecture. It will also go over the components of the agents in the
platform with special mention to the behaviors of the agents.

The chapter will then go over the architecture and components of the PAWS platform
making special emphasis in the parts that have been developed by the author of this mas-
ter thesis. This section will explain the components of the PAWS platform based on the
explanation provided for the component on the CONTRACT platform. Thus it will clarify
(w.r.t. the CONTRACT platform) if the component remains unchanged, has been adapted
for the PAWS platform, has been removed on the PAWS platform or is completely new in
the PAWS platform.

Once the PAWS platform has been introduced it is evaluated following the standards
defined in other works that compare agents platforms (e.g. [21]).

3.1 The CONTRACT Agent platform

This section starts by giving a quick overview of the components available in the CON-
TRACT platform, explaining their purpose, functionalities and how these components in-
teract between each other. In this way the reader can get a better understating of the
CONTRACT platform.

1Presented in this document in Chapter 4

21

22 CHAPTER 3. THE PAWS AGENT PLATFORM

3.1.1 Agent architecture definition

The CONTRACT platform is developed with the purpose of supporting the software systems
(i.e. software agents) that play an active role in establishing, fulfilling and executing the
contracts. Such systems include both business contract parties and administrative contract
parties. Whereas the first ones are the parties directly involved in the contract (e.g. seller
and buyer parties) the second ones can be seen as internal software components that belong
to the contractual environment and provide support functionalities (e.g. observer, contract
manager, notary).

Agent |

User interface System interface
manager manager
Agent-User / \ / \ / \ / \ C{-\ogr:'r:ﬁ)i,cs;ignn
Communication / \ / [Agent
[Agent-User | | User \ (System [System L<—>
> Interface behavior | ‘ behavior |nterface /,“‘
_ \,,A‘,,,
|
Dialogue ‘\ Decision
manager | Making

Agent-Agent / / - \ / \\ / \

Communication
{“ Main ‘
\)i

< > [Protocol | [Dialogue |
\ Interfaces \ behavior /J‘ behavior
\ /\) \
/ \
\ /,/ N // \\ /

“‘ Protocol \ / \ /
| specifications | \ Local States | \ Policies :\

N N2

Figure 3.1: IST-CONTRACT project Agent architecture overview diagram

In the IST-CONTRACT project, an agent is a software component that can be instan-
tiated to play the role of a business contract party, or one of the administrative contract
parties (i.e. observer, contract manager, notary or contract storer). Figure 3.1 shows the
architecture of a generic IST-CONTRACT agent. Please note this architecture depicts four
main modules:

1. Agent-Agent interface: Supports communication between agents in the system. Pro-
vides parsing and serialization mechanisms for agent messages, as described in Section
2.1.1.4, supporting just a single encoding service and a single message transport ser-
vice. Includes interface specifications for the available protocols. This interface has
been designed to able to keep track of multiple concurrent interactions.

2. Agent-System interface: Gives access to the facility components provided by the plat-
form, as described in Section 3.3

3. Agent-User interface: Supports communication between agents and the external world.
Is hardly focused to communication with human users.

3.2. CONTRACT AGENT COMPONENTS 23

4. Decision making module: Agent’s control system, containing both agent’s knowledge
base and configuration parameters. This is the main module, the interfaces mentioned
above are attached to this module.

Please note each of the four mentioned modules contains a behavior. The behavior
of the decision making module is known as main behavior, as it controls the other three
behaviors, the dialog behavior (associated to the Agent-Agent interface), the the system
behavior (associated to the Agent-System interface) and the the user behavior (associated
to the Agent-User interface). The functionalities of each of these four behaviors are as
follows:

1. dialog behavior: defines both available performatives and how to combine them in
order to achieve a particular communication behavior. Via dialog behaviors one can
define which steps of the protocol are allowed and which are the most significant.

2. system behavior: consists in a set of low level (i.e. Java) APIs that define the access
to the components of the platform.

3. user behavior: consists in a set of low level (i.e. Java) APIs that define the access to
user interface (i.e. GUI and text interfaces) components.

4. main behavior: specifies what the agent can do and the procedures to be followed to
do it. Such procedures are based on interaction protocols, parameters of the agent’s
organization (that is a simple way of depicting organizational constraints and prefer-
ences) and state of the world, taking into account both global state (i.e. system’s state)
and local state (i.e. agent’s state). They can be either contract-related or application-
related. Contract-related behaviors are static behaviors related to contracts (e.g. how
to initiate a contract, how to terminate a contract, etc.) whereas application-related
behaviors are related to domain-associated sets of actions specified in the contract (e.g.
how to perform a payment or a shipping).

3.2 CONTRACT Agent components

This section explains the components that form an agent in the CONTRACT platform.
The platform is composed by agents focused on contract management, this fact reflects on
agent’s internal architecture, as agents will include a component designed specifically for
contract management purposes.

The architecture is formed by the following components, each of them will be introduced
in depth later in the section:

e Decision maker: Core component of the agent containing its intelligence. Allows agent
to deliberate about contracts (e.g. how to achieve their clauses). The decision maker
makes use of the rest of the components.

e Contract Manager: Contains the knowledge about contracts. Aware of the contract
clauses that apply to the agent, is responsible of notifying Decision Maker about facts
related with them (e.g. pending obligations of the agent according to the contract
clauses).

o Workflow Manager: Embeds an execution engine that supports the execution of pre-
defined workflows. Able to monitor workflow execution (as it will satisfy contract
conditions) is respounsible of sending notifications both to Decision Maker and Contract
Manager components.

24

CHAPTER 3. THE PAWS AGENT PLATFORM

Execute
Contract Action/Workflow
status
notification

Workflow
Manager

Decision Maker

Contract
Manager

Action/Workflow
Notification

Contract
knowledge
request

Communicative
act execution

Message
Notification

Communication
Manager

Protocol
execution

Message
encoding

Message
Manager

Dialogue
Manager

Ontology

Figure 3.2: CONTRACT Agent components, hierarchical view

e Communication Manager: Takes care of communication between agents .Makes use of
both Dialogue Manager and Message Manager components.

e Dialogue Manager: Implements a set of contract-oriented interaction protocols, spec-
ifying for each of them the set of sequences of messages that are acceptable w.r.t the
protocol.

e Message Manager: Responsible of processing the content of messages (either incoming
or outgoing ones).

Figure 3.2 gives a hierarchical overview of the agent’s components. Please notice this

picture denotes a design philosophy similar to the one seen on Figure 3.1 where the decision
making component is the core of the architecture, controlling the execution flow of all the
other modules.

3.2.1 Decision Maker

This component contains the core intelligence and reasoning cycle (i.e. agent’s control loop)
of the agent. In CONTRACT it allows to program the agent using contract-related behaviors
that model agent’s deliberation about achievement and violation of contract’s clauses.

The Decision maker, as depicted on Figure 3.2 is assisted by the Contract manager,

Communication manager and Workflow manager components for handling low-level actions

3.2. CONTRACT AGENT COMPONENTS 25

<<interface>>

IDecisionMaker
{ From interfaces }

Artributes

Operations
public void eventReceive(String senderModuleld, Event event)

public void initDecisionMaker(BehaviourList bl)

Figure 3.3: Decision maker interface

such as querying the state of a contract, sending a message to another agent or enacting some
actions as specified by the domain, respectively. The components that assist the Decision
Maker communicate with it by sending events (e.g. the reception of a message, the violation
of a contract clause or the failure in the enactment of an action) that will update Agent’s
global state. Figure 3.3 depicts the interface other components use for communicating with
the Deciston maker.

3.2.2 Contract manager

The Contract Manager contains the contract knowledge and business logic of the contracts.
It is expressed in terms of predicates and actions, that must be formally defined in the
ontology. It must be aware of the contract clauses that apply to a given agent, and their
status (either active, inactive or violated). The Contract Manager notifies the Decision
Maker about pending obligations, risk of violating a given contract clause, of the fulfillment
of the contract.

<<interface>>

IContractManager
{ From interfaces }

Attributes

Operations
public WorkflowProcess[0..*] getContractWorkflow(String contractld)

public ContractStatus getContractStatus(String contractid)

public ClauseList getAllContractClauses(String contractld)

public Clause getClausefremContract(String contractld, String clauseld)
public ContractParties getContractParty(String contractld)

public ClauseStatus getClauseStatus(String contractld, String clauseld)
public void updateContractClause(String contractld, String clauseld, String clauseStatus)
public Action enforceContractClause(String contractld, String clauseld)
public String setContract(Contract ¢)

public ContractList initContractManager()

public void setContractStatus(String contractld, String contractStatus)
public String setContract(Contract ¢, Notification notification)

public ContractTemplate getContractTemplate(String contractName)

Figure 3.4: Contract manager interface

The Contract Manager exposes an interface with operations that allow the Decision
Maker to submit queries about contract knowledge (e.g. clauses of a contract). Figure 3.4
depicts this interface.

26 CHAPTER 3. THE PAWS AGENT PLATFORM

3.2.3 Workflow manager

On the one hand, the workflow manager embeds an execution engine that supports the
execution of pre-defined contract workflows. These workflows are defined in languages such
as BPEL or XPDL. On the other hand the workflow manager contains the operation knowl-
edge required to create the contract workflow, that is, the order in which the actions have to
be carried on. Actions are defined by inputs, out-puts, pre-conditions and post-conditions.
The execution of a workflow results in the execution of a sequence of actions that eventually
satisfy contract obligations. The workflow manager monitors and controls action execution,
signaling fulfilled actions both to Decision maker (that can decide which step to perform
next) and to Contract manager (which marks active obligations associated to the execution
of the action as fulfilled).

<<interface>>

IWorkflowManager

{ From interfaces }

Attributes

Operations
public void initWorkflowManager()

public String preDeployProcessStep(String pathToWorkflow, String AppName)
public String deployProcess(String applicationArchive)

public void undeployProcess(String serviceAssemblyName)

public void startProcess(String serviceAssemblyName)

public void suspendPraocess(String serviceAssemblyName)

public void resumeProcess(String serviceAssembiyName)

public String[0..*] getProcesslds(String suName, String serviceUnit)

public Plan getPlanForAction(Action action)

public void executeAction(Action action)

public void registerToEvent(String subscriberModuleld, Event event)

Figure 3.5: Workflow manager interface

The Worflow Manager exposes an interface with operations that allow the Decision
Maker to manage and register workflows. Figure 3.5 depicts this interface.

3.2.4 Communication Manager

The communication manager takes care of agent-agent communication. It includes query-
ing the Directory Facilitator (as seen on Section 2.1.1.2) to find out the active agents in
the system, along with their capabilities, in order to contact them. It also knows which
interaction-protocols to choose according to the needs of the contract behavior being run.
Such protocols include, among others, the set up of a new contract. This module is assisted
by the dialogue manager and the message manager.

The communication manager exposes an interface that allows the decision maker to find
out if a given communicative goal has been fulfilled (i.e. a communication interaction has
ended). Figure 3.6 depicts this interface.

3.2.5 Dialogue Manager

The dialogue manager implements a fixed library of interaction protocols, storing for each
of them the set of sequences of messages that are acceptable for fulfilling the goal of the

3.2. CONTRACT AGENT COMPONENTS 27

<<interface>>

ICommunicationManager
{ From interfaces }

Artributes

Operations
public void achieveBehaviourGoal(CommunicationGoal cg)

public void initCommunicationManager(BehaviourList bl)

Figure 3.6: Communication manager interface

protocol. These sets of sequences are stored as finite-state machines, this allows keeping
track of the current state of the protocol, and ensures the interactions are compliant with
protocol’s definition.

It must be remarked the set of available interaction protocols is focused on contract
management. That is, there are protocols available to create contracts, notify about contract
clauses, terminate or initiate contracts and such. Such protocols are fairly simple (e.g. they
do not contain message loops) thus, the implementation of the finite-state machines that
model the protocols is limited to supporting the most simple cases.

<<interface>>

IDialogueManager
{ From interfaces }

Attributes

Operations
public void executeProtocol(Protocol p, Class <Conversationinitiator> initiator, String addreseeAgentlD, OntologyConcept content)

public void initDialogueManager()

public veid addPretocol(Protocol p)

public void removeProtocol(Protocol p)

public Protocol[0..*] getProtocols()

public Protocolinstance[0..*] getRunningDialogues()

public MessageTemplate[0..”] getNextMessages()

public Protocol[0.."] getCompliantProtocols(MessageTemplate mt)
public veid update(Performative p)

public boolean existsConversation(Performative p)

Figure 3.7: Dialogue manager interface

The dialogue manager exposes an interface that allows the decision maker to manage
(add, remove or update) and initiate interaction protocols. Figure 3.7 depicts this interface.

3.2.6 Message Manager

The message manager processes the content of incoming and outgoing messages. Regarding
incoming messages, the message manager semantically interprets them, translating them
into an RDF representation and integrating them into a knowledge base that can be queried
later by the decision maker. Regarding outgoing messages, the message manager will code
them from agent’s internal representation to a common understandable format shared by
all agents. The rules to perform this coding can be defined based on ontological relations.
If this is done, an internal component of the message manager known as ontology manager
will assist in the coding process.

28 CHAPTER 3. THE PAWS AGENT PLATFORM

<<interface>>

IMessageManager
{ From interfaces }

Attributes

Operations
public void subscribe(String subscriberModuleld, Event event)
public void notifyExternalEvent(Event event)
public Fact queryRDF(String rdfQuery, String OntologyRef)
public Message decodeMessage(Message message, String ontologyName)
public Message encodeMessage(Message message, String ontologyName)
public void initMessageManager(ContractList cl)
public void getContractOntology(ContractTemplate ct)

Figure 3.8: Message manager interface

The message manager exposes an interface that allows the decision maker to query the
RDF knowledge base and subscribe to events associated to message (typically, notifications
when a given message is received). It also allows the communication manager to perform
message translations. Figure 3.8 depicts this interface.

3.3 CONTRACT platform components

This section describes the CONTRACT platform components, that is the components of
the architecture that help the agents perform advances functionalities. These functionalities
are out of the scope of generic agent’s purposes, and focus more on domain’s purposes. For
instance, in the case of the CONTRACT agent platform, platform components are focused on
contract management, monitorization or storing, whereas agent components focus on agent
communication, platform integration (allowing access to platform’s facilities) and decision
taking.

However notice that, in the case of the CONTRACT platform, agent’s components also
include modules for contract management (in this case, the contract manager as depicted
on Figure 3.2).

3.3.1 Contract Storer

The contract storer is a generic agent that has the goal of providing access to a persistent
and controlled storage of contracts. It acts as an intelligent wrapper between the contract
repository component and the other agents. Thus, other agents do not need to know the
contract repository interface or its implementation details. What’s more, contract storer is
able to check contracts provided for storing, making sure they are well formed before storing
them. The contract storer stores, retrieves and updates contracts in behalf of other agents.
It also responsible of keeping track of changes in the contracts, notifying observer or notary
agents.

In the CONTRACT agent platform the contract repository is an eXists [11] database.

Please notice that, as this component is wrapped by an intelligent agent, it does not
expose any interface. It exposes a set of interaction protocols to store, retrieve and update a
contract (or a set of contracts) as well as a protocols to query the contracts store or receive
notifications when they are updated.

3.4. THE PAWS AGENT PLATFORM 29

3.3.2 Observer

The Observer acts as an event tracker in the contracting environment. Usually agreed by
the parties participating in the contracts, they represent neutral sources of trusted contract-
related information. The Observer gathers data without acting, that is, without altering
the state of the world. Listeners (i.e. contract parties) can attach to observers, receiving
notifications on the events of interest happening in the contracting environment.

Please notice that, as this component is an intelligent agent, it does not expose any
interface. It exposes a set of interaction protocols to subscribe and de-subscribe to events
of interest.

3.3.3 Manager

The manager is the complement of the observer, it takes actions in the contracting en-
vironment, when certain conditions are met. It gets environmental information from the
observer, and maps it to contract states, taking actions (e.g. sending notifications) when
certain states are met.

Please notice that, as this component is an intelligent agent, it does not expose any
interface. It just will start interaction protocols with two purposes. First, subscribe to the
observer in order to be able to obtain environmental information. Second, notify the agents
affected by the contract states that are reached.

3.3.4 Notary

The notary is a generic agent allowed to certify contract management processes. Other
agents in the system agree that contract creation, updating and cancellation process ap-
proved by a notary are valid.

3.3.5 Context Service

The context service captures and stores information about the configuration of the deployed
platform. For instance, the context service can be used to obtain the location of ontology
service and to initialize the directory service, as it will contain information about the agents
present on the system at boot time.

3.3.6 Domain Ontology Service

The domain ontology service provides a registry based service for finding and accessing
domain ontologies. This component provided a mapping between ontology identifiers and
their locations (e.g. URLS).

3.4 The PAWS Agent Platform

This section explains the PAWS Agent Platform. The platform is based on the CONTRACT
Agent Platform, but focused to generic purpose agents. Thus, all the components to be re-
used that are bound to contract management are to be generalized. Some of the components
do not make sense anymore in a general agent platform and some new components must be
added in order to achieve a fully general platform.

In order to generalize the agents in the architecture, the business contract parties present
in the CONTRACT platform must be generalized to agents. Agent’s purpose will depend on

30 CHAPTER 3. THE PAWS AGENT PLATFORM

the domain the PAWS platform is applied to, rather than having a fixed purpose: managing

contracts.

When generalizing the architecture of the agents the first step is to unbound the mod-
ules in the agent, allowing to change the ones implemented for the IST-CONTRACT project
(which are static) for another modules. Thus, more generic modules can be implemented
and replace the ones existing in the CONTRACT platform in order to develop the PAWS

platform. What’s more, additional modules can also be added to the architecture, mak-
ing it more flexible. Figure 3.9 shows the new architecture we have designed with the

generalization applied.
In the new, generalized architecture, the following actions are performed for each com-

ponent:

1. Agent-Agent interface: The most important generalization required in this interface
comes from the usage of protocol interfaces that rule agent-agent interactions. On
the one hand, in CONTRACT platform these interfaces are rather simple and do
not support some features (such as message loops, or extensions of performatives).

| Agent
Environment System interface
manager manager
i T N R - Agent-System
Agcent—Envq'on‘l"l-lent // A \\ // \\ / \\ ,’/ Modular \\ Cgmmun)\lcalion
ommunication EnVirgoennr':em ‘ [Environment | Syste_m \ (Agent- \l
{ Interface]\ behavior | behavior [\ IStysr;em / < >
\ / \ / A \ nterface /
N 4 N // N //4‘ /
N I / \
I TSN _ / Argumentation \
Dialogue (Decision \’\ based planning)
manager ‘L Making \ Component /
Agent-Agent y - ~N AN // N
Communication ‘, Extended \ Disiogue \‘ “, voin \
— I A
- Protocol behavior s“ | behavior |
Interfaces \ y \ /
N /< AN 4 ‘ S
—% o “ o
2N | — —
| / N/ AN
(Protocol y \“ ‘// \“
| specifications | [Localstates | | Knowledge |
/ I\ /A Base
\\\ // \ //' \ /
~— _ |
— N NS
I
[
|
|
|
Protocol Modeler
VAN
/ \
INGENIAS
Meta-coder |
\ ,//
i
e T ™~
/ \
INGENIAS |
IDK |
\ y,
AN /

Figure 3.9: PAWS Agent architecture overview diagram

3.4. THE PAWS AGENT PLATFORM 31

CONTRACT
Agent configuration
file

<tns:AgentTypes>
<tns:AgentTypeInfo>
<tns:type>Initiator</tns:type>
<tns:BehaviourList>
<tns:Behaviour>
<tns:classname>net.sf.istcontract.aws.reasoning.behaviour.SupplierBpelDeploynentBehaviour</tns:classname>
</tns:Behaviour>
<tns:Behaviour>
<tns:classnane>net.sf.istcontract.aws.test.SimplePerceptBehaviour</tns:classname>
</tns:Behaviour>
</tns:BehaviourList>

PAWS
Agent configuration
file

<tns:AgentTypeInfo>
<tns:type>Initiator</tns:type>
<tns:HanagerList>
<tns:ComuunicationManager>net.sf.istcontract.aws.agentshell.components.CommunicationManager</tns:ComuunicationManager>
<tns:ContractManager>net.sf.istcontract.avs.agentshell.components.ContractManager</tns:ContractManager>
<tns:DecisionMaker>net.sf.istcontract.aws.agentshell.components.DecisionMaker</tns:DecisionMaker>
<tns:DialogueManager>net.sf.istcontract.aws.agentshell. s.Dialogue </tns:Dialo >
<tns:MessageManager>net.sf.istcontract.aws.agentshell.components. </tns: ger>
<tns:WorkflowManager>void</tns:WorkflowManager>
</tns:ManagerList>
<tns:BehaviourList>
<tns:Behaviour>
<tns:classnawe>net.sf.istcontract.avs.communication.protocol.Tour_negotation_ protocol.InitiatorBehaivour</tns:classname>
</tns:Behaviour>
</tns:BehaviourList>

Figure 3.10: CONTRACT and PAWS agent configuration files example

These interfaces have been extended in order to support such features. Extending
these interfaces implied modifying the Protocol tree class, which is the core class of the
interfaces. On the other hand, only a few sample protocol specifications are available
on the CONTRACT platform. To tackle this generalization, rather than implementing
new specifications, a procedure to allow PAWS programmers to easily define them is
provided now via the Protocol Modeler module.

2. Agent-System interface: This generalization is rather simple. Apart from keeping the
interfaces with the available components, new interfaces must be added when a new
component is included in the system. This process is already rather straightforward
on the CONTRACT platform, so no generalization is required on this sense. Also,
agent configuration files (and configuration file parsers) must be updated to allow the
inclusion of new components, and the replacement of the existing ones. Figure 35.10
shows how agent configuration files have evolved due to this generalization.

3. Agent-User interface: This interface must be generalized to allow not only Agent-User
interaction, but also Agent-Environment interaction. Fortunately, the implementation
of this interface in the CONTRACT platform (i.e. a message queue) is general enough
to support both interactions without requiring further generalization. Future work
can include an improvement on the implementation that takes into account message
priorities, thus perceptions with higher priority can be processed before than percep-
tions with lower priorities. This would allow using the PAWS platform in applications
with soft-realtime constraints [28].

4. Decision making module: This module’s generalization is also focused on available
sample protocols, just like Agent-Agent interface. The process that generates protocol
interfaces will also generate main behavior stubs that can be easily adapted to fit

32 CHAPTER 3. THE PAWS AGENT PLATFORM

programmers needs. Minor generalizations are also performed, such as transforming
the policies base into a more general knowledge base.

5. Protocol Modeler: This module is not generalized, but added from scratch to the
platform. In this picture, it appears as an agent module as an example, but in the
last version of the PAWS platform it is implemented as a platform component. The
module is fully described in Section 3.6.4.1

Execute
Action/Workflow

Response Ry
B / \
Z
/ \\ / \
/ \ “ Workflow |
\ | Decision Maker :\ \ Manager ,‘
j Generic \ / Action/Workflow \\ //
/0 Manager ! \ Notification
/ \ ¥ Request - -
// . \; f Communicative
V4 ‘ r \ \ act execution
/ / \ \ ~
/ / \ \ - ~
/ / \ \ \
y) \ \ \
/ / \ \ \ / N\
/ / \ \ Planning / \
/ / \ \ request Mgs_sage \ ‘ Communication |
Contract // Planning \ Notification \ Manager |
knowledge / request \ \ \ /
request / \ \ \
quest / / reply \ \ \ \) / Protocol
/ / Contract \ \ = execution
/) status \ \ \ T
/' notification \ < e Message -
/ —— / \\ T \\ // ‘\\ encoding P -~
N\ y) e \\ // / \ / \\
Contract ’/ \ [Argumentation ‘ [RAAZ?]S:%? ‘ ‘ Dialogue \‘
Manager | based planner | \ < // \ Manager /
| \ y \ \ /
/ \ /
\\ // \\ / \\‘ - ’// \\ I // \ /

N Ontology

Figure 3.11: PAWS Agent components example, hierarchical view

Figure 38.11 gives a hierarchical overview of an example of the generalization of the
architecture. In the generalization example, the Contract manager has been exchanged for a
Generic Manager which is an interface that supports the interaction with concrete managers
such as the old Contract manager (in case PAWS is applied to a domain where contracts
are required) or the freshly added Argumentation based planner?. Please note this figure
shows just an example, due to its modular design PAWS programmers can add or remove
components at will. As summary, architecture is formed by the following components, each
of them will be introduced in depth later in the following section:

e Decision maker: Core component of the agent containing its intelligence. Allows agent
to be programmed to deliberate about the domain. The decision maker makes use of
the rest of the components.

e Generic Manager: This module is an empty interface implemented in PAWS to de-
attach the domain dependent Contract Manager component present in the CON-
TRACT platform. Domain dependent modules can be attached to this module (or
even replace it). In Figure 3.9 both Contract Mananger and Argumentation base
planner components are attached to this module, as example.

2This component is introduced on Section 5.8

3.5. PAWS AGENT COMPONENTS 33

e Workflow Manager: Embeds an execution engine that supports the execution of pre-
defined workflows. Able to monitor workflow execution and send send notifications to
Decision Maker. Thus, Decision Maker is aware of workflow’s execution result and
able to take decisions consequently.

e Communication Manager: Takes care of communication between agents .Makes use of
both Dialogue Manager and Message Manager components.

e Dialogue Manager: Implements a set of generic interaction protocols (i.e. FIPA stan-
dard procotols), specifying for each of them the set of sequences of messages that are
acceptable w.r.t the protocol. Domain-dependent protocols can be modeled by user
and implemented using the protocol modeler architectural component.

e Message Manager: Responsible of processing the content of messages (either incoming
or outgoing ones).

3.5 PAWS Agent components

This section explains in depth the PAWS agent’s components that have been introduced
before, when providing an overview of the architecture in the previous section. As the
PAWS platform is based on the CONTRACT platform agent components can be divided in
four types:

e Components directly re-used from the CONTRACT platform: these components have
been implemented as exact copies of the CONTRACT platform components. For each
of these components, its functionality is explained and a reason for having implemented
them as direct copies given.

e Components generalized from the CONTRACT platform: these components have been
implemented inspired on the CONTRACT platform components. However, they have
been modified: the components where too oriented to contract management and have
been generalized in order to fit in an agent platform with generic purposes. For each
of these components, its functionality and the modifications performed to make them
more general are explained.

e Components removed from the CONTRACT platform: these components where present
on the CONTRACT platform but are not on the PAWS platform. For each of these
components, its functionality is explained and a reason for having removed them is
given.

e Components added to the PAWS platform: these components where not present on the
CONTRACT platform but are on the PAWS platform. For each of these components,
its functionality is explained and a justification for including them is given.

3.5.1 Agent components directly re-used from the CONTRACT
platform

This section introduces components that have been implemented in the PAWS platform as
exact copies of the CONTRACT platform component.

34 CHAPTER 3. THE PAWS AGENT PLATFORM

3.5.1.1 Workflow manager

This module does not need to be generalized. However it might need to be extended if
some action executions are to be notified to modules different than the Contract manager.
An example of such modules is the norm monitor® that might need to be notified of action
executions to control if executing such actions results in the violation of an active norm. An-
other possible extension to be done in the future is including support for workflow languages
different than BPEL or XPDL.

3.5.1.2 Communication Manager

This module has not been generalized for the PAWS platform. Future improvements of the
platform could include using federations of Directory Fuacilitator components in order to
support inter-platform agent discovery.

3.5.1.3 Message Manager

This module has not been generalized for the PAWS platform. Indeed, it was more general
than required on the CONTRACT agent platform, because it is performing message transla-
tion when the scope of the project expects all agents to use the same encoding and language.
Thus, this module is integrated directly on the PAWS platform. Future improvements of the
PAWS platform could implement more complex processes of ontological translation, such as
trying to perform a translation between two different ontologies with some common points.

3.5.2 Agent components generalized from the CONTRACT plat-
form

This section introduces components that have been reused from the CONTRACT platform.
Being too contract-oriented for a generic purpose agent platform they have been modified
to make them more generic.

3.5.2.1 Decision Maker

No actions are to be performed when generalizing this component for the PAWS platform.
However, the behaviors inside this component must be coded and adapted to the domain
PAWS is applied to.

In PAWS, the Decision maker will be supported by other modules. These modules can
implement functions to access Decision maker’s interface when required or return results
via custom interfaces. The Decision maker will get support from these modules by invoking
them on the behavior. Please, remember Figure 3.12shows an example of such integration
between the main component (the decision maker) and the new modules. Also, in PAWS
stubs of the behaviors controlling the Decision maker will be available for programmers to
adapt them. Such stubs will be generated from a graphical interface.

3.5.2.2 Dialogue Manager

This module has been heavily modified for generalizing it and making it suitable for the
PAWS platform.

Fist of all the implementation of the finite state-machines must be extended, in order to
support more complex protocol descriptions. It includes allowing loops on the finite-state

3As introduced in Subsection 3.5.8.1

3.5. PAWS AGENT COMPONENTS 35

machines (this will enable modeling protocols with messages that can be sent multiple times
in a row) as well as backwards arcs to states that have been already visited (this will enable
modeling protocols with loops).

Second, the interface must be extended, adding a function that supports updating the
state of a protocol. This will enable more complex interaction protocols, where a participant
can send several messages before receiving a reply. The interaction protocols implemented
in the CONTRACT platform, allow a participant to send a message and then another
participant to reply by sending another message. In the interaction protocols of the PAWS
platform, a participant can send two or more messages to any number of parties before
receiving a reply.

Last but not least, the set of interaction protocols on the library must be extended,
making it contain not only contract-management oriented protocols. Apart from creating
new protocols (e.g. contract-net and iterative-contract-net protocols) this process includes
the integration of the protocol library with the protocol modeler component. This will allow
PAWS programmers to define new protocols in a graphical and intuitive way.

3.5.3 Agent components removed from the CONTRACT platform

This section introduces components that where present on the CONTRACT platform, but
are not one the PAWS platform. They are too contract-oriented for a generic purpose agent
platform.

3.5.3.1 Contract manager

This module does not need to be generalized. It will be available for including it in PAWS-
based applications, in case they have to deal with contracts. In the future, it can be used
as a basis for other modules that need to keep track of events and notify them to Decision

System interface
manager
_ —

N\ /

/ \ / Modular \\
System \ \
behavior /

Agent-System

Agent- d
J Communication

System
Interface

/
/Argu mentation \
(based planning)
_ Component /

\

private Planontology provide_reply suggestions (IConversationListener comm)
Planontology res = this.local_plan;

ArgumentationPlanningModule mod = new ArgumentationPlanningModule () ; —~

Merge two Plan definitions
Iterator it = this.receivers.iterator(); public PlanOntology merge (PlanOntology pl, PlanOntology p2)
while (it.hasNext()) {
(4
string msg_sender = (String)it.next(); /
AgentLogger.log(" erging ontologil " /
AgentLogger.log("Sender " + msg_sender) ;
Performative receivedPerf = (Performative)this.repliers.get (msg_sender);

ontologyConcept ReceivedConcept = receivedPerf.getContent(): /
Planontology ReceivedPlan = (PlanOntology)ReceivedConcept.getConcept (); /

[[tes = nmod.merge (this.local plan, ReceivedPlan); |
if (res.PlanIsEmpty())
{
return res;
}
AgentLogger.log(" ")
}

return res;

Figure 3.12: Module integration on behavior example

36 CHAPTER 3. THE PAWS AGENT PLATFORM

Maker. An example of such component is a norm monitor that, given a set of norms and
an engine to process them, notifies the Decision Maker when a norm is violated, going to
be violated (such as in the case of deadlines) or becomes active.

3.5.4 New agent components on the PAWS platform

No new components have been implemented for the agents in PAWS. PAWS users can add
new components to the agents if they consider agents should incorporate new functionalities.
For instance, in the example provided in Chapter 5 a planning module has been included
to provide planning functionalities to the agents in the system.

Please note that, when adding new components, new behaviors are to be attached to the
main behavior. This fits in the concept that the main behavior of the agent will make use
of the new modules. An example of such behavior extension (integrating the main behavior
with a planning component) is available on Figure 3.12.

3.6 PAWS Platform components

This section describes PAWS platform components. Platform components are the general-
ization of the administrative parties present in the CONTRACT platform.

PAWS platform components can be implemented either as sets of PAWS agents or as Java
modules*. PAWS platform components provide functionalities to the agents in the platform
and to the human users of the platform. Modules to help users in the implementation of the
system are present on the PAWS platform, something that was missing in the CONTRACT
platform.

When adding new components as Java modules, if they are to be used by agents, its
interface must be published. What’s more, component’s invocation details can be made
opaque to agents by extending the Agent-System interface. Please notice that, in the case
of components implemented via PAWS agents, no interface is to be published, as they will
be accessed via the Agent-Agent interface.

When providing new functionalities to agents, the platform components fulfill the same
purpose as the agent components explained in the previous section. However, platform
components are outside agent’s architecture, they are accessed through the Agent-System or
the Agent-Agent interfaces, and thus, accessing to them is far less efficient than accessing to
agent’s internal components. What’s more, in the case of agent components there will be one
component per agent, whereas platform components are expected to be unique (although,
they can be replicated if required).

In PAWS it is up to programmers who adapt the agent platform to their domain whether
to implement new components as platform or as agent components, and weather to move
them from one type of component to the other. As a rule of thumb, if a component is to
be used extensively by all agents due to domain requirements, it should be implemented
as agent component. Otherwise, a platform component implementation fits better in the
requirements. Please notice that components to be used by users in the platform, or imple-
mented as sets of PAWS agents and not as Java modules, are always platform components.

Just like agent components, PAWS platform components can be divided in four types:

e Components directly re-used from the CONTRACT platform: these components have
been implemented as exact copies of the CONTRACT platform components. For each

4This feature was already supported by the CONTRACT platform

3.6. PAWS PLATFORM COMPONENTS 37

of these components, its functionality is explained and a reason for having implemented
them as direct copies given.

e Components generalized from the CONTRACT platform: these components have been
implemented inspired on the CONTRACT platform components. However, they have
been modified: the components where too oriented to contract management and have
been generalized in order to fit in an agent platform with generic purposes. For each
of these components, its functionality and the modifications performed to make them
more general are explained.

e Components removed from the CONTRACT platform: these components where present
on the CONTRACT platform but are not on the PAWS platform. For each of these
components, its functionality is explained and a reason for having removed them is
given.

e Components added to the PAWS platform: these components where not present on the
CONTRACT platform but are on the PAWS platform. For each of these components,
its functionality is explained and a justification for including them is given.

3.6.1 Platform components directly re-used from the CONTRACT
platform

This section lists the components that have been implemented in the PAWS platform as
exact copies of the CONTRACT platform component.

3.6.1.1 Observer

The observer component has been implemented as a direct copy of the CONTRACT plat-
form’s observer component. A generic observer, gathering information about the environ-
ment in general, rather than about the contracting environment, is provided along with the
PAWS platform, ready to be used by any agent that can’t directly observe the environment,
or wants to focus on reasoning, delegating observation to another component.

3.6.1.2 Context Service

The context service component has been implemented as a direct copy of the CONTRACT
platform’s context service component. It provides PAWS with a simple implementation for
the context service, that reads the configuration information from a file formatted in XML
style and stores it in a Java class. Users of the PAWS platform are encouraged to modify this
class, adapting it to their needs, and providing more complex implementations if required.

3.6.1.3 Domain Ontology Service

The domain ontology service component has been implemented as a direct copy of the
CONTRACT platform’s domain ontology service component. It provides PAWS with a
simple implementation for the domain ontology service that does not support registering
ontologies. All the available ontologies must be specified at boot time, no more ontologies
can be added later.

38 CHAPTER 3. THE PAWS AGENT PLATFORM

3.6.2 Platform components generalized from the CONTRACT plat-
form

This section introduces components that have been reused from the CONTRACT platform.
Being too contract-oriented for a generic purpose agent platform they have been modified
to make them more generic.

3.6.2.1 Contract Storer

This component has been generalized from the contract storer for its implementation in
PAWS. The generic storer wraps the generic repository component, and includes protocols
to store, retrieve and update a generic component (or a set of them) as well as protocols to
perform queries on the generic repository. Please, notice that currently the generic storer
does not perform any checking on the objects store. In future versions, a set of rules that
any object to be stored must comply with can be specified in a storing rules base. Then
generic storer can then check that the restrictions modeled by these rules are met before
storing objects in the generic repository (or even retrieving them, which can be used to
model query permissions).

Contract
Storer

| Storer

/ Contract\\

/ Contract

repository

Generic
Storer

/ Genenc\

Storer

(Storing rules |
base

\jhavior// \ behavior / \ /
i (o,]
—/ Contract \—— 1 Generic v
| Storer ‘ Storer |
\ Protocols /|

\\I’rotocoy

Figure 3.13: CONTRACT’s contract storer and PAWS’ generic storer

Figure 3.13 shows the hierarchical set of components on contract storer and generic
storer.

3.6.3 Platform components removed from the CONTRACT plat-
form
This section introduces components that where present on the CONTRACT platform, but

are not one the PAWS platform. They are too contract-oriented for a generic purpose agent
platform.

3.6. PAWS PLATFORM COMPONENTS 39

3.6.3.1 Manager

CONTRACT platform’s manager component is strongly coupled to the contractual domain,
and thus, it has been removed in PAWS. Future implementation of the PAWS platform are
not likely to include any component with a functionality similar to the one of the manager,
as this component would be only useful on very specific domains.

3.6.3.2 Notary

CONTRACT platform’s notary component is hardly coupled to the contractual domain,
and thus, it has been removed in PAWS. Having a neutral component able to validate
actions that are key in the business process can be very convenient in some domains, as
it forces agents to agree in the validity of the actions performed. However, we think it is
better PAWS programmers code these component, adapting them to their domains (and
thus, having components strongly coupled with the domain, like the notary) than providing
a general component for this purpose.

3.6.4 New platform components on the PAWS platform

This section introduces components that are new to the PAWS platform.

3.6.4.1 The protocol Modeler

The protocol modeler is the only platform module available for users in the PAWS platform.
As it has been mentioned before, the purpose of the protocol modeler is to provide PAWS
users with an intuitive and graphical way to generate PAWS protocols. This need comes from
the limited (and contract oriented) protocol-interface library CONTRACT agent platform
provides.

Apart from generating protocol interfaces (so the protocol library is completely generic
and easily adaptable to any domain), the protocol modeler is able to generate main behavior
stubs that can be easily adapted by PAWS programmers to the needs of the domain where
the PAWS platform is applied to. These stubs tackle another generalization problem, going
from the closed main behaviors defined in the CONTRACT platform to open behaviors.

Here, a quick overview of the functionalities and the architecture of the protocol modeler
component is provided. An in-depth guide about how to use the protocol modeler, based on
a complex example, can be found at Section 5.1). Also, Section 5.1 will explain how a
protocol model can be transformed to PAWS protocol interfaces and code stubs.

Figure 3.1/ shows the architecture of the protocol modeler component. The user defines
the protocols to be implemented via the software INGENIAS Development Kit’ [17]. Then,
a meta-coding program created for the PAWS agent platform generates, for each protocol
defined, a set of protocol interfaces, a set of behavior stubs and an ontology stub.

’INGENIAS Development Kit’, intends to guide and facilitate the designing and building
of multi-agent systems. A part of this design is the ’Interaction Model’. This model defines
a set of interaction units that represent a single information exchange between two agents.
In other words, each unit represent an agent sending a message (which contains some infor-
mation) to one or more agents. Each interaction has an initiator and several collaborators
assigned. The initiator can be seen as the agent that sends the message, whereas the col-
laborators can be seen as agents willing to receive and process the information contained
in the message. An interaction unit is defined for each message in the protocol, and then,
assigned initiator and collaborators according to the responsibilities in the protocol.

40 CHAPTER 3. THE PAWS AGENT PLATFORM

PAWS Protocol Protocol Modeler
N S . Ve
/ / \ «InteractionUnit»
Protocol Behavior [INGENIAS | /
- /
Interfaces Stubs | Meta-coder | ® SpeechAct: request
. N\ / AN / Y,
~— //T,f"’ - N - a - / «UlPrecedes» «UIPreced\es»
Ontology «lmerac::ionun‘n» «Imelactsiouunll»
Stubs
Protocol Model -\ © SpeechAct: refuse © SpeechAct: agree
TN \ «UlPrecedes» yecedes»v
7”””’**77—7,,,,,,7_777777»{ INGENIAS ‘ \\\\ «InteractionUnit»
\ IDK \)

@ SpeechAct: inform
PAWS user AN e N

Figure 3.14: Protocol modeler architecture

The protocol interfaces define the protocol in terms of responsibilities and message prece-
dences. These files are used to ensure the correct execution of the protocol from two points
of view. First, a message can only be sent by the agent responsible of sending it and received
by an agent responsible of receiving it. Second, a message cannot be sent if the preceding
message is not sent. The only exception to this second rule is the message that starts the
protocol, as it has no preceding message. Protocol interfaces are used to constraint the
execution of the protocol, preventing it from taking execution paths that are not the ones
specified in the interaction model. Protocol interfaces contain the following elements:

e A Java file for each message in the protocol. These files are extensions of PAWS
performative files, that are implementations of FIPA performatives. For instance, in
the example presented in Figure &.14) message B is an extension of PAWS agree
performative.

e A single protocol Java file. These file sets up roles in the protocol, specifying initiator
and participant roles. Then, sets up messages in the protocol, specifying responsibil-
ities (i.e. which agent will send the message and which agent or agents will receive
it) and precedences (which message can follow each message in the protocol). Finally,
the file specifies which is the starting message of the protocol.

e A role file for the initiator of the protocol. This file specifies which messages can
receive the initiator of the protocol, and which responses can be provided to each of
these messages.

e A role file for each participant in the protocol. This file specifies which messages can
receive the participant, and which responses can be provided to each of these messages.

The main behavior stubs are Java classes where user must add parts of the code in
order for the class to function properly. The protocol modeler component generates one stub
for the initiator of the protocol, and one per participant. Stubs take care of inter-agent
communication issues, including code for receiving messages from other agents and sending
messages to them. However, the intelligence to decide the content of these messages, or
which message to send if there are several alternatives is missing. For instance, the code for
deciding if message 'B’ or 'C"” are to be sent in reply to message ’A’, as seen on Figure 3.14
will not be included in the stub of the participant agent.

3.7. PAWS PLATFORM EVALUATION 41

The ontology stub is a Java class with a simple ontology with just one String-type field.
The stub can be extended by the user, adding additional fields, or replicated, in the case
different messages require different ontological contents.

3.7 PAWS platform evaluation

Agent development is becoming more common, even in commercial domains, so it is worth
considering agent platform’s strengths and weak points. Furthermore there is an important
number of agent platforms available, this fact makes it more important to evaluate our
PAWS with respect to other available platforms.

This comparison is performed based on the following set of neutral criteria as used in
other papers (e.g. [21]):

e Standard compatibilities. Focusing on FIPA compatibilities.
e Communication supporting inter-platform messaging.

e Support for strong (code and process thread) and weak (just code) mobility. Migration
method must be clean and efficient. Component of the architecture (i.e. daemon) to
stop and restart threads on strong mobility.

e secure intra-platform and, specially, inter-platform communication.
e platform usability and documentation provided.

e state of the development. Open issues, possible future improvements of the platform,
etc.

The PAWS agent platform throws the following results according to the comparison
criteria.

e Compatible with FIPA specifications. Some components of the platform (e.g. the
performatives in the protocol interfaces, the Directory Facilitator, etc...) have been
designed based on FIPA specifications.

e Full support for inter-platform messaging. Support for inter-platform communication
is limited by the simplicity of the Directory Facilitator component. This is because
Directory Facilitator components cannot query each other to find out if a given agent
is hosted in a remote platform. That is, in order for the agents in one platform to
communicate with the agents in another platform, the configuration file that initializes
the Directory Facilitator component needs to explicitly specify the remote agent is
hosted on another platform.

e Both strong and weak mobility are supported, because PAWS agents are based on Java
processes and Java classes. However the migration process shows some complicated
points, such as the agent having to update the Directory Fuacilitator components of
the platform it is leaving and the platform it is moving to, in order to be reachable by
the rest of agents.

e Current version of the PAWS platform provides no message encoding. However, due
to the modular design of the platform it is not complicated to substitute the message
manager component for a encoded message manager component if the domain requires
it.

42 CHAPTER 3. THE PAWS AGENT PLATFORM

e Graphical interfaces provide an easy experience when setting-up the platform, run
agents on it, or even start coding them. Documentation on available interfaces is
sufficient, so PAWS users will be able to develop their own modules and connect them
to the platform without much problem. However, if some available component of the
platform is to be changed, the process can be hard and tedious, due to the lack of
documentation available on how the internal components of the architecture work.
For the same reason, locating and fixing an existing bug can also be a thought task.

e The platform is mature enough. Most of the components have already been tested in
an European project due to PAWS inheritance from the CONTRACT agent platform.
Because of its modular design, new modules (or improvements on the existing ones)
can be easily developed in the future.

3.8 Summary

In this chapter we have presented the PAWS platform, a generic agent platform aimed to
host agents that serve as proxies for web-services.

As the PAWS platform is based on a generalization of the CONTRACT agent platform,
the chapter has started by introducing the CONTRACT agent platform. With reference to
this, we have seen an agent platform that presents the components defined on the FIPA-
ABSTRACT specifications defined on Chapter 2, but when analyzing them, we have realized
that most of them are bounded to contract-management purposes. What’s more, we have
identified some components (e.g. contract manager, Notary, Manager, etc.) which are fully-
coupled with contract-management environments and not defined in the FIPA-ABSTRACT
specifications.

As it goes on, the chapter aims to provide a better understanding of the PAWS archi-
tecture and the functionality of its components. With reference to this, the chapter shows
a generic and modular agent platform, where users can attach new components easily. The
chapter has explained how the PAWS platform differs architecturally from the CONTRACT
platform. It also has gone over the components of the CONTRACT platform that have been
re-used or removed on the PAWS platform, as well as the components of the PAWS plat-
form that are not present on the CONTRACT platform. Reasons for adding, removing or
re-using components between the two platforms have been given.

At the end of the chapter, the reader should have a good idea about the architecture of
the PAWS platform, knowing which are the available components, their functionalities and
how do they interact between them.

In the next chapter we will describe an argumentation based planning framework from
a theoretical point of view. The information given in this chapter and on the next one will
come in hand on Chapter 5 where the PAWS platform will be used for implementing the
theoretical planning framework.

Chapter 4

A theoretical planning
framework

Dynamic service composition is an uprising trend in the Web services community, being the
subject in many recent works [32]. Such works typically approach this issue via distributed
planning systems (such as the GPGP/TAEMS framework [18]) where actors build partial
plans that are then shared in order to generate a global plan. However, it is common in
such works to neglect the issue of how to manage resource conflicts between the plans. In
fact, only a few works tackle this [5].

This chapter presents a work that aims to help filling this gap, by developing a system
able to detect and handle resource restrictions at runtime, during global plan generation
process, and applying it to dynamic and distributed service composition. It does so by
using the concepts of ’shared resource’ and ’utility’. Assigning resources to Web services
(via, e.g., OWL-S [19] annotations) arises the need of making sure that the workflow forming
the global plan does not have resource conflicts, as resources might be limited and shared
between actors. In our approach, such restriction is ensured using the idea of conflict-
freeness introduced in Argumentation Theory [9]. Assigning utilities to Web services (via
agents’ knowledge bases) enable the agents to rationally choose a set of local workflows when
several alternatives (either different workflows, or different paths inside the same workflow)
are available in order to perform a given composite task.

The planning framework is introduced along with an example, where interactive commu-
nity displays provide touristic information and services. This information is adapted taking
into account elements such as user preferences, current location, weather forecast and such.
The displays have the capability of suggesting amusement tours, formed by a set of touristic
activities. These set of activities are to be composed into a tour, that needs to be conflict-free
(the user will not want to include two activities that over-lap in time on the same tour) and
adapted to the user’s preferences (more than one tour is expected to be available). Thus, in
the example, the tours can be seen as workflows and the touristic activities as services that
compose the workflow. Resources are time slots assigned to each activity, representing the
amount of time the activity will take for user to execute.

This chapter is structured as follows: it starts by providing some background on planning
and argumentation theory. Later, it introduces the scenario used for the example. Then,
it goes on by formalizing the elements that form a plan, and an agent, along with their
properties. Later, this formal definition is used to explain the concept of conflicting action,
and how can it be detected using Argumentation Theory. These definitions are also useful

43

44 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

to explain how agents can exchange their global plan proposals using a negotiation protocol.
Then, it presents means to allow agents to decide, as a group, which global plan proposal is
to be accepted if there are several available. Finally, all these elements are put together in
order to introduce a general protocol to generate a global plan from the local plans.

4.1 Background

This section introduces some basic notions on concepts that are useful for understanding
the theoretical planning framework introduced later in Section 4.3.

The section starts by introducing some notions of planning systems, focusing on explain-
ing how plans can be modeled as trees of tasks and sub-tasks. Then the section introduces
some concepts of Argumentation Theory. These concepts include the formal definition of
Argumentation Framework as well as the concept of Attack Relation.

4.1.1 Planning systems

Classical planning is seen as a method for finding the set of actions that bring the world from
one state to another. In other words, planning characterizes problems as an initial state and
a goal state. In general, planning systems take into account the following elements:

e A description of the world, based on states.
e The actual (or initial) state of the world
e The goal (or final) state of the world.

e A set of actions that change the state of the world. Based on pre-conditions (i.e. set
of states of the world from where the action can be performed) and effects (i.e. state
where the world will be once the action has been performed).

If more than one agent is able to perform the actions in the planning problem, two main
approaches can be identified, centralized planning and distributed planning.

In centralized planning one agent is responsible of building the plan that specifies all the
actions each agent has to enact. For instance, agents can negotiate in order to choose a
coordinator, who will be responsible of distributing the actions to be performed among the
set of agents.

Distributed planning allows splitting the problem to be solved into sub-problems that
are divided among the group of agents. Each agent will be responsible of solving its own
sub-problem. There are two main methods of tackling this approach, task-driven planning
and plan coordination®. In task-driven planning, the main goal is split into sub-goals that
are distributed among the agents. Then, agents build plans to achieve this goal. In plan
coordination agents have pre-existing plans, and the issue to be tackled is how to achieve a
plan that can be performed in common.

This section will focus in a planning framework for distributed planning known as GPGP
(Generalized Partial Global Planning) [18] framework. GPGP was developed as a frame-
work for coordinating teams intelligent agents that cooperate to archive high-level goals.
GPGP parts from the idea of generalizing and making domain independent the coordina-
tion techniques developed for the PGP (Partial Global Planning) framework [18]. GPGP
understands agent coordination as a distributed search in a dynamic goal-tree. This tree is
based on TAEMS hierarchical task network representation [6].

IThe framework introduced in Section 4.3 is a distributed plan coordination framework

4.1. BACKGROUND 45

PLAN [OK]
]
KQML] Initiator_Agent [OK] [2ND] [KQML] 2_Participant_Agent [OK]
01 OK]
Gz [oK] Ga [oK]
AND \
Gn%]///\\ [KaML] 1_Participant_Agent | OK]
=
OR o] % k: @ 5 bz
[3 a1 [ok] (I [] %
a
1] [= @31 a2 [ok]
Sl T Ao B
2 p S o
r3 a4
4|
r1rlJ

Figure 4.1: Planning problem representation example

Thus, influenced by TAEMS, GPGP represents the problem to be tackled as a tree of
task-subtask dependencies. This tree models the problem, from the high level goals shared
among the agents participating in the coordination process, to the most basic actions that
are to be enacted by the agents, linking them via task-subtask relationships in a tree-like
structure.

In the example shown in Figure 4.1 the high-level goal is shown as the task plan. This
task is de-composed into three simpler tasks known as G1, G2 and G3. Each of these tasks
is assigned to an agent(note the link between the task and the agent), and agents collaborate
in enacting them. Once all agents have enacted the task they have been assigned, the high-
level goal plan has been fulfilled. Note that each of these tasks are de-composed into simpler
tasks. This de-composition can be performed via different types of task-subtask relation,
including AND links (in order to enact the task, all the subtasks are to be enacted), OR
links (in order to enact the task, at least one of the subtasks is to be enacted) and XOR links
(in order to enact the task, exactly one of the subtasks is to be enacted). These task-subtask
relations go on until tasks that cannot be de-composed anymore, denoted as leaf-tasks in
this document, are met (in the example al,a2,a3,a4,a5,a6,b1,b2,c1,c2). These leaf-tasks are
the simple actions that the agents will enact in order to enact the more complex actions
and, in the end, fulfill the common goals.

This representation of the problem allows alternative groups of leaf-tasks to be enacted in
order to fulfill the common goals. In the example of Figure 4.1 enacting both sets of actions
al,a3,a5,b1,c1 and al,a4,a5,02,c2 will result in the common goals being fulfilled. GPGP
deals about enabling the agents to decide which subtasks will be enacted in order to fulfill
the high-level goals. The planning framework presented in this document also tackles this
issue, from a different approach and adding some extra restrictions (i.e. resource-sharing
among actions) in order to make it more appealing.

4.1.2 Argumentation

The study of argumentation is concerned about how assertions are proposed, discussed and
resolved in a given context when several diverging opinions are held. Argumentation devel-
opment is the process by which parties engaging in debate undermine contrary stances and

46 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

arguments advancing in their respective positions. Argumentation is specially fit on envi-
ronments where distributed intelligence, autonomous components or synchronous interaction
are required.

So, analysing the outlines of the preceding paragraph one can identify the following core
components of argumentation:

Parts that compose an argument and the relationship between them.

Rules and protocols that describe an argumentation process.

How to distinguish legitimate from invalid arguments (or argument lines).

e How to distinguish an ending state, from where further argumentation is useless or
redundant.

These components resemble the ones of formal logic reasoning, and indeed, logic and
formal deductive reasoning have provided the basis to model and analyse argumentation
from a computational point of view. However, several key differences can be found between
both concepts. One can easily notice that sentences ’X is black’ is a formal proof that
holds X is darker than any other colour’ (as in reasoning) and ’Andorra holds nuclear
weapons’ is a persuasive enough argument for accepting ’Spain must attack Andorra’ (as in
argumentation) hold several differences:

e On logical and mathematical reasoning premises are consistent and premises can be
defined in terms of closed concepts. That is, on the first sentence there is a complete
ordering among colours to define the concept ’darkness’, and all parties share this
ordering.

e Reasoning takes place in a closed and fully defined context, there is no such thing as
uncertain or incomplete information.

e On reasoning, conclusions are final. On the first sentence, the statement ’X is darker
than any other colour’ is valid and will always be valid, without accepting later amend-
ment or retraction. However, on the second sentence, the statement ’Andorra holds
nuclear weapons’ can become invalid or be retracted when further information becomes
available (such as ’Andorra has never bought Uranium’) or when a new view-point be-
comes available (such as ’Spain must buy this weapons and attack France’).

e Reasoning is completely objective, whereas argumentation is susceptible to subjective
views. It drives us to the notion of audience as introduced by Perelman [25]

Proof is demonstration, whereas argumentation is persuasion. Thus, whereas the first
sentence tries to demonstrate a fact, the second one tries to convince of a fact. And whereas
the first will be accepted in all possible worlds, the second one can change in the presence
of different view-points or new information.

In the case of reasoning, correctness is a key factor, argumentation does not care about
correctness, as long as the argument is persuasive. A simple analogy between argumentation
and politics can be made, what a politician says does not need to be correct or true, as long
as it succeeds in persuading us.

The first main motivation to apply argumentation theory to Al arises from the issues
and problems that reasoning theories present when having to deal with incomplete or uncer-
tain information, and in general non-monotonic logics [20], where conclusions drawn in the
presence of incomplete information can be withdrawn when additional information becomes

4.1. BACKGROUND 47

available. Thus argumentation, at this stage, is studied as a way of using reasoning theory
on the presence of non-monotonic logics, rather than as field independent from reasoning
theory.

It was not until the work of Dung [9] when exploitation of argumentation models starts
to be seen as independent from reasoning models. Two important ideas are put forward on
this work.

Figure 4.2: Argumentation Framework Example

Argumentation is modeled as a set of atomic arguments (x,y,z,...) and a binary relation
between them, interpreted as argument x attacks argument y. Thus, an Argumentation
Framework is composed by a pair of elements: a set of arguments, and a set of attack
relations between arguments, that are, at the same time, pairs of arguments. Formally, an
Argumentation Framework AR = (Arg, Att). The framework shown as example on Figure
4.2 is denoted by Exzample_Framework = {({a,b,c,d,i,n){(i,b), (i,c), (b,a), (¢c,d), (n,d)))

The subset of the full set of arguments known as justified arguments can be modelled
via extension-based semantics, defining various properties of such subset on an argumen-
tation framework. These properties vary from liberal big subsets (credulous) to extremely
restrictive and small subsets (sceptic). Regarding this properties, Dung’s initial property
conflict freeness that is, there is no argument in the subset attacking other argument in
the subset (correspondent to credulous semantics) is extended by Dung and other authors
defining properties such as:

e Grounded extension: Correspondent to skeptical semantics. Can be defined as the
smallest complete extension (one that is preferred and stable).

e Preferred extension: Maximum admissible set of arguments in the argumentation
framework. That is, if S is a preferred extension, there is no admissible set of ar-
guments U that complies with this property: 'The set of arguments S U U is an
admissible extension’.

e A set of arguments is admissible if it complies with the following property: ’'If a given
argument in the set A attacks another argument in the set B, then B attacks A’

e Stable extension: Where exists a conflict free set of arguments S, where every argument
in S attacks all the arguments that are not in S.

e A complete extension is the set of arguments that is admissible (as defined before) and
every argument which is acceptable, according to the set, belongs to the set.

48 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

e Semi-stable extension: The set of arguments S is a semi-stable extension if S if a set
of arguments compliant with complete extension properties and is maximal (that is,
there is no other complete extension S’ that contains 5.

e Prudent extension: Re-defining basic Dung’s extensions (such as Grounded, Preferred,
complete and stable, among others). These extensions are based in taking into account
both direct and indirect conflicts (instead of being limited only to direct conflicts like
in Dung’s extensions) adding the restriction that two given arguments a and b cannot
belong to the same extension, if a attacks indirectly b.

e An indirect conflict is defined in the following terms. Taking the example shown on
Figure 4.2, one can see that argument a is attacked by argument b. b is attacked by
argument i , so the set [a,i,n] is a stable extension, however, a prudent approach will
not consider this set as extension, because even though argument i is defending a, it
is also, indirectly, attacking a.

4.2 Description of the example

This section presents a detailed description of a scenario that will be used in later sections
as example of the concepts in the framework proposal. The example is inspired on a real
scenario presented in [14].

Cinema —
_w Broker 4
—~ Casco- Grupo
_— Itipl
_— :}:elﬁ]:: berberecho Museu de
— ‘ >l Restaurant |_cnemas | I?ugigga
Que - Broker |4 .
‘ v L Plamer < , Information
El bollit ~ ;
\ v v restaurant web-services

\ ~ :
User User ™~ .
D \ %ﬁle S~ | yd
~ —_— //
>

BurryKing
fast food
brand

Al Museum K
Broker

User Broﬂle
. store

Figure 4.3: Scenario architecture Description

A personalized recommendation tool for entertainment and cultural activities is the basis
for the scenario used in the example. The recommendation is offered via interactive commu-
nity displays (ICDs) , multimedia information points offering interactive services in public
areas. This scenario brings city services closer to residents and tourists by interconnecting
people, service providers and locations. The services and information provided, and how
user information is stored, processed and distributed, are all subjected to various munici-
pal, national and European regulations. This means, for instance, that the system will not
suggest adult movies to underage users.

As depicted in Figure 4.3 the starting point of the scenario in this example is a user
interacting with the systems interface (the ICD) in search for entertainment and cultural
activities around the city. The user identifies herself. Then the system accesses the user
profile from a remote repository. This profile will contain, among other elements, a model of
user’s interests, allowing the system to decide which touristic activities are more adequate

4.2. DESCRIPTION OF THE EXAMPLE 49

for the user. In the next step, the system composes an initial recommendation, using ratings
and reviews about restaurants, cinemas, shops and amusement sites, and considering user
preferences and location. Proposed activities are presented located on a map with basic
information such as a brief description, address and pictures. When the user requests in-
formation of a venue, for instance a cinema, the system shows its detailed description, such
as movies, sessions and prices. Moreover, the system informs on the required transporta-
tion (such as bus or underground) to reach the venue. Moreover, if it is lunch time, the
system can even suggest a restaurant along the way, composing information from different
web-services (cinemas, restaurants, maps and buses).

Planner ‘ ‘ Amusement Broker ‘ Mobility Broker H Cinema Broker ‘ ‘ Restaurant Broker

1 1 1 1

Amusement(Public or Private),
Cinema(Walk), Restaurant(Walk)

From 8:00 to 22:00 User Preferences

Amusement Suggestions
<l
<

Amusement Suggestions (Publig or Private)

From 8:00 To: Medium stay -
L

Mobility suggestions
<l

Rl
User Preferences
From:Afternoon
To: Evening -
'
- Cinema suggestions
«
User Preferences
From: Evening
»
Restaurant Suggestions
<
<«

Figure 4.4: Workflow Diagram

4.2.1 The scenario: activity recommendation

In the presented scenario the user requests a tour via the graphical interface on one of
the ICDs. The petition reaches the planner agent that contacts broker agents to gather
information about the touristic activities that are available on the city. For efficiency, and
taking into account that the planner agent is aware of the user’s profile (there is one planner
agent per user), one can consider that this information has already been pre-filtered, so
brokers provide only information that matches the user’s interests.

Each contacted broker returns a set of activities which are gathered and processed by
the planner in order to obtain a set of conflict-free tours. Then, the set of tours is pondered
and ordered based on the user’s preferences, and the tour (or tours) with highest scores,
returned to user.

In this example, the user requests a tour including an activity in an amusement park, a
movie in a cinema near his hotel, and a dinner in a restaurant near the cinema. The user
wants to start the tour early (at 8.00 h) and end it early too, at 22.00 h the latest.

The user wants to stay in the amusement park a medium amount of time (that is,
enough time to see most of it). Smaller parks will require less time than bigger parks to
be visited. One can consider this information is provided by broker agents, because they

50 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

Table 4.1: Activities proposed by each broker

Broker Activities

Amusement sites {Port_Aventura, Tibidabo, Aquarium}

Mobility {Port_Aventura_Private_T, Tibidabo_Private.T, Aquarium_Private.T,
Port_Aventura_Public.T, Tibidabo_Public.T, Aquarium_Public_T}

Cinema {The_hobgoblin_Soon, The_hobgoblin_Medium, The_hobgoblin_Late,
P._movie_Soon, P._movie_Medium, P._movie_Late}

Restaurant {Le-Remanguille-Soon, Le-Remanguille-Late,

Casa-Pepe_-Soon, Casa-Pepe_-Medium, Casa-Pepe_Late,
BurryKing-V Soon, BurryKing_-Soon, BurryKing-Medium,
BurryKing-Late, BurryKing-V Late}

can gather it from each park information service. Suggested transport systems (to move
between activities) have fixed times, being typically shorter in private transport than in
public one, due to service frequencies and commuting times. The same stands for movies:
it can be assumed that the cinema broker knows exactly the movie’s start and end times
by extracting this information from available cinema information services. In the case of
restaurants, good restaurants tend to provide a slow service, and having lunch in them
will take longer. However, fast food restaurants provide a nearly immediate service at the
expense of a lower quality food.

4.2.2 Workflow

This section explains how the planner agent interacts with other components in the system
in order to fulfill an user’s request (depicted in Figure 4.4). First of all, the planner
contacts with the amusement broker in charge of amusement sites and gets proposals to
visit "Tibidabo’, 'Port Aventura’ and ’Aquarium’. Then, asks the mobility broker for ways
to get to each of the amusement sites. User contemplates public transport (best combination
to be provided) or car. At this point, the mobility broker is asked for proposals starting
at 8.00 h. The mobility broker is responsible of providing ways to go from the amusement
sites back to user’s hotel as well. Next, proposals from the cinema broker are retrieved.
Such proposals include 'The hobgoblin’, a 6 hour long movie and 'Programmer movie’ a
light-weight comedy. Finally, proposals from restaurant broker are also retrieved, including
a French restaurant ('Le remangillue’), a Spanish 'tapas’ bar (’casa Pepe’) and a fast food
brand franchise ("BurryKing’). Proposals provided by the restaurant broker must end, as
much, at 22.00h.

4.2.3 Activities

The Mobility broker is able to generate a set of proposal activities from a single amuse-
ment activity. For instance, in this example, given the amusement activity "Tibidabo’, the
mobility broker is able to generate two activities, that is: Tibidabo_Private T (go to amuse-
ment activity 'Tibidabo’ by private transport, and come back by private transport) and
Tibidabo_PublicT. Thus, Port_Aventura_Private denotes the set formed by two activities
{Port_Aventura, Port_Aventura_Private_T}. The same stands for other combinations of
mobility-amusement activities. As a summary, proposed activities are listed on Table 4.1.

4.2.4 Resources

Each activity has a set of resources associated, typically, money and time each activity will
take. For instance, going to the cinema to see "The hobgoblin’ can take 5 euros and 14 time
slots. This information is provided by broker agents, along with the activity proposal. For
simplicity, in this example it is assumed the user has an unlimited budget, so no money

4.3. FORMAL DEFINITION OF THE FRAMEWORK 51

Table 4.2: Resources of each alternative

Activity Resources Activity Resources
Port_Aventura_Private {8.00 — 18.007} Tibidabo_Private {8.00 — 16.307}
Agquarium_Private {8.00 — 14.00} Port_Aventura_Public {8.00 — 19.00}
Tibidabo_Public {8.00 — 17.30} Aquarium_Public {8.00 — 15.30}
The_hobgoblin_Soon {16.00 — 19.30} The_hobgoblin_Medium {17.00 — 20.30}
The_hobgoblin_Late {18.30 — 22.00} P._movie_Soon {17.00 — 18.30}
P._movie-Medmium {18.30 — 20.00} P._movie-Late {19.30 — 21.00}
Le_Remanguille_Soon {19.30 — 21.30} Le_Remanguille_Late {20.00 — 22.00}
Casa-Pepe_Soon {20.00 — 21.00} Casa-Pepe_-Medium {20.30 — 21.30}
Casa-Pepe_Late {21.00 — 22.00} BurryKing-V Soon {19.30 — 20.00}
BurryKing-Soon {20.00 — 21.00} BurryKing-Medium {20.30 — 21.30}
BurryKing_Late {21.00 — 21.30} BurryKing_V Late {21.30 — 22.00}

resources are assigned to activities. As a summary, resources associated to each proposed
activity (or sets of activities in the case of amusement-transport pairs) are listed on Table
4.2.

Resources on this example are time slots of twenty-five minutes (e.g., 9.30 denotes
the time slot going from 9.30AM to 9.59AM). For any two timestamps 'X’ and 'Y’ ,
{X — Y} denotes the set of time slots between the two timestamps. (e.g., ’9.30 — 10.30 =
{9.30,10.00, 10.30}, in other words, from 9.30AM to 11.59AM)’

4.3 Formal definition of the framework

This section presents a formal definition of the framework. It explains the basic concepts
of the framework and their properties, so that these concepts can be used in subsequent
sections.

Definition 4.1 An action is represented by a single positive literal a
Action = a

This literal will have the value true if the action has been performed by the agent, and false
otherwise. Let performed(a) be a function that, given an action, returns true if this action
has been performed by an agent. Let Lyction be the set of all actions of the domain.

Remark 4.1 It is assumed agents have means to know when they have successfully per-
formed an action.

Example 4.1 Following the scenario presented, actions are the touristic activities proposed
e Actionl = Port_Aventura_Private T
e Action2 = BurryKing_Soon

Definition 4.2 A goal is represented by a single positive literal g

Goal =g

Remark 4.2 This literal will have the value true if the goal has been fulfilled, and false
otherwise. Let fulfilled(g) be a function which, given a goal, returns its truth value. Let
Lgoar be the set of all goals in the domain. When all these goals are fulfilled, the objective
the global plan represents is reached.

Example 4.2 Following the scenario presented, the goals are the abstract activities re-
quested by user, as seen on Figure 4.4.

52 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

e Goall = Amusement

e Goal2 = Cinema

e Goal3 = Restaurant

o Lyoa = {Amusement, Cinema, Restaurant}

o fulfilled(Amusement) A ful filled(Cinema) A ful filled(Restaurant) — user request

satisfied

Table 4.3: Existing alternatives

Code Alternative

Al Port_Aventura-Public = amusement «— {Port_Aventura, Port_Aventura_-Public.T}
A2 Port_Aventura-Private = amusement «— {Port_Aventura, Port_Aventura-Private.T}
A3 Tibidabo_Public = amusement «— {Tibidabo, Tibidabo_Public T}

A4 Tibidabo_Private = amusement « {Tibidabo, Tibidabo_Private. T}

A5 Aquarium_Public = amusement «— {Aquarium, Aquarium_Public_T}
A6 Aquarium_Private = amusement «— {Aquarium, Aquarium_Private T}
M1 The_hobgoblin_Soon = cinema « {The_hobgoblin_Soon}

M2 The_hobgoblin_Medium = cinema « {The_hobgoblin_-Medium}

M3 The_hobgoblin_Late = cinema < {The_hobgoblin_Late}

M4 P._mowvie_Soon = cinema «— {P._movie_Soon}

M5 P._movie-Medmium = cinema «— {P..movie-Medmium}

M6 P._.movie_-Late = cinema «— {P._.movie_-Late}

R1 Le_Remanguille_Soon = restaurant «— {Le_Remanguille_Soon}

R2 Le_Remanguille_-Late = restaurant <« {Le_Remanguille_.Late}

R3 Casa_Pepe_Soon = restaurant — {Casa_Pepe_Soon}

R4 Casa-Pepe_Medium = restaurant «— {Casa-Pepe_Medium}

R5 Casa_Pepe_Late = restaurant « {Casa_Pepe_Late}

R6 BurryKing_.VSoon = restaurant « {BurryKing_V Soon}

R7 BurryKing_Soon = restaurant «— {BurryKing_Soon}

RS BurryKing_Medium = restaurant «— {BurryKing_Medium}

R9 BurryKing-Late = restaurant «— {BurryKing-Late}

R10 BurryKing_-V Late = restaurant «— {BurryKing-V Late}

An alternative for performing a goal is represented by a rule, that is, an ordered list of
positive literals, with at least one literal.

Definition 4.3 An alternative has the following form:
LN N1, <—ln+1 /\ln+2/\'~'ln+m m>1Am>1

Where the body of the rule is a set of actions:

liEL:action n+1212n+m

The tail of the rule can be a goal or a set of goals put together via conjunctions. For
simplicity, in most definitions (indeed, in all of them but complemented alternative
definition), it is assumed the tail of the rule to be a single goal.

ligﬁgoal 122271

Example 4.3 For instance, the following alternative Aquarium_Public is an alternative
for fulfilling the goal Amusement via the actions Aquarium and Aquarium_PublicT':
Aquarium_Public = Amusement «— Aquarium, Aquarium_Public_T. To summarize, table
Table 4.3 shows all the alternatives that exist in the example introduced.

Proposition 4.1 Let Lyjternative be the set of all alternatives. Let Actions(alt) be a
function that, given an alternative, returns the set of actions in the alternative. Let
Goal(alt) be a function that, given an alternative, returns the set of goals in the alternative.

4.3. FORMAL DEFINITION OF THE FRAMEWORK 53

For any given alternative alt, the following condition holds:

(Actions(alt) = U ;) A (Goal(Alternative) =1) :

i=1l..m
alt is of the form (I — 1y A1, :n>1)
Example 4.4 Following the example:

o Goal(Casa_Pepe_Soon) = restaurant

o Actions(Tibidabo_Public) = {Tibidabo, Tibidabo_Public T}

Taking into account that alternatives are defined as rules, it can be deduced: if the
actions in the body of the rule are true, then the goal in the head of the rule is true.
Then, using functions fullfilled(goal) and performed(action) as defined before, the following
statement can be derived:

Definition 4.4 Given an alternative of the form I «— [1 A ---1,
fulfilled(l) < per formed(ly) A ---performed(l,) :n>1

Proposition 4.2 Function performed can be extended to alternatives. Informally, perform-
ing an alternative means performing all actions in the alternative. For any alternative alt:

per formed(alt) = /\ per formed(act)

actEactions(alt)

Example 4.5 Following the example:

per formed(Aquarium_Public) =

per formed(Aquarium) A per formed(Aquarium_Public.T) AND
fulfilled(amusement) «— per formed(Aquarium_Public) THEN
fulfilled(amusement) «— per formed(Aquarium) A per formed(Aquarium_PublicT)

Remark 4.3 One can deduce that fulfilling a goal is equivalent to performing an alternative
with the goal in the head of the rule. Formally, for any goal g:

fulfilled(g) =
Jalt € Laiternative : (Goal(alt) = g) A per formed(alt))

In order to fulfill a given goal, several alternatives might be available. That is, several
alternatives might share the same goal. Following the example, both Le_Remanguille_Late
and BurryKing_Medium are alternatives for fulfilling the goal restaurant. The set of
alternatives in the plan sharing the same goal is known as action plan. Therefore, an action
plan is just a set, where every element in the set is an alternative, and where every alternative
has the same goal.

Definition 4.5 Let S be a set of alternatives. S is an action plan iff:

Valtl,alt2 € S goal(altl) = goal(alt2)

54 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

Example 4.6 Following the example, it can be stated that:
e {Port_Aventura_Public, Aquarium_Private} is an action plan, because:

— goal(Port_Aventura_Public) = amusement
— goal(Aquarium_Private) = amusement

— goal(Port_Aventura_Public) = goal(Aquarium_Private)
o {P._movie_Soon,Casa_Pepe_Soon} is not an action plan, because:

— goal(P._movie_Soon) = cinema
— goal(Casa_Pepe_Soon) = restaurant

— goal(P._movie_Soon) # goal(Casa_Pepe_Soon)

Proposition 4.3 Function performed can be extended to accept action plans. Informally,
performing an action plan means performing at least, one of the alternatives. Formally, for
any action plan ap:
per formed(ap) = \/ per formed(alt)
alteap

Example 4.7 Therefore, following the example:
per formed({ Port_Aventura_Public, Aquarium_Private}) =
(per formed(Port_Aventura_Public) U per formed(Aquarium_Private))

In order to fulfill the common goal of the action plan, at least one of the alternatives in
the plan (and ideally only one) should be performed. Thus, performing the action plan will
fulfill the goal of the action plan.

Definition 4.6 Let goal(ap) be a function which, given an action plan, returns the common
goal of the alternatives in the action plan. For any action plan ap:

per formed(ap) = ful filled(goal(ap))

Example 4.8 Following the example:
per formed({ Port_Aventura_Public, Aquarium_Private}) = ful filled(amusement)

Definition 4.7 Resources represent the set of resources that are required and consumed, in
order to execute a given action. Therefore, resources can be represented as positive liter-
als that are associated to an action via a rule, known as resource association rule, of the
following form:

resource association =a «— 1y Arg A1y n>1

Where the elements in the body of the rule are resources, and the element in the head is an
action.

Let L esource denote the set of all resources, and Lyesource_association denote the set of all
resource association rules. Let resources(act) be a function that, given an action, looks for
a resource association rule that has the provided action in the head of the rule and returns
the set of resources in the body of this rule.

Using Definition 3 the function resources(act) can be extended to accept alternatives as
parameters. Informally, the set of resources used by an alternative is the union of the set of
resources used by every action in the alternative.

4.3. FORMAL DEFINITION OF THE FRAMEWORK 95

Proposition 4.4 Formally, given an alternative alt:

resources(alt) = U resources(act)

act€actions(alt)

Example 4.9 Following the example, given the alternative Tibidabo_Private such that
actions(Tibidabo_Private) = {Tibidabo, Tibidabo_Private T} it can be stated: resources(Tibidabo) =
resources(Tibidabo) U resources(Tibidabo_Private T').

Please, notice that, for simplicity, Table 4.2 shows the resources associated to each alterna-
tive, rather than the resources associated to each action.

Definition 4.8 A local_plan is a set of elements in the agent’s knowledge structure. It has
the following form:
local plan = {g, ap,r,ra}

Where:

o g is the goal pursued by the agent. g € Lgoa

ap is a set of alternatives, such that all of them fulfill g, i.e. ’goal(ap) = g’. Therefore,
ap s an action plan.

r s the set of all resources, i.e. ™= Lresource

ra s the set of all resources association rules, i.e. 7a = Lyesource_association

An agent will have a local plan for each goal it pursues. In this framework, typically, an
agent will pursue only one goal, and therefore, will have a single local plan.

Example 4.10 Following the example, a valid agent could be the one formed by the set
{amusement, {M1, M2, M3, M4, M5, M6}, Lresources Lresource_association - However, as it
will be remarked later, the example has some requirements (e.g. there is only one planning
agent) that make agents have some special values on the data structures that define the
agents.

Definition 4.9 A set of local plans is a global plan if the following conditions hold:
1. All the local plans have different goals.
2. The union of the goals of all the local plans is Lgoqr.

Let global_plan be the global plan:

Vpl,p2 € global_plan pl # p2 = goal(pl) # goal(p2)

(U goal(lp)) = Lgoal

Ip€global _plan
Example 4.11 Following the example, let these plans exist:
e pl = {Tibidabo_Public, BurryKing_Medium}
e p2 = {Tibidabo_Public, The_hobgoblin_Soon, BurryKing_-Medium}

e p3 = {Tibidabo_Public, The_hobgoblin_Soon, Casa_Pepe_Medium,
BurryKing_Medium}

56 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

Table 4.4: Utilities of each activity

Activity Resources Activity Resources
Port-Aventura 20 Tibidabo 10
Aquarium 5 Port_Aventura-Public.T -5
Tibidabo_Public.T 0 Aquarium_Public. T 2
Port_Aventura_Private.T 0 Tibidabo_Private. T 5
Aquarium_Private_ T -1 The_hobgoblin_Soon 30
The-hobgoblin-Medium 19 The-hobgoblin_-Late 1
P..movie_Soon 15 P..movie-Medmium 8
P._movie_-Late 3 Le_Remanguille_-Soon 20
Le_Remanguille_-Late 9 Casa-Pepe_Soon 15
Casa-Pepe_-Medium 7 Casa-Pepe_Late 2
BurryKing-V Soon 5 BurryKing-Soon 2
BurryKing-Medium 0 BurryKing-Late -2

BurryKing.V Late

The plan p3 is not a global plan, because two elements in the set fulfill the same goal
‘goal(Casa_Pepe_M edium) = restaurant = goal(BurryKing_-Medium)’. The plan pl is
not a global plan, because the union of the goals fulfilled by the alternatives in the set, is
not the set of all goals in the system

((goal(Tibidabo_Public) U goal(BurryKing_Medium)) = {amusement, restaurant}) #
{amusement, cinema, restaurant}’. The plan p2 is a global plan, because
(goal(Tibidabo_Public) # goal(The_hobgoblin_Soon) #

goal(BurryKing_-Medium)) and (goal(Tibidabo_Public) U goal(T he_hobgoblin_Soon) U
goal(BurryKing_Medium) = {amusement, cinema, restaurant}).

As it has been stated before (Definition 5) several alternatives to fulfill a given goal might
be available. However, on efficiency’s sake, only one of them should be performed. Therefore,
a procedure allowing agents to decide which alternative to perform (among the set of avail-
able ones) in order to fulfill a goal is required.
This framework provides such means via preferences. Preferences represent the set of pref-
erences of the agent regarding the actions in the plan. Therefore, the concept is not defined
in the plan, but on agent’s knowledge bases, and (unlike the plan) can vary from agent to
agent.

Definition 4.10 A preference is just a pair of elements. One of them is an action of the
plan, the other is the value assigned to this action by this agent.

preference = (a,i) : a € Loction N1 € Z

Remark 4.4 Notice that i is an integer that will have a positive value, if the action goes with
the agent’s preferences, a negative value, if the action goes against the agent’s preferences,
and 0 value, if the agent has no preferences towards this action.

In the example, a preference is just a way to model the feelings of the user against a
given touristic activity.

A set of preferences containing no repeated actions (that is, each action has an unique
preference value) and containing a value for all the actions (that is, all the elements in
Laction) is known as preference_set.

Table 4.4 shows a valid preference set for the example.

Proposition 4.5 Let utility(act) denote a function which, given an action, returns the
utility value of this action according to the preference_set of the agent.

(utility(act) = i) such that ({act,i) € preference_set)

Example 4.12 In the example, and as shown in Table 4.4, utility(P._.movie_Late) = 3
and utility(BurryKing_V Late) = —5

4.3. FORMAL DEFINITION OF THE FRAMEWORK 57

In order to be useful to choose among a set of available alternatives to fulfill a goal, func-
tion wtility(act) must be extended to accept alternatives, instead of actions, as parameter.
Intuitively, one can see that, the utility of an alternative is just the sum of the utilities of
the actions involved in the alternative.

Definition 4.11 Let alt be an alternative
Utility(alt) = Z utility(act)
act€alt

Example 4.13 In this example, given the alternative Port_Aventura_Private as defined
on Table 4.3, and using the utilities defined in Table 4.4, it can be stated:

Utility(Port_Aventura_Private) = Utility(Port_Aventura)+
Utility(Port_Aventura_Private T) = 20 + (—5) = 15

This concept allows to define an order among alternatives. Informally, if a given alterna-
tive altl has a higher utility value than another alternative alt2, then it can be stated that
altl > alt2 and therefore, altl is preferred over alt2 by the agent. Then, if both alternatives
are available for fulfilling the same goal, the agent will be able to choose only one of them.

Definition 4.12 Formally, for any two alternatives altl and alt2, and for any goal g1, if
goal(altl) = gl = goal(alt2) then:
altl > alt2 if f wutility(altl) > utility(alt2)
altl is preferred over alt2 for fulfilling goal gl

Example 4.14 Following the example, taking alternatives Port_Aventura_Public and
Aquarium_Private, it can be stated that

Port_Aventura_Public is preferred over Aquarium_Private for fulfilling the goal
amusement because:

e goal(Port_Aventura_Public) = goal(Aquarium_Private) = amusement
o utility(Port_Aventura_Public) > utility(Aquarium_Private)
— utility(Port_Aventura_Public) = 15
— utility(Aquarium_Private) = 4
—15>4
Proposition 4.6 Let Max(altSet) be a function that given an ordered set of alternatives
returns the alternative with the highest utility in the set. Formally, for any set of alternatives

altSet:
Mazx(altSet) = altl : altl € altSet A

—(3alt2 € altSet : utility(altl) < utility(alt2))

At this point, the representation of an agent’s local plan is already available, as well as
means to enable the agent to rationally pick up an alternative among the set of available
ones.

Definition 4.13 An agent is formed by a local plan and the set of preferences the agent has
towards the actions in the domain.

agent = {local_plan, pre ference_set}

58 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

Table 4.5: Agents in the system

Agent Goal Action Plan Utilities
Planner None 7 SeeTable 4.4
Amusement + MobilityBrokers amusement {A1, A2, A3, A4, A5, A6} None
CinemaBroker cinema {M1, M2, M3, M4, M5, M6} None
RestaurantBroker restaurant {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} None

The system is formed by a set of agents, each of them with a different local_plan, in a
combination of local plans that fit global_plan definition.

Definition 4.14 Let plan(agent) be a function that, given an agent, returns its local plan.
Given the following global plan:

gp = {local_plan, ,local plans , ... ,local plan,}:n >1
Then, a framework is of the following form:
framework = {agent; ,agents, ..., agent,}:n >1

Where:
plan(agent;) = local_plan; Ni=jVi>nVj>n

In the example presented, planner agent has an empty set of plans (it receives plan
proposals from brokers) and a set of utility values that model user’s interests regarding the
activities proposed by brokers. Broker agents have plans to fulfill the objective they
pursue. Thus, Cinema Broker has plans for fulfilling objective Cinema, Restaurant Broker
has plans for fulfilling objective Restaurant, and the entity composed by the collaboration
of both Amusement Broker and Mobility Broker ? plans for fulfilling objective Amusement.
The set of resources available can be inferred from user’s request (in this case, the set of
time slots between 8.00 and 22.00). Resource association rules reside on broker agents and
are provided to the planner along with the activity suggestions. The full summary of the
agents in the system can be seen in Table 4.5.

4.4 Conflicting actions

The process of detecting conflicting actions is key in our approach, as it enables an agent to
detect non-acceptable global plan proposals when negotiating which global plan is going to
be executed by the set of agents. The conflict detection process makes use of Argumentation
Theory, and it is based in the concept of action collision. Bearing in mind that resources
are limited and consumed when actions are executed (thus, they cannot be used any longer)
it can be stated that two actions collide when they make use of the same resource. This is
because if one of the actions uses the resource the other will not be capable of execution,
as it requires to consume the resource in order to execute, and the resource is not available
anymore.

Definition 4.15 Let collide(actl,act2) be a function which, given two actions, returns true
if they collide, and false otherwise. Formally, using Definition 6, for any two actions actl
and act:

(collide(actl, act2) = true) iff

(resources(actl) Nresources(act2) # 0)

2remember amusement activities are complemented with mobility options in a single alternative as ex-

plained on Section 4.2

4.5. BUILDING THE GLOBAL PLAN 99

Example 4.15 Following the example presented it can be stated that
collide(P._movie_Late, Le_Remanguille_Soon) = true because

(resources(P._movie_Late) N resources(Le_Remanguille_Soon) = {19.30 — 21.00} # 0 and
collide(The_hobgoblin_Soon, BurryKing_V Late) = false because
(resources(The_hobgoblin_Soon) N resources(BurryKing_V Late) = ()

At this point, an argumentation framework can be adapted to this planning framework.
According to Dung’s [9] definition an argumentation framework is a pair of sets: one set is
a set of arguments, the other is a set of attack relations between arguments.

Definition 4.16 Let arguments and attack_relations be sets of arguments and attack rela-
tions respectively. An argumentation framework is a pair of sets of the form:

(arguments, attack _relations)

The set of arguments is the set of all actions in the domain, i.e. arguments = Laction-
The attack relation is given by the collide function, as seen on Definition 12. For any two
actions actl and act2

attack(actl,act2) if f (collide(actl, act2) = true)
Notice that : attack(al,a2) iff attack(a2,al)

Once the argumentation framework has been defined and adapted properly, the concept
of conflict-free set of arguments (in this case, conflict-free set of actions) can be defined.
Following Dung’s [9] work, a set of arguments can be said to be conflict-free if there are no
arguments a and b in the set, such that a attacks b.

Definition 4.17 Formally, for any set of arguments Set
ConflictFree(Set) = true if f —~(3a,b € Set | attack(a,b))

Using actions as arguments in the set and via the adapted attack relation, one can deduce
that:
ConflictFree(Set) = true if f

—(Jactl, act2 € Set | collide(actl, act2))

The conflict-free condition is easily applicable to a special set of actions, that is, the al-
ternative. If local plans have been properly defined, so that in every local plan there are
no resource conflicts between actions in the same alternative, all alternatives in all agent’s
action plans comply with conflict-free condition.

4.5 Building the global plan

Local alternatives are enough to satisfy agent’s local goals. However, in order to reach the
objective that the global plan represents one has to execute several alternatives, linked to
different goals and thus to different agents, in parallel.

In this work, the concept of a set of alternatives that are to be executed together is
known as complemented alternative. This complemented alternative can be seen as an al-
ternative that has these two properties. First, the actions of the complemented alternative
are the union of the actions of the alternatives that are complemented. Second, the goals of
the complemented alternative are the union of the goals of the alternatives that are comple-
mented. Thus, complemented alternatives are the only multi-goal alternatives, that is, the
only to show more than one element on the head of the rule according to Definition 3

60 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

Definition 4.18 Given two alternatives alt; and alty, and a function complement which,
given a set of alternatives, returns the resulting complemented alternative, the result of the
function is an alternative of the following form:

complement(alty, alty) =

(AN anrC A 9

glegoal(altl) g2€goal(alt2)
—C AN annaC A a2
al€actions(altl) a2€actions(alt2)

Then, the following properties can be derived:

Proposition 4.7
goal(complement(alty, alts)) = goal(alty) U goal(alts)

actions(complement(alty, alts)) =

actions(alty) U actions(alts)

Example 4.16 In the example presented, a complemented alternative is just a tour that
fulfills several goals. For instance, the tour composed of going to 'Port Aventura’ by public
transport and going to see the movie "The Hobgoblin’ in the sooner session fulfills both
‘amusement’ and ‘cinema’ goals. Formally

goal(complement(Port_Aventura_Public, The_hobgoblin_Soon)) = {amusement, cinema}
and

actions(complement(Port_Aventura_Public, The_hobgoblin_Soon)) =

{Port_Aventura, Port_Aventura_Public_T, The_hobgoblin_Soon}. Intutively, this makes
sense, because it is clear that performing the actions ’go from hotel to Port Aventura by
public transport’, ‘enjoy Port Aventura’, ’go from Port Aventura to hotel by public
transport’ and ‘see movie The Hobgoblin’ will fulfill the requests ’amusement’ and ‘cinema’.

Even though agents will execute only one of these alternatives, they need to have means
to reason about the concept of complemented alternative, because the alternatives executed
by other agents can affect the availability of one agent’s alternative. Therefore, the need to
see the set of alternatives to be executed as a whole is clear, as a complemented alternative
acceptable by all agents will be the final result of the coordination process. And in order
to be executable by several agents, and therefore acceptable as a coordination proposal, the
complemented alternative must be conflict-free.

The example presented does not use the framework as a coordination tool for several
planning agents to agree on a single complemented alternative, but as a planning tool that
allows a single planning agent to build a conflict-free set of touristic activities based on the
proposals sent by other agents.

Definition 4.19 Formally, a given complemented alternative ‘calt’ is conflict-free if it sat-
isfies the following property:

—(Jacty, acty € actions(calt) : collide(acty, acts))

Example 4.17 Following the example, it can be stated that
complement(Aquarium_Public, The_hobgoblin_Soon) is conflict-free but
complement(Port_Aventura_-Public, The_hobgoblin_Soon) is not conflict-free.

4.5. BUILDING THE GLOBAL PLAN 61

If a complemented alternative is conflict-free all actions in the alternative can be executed,
no matter resource restrictions. Therefore, the following proposition will be true:

Proposition 4.8 For any two alternatives alty and alts:
per formed(complement(alty, alte)) if f per formed(alty) A per formed(alts)
resources(complement(alty, alty)) = resources(alty) U resources(alts)
utility(complement(alty, alts)) = utility(alty) + utility(alts)
Definition 4.20 A complemented alternative ’calt’ is an alternative for the global plan iff :
o The goals of the alternative is the set of all goals. i.e. goal(calt) = Lgoal

o Is conflict-free. i.e. ConflictFree(calt)

Example 4.18 Following the example, it can be stated that:

e complement(Port_Aventura_Public, P._movie_Late, BurryKing_V Late) is an
alternative for the global plan because:

— goal(Port_Aventura_Public) U goal(P._.movie_Late)
Ugoal(BurryKing_V Late) = Lgoa1

— resources(Port_Aventura_Public) N resources(P._-movie_Late) N
resources(BurryKing_V Late) = ()

o complement(Aquarium_Public, Casa_Pepe_Soon, BurryKing_V Late) is not an
alternative for the global plan because:

— goal(Aquarium_Public) U goal(Casa_Pepe_Soon) U goal(BurryKing_V Late) =
{amusement, restaurant} # Lgoal

o complement(Port_Aventura_Public, The_hobgoblin_Soon, BurryKing_V Late) is
not an alternative for the global plan because:

— resources(Port_Aventura_Public) N resources(P._-movie_Late) N
resources(BurryKing_V Late) # ()

Notice that complement function can also be applied to action plans. Informally, comple-
menting two action plans is the set of alternatives that results of complementing the alterna-
tives in the plans in a Cartesian product. Therefore, it can be seen that the result of the func-
tion is no more than a set of alternatives with a common goal (set of goals in this case), that
is, an action plan.

Definition 4.21 Given two action plans apy, aps:

complement(ap;, ap2) =
Valtl € apl Valt2 € ap2 complement(apl, ap2)

Example 4.19 Following the example, let the following action plans exists:
® apomuse = {Port_Aventura_Public, Port_Aventura_Private}

o ap,est = {BurryKing_V Soon, BurryKing_Soon}

62 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

Then, complement(apamuse, @Prest) = {{Port-Aventura_Public, BurryKing_V Soon},
{Port_Aventura_Public, BurryKing_Soon},

{Port_Aventura_Private, BurryKing_V Soon},

{Port_Aventura_Private, BurryKing_Soon}}

Definition 4.22 A complement of an action plan is a global plan proposal if all the alter-
natives in the set of alternatives are alternatives for the global plan as seen on Definition
17.

Example 4.20 Thus, the complemented alternative (complement(apamuse, APrest)) used in

the example of the previous definition is not a global plan proposal, because the alterna-

tives in the plan fulfill the set of goals {amusement, restaurant} and not the set of goals
{amusement, cinema, restaurant}. However, complementing the action plan complement(apamuse, APrest)
with the action plan apeine = {The_hobgoblin_Soon, The_hobgoblin_Medium} will result in

a global plan proposal.

Algorithm 1 :Ponders alternatives in action plan using agent’s preference_set and taking
into account other agent’s preferences (provided by ponderation)

function ponder, in {ap: action_plan, po: ponderation}, out {ponderation}
BEGIN
ponderation = ()
for all alt € action_plan do
ponderation := ponderationJ < alt, po.value(alt) + utility(alt) >
end for
return ponderation

END

Algorithm 2 : Complements action plans contained in received_proposals with agent’s
action plan

function complement_proposals, in {received_proposals : set_of_proposal}, out {action_plan}
BEGIN
actual _proposal := own_action_plan
for all prop € received_proposals do
actual_proposal = complement(actual _proposal, plan(prop))
end for
return actual_proposal

END

Algorithm 3 : Removes from actual_proposal non conflict-free alternatives

function purge_proposals, in {ap: action_plan}, out {action_plan}
BEGIN
res: =0
for all alt € ap do

if conflictFree(alt) then

res = res U alt

end if
end for
return res

END

4.6. GLOBAL UTILITIES FOR A GLOBAL PLAN 63

Algorithm 4 : Gets the alternatives that appear in all action plans in the set
own_action_plan U received_proposals

function merge_proposals, in {received_proposals : set_of_proposal}, out {action_plan}
BEGIN
actual _proposal := own_action_plan
for all prop € received_proposals do
actual_proposal = actual_proposal N plan(prop)
end for
return actual_proposal

END

Algorithm 5 : Ponders the set of alternatives in actual_proposal using the set of utility
values provided by received_proposals. Then, gets the alternative with the maximum utility

function pick_max, in {actual_proposal : action_plan, received_proposals : set_of_proposal}, out
{alternative}
BEGIN
choice := null
choice_valoration := 0
for all alt € actual_proposal do
for all ponderation € ponderation(received_proposals) do
alt_valoration := alt_valoration + ponderation.value(alt)
if choice_valoration < alt_valoration then
choice := alt
choice_valoration := alt_valoration
end if
end for
end for
return choice

END

4.6 Global utilities for a global plan

Just as alternatives fail to capture the higher objectives the global plan represents, and
complemented alternatives are defined to fill this gap, utilities fail to capture the notion of
coordination and global consensus between agents which this work aims to model. Therefore,
the notion of global utility is defined to fill in this gap. The need comes from the fact that
all the alternatives in the chosen alternative for the global plan are to be executed, so the
framework must provide means for the agents to evaluate, as a whole, all the alternatives,
not only the one the agent has to perform. Therefore, agents can infuse their own preferences
in the alternatives the other agents will execute, as well as on the alternatives they have
to execute. In the end, it will result in a global evaluation of the alternative for the global
plan. Furthermore, this method is very flexible, because if an agent wants to evaluate only
its own alternatives, all it has to do is ponder the alternatives of the other agents with a
neutral value, that is 0. Intuitively, the global utility of an alternative for the global plan
can be seen as the sum of the utility each agent has about this alternative, for each agent
in the domain.

Table 4.6: Utility values for the alternatives per agent

Alternative/Agent Ay Ay A3 By By Bj
Agenty 10 3 2 0 -13 0
Agents -15 0 0 4 12 3

64 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

Table 4.7: Utility values of complemented alternatives for agents and global utility values

Agent Utilitya1g1 Utilityasgs Utilityasgs Choice

Agent, 10 -10 2 A1B1
Agents -11 12 3 A2B2
Global -1 2 5 A3B3

Definition 4.23 Given an alternative for the global plan ’calt’, a function AgentUtility
which returns the utility of an alternative according to an agent’s preference set and Logent,
the set of all agents in the domain:

global _utility(calt) = Z AgentUtility(ag, calt)
ageﬁaggnt

In the example provided, the only agent that has a set of utility values for the touristic
activities proposed is the planner agent. Thus, the example lacks a real use for global
utilities, because local ones (the ones the planner agent has) are enough for fulfilling the
needs of the system described in the example.

However, a system where multiple agents have different utility values can benefit from
the ussage of a global utility function rather than a local one, as the following case shows.

Example 4.21 Let {Agenty, Agenta} = Logent- Let AX, BX € Lyjternative- Let the
following global plan proposal exist: gpp = {complement(Al, B1), complement(A2, B2)
,complement(A3, B3)}. Let XY denote Complement(XY')

If Agent, makes the choice, it will choose A1B1 with an utility for Agent, = 10, Utility
for Agenty = -11 and Global utility = -1.

If Agenty makes the choice, it will choose A2B2 with an utility for Agent, = -10, Utility
for Agenty = 12 and Global utility = 2.

If a consensus choice is made, agents will choose A3B3 with an utility for Agent; = 2,
Utility for Agenty = 3 and Global utility = 5.

An agent has no access to other agent’s preference set, therefore, only an agent can ponder
an alternative for the global plan with its preferences. Therefore, in order to build this global
utility function the global plan proposal must be exchanged over all the agents in the system.

4.7 Coordination protocol

As it has been seen on previous sections, the agents in the domain are to build a set of
common alternatives to fulfill the global plan (that is, global plan proposal) and ponder it.
In order to do so, partially built proposals should be exchanged between the agents in the
domain. This exchange, along with the internal actions the agents have to perform at each
step, are depicted in the coordination protocol.

1. An Initiator agent 3 sends a requests for action plan proposals to all agents in the
domain.

2. Participant agents process request and prepare their proposals.

3This role can be played by any agent in the domain, therefore, the protocol can be considered to be
non-centralized

4.7. COORDINATION PROTOCOL 65

Initiator *Participant

Call for proposals

1 P 2

<own_action_plan,null>

< 3

actual_proposal = complement_proposals(received_proposals)

| actual_proposal = purge proposals(actual proposal)

<actual_proposal,ponder(actual_proposal,null)>

N~ — ol o — &

8 l *1
proposal ‘
10 ¢ 9 *2
|

11 actual_proposal = merge_proposals(received_proposals)

12 pick_max(actual_proposal,received_proposals) > 13
14
| Inform
16 - 15
| Inform
17 > END |
END

1 - actual_proposal = purge proposals(plan(received proposal))
2 - proposal=<actual proposal,ponder(actual_proposal,ponderation(received_proposal))>

Figure 4.5: Basic protocol diagram

3. Action plan proposals are sent to Initiator agent.

4. All proposals are received. A time-out can be set here in case any Participant agent
does not send a proposal.

5. Received action plan proposals are complemented in a single global plan proposal.
At this step, the global plan proposal has alternatives to fulfill all the goals, but it
presents two problems. First of all, it has not been pondered using any utility values,
and second, it can have non conflict-free alternatives.

66

6.

10.

11.

12.

13.

14.

15.

16.

17.

CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

The global plan is filtered, removing non conflict-free options, and pondered based on
utilities. At this step the alternatives in the global plan are conflict-free, but only
according to Imitiator agent point of view. Different resource association rules on
other agents can find conflicts in the alternatives proposed. What’s more, the different
alternatives in the plan have been pondered only with local utility values (that is, the
utilities Initiator agent has). Finally, it must be remarked that, in case none of the
alternatives in the global plan are conflict-free (from Initiator’s point of view) the
protocol will end at this step.

The global plan proposal is sent to Participant agents.

Participant agents receive the global plan proposal. It is filtered, removing non conflict-
free options. At this point, the alternatives in the global global plan are conflict-free
from Initiator agent’s point of view, and from one Participant agent’s point of view.
Finally, it must be remarked that, in case none of the alternatives in the global plan
are conflict-free (from at least one Participant’s point of view) the protocol will end
at this step.

The filtered global plan proposal is pondered based on Participant’s utilities. At this
point, alternatives have been pondered using the utilities of two agents in the system:
Initiator and one Participant. Then, the proposal sent back to Initiator agent as a
global plan counter-proposal.

All global plan counter-proposals are received. A time-out can be set here in case any
Participant agent does not send a counter-proposal.

Initiator agent merges all global plan counter-proposals into a single common global
plan proposal. All alternatives should be conflict-free (from all agents points of view)
at this point. Also, all alternatives should have been pondered according to all agents
utilities values at this point, that is pondered using global utilities.

Initiator agent chooses the alternative with a higher utility score. It sends the alter-
native to all Participant agents.

Each Participant agent starts executing the actions of the selected alternative that
belongs to him.

Initiator agent starts executing the actions of the selected alternative that belongs to
him.

Each Participant finishes performing its part of the alternative. Upon finishing, it
notifies Initiator agent.

All notifications are received. A time-out can be set here in case any Participant agent
does not send alternatives.

Once Initiator agent has finished performing its own actions, it informs Participant
agents that the global plan has been performed. If one action of the plan cannot be
performed or fails, Initiator can command Participants to take actions to revert the
system to a coherent state (that is, actions to undo actions that have been already
performed) and try another alternative (the one with the second-best score according
to global utilities) following protocol from step 12.

4.8. RELATED AND FURTHER WORK 67

Actions in the protocol presenting a higher complexity are depicted on the Algorithms
using meta-code. For understanding the meta-code provided, the following premises are to
be taken into account:

e ponderation is a hash set where the keys are alternatives and the values integers.
Given an alternative alt, ponderation.value(alt) accesses the value associated to this
alternative, returning 0 if this value does not exist.

e proposal is a pair where one element is an action plan, and the second a ponderation.
Given a proposal prop, plan(prop) and ponderation(prop) return the action plan and
the ponderation of the proposal respectively.

e own_action_plan denotes an agent’s action plan

o received_proposals denotes the set of proposals that Initiator agent receives from par-
ticipants.

In the example presented, broker agents lack planning capabilities. Thus, as seen on the
original protocol, they will perform task 3 to provide their own action plans (that is, the
activity proposals) but do nothing at steps 8 and 9 (steps are kept for compliance with the
original protocol). On the other hand, they also do not need to perform any action at steps
13 and 15, because activities will be performed by user, not by agents.

4.8 Related and further work

Dynamic service composition has been covered by several works. Typically, these works
tackle dynamic service composition via pre-defined workflow models (such as in [2]) or Al
planning techniques (such as in [32]). In the former, an abstract composite service is defined
at design time. In this abstract composition nodes are not bound to services, but to generic
search recipes. At run time, this generic recipes are bound to concrete services. The ALIVE
architecture? uses a similar approach (via Service templates) but does not use pre-defined
abstract workflows, but dynamically generated ones. In the latter, existing methods tend
to assume that each service is an action that alters the state of the world. Our framework
uses a similar approach (as actions map to service invocations). However, most of existing
approaches use centralized planning. In centralized planning, a single component (therefore,
a single failure point) is the one that dynamically generates the global plan, and it does so
based on its perception of the world, which is typically centralized. The work presented in
this chapter uses a distributed planning (even though the example shown is a centralized
planner, for simplicity) inspired on GPGP where all agents build local plans that are then
shared in order to generate the global plan.

Argumentation approaches have been applied for handling conflicts in other works, such
as the one by Hulstijn and van der Torre [29] . Conflicts between complex elements are
derived from the conflict between the simpler elements that compose them, that is, the
actions. The framework presented in this chapter uses the same idea, but takes it a bit
further, completely specifying the reason why two given actions attack each other, and
applying this idea to practical ideas such as planning and service composition.

The detection of resource conflicts when generating plans is an issue that has also be
tackled in Decker’s work * Coordinating mutually exclusive resources in GPGP’([5]). Decker’s
work focuses on preventing the use of mutually exclusive resources (known as mutez) via

4The ALIVE architecture is introduced in Appendiz A

68 CHAPTER 4. A THEORETICAL PLANNING FRAMEWORK

a resource agent. Resources, as defined in Decker’s work, are not consumed by tasks, but
used for a certain period of time. When this period expires, the resource can be used by
another task. When agents want to execute tasks, they send a bid for the resources that
will be occupied by the task to the resource agent, who decides which task will make use of
the resource first. Our planning framework has several advantages over Decker’s work. First
of all, is more versatile, as it allows the inclusion of both mutexr resources and resources
that are consumed when the task is performed. It is unclear how Decker’s work deals with
resources that are consumed upon action execution. Second, it is able to deal with multi-
criteria resources (for instance, using both money and time as resources on the example
presented), which can supose a problem under Decker’s approach, due to having to start
multiple bids (one per resource criteria). Last but not least, it is fully distributed. In
Decker’s work, a centralized component is added to a distributed planning system, and this
is not consistent with the idea of distributed plan generation. In the framework presented,
both plan generation and resource-conflict detection and management are performed in a
distributed fashion.

In future steps it is planned to extend the theoretical framework presented to include
i) negative goals (that would represent sets of actions to be avoided), ii) negative resources
(that could either indicate that performing an action will generate a resource or be used to
model synergy between actions, that is, actions that should be performed together) or iii)
actions appearing in several action plans (this would include a negotiation process between
involved agents in order to decide who is to perform this shared action). The potential
improvement provided by using a global utility function instead of a local one is also to be
tested in the future.

4.9 Conclusion

In this chapter a resource conflict management approach to detect and solve conflicts be-
tween service invocations in dynamically generated workflows has been presented. Conflict
detection is achieved via an argumentation-based approach, while conflict solving is achieved
via a distributed negotiation protocol.

One idea under exploration is using resource assignation to control the amount of time a
workflow will take to execute or to balance the work load on a set of services. Services can be
dynamically linked to resources representing the computational load they experience, such
as ’overload’, ’high-load’, 'medium-load’, ’idle’. Then, depending on available resources,
the system would be able to discard workflows that are expected to take too much time to
execute (e.g., they attempt to use too many overloaded -e.g. a resourceless - services).

Using utilities to model the trust (local utilities) and reputation (global utilities) agents
have towards available service is a promising approach. Agents can keep a local utility value
(this is a trust value) for services they invoke. During global plan negotiation process, this
value can be passed to other agents (via a global utility function) that propose this service
in their plan. Once all agents annotate plan proposals with their utility values, the global
utility function will become a reputation value. Therefore, once an agent invokes a service,
it can share information about its performance with other agents.

Chapter 5

Implementing the planning
framework in PAWS

This chapter explains in depth the implementation of the formal planning framework in-
troduced in Chapter 4. The chapter makes use of the concepts introduced during the
presentation of the formal framework, so reader is encouraged to go through Chapter /J
before reading this one. Even then, references to the definitions of the formal concepts are
used when required.

The framework is implemented under the PAWS platform [24] , that has been already
analyzed and described in Chapter 3. One of the objectives of this chapter is to demonstrate
that, once generalized, the framework can be used for tasks that vary from the original
purpose, supporting electronic business systems interacting on the basis of dynamically
generated, cross-organizational contracts.

The chapter starts by explaining how the formal negotiation protocol introduced in
Chapter 4 has been implemented. It goes on by detailing the implementation of the functions
used in the protocol, that are supported by the implementation of the formal framework.
Then, it introduces the process to be followed in order to initialize framework’s elements
(that is, plans, actions, resources, agents, etc.) via a graphical interface. The chapter goes
on by introducing a simple test case with non real elements. Finally the chapter presents a
real-world test case (the one presented in Section 4.2) implemented using the framework.

As an introduction, the diagram of the classes that form a protocol can be seen in Figure
5.1. The diagram of the classes that are used by the behaviors to support decision making
can be see in Figure 5.2. The components of these diagrams are explained in depth later
on this chapter.

5.1 Protocol Modeling

This section explains the formal modeling of the informal negotiation protocol introduced
in Section 4.7. The protocol applies to the scope of an interaction, that is, from the point
where the first message is sent by protocol’s initiator (where the protocol starts) to the
point where the last message is received, either by the initiator or by the participant agents
(where the protocol ends). The main use of the protocol is to simplify the communication
process. As the set of agents in the domain know beforehand which protocol will be used
for interactions, they can deduce which messages can be sent at each point of the protocol,
and which messages can be expected to be received.

69

70 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

InitiatorBehaivour

receivers : Vector
1 I repliers | HashMap

; ; Iocal_plan : PlanOntology

Plan_negotation_protocol

runSimpleP ercepticomm : IConversationListaner) : vaid
F S HashMap runRefusefcomm : ICorversationListener) : woid
runPropose(comm @ IConversationListanar) : vaid
runAgree(comm ; [(ConversationListener) : vaid
£l runlnformicomem : IConversationListener) : vaid
1 runMotUnderstood(zormm ; IConversationListener) woid
initReceversd : Wector
decodeProposalipers: Performative) : void
provide_reply_ s(camm : 1Co 1Listener) | PlanCntolog
ExecutePlan(actions : Vecton :void

==create== Plan_negotation_protocal()

PlanOntology

PlanLocation : Sting
Plan : String

Action_resource | String 1.%
Action_utility : String
Action_agent : String

FaticipantBehaivour

getResources OfActiondaction : String) : Vector
addResourcesToAction{action | String,resource | Sting) | vaid
getActionResourcebapt) : HashMap

setActionResourceMantin : Hashhiap) : vaid runlmprmicomm : IConversationListener) : void
etUtilityOfAction(action © String) Long runProppse(comm : IConversationListener) : woid
setUtilityOftction{action : String,utility - Long) - waid runSuggegticomm : IConversationListener) void
getactionUtilityMapg) : HashiMap runRefuselsomm © IComversationListener) - waid
setActionUtilityMap(in : HashMap) : void runRequest(égmm : [(ConversationListener percept | Request) (void
setPlanLocation(planLacation - String) - void runNotUnderstbga(comm | IConversationListaner) : void

s | Wecton | void
Performative) : vaid

getPlanLocation() : String ExecutePlaniacti
initAlternative() :void decodeProposal(p
addaction(action : String) - woid

getPlan(: String
sz:zl“z’:'(éii‘;l;;::n% : ‘Lne‘?lur ‘Acneplﬁgmha\iman ‘ \Ca\lfmrﬁpmpnsals ‘ | Infarm_global_execution_result ‘
getBestAltemativeotPlang | Vector . 1.* Lealizer»

getAlternativesofP lan(Alternatives © Wector) [void Sqrealizess : /

setActionsOfRgent(action : String,agent : String) : void " "
sethgentOfctiontaction : String) - String ‘\nfnrm_\nca_exacutmn_resu\l)iq,,,,<| Perfarmative }—HRaquest_a\temanva_exenunnn‘
gethctionsOfAgent(alt : Vectar,in_agent : String) : Callection
getActionAgentian() : Hashhap

setactionAgentaptin . HashMap) :void

PlanisEmpty(: boolean ‘Prnpnse?actmn,man‘ ‘Pmpnsafglnha\,p\aﬂ ‘Re]actﬁa:nnnfman‘ |Rajac(ﬁgmna\,man‘

Figure 5.1: Diagram of protocol’s classes

InitiatorBehaivour

net:stistcontract aws: reasoning:behaviolr: Behaviour
net:sfistcontract:aws: reasoning:modules:ArgumentationModule

Arguments : Vectar=String=
attack_relations : Hashhiap

ParticipantBehaivour 1 addArgumentiargument © String) - void
I addAftackRelation(argument1 : String,argument?2 : String) : void

isConflictFreedarguments : Yector) : boolean

DecafPlanParser

T
file : String }
AgentsZMades | HashMap §‘7 ==raalize==
Mates : HashMap

onta : PlanOntology

netzstistoontract awsireas oning:modules:ArgumentationPlanningModule

==greate== DecafPlanParserfile : String AgentPlan : String)
ComputeRecursivePlan(plan : String,Mode : DecafMode AgentMame : String) : String
yetParsedPlang : PlanOntology

mergeip! : PlanOntology,p2 : FlanCntology) | Plandntalogy
purgePlani{plan : PlanOntology) : PlanOntology

PlanOntology.java

FlanCntology.java -= ArgumentationFlanningiodule
==javalmports=

Figure 5.2: Diagram of decision making support classes

The main idea of the protocol is to provide agents with a component that takes care of
communication details (from a high-level point of view), enabling other components to focus
on their functionality and forget communication details such as which messages should be

5.1. PROTOCOL MODELING 71

sent to start a given interaction or which messages should be expected once the interaction
has started. In other words, the functionalities the protocol provides to other components
of the agent are:

1. Upon message reception, deduce (from the history of messages received) which is the
state of the current interaction, and thus, deduce which deliberative process should
be started (that is, decide which alternative is conflict-free, start performing actions
in a alternative, etc.). In other words, when a message is received, the agent can infer
which action should the other modules perform. In this sense, the protocol acts as the
main thread of the agent’s execution, demanding functionalities to the other modules
when messages are received, in a reactive way.

2. When a message is to be sent to another agent, decide which is the set of possible
messages to be sent depending on the state of the current interaction. Also, when
protocol’s initiator execution is started, decide which message (and which protocol if
many of them are available) is to start the execution of the interaction.

5.1.1 Protocol Basic Concepts

The presented protocol (see Figure 5.3) is modeled using 'INGENTIAS Development Kit’ [17].
This editor, developed by the "GRASIA’ group intends to guide and facilitate the designing
and building of multi-agent systems. A part of this design is the 'Interaction Model’. This
model defines a set of interaction units that represent a single information exchange between
two agents. In other words, each unit represent an agent sending a message, that contains
some information, to another agent. Each interaction has an initiator and a collaborator
assigned. The initiator can be seen as the agent that sends the message, whereas the
collaborator can be seen as a agent willing to receive and process the information contained
in the message. In order to model the presented protocol, an interaction unit must be defined
for each message in the protocol, and then, assigned initiator and collaborator according to
the responsibilities in the protocol.

Due to the resemblance between the protocol and the ’Interaction model’ designs, it is
possible to perform a transformation, generating stubs of the PAWS protocols from the
information included in the ’Interaction Model’ design. Thus, it is possible for devel-
opers to design PAWS protocols via a graphical editor and transform them into PAWS
code stubs using a program created for this purpose. The program, known as ’Inge-
nias2ContractCodeGenerator’ has been developed by the author of this document under
the scope of the IST-CONTRACT [3] European project, and is included as delivered code
in the CD that accompanies this document.

5.1.2 High level model

To start with, the protocol must be modeled as a high level flow of messages between the
agents involved. This flow will define which messages can be sent (according to the protocol)
by which agent, and when. Then, this simple model, which is rather far away from the
model INGENIAS requires (as well as far away from the implementation) is divided into
three more simple models, that correspond to INGENIAS interaction model. First of all, a
model defining the actors in the protocol, that is, the agents participating in the protocol.
Second, a model defining the responsibilities of the actors defined regarding each message in
the protocol, that is, which is the actor that will send the message, and which is the actor
that will receive it. Finally, a model defining the flow of the messages, that is, which is the
message that starts the protocol, which messages can follow, and how.

72

CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

W *Participant

l Call for proposals
»
>
>
»
>

Propose action plan

<
<%

Propose global plan

Reject action
plan

Accept global plan

Reject global plan _O

Request alternative
— > execution

<

A

\/

Inform local
execution result

A

execution result

\

I

I

I

| Inform global
I

[

Figure 5.3: Coordination protocol High level design

These are the messages of the protocol as defined seen in Figure 5.3:

1.

Call for proposals: Message sent by the Initiator agent to ask the Participant agents
to send their action plan proposals.

Propose action plan: Message sent by the Participant agents to provide their action
plan proposals to the Initiator agent.

Propose global plan: Message sent by the Initiator agent to provide the Participant
agents with a global plan proposal, when there is at least one available.

. Reject action plan: Message sent by the Initiator agent to inform the Participant

agents there is no conflict-free global plan proposal.

Accept global plan: Message sent by the Participant agents to inform the Initiator
agent the proposed global plan is conflict-free. Includes the modified global plan.

Reject action plan: Message sent by the Participant agents to inform the Initiator
agent the proposed global plan is not conflict-free.

Request alternative execution: Message sent by the Initiator agent to ask the Partic-
ipant agents to start executing an alternative for the global plan.

Inform local execution result: Message sent by the Participant agents to inform the
Initiator of the local result of executing the alternative for the global plan. That is, the
result of executing the actions the Participant agent has to perform from the whole
alternative.

Inform global execution result: Message sent by the Initiator agent to inform the
Participant agents of the global result of executing the alternative for the global plan.
That is, the result of executing the set of all actions in the alternative. If any alternative
failed, the Initiator agent can include in the content of the message some actions to be

5.1. PROTOCOL MODELING 73

executed in order to undo already performed actions in the alternative that has failed.
Then, the Initiator agent can request the execution of a different alternative, via the
dotted-line path.

5.1.3 INGENIAS Role model

Initiator Plan_negotation_protocol Participant

m “alinitiatesn— ﬁe I% «IColaboratess—> I‘:I
T

ulHasSpecs

GRASIASpecification_plan_negotation

©

Figure 5.4: Coordination protocol, INGENIAS design: Roles

Initiator Participant Initiator Participan Initiator Participant Initiator Participant Initiator Participant
«Ulinitiates» «UlColaborates» «Ulinitiates» «UICt UIC / Ulinitiat: VIC: i «UIColaborates»
«InteractionUnit» «InteractionUnit» «InteractionUnit» «InteractionUnit» «InteractionUnit»

Call_for_proposals Propose_global_plan Accept_global_plan Request_: ive_¢ Inform_global_execution_result
@ SpeechAct: cfp @ SpeechAct: propose ® SpeechAct: accept-proposal ® SpeechAct: request @ SpeechAct: inform
«InteractionUnit» «InteractionUnit» «InteractionUnit» «InteractionUnit»
Propose_action_plan Reject_action_plan Reject_global_plan Inform_local_execution_result
® SpeechAct: propose ® SpeechAct: reject-proposal ® SpeechAct: reject-proposal ® SpeechAct: inform
UIC \ i / .m-\ UIC i UIC i \
Initiator Participal pitiator Participant Initiator s‘“cmm Initiator Participant

Figure 5.5: Coordination protocol, INGENIAS design: Responsabilities

Figure 5.4 shows the modeling of the actors involved in the protocol, that is, the roles
model. Each kind of actor is modeled as a role. In this case, only two roles are available,
the Initiator and Participant. Note that the Initiator role is modeled as the initiator of
the protocol, and the Participant role as the collaborator of the protocol. Also, note the
protocol can be assigned a name at this point. Finally note how protocol is assigned to

74 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

a ’Grasia’ specification, however this association has no implications on the scope of this
document.

5.1.4 INGENIAS Responsibilities model

Figure 5.5 shows the modeling of message responsibilities as an INGENIAS interaction
model, that is, the responsibilities model. Each interaction unit represents a message with
one or more initiator and collaborators, a name (which is assigned in alignment to the mes-
sage for simplicity) and a performative. As specified in Section 2.1.1.4, each performative
represents a communicative intention. Please note that when an agent has the tip of the
arrow of a message in Figure 5.3 it has a collaborates relationship with the interaction unit
that represents the message, whereas the other agent has an initiates relationship with the
interaction unit.

5.1.5 INGENIAS Precedences model

«interactionUnits
B

® SpeechAct: request

M
wUlPrecedess

«interactionUnits
A

® SpeechAct: request

«UlPrecedess

«UIPrecedes»____}

«interactionUnits
C

#«UIPrecedes»’;‘

«interactionUnits»
B

® SpeechAct: request

@ SpeechAct: request

Figure 5.6: Coordination protocol, INGENIAS design: Precedences example

Figure 5.7 shows the order between the different interaction units defined, that is the
precedences model. This ordering is modeled via ’ui-precedes’ relationships. If a given in-
teraction unit A’ precedes another unit 'B’, unit 'B’ cannot be exchanged between the
participants in the protocol until ’A’ has been exchanged. Alternative paths can also be
specified, taking the example in Figure 5.6, unit 'D’ cannot be exchanged between the
participants of the protocol until either unit 'B’ or unit ’C’ have been exchanged. By defin-
ing these precedences some restrictions that are inherent to the protocol can be modeled.
Such restrictions are of the form ’Propose_action_plan’ message cannot be send if message
"Call_for_proposals’ has not been received before, or ’Propose_global_plan’ can only be fol-
lowed by either ’Accept_global_plan’ or ’Reject_global_plan’ message. Notice messages that
are not linked by ’precedes’ relationship to another message are finishing messages, that
is, the protocol ends once these messages are sent. Example of these messages are ’In-
form_global_execution_result’ or 'Reject_global_plan’.

5.1.6 INGENIAS Interaction Model

As seen on Figure 5.8 all the models defined before (that is, roles, responsibilities and
precedences) are put together in a INGENIAS Interaction Model.

5.2. PROTOCOL IMPLEMENTATION

«InteractionUnit»
Reject_action_plan

® SpeechAct: reject-proposal

«UlPrecedes»

«InteractionUnit»
Propose_action_plan

@ SpeechAct: propose

«UlPrecedes»

«InteractionUnit»»
Call_for_proposals
@ SpeechAct: cfp

«InteractionUnit»
Reject_global_plan

@ SpeechAct: reject-proposal

«UlPrecedes»
«InteractionUnit» A‘;L":Z:ac:::::"nl:"
Propose_global_plan oS hAci_g MJ' .
" peec! : accept-proposal
F«UIPrecedes:>| © SpeechAct: propose —«UIPrecedes»—>|
T
«UIPre\tI:/edes»
«InteractionUnit» «InteractionUnit»
Inform_global_execution_result
® SpeechAct: inform ® SpeechAct: request
7
«UlPrecedes» «UlPrecedes»
2
«InteractionUnity»

Inform_local_execution_result

® SpeechAct: inform

Figure 5.7: Coordination protocol, INGENIAS design: Precedences

[X] Protocol_IM

[reae &

e e owm e
PSP, GHP SN,
/ 7

S seonnia prepem

Aoowt gicta pi
G

Propom amon plan
LE=r=yr—

e

ot glob plan

¥ SeenAc rmessrsant

[Srae meserrent

e

il
2t

Figure 5.8: Coordination protocol, INGENIAS general design

5.2 Protocol Implementation

INGENIAS Interaction Model is able to fully specify the interaction protocol that will be
used in the framework. However, in order to be able to use the protocol, it must be integrated

(0]

76 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

in the platform that will support the framework. To do so, a protocol compatible with the
PAWS protocol system must be generated. In PAWS, a protocol is composed by several
components, that are grouped under a common Java package. This section goes over all
these components, explaining their functionality, and showing an example of the generated
file based on the INGENIAS model presented in Section 5.1. Once all the components
have been introduced this section finishes by stating the process of generating them from
the INGENIAS model.

igomez@bender - Protocol :java -jar Ingenias2ContractCodeGenerator.jar ./Protoc
ol.xml ./Stubs

File to parse --->./Protocol.xml
Directory where stubs will be generated --->./Stubs

Inform_global_execution_result|1
Propose_global_plan|1
Reject_global _plan|1
Call_for_proposals|0

Process complete, thank you for using my program
R Ignasi Gomez-Sebastia (igomez@1si.upc.edu)

© D:WMaster\Tesis\Codigo\Protocol\Stubs

=
=
=

Tareas de archivo y carpeta 2 R

<

‘ Call_for_proposals.java : EBookContractOntology.java
J 4

Accept_global_plan.java
T vl b
Otros sitios Y, ’ Inform_global_execution_result.java 1' Inform_local_execution_result.java : InitiatorBehaivour java
VJ#: VI =
Jq ParticipantRole.java

<
=
=
=

=
=
=

Detalles
1‘ ParticipantBehaivour.java
i

InitiatorRole.java
Stubs Ji‘_
Carpeta de archivos =
Fecha de modificacion: lunes, 22 de
Propose_action_plan.java] Propose_global_plan.java
At

| Plan_negotation_protocol java .
I

Junio de 2009, 11:12 -

=
=
=

Reject_action_plan.java Reject_global_plan.java Request_alternative_execution.java
vl vl Vil

Figure 5.9: INGENIAS and PAWS: Stub generation process

As mentioned before in Sub-Section 5.1.1 all the components are stubs generated using
the software ’Ingenias2Contract CodeGenerator’ a meta-coder developed by the author of
this document under the scope of the project IST-CONTRACT [3] that is able to trans-
form an INGENIAS interaction model specification into PAWS protocol stubs. In order to
generate the stubs all that is to be done is to run the software specifying as parameters
the INGENIAS model (saved as an XML formated file) and the system directory where the
stubs will be generated. Figure 5.9 shows this process.

Once the stubs have been generated, all that has to be done is creating a Java pack-
age that fits the one used in the stubs (it will be net.sf.istcontract.aws. communica-
tion.protocol. PROTOCOL where PROTOCOL is the name assigned to the protocol) and
import the stubs into the package. Once the stubs have been imported, the protocol is ready
to be adapted and used.

5.2.1 PAWS protocol components: the protocol

The protocol is the core file of the package. It is an extension of PAWS’s protocol file and is
used to:

5.2. PROTOCOL IMPLEMENTATION (s

//Define and init roles

Role Initiator,Participant;

Initiator = addActor(InitiatorRole.class.getName());
Participant = addActor(ParticipantRole.class.getName());

//3¢t roles on protocol
setConversationInitiator (InitiatorRole.class);
setConversationParticipant (ParticipantRole.class);
//Define and init interaction unit
MessageTemplate Propose global planInitiatorParticipant =
addMessage (Initiator , Participant , Propose global plan.class , EBookContractOntology.class);
MessageTenplate Reject global planParticipantInitiator =
addMessage (Participant , Initiator , Reject global plan.class , EBookContractontology.class);
MessageTenplate Accept global planParticipantInitiator =
addMessage (Participant , Initiator , Accept global plan.class , EBookContractOntology.class);
//5et starting messages of protocol
setStartiessage(Call for proposalsInitiatorParticipant);

//8et precedences between nes

es of protocol
LinkFollowingMessage (Propose global planInitiatorParticipant, Reject global planParticipantInitiator);
LinkFollowingMessage (Propose _global planInitiatorParticipant, Accept global planParticipantInitiator);

Figure 5.10: INGENTAS and PAWS: Protocol stub example

e Initialize the roles participating on the protocol, and assign them as protocol Initiator
or Participant. In order to initialize the roles, generated role classes are used.

e Initialize the messages that are to be used in the protocol. Each of them will have:

— An initiator, that is, the role responsible of sending the message.
— A participant, that is, the role responsible of receiving the message.

— A message type, that is, one of the interaction units from the INGENTAS model.
Please note that, according to this assignation, a single interaction unit can map
to more than one message in the protocol. It will happen in the case where an
interaction unit is linked to more than one role via either ’Initiates’ or ’Collabo-
rates’ relationships. If it happens, a message is created per interaction unit and
per initiator - participant pair.

— An ontology class. This is a Java class that represents the ontological content
that is sent along with each message. A dummy ontological class (known as
"EBookContractOntology’) is assigned when the protocol class stub is generated.
The programmer can freely adapt this class to its own needs.

e Assign the precedences to the initialized messages. First of all, define which message
is to start the interaction. Then define which messages can follow each message in the
interaction.

Figure 5.10 shows a small part of the protocol stub file generated from the INGENTAS
model presented in Section 5.1

78 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

5.2.2 PAWS protocol components: the behaviors

The behaviors are the most complex component of the protocols. There is one auto-generated
behavior stub per role. Programmers must adapt these stubs, and they can duplicate them
to create multiple behaviors per role. This is useful in the case where several agents (possibly
with different behaviors) play the same role.

Behaviors provide the protocol with decision making capabilities (that is, if several mes-
sages can be sent at any point of the protocol, which one is to be chosen) and the programmer
with stubs to facilitate the communication.

First of all, behaviors include procedures to react to incoming messages, enabling pro-
grammers to perform some actions upon message reception. The stubs provide function-
alities to find out in which exact point of the protocol the interaction is by analyzing the
performative contained in the incoming message.

Second, they also include stubs to handle the generation and sending of messages in
response to the message that has been received. These stubs include the control of the
type of message to be sent (that must be compliant with the protocol being followed), the
creation of an ontology content for the message, the creation of a performative and finally
the creation of an envelope (following the specifications explained on Section 2.1.1.3) to
include all the elements mentioned before. Formally, a given message 'MesB’ can be sent in
response to a received message 'MesA’ if the INGENIAS Interaction Model is linking 'MesB’
with '"MesA’ via a precedence relationship. Apart from that, the role linked to the behavior
must have the responsibility of sending the reply message. For instance, following the speci-
fication of the protocol presented on Section 5.1 it can be stated that the Initiator agent can
respond either with 'Reject_global_plan’ or with ’Accept_global_plan’ messages to message
"Propose_global_plan’. This is because both 'Reject_global_plan’ and ’Accept_global_plan’
are linked via precedence relationship to 'Propose_global_plan’, and also because both 'Re-
ject_global_plan’ and 'Accept_global_plan’ are to be initiated by the Initiator agent.

Last but not least, the behavior stubs are structured in such a way that they ease the
process of including the procedures deciding which message to send. Following the prior
example, deciding whether to accept or reject a global plan when a global plan proposal is
received.

The behaviors are divided in two main types of functions that can be easily modified by
programmers to adapt the generate code to their own needs. It must be noted that, unlike
in other components, these modifications are mandatory. Otherwise, the original behaviors
cannot be assured to work properly. Apart from these main functions, additional support
functions are provided. These support functions include logging of errors during protocol
execution or the possibility of sending a not-understood message at any point of the protocol.

The first type of main function provided by the protocol is the ‘runSimplePercept’ func-
tion. A stub of this function is depicted in Figure 5.11. Only behaviors linked to agents of
type Initiator include it. The function allows the agents responsible of starting the protocol
to send the first message of the protocol to one or more agents when a given external percept
is received. The programmer can adapt the following parameters in the function:

e Percept: External percept that makes the agent start the protocol. Other percepts will
be logged for debugging purposes and ignored. The original value for this parameter
is ' PUT_-YOUR_PERCEPT_HERE’.

e Onto: Ontological content to be sent along with the first message. The original value
for this parameter is null, so no content is sent.

o receiverName: Name of the agent (as seen on Section 2.1.1.7) that will receive the

5.2. PROTOCOL IMPLEMENTATION 79

//Behaivour when initiator wants to start protocol
@override
protected void runSimplePercept {(IConversationListener comm) throws AgentException
{
//Variables
ontologyConcept onto = null;
//ToDO:Add your ontological-content here, if required
//Uncomment ONLY if ontology is added
//onto = new OntologyConcept (PLACE_YOUR ONTOLOGY HERE) ;
//END-OF TODO:Add your ontological-content here, if required
String percept = "PUT_YOUR_PERCEPT HERE";
String receiverName = "PUT_YOUR RECEIVER NAME HERE";
SimplePercept sp = (SimplePercept)perceptﬂ
//TODO: Adapt conditions and code to your needs
if ((sp.getStInput() .equalsIgnoreCase (percept)))
{
try
{
receiverName = "PUT YOUR_RECEIVER NAME HERE";
//send the first message of the protocol
comm . SendMessageStartNewConversationInitiator (Plan_negotation_protocol.class

Figure 5.11: PAWS Protocol Stub: Run simple percept function

first message of the protocol. More than one receiver can be specified, in this case, an
instance of the protocol is started for every receiver agent.

//Variables
Performative receivedPerf = (Performative)this.percept;
String ID = comm.buildID{(receivedPerf, "Initiator");

ocol

comm .UpdateStateofConversationReceivedMessage (receivedPerf, Propose.class, ID);
//Bnd get current node name

currNode = comm.GetCurrentNodeName (ID) ;

//Update state of pro

Figure 5.12: PAWS Protocol Stub: Update state of protocol on message reception

The second main type of function is the TunPERFORMATIVE’ function, where PER-
FORMATIVE is a simple PAWS performative. These functions are executed when a message
including the corresponding performative is received. The functions include stubs to update
the state of the protocol, finding out, exactly, the state of the interaction. The procedure
"UpdateStateOfConversationReceivedMessage’ will update the state of the interaction, and
the function ’GetCurrentNodeName’ retrieves the current node (that is, state) of the proto-
col. As nodes of the protocol map exactly to INGENIAS interaction units, and such units
are unique (they will not appear twice in different steps of the protocol) it can be stated
that knowing the current node identifies the current state of the protocol. Figure 5.12
shows the procedure followed to identify the current state of the protocol when a message is
received. Once the current state of the protocol has been received, if it is a final state of the
protocol ! the stub will perform actions to log the end of the protocol. Programmers can add
their own code here to perform some actions when the protocol ends in a given state. For
instance, in a negotiation protocol, an agent could update the trust it has towards the agent
it is negotiating with, raising it if the negotiation ends in a satisfactory state and lower it
otherwise. Figure 5.13 shows the stub corresponding to the treatment of a final message of

IThat is, no messages can follow these messages according to INGENIAS design

80 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

if (currNode.equalsIgnoreCase("Reject_global plan"})

a finishing mn f protocol
): repla with desired
AgentLogger.log ("Agent is at runRefuse: Current node is ------- >
+ currNode + "' this is the end, my only friend, the end"):;
//END-OF TODO:replace with desired code

Figure 5.13: PAWS Protocol Stub: Detection of protocol’s final state

//Uncomment to send Propose_global plan
if (1==1)
re e = this.getBehaivo gl
Pr /Performative = nev (), receivedPerf.getIdDialo
//Me e nt
e(replyPerformative, replyMessage, onto, ID);
}
*/
//Uncomment to send Rej f:\:‘t_a\:‘t 1011_)?1511
/ %
if (1==1

eject_action_plan", NextMsg);
Perf.getIdMessage (), receivedPerf.getIdDialog(),

//Message is

comm .sendMessage (replyPerformative, replyMessage, onto, ID);

Figure 5.14: PAWS Protocol Stub: Detection of protocol’s non-final state

a protocol. If it is not the final state of the protocol, a stub to create and send the messages
that can follow the message received is provided. There is one stub per possible message.
It is responsibility of the programmer to decide which of the stubs is chosen, that is, which
of the messages is to be sent. For instance, in a negotiation protocol where a selling prize
proposal can be accepted or rejected by the buyer, an accept message can be sent if the prize
suggested is lower than the utility perception of the item by buyer, and a reject message
sent otherwise. Figure 5.1/ shows the stub corresponding to the treatment of a non-final
message of a protocol

5.2.3 PAWS protocol components: the message types

The message types are representations of the interaction units that appear in the INGENTAS
model. Each message type is an extension of the PAWS performative that corresponds to
the INGENIAS performative assigned to the interaction unit in the model. Notice that
message type stubs generated are rather simple, they just contain a constructor method
that calls the constructor of the superclass. However, the possibility to extend these stubs
with custom code is a powerful tool for PAWS programmers. By extending the code one
can, for instance, easily include procedures that are to be executed every time an instance
of a given performative is generated.

It must be remarked that performatives used in PAWS are not the same as the ones
used in INGENTAS. However, a direct mapping between both can be easily generated. This
mapping has been designed taken into account FIPA’s performative definition as seen on
Section 2.1.1.4. To summarize the mapping can be seen in Table 5.1

5.2. PROTOCOL IMPLEMENTATION 81

= &3 Plan_negotation_protocol

Accept_global_plan.java
Call_for_proposals.java
EBookContractOntology.java
Inform_global_execution_resuilt.java
Inform_local_execution_result.java
IniiatorBehaivour.java
InitatorRole.java
ParticipantBehaivour.java
ParticipantRole.java
Plan_negotation_protocol.java
Propose_action_plan.java
Propose_global_plan.java
Reject_action_plan.java
Reject_global_plan.java
Request_alternative_execution.java

L)

L)

L)

.

L)

N

.

Figure 5.15: INGENIAS and PAWS: Message types generated

Table 5.1: PAWS-INGENIAS performative mapping

INGENIAS performative PAWS performative

accept — proposal AcceptProposal
agree Agree

confirm ConsentSuggestion
discon firm DismissSuggestion
failure Failure

inform Inform

propose Propose

query Query

refuse Refuse

request Request

subscribe Subscribe

cfp Suggest

cancel UnSubscribe

Figure 5.15 shows all the message type stubs (highlighted components) generated from
the INGENIAS model presented in Section 5.1.

5.2.4 PAWS protocol components: the roles

The roles are representations of the different types of agents that can interact via the pro-
tocol. Roles are used to filter the messages that, at any point of the protocol, a given agent
is allowed to receive. By definition, a given message is allowed if it contains a performative
such that there is, at least, one interaction unit containing this performative and having a
‘collaborates’ relationship with the role. In this sense, role’s functionality is rather obsolete,
because behavior components are able to perform this very same task with more flexibility,
and keeping track of the interaction state, enabling and disabling messages at different points
of the protocol rather than doing it for the whole protocol. In other words, unlike roles,
behaviors can ensure not only that interaction unit responsibilities are followed but also that
interaction unit precedences are. However, roles are kept for backwards compatibility with
older versions of protocols’ implementations, and because they can be used to include some
procedures that are to be invoked when a given message is received.
Role implementations can be divided in two main procedures:

e processIncomingMessage: procedure invoked when a message is received. If the per-
formative in the message is permitted, as defined before, the message is forwarded to

82 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

Goverride
public void startConversation(IConversationListener owner, Performative perf, ProtocolNode rootNode)
throws ProtocolViolationException {

this.owner = owner;

protocolNode = rootNode;

if (1==2) {/*this is a dummy code, so all perfornatives are inside else ift*/}

else if ((perf instanceof Refuse)) {processIncomingMessage (perf, owner);}

else if ((perf instanceof Propose)) {processIncomingMessage(perf, owner);}

private void handleRefuse (Performative perf, MessageTemplate[] possibleReplies)
{
//NOTICE: Intelligence and

J

processing moved to hehaivour

private void handlePropose (Performative perf, MessageTemplate[] possibleReplies)
{

/NOTICE: Intelligence and message processing moved to behaivour

)

Figure 5.16: INGENIAS and PAWS: Role code stub example

a handler function. Otherwise, an exception is thrown.

e handlePERFORMATIVE: where PERFORMATIVE is a permitted performative. In-
deed, there is one handler function for each permitted performative (i.e handlePropose,
handleAgree, etc..). In the role stubs, these functions are empty, but ready for pro-
grammers to add their own code here if they require so.

Figure 5.16 shows a small part of a role stub generated from the INGENIAS model
presented in Section J.1.

5.2.5 PAWS protocol components: the ontology

The ontology is the component of the protocol that allows agents to include meaning about
the entities in the domain and their relationships into the messages. In practical means, in
PAWS the ontology is translated into a set of Java classes (one per entity to be represented)
with a set of attributes. The class will also present two functions per attribute, one to set
the value of the attribute and one to retrieve it. Attributes can be references to another
classes (effectively modeling relationships between entities) or simple data types (such as
the common types provided by Java, Integer, String, etc...). The ontology class is initialized
in the behavior components, before sending a message, and parsed back (via Java class
casting) upon message reception. A dummy ontology is automatically generated from the
INGENIAS model and included in protocol’s Java package. Programmer can adapt the
ontology later to its own needs.

Figure 5.17 shows a small part of a dummy ontology generated from the INGENIAS
model presented in Section 5.1.

5.2.6 PAWS component generation procedure

In order to generate the stubs for the components mentioned before in this section, two
procedures are to be followed. First, the INGENIAS interaction model must be parsed,

5.2. PROTOCOL IMPLEMENTATION 83

public class EBookContractOntology {
@XmlElement (required = true, nillable = true)
protected String name;
public String getName({) {
return name;
}
public void setName (String value) {
this.name = value;

}

Figure 5.17: INGENIAS and PAWS: Role code stub example

retrieving information about the important components in the model. Then, this information
must be transformed to Java code implementing the PAWS protocol components stubs.

The parsing process is performed by reading the text file (formatted in xml) that stores
the INGENIAS interaction model. The following elements are retrieved from the file.

<object|1d="Cal1_for_proposals"”type="ingenias.editor.entities.InteractionUnit"
<objectproperty i1d="lransferredlInfo” collection="true™>
</objectproperty>
<mapproperties>
| <key 1d="Speechnct">cfp</key>|
<key 1d="_wiew_type">UNL</Key>
</mapproperties>
</object>

Figure 5.18: INGENIAS parsing: Message structure

Messages: Each interaction unit is a message. Both name and performative can be
retrieved from the interaction unit. INGENIAS interaction units are stored as objects of
type ’ingenias.editor.entities.InteractionUnit’. The name of the message can be retrieved
from the ’id’ property of the object. The performative of the message can be retrieved from
the value of the 'SpeechAct’ key of the object. This information is useful for building both
protocol and message type components. Figure 5.18 shows an example of a message as
stored in an INGENTAS xml file.

<object 1d="Initiator"|type="ingenias.editor.entities.Role"
<mappropercicss>

<key id="_wview_type">INGENIAS</key>

</mapproperties>

</object>

Figure 5.19: INGENIAS parsing: Role structure

Roles: Each role is modeled as an INGENIAS role. Only the name of the role is relevant
for the stubs. Roles are stored as objects of type ’ingenias.editor.entities.Role’. The name
of the message can be retrieved from the ’id’ property of the object. This information is
useful for building protocol, role and behavior components. Figure 5.19 shows an example
of a role as stored in an INGENTAS xml file.

Protocol: The name of the protocol can be retrieved from the INGENTAS model. The
protocol is stored as an object of type ’ingenias.editor.entities.Interaction’. The name of the
protocol can be retrieved from the ’id’ property of the object. This information is used for

84 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

<0bject|id="Plan_negotation_protocolﬂ type="ingenias.editor.entities.Interaccion"4
<objectproperty i1d-nlransierredlnior collection="true®>

</objectproperty>

<mapproperties>

<key 1d="_view_cype">INGENIAS</key>

</mapproperties>

</object>

Figure 5.20: INGENIAS parsing: Protocol structure

the name of the protocol stub file and for the name of the package. Figure 5.20 shows an
example of a protocol as stored in an INGENTAS xml file.

<relationship id="68"Itype="ingenias.editor.Enti:ies.UIPrecEdEsf)
<object id="68" type=Tingenias.ediLor.entities.UlPrecedes s
<mapproperties>

<key 1d="_v1ew_type">INGENIAS</key)

</mapproperties>

</object>

all for proposals"”|class="ingenias.editor.entities.InteractionUnit"|roleName="UIPrecedessource”
type=Tingenias.ediLoOL.enticies. recedessourceRole” dgeid="18781313">

<mapproperties>

attributeToShow">0</key>

_view_type">INGENIAS</key>

</mapproperties>

</role>

<role|idEntity="Propose_action_plan”|class="ingenias.editor.entities.InteractionUnit" |roleName="UIPrecedestarget”
type="ingenias.editor.entities.UIPrecedestargetRole” dgcid="21695081">

<mapproperties>

<key id="attributeToShouw">0</key>

<key id="_view_ type">INGENIAS</key>

</mapproperties>

</role>

</relationship>

Figure 5.21: INGENTIAS parsing: Message precedence structure

<relationship 1d="39"ltype="1ngenias.ed1to:.entlties.UIColaborates"
<object id="39" type="ingenias.ediCOL.ENCiCiEes.UlC0lab0LGACES >
<objectproperty id="Condition">

</objectproperty>

<mapproperties>

<key 1d:"_viev_type">INGENIAS</key>

</mapproperties>

</object>

<role|idEntity="Reject action plan" klass="ingenias.edita:.entities.In:e:actiDnUnit" roleName="UIColaboratessource"
type="ingenias.editor.entities.UIColaboratessourceRole” dgcid="18245896">

<mapproperties>

<key id="attributeToShouw">0</key>

<key i _view_cype")INGENIAS</key>

</mapproperties>

</role>

<role|idEntit Part pan! Iclass="ingenias.editar.entities.Rule" roleName="UIColaboratestarget™
type= . . s.UIColaboratestargetRole” dgoid="32769Z27%

<mapproperties>

<key id="attributeToShow">0</key>

<key id= _vieu_type")INGENIAS</key>
</mapproperties>
</role>

Figure 5.22: INGENTIAS parsing: Message-role collaborates responsibility structure

5.2. PROTOCOL IMPLEMENTATION 85

Message precedence relationships: Each precedence relationship between interac-
tion units is stored in a ’'relationship’ of type "UIPrecedes’. These relationships contain two
interaction units: one unit with property 'roleName’ set to "UIPrecedessource’ and the other
set to "UIPrecedestarget’. The unit with the value "UIPrecedessource’ is linked to the unit
with value "UIPrecedestarget’ via a precedence relationship. In other words, the message
corresponding to the unit with value "UIPrecedessource’ is followed, according to the pro-
tocol specification, by the message corresponding to the unit with value *'UIPrecedestarget’.
This information is useful for building protocol and behavior components. Figure 5.21
shows an example of a message precedence relationship as stored in an INGENTAS xml file.

Message-role collaborates relationships: Each responsibility relationship of type
‘collaborates’ assigned to an interaction unit is stored in a ’relationship’ of type 'UICo-
laborates’. These relationships contain two components: one is an interaction unit with
property ‘roleName’ set to 'UlColaboratessource’. The other component is a role with prop-
erty 'roleName’ set to "UlColaboratestarget’. In other words, the message corresponding to
the component with value "UlColaboratessource’ can be received, according to the protocol
specification, by the role corresponding to the component with value "UlColaboratestarget’.
This information is useful for building protocol, behavior and role components. Figure 5.22
shows an example of a message-role ’collaborates’ relationship as stored in an INGENTAS
xml file.

<relationship 1d="D"|type="1ngenlas.edlcor.entltles.UIInltlates">|
<object id="0" type="ingenias.editor.entities.UIInitiates">
<objectproperty id="Condition">

</objectproperty>

<mapproperties>

<key 1d="_v1eu_type">INGENIAS<kay>

</mapproperties>

</object>

<role idEn51tv:"Call_fur_prupusals1 class="ingenias.editor.entities.InteractionUnit”|roleNawe="UIlInitiatessource"
type= N N N itiatessourceRole” dgcid="16607011">

<mapproperties>

<key id="attributeToShou">0</key>
<key id="_view_type">INGENIAS</key>
</mapproperties>

</role>

<rolelidEn51cv="In1tiator"Iclass="ingenias.edito:.en:ities.Rale" roleNeme="UIInitiatestarget"”
type="ingenias.editor.entities.UIInitiatestargetRole” dgceid="1935046">

<mapproperties>

<key id="attributeToShou">0</key>

<key 1d="_v1ew_type">INGENIAS</kEy>

</mapproperties>

</role>

</relationship>

Figure 5.23: INGENIAS parsing: Message-role initiates responsibility structure

Message-role initiates relationships: Each responsibility relationship of type ’initi-
ates’ assigned to an interaction unit is stored in a ’'relationship’ of type "Ullnitiates’. These
relationships contain two components: one is an interaction unit with property 'roleName’
set to 'Ullnitiatessource’. The other component is a role with property ’roleName’ set
to 'Ullnitiatestarget’. In other words, the message corresponding to the component with
value ’Ullnitiatessource’ can be sent, according to the protocol specification, by the role
corresponding to the component with value ’Ullnitiatestarget’. This information is useful
for building protocol, behavior and role components. Figure 5.23 shows an example of a
message-role ’initiates’ relationship as stored in an INGENIAS xml file.

Once the information provided by the parsing process is available, the stubs for PAWS
protocol’s components can be generated. The process for generating each stub is as follows:

86 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

Protocol: One protocol file is generated. Protocol’s class name is the "Protocol name’
retrieved during parsing. This name is also used to give a proper name to class’ constructor
method. First of all, variables representing the roles are created based on ’Role names’
retrieved during parsing. These variables are initialized using 'Role type’ information, effec-
tively assigning Initiator or Participant roles to them. Once these variables are ready, the
Initiator and the Participants of the protocol can be assigned. Secondly, messages variables
are created using ’Interaction units names’. In order to create these variables, the sender
and receivers of the messages must be known, and this information has been retrieved dur-
ing the parsing via both "Message-role collaborates relationships’ and "Message-role initiates
relationships’. In order to initialize these variables, sender of the message, receiver of the
message and performative corresponding to the message are required. Also, the name of
the ontology to be used must be know, but this information is static, and is not retrieved
during the parsing process. In the third step, message variables are used to set the message
to start the protocol. This information has been implicitly retrieved during parsing, because
"Message precedence relationships’ state which message goes before each message. In order
to know which message starts the protocol, all that has to be done is looking for the message
that is not preceded by any message. Last but not least, message precedence relationships
are set. This process is fairly easy, taking into account 'Message precedence relationships’
are already available.

Roles: One role file per role in the INGENTAS interaction model is generated as retrieved
in 'Role names’ during parsing. Role’s class name is the name of the protocol and the name
of the role as retrieved via 'Protocol name’ and 'Role name’ during parsing. This class is
an extension of class 'Conversationlnitiator’ if the role initiates the protocol and of class
"ConversationParticipant’ otherwise. Whether the role starts the protocol or not can be
inferred by finding out which is the message that starts the protocol, and looking at the role
responsible of sending it. First of all, if the role is the starter of the protocol, a stub for the
function ’startConversation’ is generated, otherwise the stub is not included in the role file.
Secondly, a stub for function 'processIncomingMessage’ is generated. This stub will include
a ’handler’ function for each performative the role is permitted to receive, according to the
definition of the protocol. To know this, it must be found which messages the role is linked
to via ’colaborates’ relationships, and which performatives do these messages have. All this
information has been parsed beforehand via ’SpeechAct’ component of the interaction unit
and ’Message-role collaborates relationships’. Finally, stubs for handler functions must be
generated. There will be a handler function for each performative the role is permitted
to receive, as explained before. Handler functions are rather simple, and the name of the
performative is used only in the name of the function.

Message types: One per interaction unit available in the INGENTAS interaction model
is generated as retrieved in ’InteractionUnit’ objects during parsing. Type’s class name is
the name of the protocol and the name of the interaction unit as retrieved during parsing.
This class is an extension of a PAWS performative class. The exact class can be inferred
using the performative associated to the interaction unit object and the translation table
presented in Table 5.1.

Behavior: One role file per role in the INGENIAS interaction model is generated as
retrieved in 'Role names’ during parsing. Behaivour’s class name is the name of the role as
retrieved via 'Role name’ during parsing and the constant word 'Behaivour’. First of all, if
the role is the starter of the protocol, (that is, it has a ’initiates’ relationship with the message
starting the protocol) a stub for the function runSimplePercept’ is generated, otherwise the
stub is not included in the behavior file. Both protocol’s and role’s names are required in this
function in order to send the first message of the protocol. Then a runPERFORMATIVE’
function stub is generated for each performative the role can receive. As stated before this

5.3. FRAMEWORK IMPLEMENTATION 87

can be found out looking at which units are linked to role via 'colaborates’ relationships, and
which performatives do these units have. These stubs are run when a message including the
specified performative is received. The stubs include a set of functions to perform an update
of the protocol, finding out the exact point where the protocol is after message reception.
When updating the state of the protocol, it can happen that there is no reference to the
protocol, because the message received is the first message of the protocol. In such case,
where the role is the a Participant, and the message received is the first message of the
protocol, a special set of functions is executed in order to initialize the protocol, setting
the state of the protocol to the first message. Once the exact state of the protocol has
been identified, the stub provides functions to guide the sending of reply messages to the
message received. Regarding this, two cases are possible, either the received message is a
final message on the protocol, and thus no messages can be sent in reply to this message,
or it is not, and thus the role is allowed to send a message in reply to the message received.
If the received message is a final message, a stub to log the termination of the protocol
is created. Otherwise, for each possible reply to the received message, a stub for sending
the reply is generated. A message is known to be a final because it is not linked to any
other message via 'precendence’ relationships in the interaction model. Which messages can
follow a given message can also be found out by analyzing 'precendence’ relationships. This
information has been already retrieved during the parsing process.

Ontology: One ontology file is generated. The ontology is an exact copy of an example
ontology. This ontology has several simple fields as well as functions to assign values to these
fields, update these values and retrieve them. In order to generate the ontology a model
file is read and streamed out directly, without any modifications, to the package where the
protocol is generated.

5.3 Framework implementation

The framework is implemented using the stubs obtained from the INGENIAS protocol
model. First of all, the stubs have to be adapted, to make them use the components
provided by the PAWS platform. Then, in order to convert generic Java stubs into Java
classes adapted, not only to the protocol specified, but also to the framework to be imple-
mented. Later, to convert some of the dummy stubs provided (mainly the ontology) into
classes useful to the framework. This section explains in depth the process followed in order
to perform the mentioned tasks. Last but not least, classes that support the framework but
are out of the protocol are to be developed, and integrated into the protocol (mainly into
behavior classes) as a last step.

5.3.1 Use of agent directory

The original stubs generated from the INGENIAS protocol model contact an agent with a
dummy name for sending the message that will start the protocol. This is not the desired
situation, as ideally, the protocol should contact every participant agent in the system. This
can be easily fixed by creating a set of agent names and contacting every agent in the set.
In this case, the Java Vector structure receivers’ contains the names of all the agents to be
included, as participants, in the protocol. Figure 5.24 shows the PAWS code required by
the Initiator to send the starting message of the protocol to a set of participants.

The problem with the presented solution is that this set of participant agents known as
receivers’ should be created dynamically. If a new agent enters the system, it should be
included in the set and contacted the next time the negotiation protocol starts. In order to

88 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

Iterator<String> it = this.receivers.iterator():;
while (it.hasNext ()}
{
receiverName = (String)it.next();
Agentlogger.log(”- Sending to agent " + receiverName + """} ;
comm . SendMessageStartNewConversationInitiator (Plan negotation protocol.class,
InitiatorRole.class, receiverName, onto);

Figure 5.24: PAWS Stub: Initator sending message to multiple participants

private Vector<String> initReceivers ()
{
Vector<String> result = new Vector<String>():;
try
{
java.util.List AgentList = AgentConfigurationProvider.getConfiguration() .getDirectoryFacilitator ().
getAgentScenario () .getAgentList () .getAgentInfo();
Iterator<AgentInfo> it = AgentList.iterator():
while (it.hasNext())
{
AgentInfo dummy = (AgentInfo)it.next():
String AgentName = dummy.getAgentId():
String AgentType= dummy.getType () ;
AgentLogger.log("HEAIOU, agent:'" + AgentName + "' of type '™ + AgentType +
' is on the system!!!");
if (!AgentType.equalsIgnoreCase ("Initiator"))
{
result.add (AgentName) ;
}
}

Figure 5.25: PAWS Stub: Initializing participant’s structure via Agent Directory

solve this problem and initialize the set dynamically and efficiently, the agent directory (as
presented in Section 2.1.1.2) comes in hand. Figure 5.25 shows how the Vector structure
containing the names of all the participants can be initialized using the agent directory
provided by the PAWS platform.

5.3.2 Enabling multiple participants

TunPERFORMATIVE’ functions contained in initiator’s behavior stub are designed to sup-
port the interaction with a single participant agent. These functions have two main problems
when dealing with multiple participants.

On the one hand, the code in the functions that is to update the state of the protocol
when a message is received can stop working properly if multiple participants are to be taken
into account. This is because, the function always updates the state of the protocol, but if
multiple participants are present, some other conditions might be taken into account before
updating the state of the protocol. To illustrate this need, an example with a negotiation
protocol is presented. In this protocol multiple participants reply to a ’propose’ message
with either ’accept’ or 'reject’” messages. On the Initiator stubs, function 'runReject’ does
not need any modification, if one 'reject’ message is received at least one of the participants
has rejected the proposal, so the negotiation has failed and the protocol is over. Thus, the
state can be updated upon receiving a single message. However function ‘runAccept’ cannot
update the state of the protocol when a single ’accept’ message is received, it has to wait until
all messages (that is, one per participant) have been received before updating the state of the

5.3. FRAMEWORK IMPLEMENTATION 89

this.repliers.put (sender, receivedPerf) ;

if (this.repliers.size() == this.receivers.size())
{
AgentLogger.log("All participants have informed of global plan fulfillment");

else
{
AgentLogger.log("Not all participants have replied yet");
AgentLogger. log("Some global plan execution notifications to be received");

Figure 5.26: PAWS Stub: Updating state of protocol, multiple participants

protocol. In other words, all agents have to accept before it can be considered the protocol
is over and the negotiation has been a success, updating the state of the protocol when only
one participant has accepted is a clear mistake. Figure 5.26 shows the modification required
on the stubs in order to handle multiple-participants protocol state update. Please, notice
this code makes use of the Vector structure that keeps the names of all the participants, and
that has been already used to send all the messages that start the protocol in the previous
subsection.

Iterator it = this.receivers.iterator();
while {it.hasNext()})
{
String msg sender = (String)it.next();
receivedPerf = (Performative)this.repliers.get (msg_sender);
Inform replyPerformative = new Inform({ receivedPerf.getIdMessage(),
receivedPerf.getIdDialog(),
receivedPerf.getInReplyTo() ,
receivedPerf.getSender (),
receivedPerf.getReceiver (),
onto,
receivedPerf.getProtocolName () ,
receivedPerf.getReplyWith () I
ID = comm.buildID{receivedPerf, "Initiator"):
comm .sendMessage (replyPerformative, replyMessage, onto, ID);
AgentLogger.log("-Plan fullfillment notification set to "" + msg sender + "'");

Figure 5.27: PAWS Stub: Sending reply to a message, multiple participants

On the other hand, if the protocol state is found to be non-final one or several messages
can be sent in reply to the message received. In this case, the stub must create, prepare
and send the reply messages. This procedure must be modified in order to support replies
sent to several participants. To do so the creation of messages can be maintained (the basic
components of the message such as the performative or the ontological content will remain
the same between receivers) but the sending of messages must be repeated several times, once
per participant agent. Thus, the instructions that send the reply message must be embedded
into a loop that will repeat them for each participant agent in the protocol. Apart from
that, the message sent must be slightly modified, in order to update the filed 'receiver’ to the
participant agent contacted at each iteration of the loop. Figure 5.27shows the modification
required on the stubs in order to handle multiple-participants replies. Please, notice this

90 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

code makes use of the Vector structure that keeps the names of all the participants, and
that has been already used to send all the messages that start the protocol in the previous
subsection.

The following handling functions are present on initiator’s stubs. Some of them require
the adaptations mentioned above in order to support multiple participants. The list of
functions with their adaptations is as follows:

e runRefuse: This function requires no modification. If a single participant agent refuses
the proposal, the protocol must finish.

e runPropose: This function must be adapted in order to support multiple participants
when updating the state of the protocol. This is because the Initiator agent cannot
take a decision about weather to accept or reject the proposals until all proposals have
been received. Modifications are also required when sending reply messages (either
"Propose global plan’ or 'Reject action plan’).

e runAgree: This function must be adapted in order to support multiple participants
when updating the state of the protocol. This is because the Initiator agent cannot ask
the participant agent to start executing the agreed alternative until all participants
have agreed. Modifications are also required when sending the reply message (that is,
'Request alternative execution’).

e runlnform: This function must be adapted in order to support multiple participants
when updating the state of the protocol. This is because the Initiator agent cannot
notify of successful plan execution until all participants have successfully executed
their alternatives. Modifications are also required when sending the reply message
(that is, 'Inform global execution result’).

5.3.3 Adapting the ontology

The dummy ontology file generated along with the protocol stubs is fairly simple and clearly
not suitable for supporting the complex information interchange the negotiation protocol
requires. Thus, it must be adapted in order to make it more complete.

The ontology needs to represent all the information agents interchange during the progress
of the protocol, as well as provide means to easily manage this information. Thus the on-
tology file must include fields to represent the required information along with methods to
create, update and query these fields. Methods to perform simple operations on these fields
can also be provided. The ontology represents the components in it as String structures.
These simple, yet efficient, representations eases the process of serializing and interchanging
the plan between agents over the network.

The core of the ontology is the plan. The plan represents all the available alternatives
(separated by character *-’) and all the actions on each alternative (separated by character
’_7). The ontology class provides functions to allow agents to add actions and alternatives to
the plan without having to worry about how the plan is represented. Function ’initAlterna-
tive’ will insert a new alternative in the plan, whereas function ’addAction’ will add a new
action to the last alternative added to the plan. Function 'getPlan’ will return the String
representation of the plan, which is very convenient for logging purposes, whereas function
‘setPlan’ will assign a new plan given a String representation of the plan. Finally, function
‘get AlternativesofPlan’ will interpret the String representation of the plan to return a more
complex representation, that is, a Vector of elements (alternatives) where each element is a
Vector of Strings (actions). This last function is useful if the elements in the plan must be

5.3. FRAMEWORK IMPLEMENTATION 91

processed, because the data structures provided can be easily iterated. It must be noticed
that the reverse function ’set AlternativesofPlan’ is also available, in case programmer needs
to assign a plan from a Vector structure.

Another important component in the ontology is the Action Agent map. This data
structure stores the relationships between actions and agents, that is, which agent is to
execute which action if an alternative agreement is met at the end of the negotiation. The
string representation of this component resembles an xml schema, with an action component
having an agent field inside (e.g. (action = Action1”)Agent1(/action)). The ontology class
provides a function to set up this relationship (’setActionsOfAgent’) as well as a function
to query it (‘getActionsOfAgent’). This relationship is queried passing a set of actions
(typically, the alternative for the global plan that has been agreed) and an agent. The
set of actions provided will be filtered, returning only the actions in the set that must be
performed by specified agent, according to the relationship. It must be noticed that ontology
also provides functions to query the agent responsible of an action ('getAgentOfAction’) and
to get or set the data structure using Java HashMap structures ("getActionAgentMap’ and
'set ActionAgentMap’ to get and set respectively)

The Action Utility map is also a component of the ontology. This data structure stores
the relationships between actions and utilities, that is, the preferences each agents has to-
wards each action. The string representation of this component resembles an xml schema,
with an action component having an utility field inside (e.g. (action =7 Action1”)10(/action)).
The ontology class provides a function to set up this relationship (’setUtilityOfAction’) as
well as a function to query it ("getUtilityOfAction’). It must be noticed that ontology also
provides functions to get or set the data structure using Java HashMap structures (’getAc-
tionUtilityMap’ and ’setActionUtilityMap’ to get and set respectively)

The last important component of the ontology is the Action Resource map. This data
structure stores the relationships between actions and resources, that is, the set of resources
that will be consumed when performing each action. The string representation of this compo-
nent resembles an xml schema, with an action component having a set of resources fields (sep-
arated by ’, character) inside (e.g. (action = " Actionl”)Resourcel, Resource2(/action)).
The ontology class provides a function to set up this relationship (’addResourcesToAction’)
as well as a function to query it (’getResourcesOfAction’). The first function will assign
a resource to an action (initializing the set of resources if it is the first resource assigned)
whereas the second one returns an iterable structure (a Vector) containing the set of re-
sources of a given action. It must be noticed that ontology also provides functions to get
or set the data structure using Java HashMap structures ("getActionResourceMap’ and ’se-
tActionResourceMap’ to get and set respectively)

It must be noticed the ontology contains the field 'PlanLocation’. This field contains the
URI of a file containing the specification of the plan. Upon receiving the ’call for proposals’
message participants read this field, and initialize their ontologies using the information
parsed from this file. This simple method is enough for testing the framework. The ontology
can be modified and more complex methods for storing the plans can be provided (such
references to database schemas) if required.

Finally, the ontology provides also two functions that do not assign or retrieve values
from the fields on the ontology, but perform (somehow complex) queries on them. These
functions are 'PlanIsEmpty’ that will return a boolean value true if there is plan (that
is, no conflict-free plan) available, and false otherwise, and ’getBestAlternativeofPlan’ that
making use of 'Plan’ and ’ActionUtility’ data structures, returns the alternative (as a Vector
iterable structure) with the higher overall utility in the plan.

Figure 5.28 shows a sample initialization of the ontology corresponding to the branch
of a plan.

92 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

in.initAlternative()

in.addAction {"C1"); 63 [oK]
in.initAlternative () ;
in.addaAction {"C2"); =

in.setUtilityOfAction("C1l", new Long({8)):
in.setUtilityOfAction{"C2", new Long({2)):;

in.addResourcesToAction ("C1l", "R6");
in.addResourcesToAction ("C1l", "R8");

in.addResourcesToAction ("C2", "R4");
in.addResourcesToAction {"C2", "R7");

] ¢ [ok] [i5] [oK]
in.setActionsOfAgent ("C1", comm.getAgentId()); [l [ra]
in.setActionsOfAgent ("C2", comm.getAgentId()):; (8]]

Figure 5.28: PAWS Stub: Initializing the Ontology

5.3.4 Framework implementation

The implementation of the framework starts with the implementation of a generic argumen-
tation framework in a class known as ’ArgumentationModule’. This class is implemented
as a reasoning module of the PAWS platform. The class has fields to model the two basic
components of every argumentation framework, that is, the set of arguments and the set
of attack relations between arguments. The class presents functions to fill this informa-
tion (that is, add both arguments and attack relations between arguments) and, the most
important, to determine if a given set of arguments is conflict-free. That is, given a set of ar-
guments InSet and a argumentation framework AF = (AR, attacks) such that InSet C AR

Va € InSet not3b € InSet : (a,b) € attacks

In order to determine if the set of arguments provided is conflict-free, the generic frame-
work class goes over all the arguments in the set. For each of those arguments, it is checked
weather it has attack relations with another arguments or not. If it does, it is checked if,
at least, one of the attacked arguments is in the set provided. If it is, the function returns
true. If the function has gone over all the arguments in the set provided without returning
true, false is returned instead. False is returned also in the case where no attack relations
are available. Figure 5.29 shows the Java code of the function.

The implementation of the framework goes on with the extension of the generic argu-
mentation framework class to a planning framework class. This new class, which is also
implemented as a PAWS reasoning module, provides functions to merge plan ontologies.
Given two ontologies ontl and ont2, the following actions are performed in order to merge
them:

e Merge action-resource map: For every action a : a € ontl.plan A a ¢ ont2.plan
add the action-resource map of a in ont2 to ontl, that is: ontl.resources(a) =
ont2.resources(a). For every action a : a € ontl.plan A a € ont2.plan merge the
resources of a in ontl with the resources of a in ont2, that is: ontl.resources(a) =
ontl.resources(a) U ont2.resources(a).

5.3. FRAMEWORK IMPLEMENTATION 93

private Vector<String> arguments;
private HashMap<String,Vector<String>> attack_relations;
//Find out if a set of actions if conflict free according to attack relations set-up
protected boolean isConflictFree(Vector<String> arguments)
{
Iterator<String> arguments_it = arguments.iterator();
while (arguments_it.hasNext())
{
String attacker_argument = (String)arguments_it.next();
try
{
if (this.attack relations.containsKey(attacker_argument))
{
Vector<String> attacked arguments = this.attack_relations.get (attacker_argument);
if ((argumknts.contains(attacker_argument)) & (share_element(argumentﬁ,attacked_arguments)))
{
return false;
}
}
}
//attack_relations is empty, there are no conflicts at all.
catch (java.lang.NullPointerException E)
{
return true;
}
}

return true;

Figure 5.29: PAWS Generic Framework: Conflict-free check

e Merge action-utility map: Initialize a new action-utility map. For every action in ontl
get the utility of this action and put it in the action-utility map initialized before. For
every action in ont2 get the utility of this action and put it in the action-utility map
initialized before. If the map did already contain an utility for this action, the utility
is updated as the sum of the existing utility and the new one provided. The result of
this operation is an action-utility map with all the actions in ontl and ont2 with their
respective utilities. If both ontologies share an action, the utility of the action will be
the sum of utilities of the action in both ontologies.

e Merge action-agent map: For every element in the action-agent map of ont2, add it to
the action-agent map of ontl. In this case, no action in the map of ontl should be in
ont2 and vice-versa. Indeed, if this is found to happen, an exception is thrown.

e Merge plans: For every alternative in the plan in ontl, merge it with every alternative
in the plan in ont2. The procedure to merge two alternatives has been formally
introduced in Section 4.5. The implementation of the procedure is to initialize a new
plan, take the string representation of each alternative in ontl and, for each alternative
in ont2 append the actions of both alternatives. Then, add this alternative as a new
alternative on the initialized plan. Thus, given two plans planl = actl_act2||act3_act4
and plan2 = bctl _bet2]|bet3 merging them will result in the following merged plan
merge = actl_act2_betl_bet2||actl_act2_bet|| act3-actd betl _bet2||act3_actd _bet3. Now,
all that is to be done is removing from this merged plan the alternatives that are not
conflict-free. This can be done by initializing the generic argumentation framework
presented before with arguments (the actions) and attack relations (add an attack
relation whenever two actions share the same resource). Finally, initialize a new plan,
and for every alternative in the merged plan, if it is conflict-free, add to the freshly
initialized plan, otherwise, discard it.

94 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

5.4 Plan definition

PLAN [OK]
KQML] Initiator_Agent [OK] AND KGML] 2_Participant_Agent [OK]
. & e
61 [oK]
l E 63 [oK]
62 [OK
A [AND [ox]

/ ‘ﬁm \ ORI
G611 [OK]| KQML| 1_Participant_Agent | OK|

[30]
B a1 — @ B ¢ [oK
@@ @‘az@ !E Mol c2 [oK
ey 2 e
| @l a3 [ok m
@T [Z] as [ok]
3 v & [ia] [
e 5] a5 [0k (@] a8 [oK]
: (5]

Figure 5.30: PAWS Plan GUI: Main window

Plans can be defined graphically using the plan editor GUI of DECAF system. DECAF
(Distributed, Environment-Centered Agent Framework [15]) is a toolkit that provides a
stable platform to design intelligent agents systems. DECAF focuses on the design of plans
,scheduling processes and coordination among the agents in the system. In the plan editor,
actions are the basic building blocks that can be chained together to achieve a more complex
goal. This way of defining and linking actions together is inspired on HTN (hierarchical task
network) that defines plans in a tree-like structure, where nodes are actions and hierarchical
links between nodes model action decomposition into sub-actions. Each node will have a
"CAF’ annotation (denoted by label 1 on Figure 5.30), specifying if, in order to perform
the action, all the sub-actions are to be enacted (’AND’ annotation) at least one of the sub-
actions (OR’ annotation) or exactly one sub-action(’XOR’ annotation). In this case 'OR’
and "XOR’ annotations are equivalent, because agents will perform the minimal number
of actions required to fulfill their goal, effectively minimizing the set of possible conflicts
between plans. In the case of the plans defined for this framework, the root of the tree is the
overall plan, and the nodes directly linked to the root, the goals that agents in the system
pursue. Thus, these nodes are assigned to agents(denoted by label 2 on Figure 5.30) . Notice
the root node will have an "AND’ type 'CAF’ annotation, because, in order to execute the
plan, all the goals are to be fulfilled, however agent’s goals nodes can have any type of 'CAF”’
annotation, depending on the alternatives available to fulfill the goal. Then, from agent’s
goals nodes to leaf nodes (the nodes that have no sub-actions assigned to them) there are
zero or more intermediate nodes with any type of annotation, this nodes are useful to group
leaf nodes allowing the definition of alternatives (’OR’ annotations) or actions that are to
be included in every alternative (’AND’ annotation). Finally, leaf nodes are defined. This
nodes model the actions that agents execute, and thus contain more information associated
than other nodes. The main information associated to them is the utility of the actions
(denoted by label 3 on Figure 5.30) and the resources consumed by each action (denoted
by label 4 on Figure 5.30).

In the GUI non leaf nodes are added as tasks, whereas leaf nodes are added as actions.
Agents must be added in order to link them to the goals (that is, the sub-actions of the root

5.4. PLAN DEFINITION 95

s X
|a3 Rename
/

Action name Scheduling profile

Set utility
Parameters /
1 v | Rename | Remove | Add
Set

Provisions [resources

r3 v | Rename | Remove ﬂ,
Outcomes

0K v Behavior profle | Rename | Remove | Add |
Close

Figure 5.31: PAWS Plan GUI: Pop-up window

Table 5.2: Example plan

Agont Alternative
Tnitiator_Agent {al, a3, ab)
Initiator_Agent (al, a3, ab)
Initiator_Agent (al, a4, a5)
Initiator_Agent (al, a4, ab)
Initiator_Agent (a2, a3, a5)
Initiator_Agent (a2, a3, ab)
Initiator_Agent (a2, a4, a5)
Initiator_-Agent (a2, a4, ab)
1_-Participant-Agent (b1)
1_Participant_-Agent (b2)
2_Participant-Agent (cl)
2_Participant_Agent {c2)

node), and they can be added as non-local tasks. Notice that, in this case, the name of the
agent assigned to the goal must match the name of an agent in the system. All the elements
to be added are available under the edit menu, add item menu. Once these elements have
been added, relationships between them (either node-node or agent-node) can be created
by clicking on one element, and dragging an arrow to the second one. Last but not least,
information on resources consumed and utility are to be assigned to leaf nodes. This can be
done by double-clicking on the node and introducing resources on the ’provisions’ field and
setting the utility on the parameters’ field on the windows that pops-up (as seen on Figure
5.81). Both operations are performed via the respective ’add’ buttons.

As an example about how plans are graphically defined, Figure 5.30 maps to the set of
agents and plans for each agent seen on Table 5.2. Notice how the ’AND’ node on agent
Initiator_agent maps to an alternative with 3 elements, each of which is chosen from a set
of two elements due to the ’OR’ node linking them.

The integration of the planning framework with the plan definition GUI described is done
via the DecafPlanParser Java class which is included in the protocol package. This class,
given the path of a plan file and an agent name, returns the Ontology class corresponding to
this plan. This class will have all the fields of the ontology (mainly, the plan and the action-

96 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

agent, action-resource and action-utility maps) filled up with the information described
in the plan file. The process goes over all the nodes filling information about hierarchical
relations between the nodes, and storing a reference to the node linked to the agent specified.
Once all this information has been gathered, the nodes are processed recursively, from the
node that references the agent to the leafs. This process allows the part of the global plan
corresponding to the agent specified to be constructed, taking into account both ’AND’ and
’OR’ nodes. Going through an ’OR’ node implies starting a new alternative, whereas going
through an AND’ implies adding actions to each alternative in the plan. Reaching a leaf
node implies filling information about action-agent, action-resource and action-utility maps.

5.5 Simple test scenario

Simple unitary tests on the framework classes have been performed. This section will omit
these tests for simplicity and focus on integration tests, to check, from a sample data entry,
that the output provided by the framework is correct. The tests are performed using a
sample test scenario, with non-real plans.

The tests are focused on checking that the components of the framework are able to
guide the negotiation protocol properly, choosing the right path according to the scenario
provided. Thus, the following scenarios are defined:

e There is , at least, a conflict-free proposal acceptable by all agents. In this case, the
protocol reaches the end when all agents inform of their global execution results. Figure
5.32 shows the path followed by the protocol in this case. It is useful to duplicate this
scenario, defining another one that reaches the same state, but with a different plan
being accepted. It can be done by changing the utilities set to actions. At the same
time, this test will prove the framework reacts to changes on utilities by accepting a
different plan at the end of the negotiation process.

e There is no possible proposal acceptable by all agents. In this case the protocol stops
with a refusal message sent, usually, by the Initiator agent. Figure 5.33 shows the
path followed by the protocol in this case.

In order to test the framework when there are acceptable proposals, the scenarios shown
on Figure 5.8/ and Figure 5.36 are used. Using these scenarios as input, the framework
throws the results shown on Figure 5.35 and Figure 5.37 respectively.

To test framework when there are no acceptable proposals the scenario shown on Figure
5.38 is used. Using this scenario as input, the framework throws the results shown on Figure
5.39.

5.5. SIMPLE TEST SCENARIO 97

«InteractionUnit»
Reject_action_plan
® SpeechAct: reject-proposal «InteractionUnit»
Reject_global_plan
® SpeechAct: reject-proposal
«UlPrecedes»
«UlPrecedes»
«InteractionUnit» «InteractionUnit»
Propose_action_plan m;::‘::;ﬁ::h’:ﬂ’l’an Accept_global_plan
® SpeechAct: propose : -
P prop @ SpeechAct: propose ® SpeechAct: accept-proposal
«UIPI*des.
«nteractionUnit» «InteractionUnit»
WiPrekedess Inform_global_execution_result Request_alternative_execution
@ SpeechAct: inform ® SpeechAct: request
«InteractionUnit»
Call_for_proposals
® SpeechAct: cfp «M» «Wvl‘des»

«InteractionUnit»
Inform_local_execution_result
® SpeechAct: inform

Figure 5.32: Framework: Plan acceptance protocol path

«InteractionUnit»
Reject_action_plan
® SpeechAct: reject-proposal «InteractionUnit»
Reject_global_plan
® SpeechAct: reject-proposal
«UlPrefedes»
«UlPrecedes»
«InteractionUnit» — — «InteractionUnit»
Propose_action_plan «InteractionUnit Accept_global_plan
" Propose_global_plan
® SpeechAct: propose ® SposchAct: proposs ® SpeechAct: accept-proposal
F«UlPrecedes:> : PP —«UlPrecedes»—>|
T
«UIPle\‘c/edes»
ot “'I"':’Ia“:“”"-l':";’;” " dnteractionUnit»
«UlPrefedes» orm_glol a-_e ecution_resul Request_: X
@ SpeechAct: inform ® SpeechAct: request
«InteractionUnit»
Call_for_proposals = ve
® SpeechAct: cfp «UlPrecedes» «UlPrecedes»
14
«InteractionUnit»
Inform_local_execution_result
® SpeechAct:

Figure 5.33: PAWS Plan GUI: Plan refusal protocol path

98 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

PLAN [ok]
[amL] initiator Agem [ok] NNWZ
@ . foK] .
G611 [oK] [KaML] 1_Participant_Agent | OK|
& o =
o [oR] "% o e 5 b2 [oK]
[l i
'E@ al [oK] m Y o [r7] % ¢t [oK]
2l 7 m
[0 &3 [ok] [
[3] [7] a4 [oK]
=
o) 5 a5 [0k oKl
[r20] @ [Ra1] @
Figure 5.34: Framework: Acceptable plan 1
5:142 ParticipantBeharvour runinfon-1 < > A
5:142 ParticipantBehatvour decodeProposal-1 40 84 46 bl c2
5:142 ParticipantBehatvowr runinforr-1 Plan:
5:142 ParticipantBeharvour runlnforma:-1 The plan has been succesfully exscuted
5:142 ParticipantBehatvowr runinforr-1 < >

message (INITIATOR AGENT,1 PARTICIPANT AGENT,"Call for proposals

message (INITIATOR AGENT,2_PARTICIPANT AGENT,"Call for proposals

message (1_PARTICIPANT AGENT, INITIATOR AGENT, "Propose_action plan

message (2_PARTICIPANT AGENT, INITIATOR_AGENT, "Propose_action plan

message (INITIATOR AGENT,1 PARTICIPANT AGENT,"Propose global plan

message (INITIATOR AGENT,2 PARTICIPANT AGENT,"Propose _global plan

message (1_PARTICIPANT AGENT, INITIATOR_AGENT,"Accept global plan

message (2_PARTICIPANT AGENT, INITIATOR_AGENT,"Accept global plan

message (INITIATOR AGENT,1 PARTICIPANT AGENT,"Request alternative_execution
message (INITIATOR_AGENT,2_PARTICIPANT AGENT,"Request alternative_execution
message (1_PARTICIPANT AGENT, INITIATOR_AGENT,"Inform local execution result
message (2_PARTICIPANT AGENT, INITIATOR AGENT,"Inform local execution result
message (INITIATOR_AGENT,1 PARTICIPANT AGENT,"Inform global execution result
message (INITIATOR AGENT,2 PARTICIPANT AGENT,"Inform global execution result

Figure 5.35: Framework: Acceptable plan results 1

5.5. SIMPLE TEST SCENARIO

PLAN [OK]

KQML | Initiator_Agent | OK] |KQML| 2 Famclpanl Agent | OK]|

£ /K
G1 0K
GZ 0K

= m l
/
/\ [OR] [KQML] 1_Participant_Agent |.OK]
)

e
- 62 [0K]
613 [OK]
= =
g (73] ’% e @ b2 [OK]
alsl @
% 31@ 5y [x7] E c1 oK
2l 5 b [0 =
1]
3] @ a4 [oK]
3
0l B3] | OK] 21 a6 [OK]
120 [R21]
Figure 5.36: Framework: Acceptable plan 2
5:27:58 ParticipantBehatvour raninform:-1 < > A
5:27:38 ParticipantBeharvour decodeProposal:-1 -42 a4 a6 bl cl
5:27:58 ParticipantBehatvour rannform:-1 Plan:
5:27:58 ParticipantBeharvour.ranlnfonm:-1 The plan has been succesfully executed
5:27:58 ParticipantBeharvour.runinform:-1 < >

nessage (INITIATOR_AGENT,1 PARTICIPANT AGENT,"Call for proposals

nessage (INITIATOR_AGENT,2_PARTICIPANT AGENT,"Call for proposals

nessage (INITIATOR_AGENT,1 PARTICIPANT AGENT,"Call for proposals

message (INITIATOR AGENT,2_PARTICIPANT AGENT,"Call for proposals

nessage (1_PARTICIPANT AGENT, INITIATOR _AGENT,"Propose_action plan

nessage (2_PARTICIPANT AGENT, INITIATOR AGENT,"Propose_action plan

nessage (INITIATOR_AGENT,1 PARTICIPANT AGENT,"Propose_global plan

nessage (INITIATOR_AGENT,2_PARTICIPANT AGENT,"Propose_global plan

message (1_PARTICIPANT AGENT, INITIATOR AGENT,"Accept_global plan

nessage (2_PARTICIPANT AGENT, INITIATOR_AGENT,"Accept_global plan

message (INITIATOR_AGENT,1 PARTICIPANT AGENT,"Request alternative execution
nessage (INITIATOR_AGENT,2_PARTICIPANT AGENT,"Request_alternative_execution
nessage (1_PARTICIPANT AGENT, INITIATOR AGENT,"Inform local execution result
message (2_PARTICIPANT AGENT, INITIATOR_AGENT, "Inform local execution result
nessage (INITIATOR_AGENT,1 PARTICIPANT AGENT,"Inform global execution result
message (INITIATOR AGENT,2 PARTICIPANT AGENT,"Inform global execution result

Figure 5.37: Framework: Acceptable plan results 2

99

L.OK]

100

=
[8]=

CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

PLAN | OK |
KQML | Initiator. Agent | OK]| \\l«;m_zpamgmammem [oK]

GWO—’K/’///I ,E _g_g_mu 1 F‘artlcmant_'\uﬂﬂt [oK]

o= 613 [OK]|
c@ %m [oK] i
I
= Aol
EMD =
r3 7 a4 0K
“B gE

Figure 5.38: Framework: Rejectable plan

5:34:53 InitiatorBeharvour.runRefuse:-1 < > N
5:34:53 InitiatorBehaivour.decodeProposal -1

5:34:53 InitiatorBeharvour. runRefuse -1 - Plan:

5:34:53 InitiatorBehaivour.runRefuse -1 - Rejector: '2_Participant_Agent'

5:34:53 InitiatorBehaivour.runRefuse -1 Global plan proposal has been rejected

5:34:53 InitiatorBehatvour. runRefuse:-1 < >

nessage (INITIATOR_AGENT, 1_PARTICIPANT_ AGENT,"Call for_ proposals
nessage (INITIATOR_AGENT,2_PARTICIPANT_AGENT,"Call for_ proposals
nessage (1_PARTICIPANT_ AGENT, INITIATOR_AGENT, "Propose_action_plan
nessage (2_PARTICIPANT_ AGENT, INITIATOR_AGENT, "Propose_action_plan
nessage (INITIATOR AGENT 1_PARTICIPANT_AGENT, "Propose_global_plan
nessage (INITIATOR_AGENT, 2 PARTICIPANT "_AGENT, "Propose_global_plan
nessage (1_PARTICIPANT_AGENT INITIATOR_AGENT, "Reject_global plan
nessage (2_PARTICIPANT AGENT, INITIATOR_AGENT, "Reject_global plan

Figure 5.39: Framework: Rejectable plan results

5.6 Use case test scenario

This section presents a real test case based on the example presented on Section 4.2. The
section presents the graphical plan corresponding to the example, and a test, providing an
example on how the scenario presented in Section 4.2 can be modeled using the planning
framework implemented. The plan defined can be seen on Figure 5.40 and corresponds to
the tables Table 5.3, Table 5.4 and Table 5.5.

Table 5.3: Alternatives proposed by each broker

Broker Activities

Amusement and mobility {Port_Aventura_Private, Tibidabo_Private, Aquarium_Private}
Port_Aventura_-Public, Tibidabo_Public, Aquarium_Public

Cinema {The_hobgoblin_Soon, The_hobgoblin_Medium, The_hobgoblin_Late,
P._movie_Soon, P._.movie_Medium, P._.movie_Late}

Restaurant {Le_-Remanguille_Soon, Le_Remanguille_-Late,

Casa-Pepe_Soon, Casa-Pepe_Medium, Casa-Pepe_Late,
BurryKing-V Soon, BurryKing-Soon, BurryKing-Medium,
BurryKing-Late, BurryKing-V Late}

5.6.

USE CASE TEST SCENARIO 101

Table 5.4: Resources of each alternative

Activity Resources Activity Resources
Port_Aventura_Private {8.00 — 18.00} Tibidabo_Private {8.00 — 16.307}
Agquarium_Private {8.00 — 14.00} Port_Aventura_Public {8.00 — 19.00}
Tibidabo_Public {8.00 — 17.30} Aquarium_Public {8.00 — 15.30}
The_hobgoblin_Soon {16.00 — 19.30} The_hobgoblin_Medium {17.00 — 20.30}
The_hobgoblin_Late {18.30 — 22.00} P._movie_Soon {17.00 — 18.30}
P._movie-Medmium {18.30 — 20.00} P._movie-Late {19.30 — 21.00}
Le_Remanguille_Soon {19.30 — 21.30} Le_Remanguille_Late {20.00 — 22.00}
Casa-Pepe_Soon {20.00 — 21.00} Casa-Pepe_-Medium {20.30 — 21.30}
Casa-Pepe_Late {21.00 — 22.00} BurryKing-V Soon {19.30 — 20.00}
BurryKing-Soon {20.00 — 20.30} BurryKing-Medium {20.30 — 21.00}
BurryKing_Late {21.00 — 21.30} BurryKing_V Late {21.30 — 22.00}

Table 5.5: Utilities of each activity

Activity Resources Activity Resources
Port_Aventura_-Private 20 Tibidabo_Private 15
Aquarium_Private 4 Port_Aventura_-Public 15
Tibidabo_Public 10 Aquarium_Public 7
The_hobgoblin_Soon 30 The_hobgoblin_Medium 19
The_hobgoblin_Late 1 P._movie_Soon 15
P..movie-Medmium 8 P._.mowvie-Late 3
Le_-Remanguille_-Soon 20 Le_Remanguille-Late 9
Casa-Pepe_Soon 15 Casa-Pepe_-Medium 7
Casa-Pepe_Late 2 BurryKing-V Soon 5
BurryKing-Soon 2 BurryKing-Medium o]
BurryKing_-Late -2 BurryKing-V Late -5

Running the framework with this information throws the results shown on Figure 5.41.
As a summary, the actions performed are:

1.
2.

Initiator agent sends a Call for proposals message to all participant agents.

Each Participant agent replies by proposing an action plan. Initiator agent waits until
all replies have been received.

Initiator agent puts the action plans together in a global plan proposals. As it is
conflict-free Initiator agent sends the proposals to each Participant agent.

Each Participant agent accepts the proposal. Initiator agent waits until all replies have
been received.

Initiator agent scans the proposal looking for the alternative with the higher global
utility. Then, requests the execution of the alternative to all Participants.

Each Participant agent performs its part of the alternative, then informs Initiator
agent. Initiator agent waits until all informs have been received.

Initiator agent finishes performing its part of the alternative, then informs each Par-
ticipant the global plan has been fulfilled.

Notice that, in order to ease the process of assigning resources to actions, the class parsing
the plan definition file (that is, DecafPlanParser) is extended to class DecafPlanParserRe-
sourcelnterval that interprets resources assigned to actions (typically 2) as an interval of
resources rather than as single resources.

102 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

KQML | Amusement_mobiltity_Broker |OK

g3

Plan [OK]

KQML]| Planner_agent [OK] |[KQML | Restaurant_broker [OK]

Amusement OK

Tour_building [OK]

Reslauranl OK

[oK]

oK} \ m CasaPepelLate
121:00]

22:00]

_ __Cinema—{0K]
KQML] Cinema_broker [OK] [58] BumyKingvLate [OK]

2] BunykngLate [0K] [;
2130
o] w7
L . ani | s

Figure 5.40: Framework: Real test plan

4:24:22 ThParseScheraa run-1 hitp:ffwrwnw ist-contract orgfschernas/ISTContract xsd parsed and co
4:24:18 ParticipantBehatvour ninInform:-1

4:24:18 ParticipantBehaivour decodeProposal:-1 - AquaniuraPublic_TheHobgoblinSoon_CasaPepeSoon

4:24:18 ParticipantBehatvour. ranInform:-1 -Plan:

4:24:18 ParticipantBehatvour rnInform:-1 The plan has been succesfully executed

4:24:18 ParticipantBeharvour runInform:-1

message (PLANNER_AGENT, AMUSEMENT MOBILTITY BROKER,"Call for proposals

message (PLAN'NER:AGENT, CINEMA BROKER, "Call for_ proposals

message (AMUSEMENT MOBILTITY BROKER, PLANNER AGENT, "Propose_action_plan

message (PLANNER_AGENT, RESTAURANT BROKER, "Call for_ proposals

message (CINEMA BROKER, PLANNER AGENT, "Propose_action plan

message (RESTAURANT BROKER, PLANNER_AGENT, "Propose_action plan

message (PLANNER_AGENT, AMUSEMENT _ HOBILTITY BROKER, "Propose_global_plan

message (PLANNER_AGENT, CINEMA_BROKER "Pr\:\pose_gl\:\bal_plan

message (PLANNER AGENT, RESTAURANT BROKER, "Propose global plan

message (AMUSEMENT _MOBILTITY BROKER, PLANNER_AGENT, "Accept_global plan

message (RESTAURANT BROKER, PLANNER_AGENT, "Accept_global plan

message (CINEMA BROKER, PLANNER . AGENT "Accept_global plan

message (PLANNER_AGENT, AHUSEMENT MOBILTITY_ BROKER, "Request_alternative_execution
message (PLANNER_AGENT, CINEMA BROKER, "Request_alternative_execution

message (PLANNER_AGENT, RESTAURANT BROKER, "Request_alternative_execution

message (CINEMA BROKER, PLANNER AGENT, "Inform local_execution result

message (AMUSEMENT MOBILTITY BROKER, PLANNER AGENT, "Inform local execution_result
message (RESTAURANT BROKER, PLANNER_AGENT, "Inform local execution_result

message (PLANNER_AGENT, AMUSEMENT HOBILTITY BROKER "Infarm _global execution result
message (PLANNER_AGENT, CINEMA BROKER, "Inform global execution result

message (PLANNER_AGENT, RESTAURANT BROKER, "Inform global execution result

Figure 5.41: Framework: Real test plan results

5.7. SUMMARY 103

5.7 Summary

In this chapter we have presented a practical implementation of the planning framework
introduced in Chapter 4 under the PAWS agent platform introduced in Chapter 3.

The chapter has started by explaining in depth the components of the PAWS platform
the implementation will deal with. It includes the protocol that supports plan negotiation
between agents, and the planning module that supports agents on decision making, stating
if a given plan proposal is acceptable (i.e. conflict-free) or not.

Regarding the protocols, an overview of the INGENIAS IDK is provided, focusing on
how to model the protocols via the Interaction Model. The chapter gives a complete ex-
planation on how to model the interaction protocol using INGENIAS, and how to generate
and adapt PAWS code from the INGENIAS model. Each of the components generated from
the INGENIAS model is explained in depth, providing examples based on the negotiation
protocol implemented. The components explained include the protocol file, the behaviors,
the message types, the roles and the ontology. Once the reader has gone over this expla-
nation, he/she should be able to design his/her own protocols using INGENIAS and easily
implement them in the PAWS platform.

The chapter also includes a deep explanation of the process that generates PAWS code
from the INGENIAS specification, with the aim of providing a better and deeper under-
standing of the protocol modeler component.

Regarding the planning module implemented in the PAWS platform, the chapter has
provided a deep explanation about how the module has been implemented, connected to
other PAWS components (such as the ontology and the directory facilitator) and integrated
on the behaviors. This last step implies profound changes on the behavior files, which has
been explained in detail. We hope this provides reader with a better understanding on how
PAWS behaviors are structured and implemented.

Then, the chapter has introduced the plan definition module. This includes a deep
explanation on how to use the DECAF plan editor GUI for defining GPGP plans.

To finalize, the chapter has introduced two test cases. A simple one, and one based on
the example provided on Chapter 4.2. For each of the examples, the plans defined via the
plan definition module and the results provided by the implemented framework (showing
both the results and the negotiation process between the agents) are provided.

104 CHAPTER 5. IMPLEMENTING THE PLANNING FRAMEWORK IN PAWS

Chapter 6

Conclusions

This chapter presents the conclusions extracted from the development of the work presented
in this master thesis. It starts by analyzing if the objectives presented in Chapter 1 have
been met. The chapter goes on with a summary of the original contributions. Finally the
chapter gives an overview about how the work could be continued, how could it be improved
and how new lines of work can arise from it.

6.1 Conclusions

The main results exposed on this master thesis are:

e Development of the paws platform. The process of development includes an analysis of
the original CONTRACT platform and explanation of its components, functionalities
and the connections between them. This provides an overview on how agent platforms
oriented to hosting agentified web-services look like. An analysis of the components
that have been developed and modified in order to develop the PAWS platform is also
included.

e Development of a theoretical planning framework that has the novel feature of using
Argumentation Theory for detecting conflicts between available plans. The framework,
based on the negotiation of a global plan from a set of local plans between a set of
intelligent agents, shows two more concepts that are not commonly seen in other
planning frameworks. The use of utilities for pondering plans, and the ability to deal
with resource constraints when generating the global plan.

e Integration of the theoretical planning framework with the PAWS agent platform.
This is the nexus between the previous ideas of the master thesis. On the one hand, it
provides an implementation of the theoretical framework, on the other hand it provides
an empirical proof that the platform is general.

In order to achieve these results, some analysis over the relevant state of the art on the
following fields has been performed:

e Analysis of the state-of-the art in generic agent platforms, focusing on the FIPA stan-
dard for building them.

e Analysis of the state-of-the art on agent design methodologies. Analysis of the INGE-
NIAS methodology, focusing on interaction model. Analysis of the INGENIAS IDK
to find out how protocol definitions could be transformed to PAWS code.

105

106 CHAPTER 6. CONCLUSIONS

Generalizing the CONTRACT platform in order to create the PAWS platform has been
a thought task, because the platform was strongly coupled to contract-management pur-
poses and some of the internal components of the architecture (which are not very well
documented) have been modified. Even then, the effort has payed, because being based
on the CONTRACT platform the PAWS platform presents a solid and simple solution for
agentifying services. At the same time, this process has provided me with knowledge on
how to generalize agent platforms (which requires a deep knowledge of agent platforms) and
results in a guide on how to perform these generalizations. As these guides are not very
common on multi-agent systems literature, I hope it is useful for researchers interested in
applying generalization processes to other agent architectures.

At the same time, implementing some support components that make the platform more
usable (such as the protocol modeler) has provided me notions on the INGENTAS method-
ology and a deep understanding of the INGENIAS IDK software, specially regarding the
interaction structure part.

Integrating the planning module on the PAWS platform fulfills the purpose of providing
a coordination mechanism for transforming local plans into global plans, but at the same
time, as a residual result, provides the empirical demonstration that the PAWS platform
has been generalized, as planning has little to do with contract-management.

As explained later in Section 6.3 further improvements can be made, but I consider the
objectives of this Master Thesis have been met.

6.2 Summary of original contributions

This master thesis presents two main contributions to the field of Artificial Intelligence.

e The development of the PAWS platform, an agent platform for agentified web-services.
Agent platforms for agentified services are cutting edge research issues in the multi-
agent systems world. AgentScape [31] and WSIG (Jade Web service Integration Gate-
way) [16] are good examples of such platforms. The current trend in platforms for
agentified web-services consists in providing an agent-platform and an interface (for
instance, a gateway) that can be used by agents to invoke the services. Thus, two
separate platforms are provided, one for the agents, and another one for the services,
and users have to administrate and maintain both of them. PAWS presents a novel
approach, integrating both agents and services on the same platform. Two benefits
arise from this integration: first of all, users have to take care of just one platform.
This makes the process of administration, maintenance and even development easier.
What’s more a single platform will make use of less computational resources (memory,
disk, CPU, etc.) on the host it is deployed on. Second, thanks to this integration,
not only agents can make use of services, but also services can make use of agents
and other components on the platform. Agents and components in the platform can
publish services exposing their capabilities, then web-services can invoke them (just
like they would invoke another web-service) to use them. An example of this use is
a web-service that wants to be agentified. All it has to do is invoking the platform
asking to create an agent, that will effectively agentify the service.

e The theoretical definition and the practical implementation of a planning framework
that presents the novel contribution of using ’Argumentation Theory’ for detecting
non acceptable plans. This provides an alternative to existing approaches, and at the
same demonstrates the versatility of Dung’s Argumentation theory, showing it can be
applied to research fields which are miles away from it, like planning systems. It also

6.3.

FUTURE WORK 107

contributes to the field of planning systems for resource constrained actions, which is
a field that has not received much attention taking into account the research efforts
invested in more general planning systems.

6.3 Future Work

Future work on this master thesis can be divided on three main points.

e Future improvements on the PAWS platform.
e Future improvements on the theoretical planning framework.

e Applying the PAWS platform and the theoretical argumentation framework to other

scenarios.

6.3.1 Future improvements on the PAWS platform

The PAWS platform presents some room for improvement, specially when comparing it to
more mature agent platforms. Weak points detected on the platform include:

e The platform lacks an operative and powerful sniffer, to allow PAWS users to check the

execution flow of the agents on the platform, in order to identify (and fix) unexpected
or incorrect behaviors. It would be desirable if this sniffer could also include debugging
of the invoked services, in case they are coded by the same programmers of the agents.
The sniffer currently provided with the platform is a very simple preliminary version.

Some of the components of the platform (such as the directory facilitator and the
ontology manager) are very simple. They support only static information (read when
the platform starts-up) and should be improved in future versions of the platform.
Specially, regarding the directory facilitator, an agent discovery service should be im-
plemented and integrated with it.

Even though the documentation on how to use the platform, code the agents and attach
new modules to the platform is enough, documentation on the internal components
of the platform is not extensive enough. This documentation should be improved, in
case a user needs to change an internal component for adapting the platform, or to fix
a bug.

The connection between the INGENIAS IDK and the PAWS platform for protocol
modeling is performed via an external meta-code generator. As INGENIAS allows
developing new modules, attaching them to the IDK, this program should be coded
as an INGENIAS module, fully integrating PAWS code generation features in the
INGENIAS IDK.

The platform is highly oriented to supporting agentified services. Further work on the

platform should include remarking this feature as it makes PAWS different from other agent
platforms oriented to more general purposes. In order to focus the platform even more on
service agentification, new modules should be implemented. This could include modules for
service discovery or for interpreting the semantic annotations (i.e. OWL-S annotations) of
the services, in order to enrich semantically the information provided by the service discovery
component.

108 CHAPTER 6. CONCLUSIONS

It is also planned to integrate into the platform a module for using more complex reason-
ing languages, in case the simple reasoning behaviors implemented in Java are not enough
for some domains. This task plans integrating both 2APL and JASON agent languages in
the PAWS platform.

The last work planned regarding the PAWS platform is trying to encapsulate in the
agents REST services, as currently the only services available for the agents to invoke are
SOAP services.

6.3.2 Future improvements on the theoretical planning framework

Future improvements on the theoretical planning framework presented in this master thesis
include extending the framework with features other planning approaches already present.
Such extensions should include:

e Negative goals. Representing sets of actions to be avoided. This would complement
the use of utilities that is already present in the current definition of the framework.

e Negative resources. Representing the fact that performing an action will generate a
resource rather than consume it. It can be used to link two actions, one with the
negative resource, and the other with the positive one. This will represent the fact
that the action consuming the resource cannot be performed if the action generating
the resource is not performed before. Integrating this into the attack relations modeled
via the argumentation framework is a challenging issue.

e Actions appearing in several local plans. This would effectively model actions shared
between a set of agents. The negotiation protocol should be complemented with a
sub-negotiation protocol to decide which of the agents sharing the action are to enact
it.

Apart from that, the implementation of the framework provided with the PAWS plat-
form should include its own plan editor, rather than re-using the plan editor provided with
DECAF software.

Finally, a deeper study (e.g. via simulations) of the improvement obtained by using a
global utility function to evaluate plans rather than a local one is to be performed.

6.3.3 Applying the PAWS platform and the theoretical argumen-
tation framework to other scenarios

The modular architecture of the PAWS platform makes it useful for adding intelligent fea-
tures to service composition. For instance, a module for Case-Based reasoning could be
included in the platform for providing more efficient service composition. When composing
services for fulfilling a given task, the Case-Based reasoning module can be queried. If a
good enough match for the case is found, the case can be used as the resulting composition.
Otherwise, the planning module can be used to generate a composition, storing it as a case.
Thus, service composition would be very efficient if compositions for very similar tasks are
to be performed often, because then, compositions are not to be generated from scratch,
just retrieved from a base of cases. As future work, we have to try to apply the results of
this thesis to the mentioned scenario.

Another line of research regarding intelligent service composition can be found in the
theoretical planning framework introduced in this master thesis. The framework takes into
account concepts such as utilities and resources assigned to actions. If these actions map to

6.3. FUTURE WORK 109

services the utilities of the actions can be mapped to the trust (local utilities) and reputation
(global utilities) agents have towards the services. That is, once an agent in the domain
has invoked a service, it can share its own feedback about the service (regarding Quality
of Service provided or availability) with all the agents in the domain. This will result in
more efficient and reliable services being invoked more. Regarding resources, they can be
assigned to services based on their load. For instance, no resources would be assigned to idle
services, 5 medium-load resources distributed among medium-loaded services, and a single
high-load resources assigned to busy services. The task of deciding how loaded is a service
can be performed by a module attached to the PAWS platform for this purpose, using for
instance a clustering algorithm that classifies a service in iddle, medium or high-loaded class
based on the state of service’s host (e.g. percentage of free memory, CPU load, etc.). Once
all services have been assigned resources based on their load, the planning framework will
ensure that each workflow provided as solution will contain only one busy service, at most
five medium-loaded services and any number of idle services. This will ensure a minimum
level of efficiency on the workflows enacted by the agents, as they will not contain too many
invocations to over-loaded services. We find this idea very appealing and plan to investigate
it further on the future.

The work presented in this master thesis can also be relevant for the ALIVE framework.

The ALIVE framework (introduced in Appendiz A) presents several interesting issues
ready to be tackled. Among them is the process of coordination between agents to allow
collaborative workflow execution. As it is remarked in Remark A.1, several alternative sets
of actions are available to make the system go from the state represented by a landmark to
the state represented by another one. Thus, the agents enacting these sets of actions must
decide which set to take when making the system pass from one state to another, advancing
in the achievement of the objectives in the organization. This issue would be rather simple
if the decision had to be taken by a single agent. However, as explained above, agents
coordinate in order to execute the workflows in parallel, collaborating when executing them.
Thus, it is not a single agent that has to decide which set of actions to execute, but a set of
agents (the set of agents that will collaborate in the workflow) that have to agree on which
set of actions are to be performed.

The planning framework presented in this master thesis can be used to tackle this issue,
as it allows coordination between agents, whereas the PAWS platform can be used for hosting
the agents at the coordination level, as they are required to invoke services on the service
level and coordinate among them.

The mapping between the planning framework presented in Chapter 4 and the ALIVE
workflows can be as follows: Local workflows can be modeled by local plans, and the global
plan resulting of the planning process will be the collaborative workflow to be enacted by
the set of agents. Utilities can be used to model the trust (local utility) and reputation
(global utility) of the agents towards a given task in a workflow. Regarding resources, they
can be left unassigned, or can be assigned by the organizational level in order to model
normative or organizational constraints. For instance, if two given tasks cannot be enacted
together on the same workflow, all that is to be done is assigning them the same resource.
Conflict-freeness condition guaranteed by the planning framework will prevent them to be
present on the same workflow (i.e. global plan).

110 CHAPTER 6. CONCLUSIONS

Appendix A

The ALIVE Framework

This appendix provides an overview of the ALIVE! framework [1].

Operetta tool

| pp{Organisational

Domain
Ontology

t—— Model Checker

Organisational
Layer

—

/////// \\\\\\\ -
— //// \\\\\ /
- MAS oA .)
MAS —— Plan enerate
Generator 7~ Agent N _ S Synthetizer [Coordination
~ ST Coordinate agent | Layer
Generate A N 2 A N
'y ™ Query
Map ‘\‘ \\ Invoke
\
) A
Al sorica)
Query (Service
Match \\,,,,7,/// Service
Maker s "”*_"\\ Layer
Register Service 2)

The ALIVE framework is being developed in collaboration with several universities and
enterprises within the frame of the FP7 project ALIVE (ICT-215890) funded by the Eu-
ropean Commission. It combines Model Driven Design (MDD) and Agent-Based System
Engineering with agent-based coordination and organizational mechanisms, providing sup-
port for ’live’ (that is, highly dynamic) and open systems of services. The work presented in
this document focuses on a part of the coordination mechanisms developed for the ALIVE
project. ALIVE’s multi-level approach helps to design, deploy and maintain distributed
systems by combining, reorganizing and adapting services. ALIVE defines a multi-layered
architecture divided in three levels (see Figure A.1) with connection between adjacent levels.

Figure A.1: ALIVE architecture diagram

IFor more detailed information on the ALIVE framework please see http://www.ist-alive.eu/index.

php?option=com_docman&task=doc_download&gid=7&Itemid=49

111

112 APPENDIX A. THE ALIVE FRAMEWORK

A.1 Organizational Level

The Organizational Level provides an explicit representation of the organizational structure
of the system. Stakeholders and their relations are represented, together with formal goals,
requirements and restrictions.

The Organizational Model is the main component of the Organizational Level, repre-
senting the organization as a social system. This model is inspired in the one presented
in Opera methodology [7]. The model includes objectives, the common goals for which the
organization is created. It also includes roles, abstract groups of activity types identifying
the necessary activities to achieve the objectives.

Objectives are assigned to roles, and relationships between pairs of roles (known as parent
and children from now on) define the links through which objectives can be delegated. The
set of all roles and the relations among them form the Social Structure. Three kinds of
relations between roles are contemplated on ALIVE’s Organizational Model:

e hierarchical relation: where a parent role delegates some of its objectives to its children.

e market relation: where children roles can request the assignment of objectives from
the parent role.

e network relation: where both roles are authorized to request the objectives of the
other.

ALIVE’s Organizational Model also defines landmarks, that are important states in the
achievement of a goal, and landmark patterns, that impose an ordering over landmarks. This
will effectively define the order in which landmarks should be reached. A set of landmarks
and their relations is known as scene. Relations between scenes (i.e. scene transitions)
can also be included in the model. Via scene transitions, scenes can be organized into an
Interaction Structure, enabling the representation of complex interactions.

The Organizational Level supports methods of design based on norms , rights and obli-
gations of the actors in the organization. Norms complement the elements of the model
introduced before, and can be applied to highly regulated scenarios where other approaches
do not fit well.

The Operetta Tool [8] supports system designers in specifying and visually analyzing
the Organizational Model, whereas, the Model Checker verifies its consistency. The Domain
Ontology captures a shared understanding of certain aspects of the domain, providing a
common vocabulary along with important concepts and their properties, definitions and
constraints (intended meaning) in order to describe the domain knowledge, encoding it via
an ontology language. Off-the-shelf ontology editors, such as Protege [26], can be used to
define this ontology. Elements defined in the domain knowledge via the ontology can include,
for instance, the abstract tasks available for agents to execute, or the resources consumed
by each of this tasks. The Organizational Model is sent to the Multi-agent system (MAS)
Generator component in the Coordination Level to generate the agents that will populate
the MAS. One agent per role defined in the model is generated. The Organizational Model
along with the Domain Ontology is sent to the Plan Synthesizer in order to generate the
plans the agents will enact.

A.2 Coordination Level

The Coordination Level provides the patterns of interaction among actors, transforming
the representations of the Organizational Level into coordination plans known as workflows.

A.2. COORDINATION LEVEL 113

Workflow
Action Action
Landmark Pre: S11 | Pre: S211 Landmark
1 Post: 5211 Post: 522 2
State: S1 State: S2
Action Action
Pre: S11 " Pre: 52112
Post: $212 Post: 522

Figure A.2: ALIVE workflow example

Workflows are defined as Generalized Partial Global Planning (GPGP) plans and chains
of abstract TAEMS hierarchical tasks [18]. Tasks are semantically annotated, and contain
both pre-conditions and post-conditions that describe the state in which the system is before
and after the task is performed respectively.

The following statement defines a workflow: for any task in the workflow, if it has a
preceding task, the pre-condition of the task is the post-condition of the preceding task.
Otherwise, the pre-condition of the task is the state represented by the preceding landmark.
The same stands for the succeeding task: the pre-condition of the succeeding task is the
post-condition of the task, if no succeeding task exists, the post-condition of the task is the
state represented by the next landmark.

Definition A.1 Let the set of actions (A1, As, ..., AN) denote a workflow, and Ly, Ly be
two landmarks. Let precondition(A;) and postcondition(A;) denote the precondition and
postcondition of a given action A; respectively and let state(L;) denote the state represented
by a gwen landmark L;.

Vio>:>N -1
((3j 0 >4 > N —1: precondition(A;) = postcondition(A;) Ni # j) V (precondition(A;) =
state(Ly))
A
((37 0> ¢ > N —1: postcondition(A;) = precondition(A;) Ni # j) V (postcondition(A;) =
state(L2))

Corollary A.1 If (A1, A, ..., AN) is a workflow, given the landmarks L1, Lo and according
to the the previous definition, then it can be stated that the worklow (A1, Aa, ..., AN) connects
the landmarks L1, Lo. In other words, enacting the workflow when the system is on the
state represented by the first landmark (i.e. state(L1)) will bring the system to the state
represented by the second one (i.e. state(L2)).

Example A.1 Figure A.2 shows an example of a workflow.

Remark A.1 Notice that several workflows might be available for connecting two land-
marks. Notice also that, even inside the same workflow, alternative sets of actions (that
is, alternative paths) might be available. For instance, in the example provided in Figure
A.2, enacting the set of actions (1,21,31,4) or the set of actions (1,22,32,4) will result

114 APPENDIX A. THE ALIVE FRAMEWORK

in enacting the workflow. Thus, it can be deduced that, in order to bring the system from
a state to another state (that is, from landmark to landmark) different alternative sets of
actions are available.

Workflows are derived from information defined on the Organizational Model. It must
be noticed that, for efficiency, workflows are generated and kept in a persistent database
(from where they can be retrieved when required) rather than generated ’on the fly’ when
they are to be enacted.

Paws Agent

ro»|

Normative
Plan Analyzer

’ Sch@du/e / \\

Brain

N/

Message ’

Imrcooz
AmMmrcomITo®n

Task

NS

Enactment |

n
Vocs, o ’

Figure A.3: ALIVE agent architecture

The MAS is a set of intelligent agents that coordinate among them to enact the work-
flows in a distributed fashion. Making intelligent agents enact the workflows has two main
advantages. First of all it allows choosing the workflows preferred by the organization, if sev-
eral are available. On the other hand, the agents analyze and monitor workflow execution,
reacting to unexpected events, either by enacting other workflows, or by communicating the
incident to other levels. What’s more, agents can perform complex tasks that require intel-
ligent reasoning. For instance, in order to model organizational constraints (such as Norms
and restrictions) when enacting the workflows, agents include an intelligent component that
can foresee if executing an available workflow will violate any of these constraints, deciding
if it is worth running it despite the violation.

A schema of the agent’s architecture can be seen on Figure A.3. This figure depicts the
main components of ALIVE’s agents. ALIVE’s agents include the following components:
the Brain Module is the core of the agent, and provides reasoning and decision-making
capabilities; the Normative Plan analyzer is a part of the Brain Module. It scans the
workflows in order to determine if enacting them will violate any of the norms defined in the
organizational model; the ACL Module provides agents with the capability of communicating
with other agents in the system by sending messages to them; the Scheduler component
provides an interface from where the agents can coordinate and distribute tasks, enabling
parallel execution of workflows; finally, the Enactment component facilitates the invocation
of services, making the details of the invocation transparent to the agents.

A.3. SERVICE LEVEL 115

A.3 Service Level

The Service Level selects an appropriate service for a given abstract task by using the se-
mantic information contained both in the service description and in the task description.
These descriptions facilitate the process of composing services and finding alternative ser-
vices when a given service is not available. The Match Maker component receives an abstract
task description from an agent in the Coordination Level and looks for services that can
fulfill this task. The Match Maker component queries the Service Directory to go through
all available services, selecting the most appropriate one, based on the task’s semantic de-
scription and on Quality of Service parameters (such as average response time) that allow
to choose the best service if several of them match the semantic query. Then, the service
chosen is returned to the agent, and the task is executed and monitored. If a given service is
no longer available (or is not the most appropriate anymore, due to better services entering
the system), the Service Level is able to re-assign services to tasks "on the fly” without the
Coordination Level noticing the change. The Service Level is also able to perform simple
service composition; for instance, if a given task requires sending cinema information to a
user via SMS, and there are two available services, one which retrieve cinema information
and one which send SMS, the Service Level is able to bind the task to a composition of these
two services.

116 APPENDIX A. THE ALIVE FRAMEWORK

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Agent-directory UML relationships elements 9
Transport UML relationships element 13
Message Interchange Flow Diagram 14
Agent UML relationships element 16
FIPA Agent Platform Diagram 17
Agent Life Cycle Diagram 18
IST-CONTRACT project Agent architecture overview diagram 22
CONTRACT Agent components, hierarchical view 24
Decision maker interface oL 25
Contract manager interface 25
Workflow manager interface L o o 26
Communication manager interface 27
Dialogue manager interface L L oL oL 27
Message manager interface oL 28
PAWS Agent architecture overview diagram 30
CONTRACT and PAWS agent configuration files example 31
PAWS Agent components example, hierarchical view 32
Module integration on behavior exampleo 35
CONTRACT’s contract storer and PAWS’ generic storer 38
Protocol modeler architecture oL 40
Planning problem representation example 45
Argumentation Framework Example 0L 47
Scenario architecture Description 48
Workflow Diagramo 49
Basic protocol diagram Lo 65
Diagram of protocol’s classes L oL 70
Diagram of decision making support classes 70
Coordination protocol High level design 72
Coordination protocol, INGENTAS design: Roles 73
Coordination protocol, INGENIAS design: Responsabilities 73
Coordination protocol, INGENIAS design: Precedences example 74
Coordination protocol, INGENIAS design: Precedences 75
Coordination protocol, INGENIAS general design 75
INGENIAS and PAWS: Stub generation process 76
INGENIAS and PAWS: Protocol stub example 7

117

118

5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
9.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41

Al
A2
A3

LIST OF FIGURES

PAWS Protocol Stub: Run simple percept function 79
PAWS Protocol Stub: Update state of protocol on message reception 79
PAWS Protocol Stub: Detection of protocol’s final state 80
PAWS Protocol Stub: Detection of protocol’s non-final state. 80
INGENIAS and PAWS: Message types generated 81
INGENIAS and PAWS: Role code stub example 82
INGENIAS and PAWS: Role code stub example 83
INGENIAS parsing: Message structure 83
INGENIAS parsing: Role structure 83
INGENIAS parsing: Protocol structure 84
INGENIAS parsing: Message precedence structure 84
INGENIAS parsing: Message-role collaborates responsibility structure 84
INGENIAS parsing: Message-role initiates responsibility structure 85
PAWS Stub: Initator sending message to multiple participants 88
PAWS Stub: Initializing participant’s structure via Agent Directory 88
PAWS Stub: Updating state of protocol, multiple participants 89
PAWS Stub: Sending reply to a message, multiple participants 89
PAWS Stub: Initializing the Ontology 92
PAWS Generic Framework: Conflict-free check 93
PAWS Plan GUIL: Main window 94
PAWS Plan GUI: Pop-up window 95
Framework: Plan acceptance protocol path 97
PAWS Plan GUI: Plan refusal protocol path 97
Framework: Acceptable plan1 98
Framework: Acceptable planresults 1 98
Framework: Acceptable plan 2 99
Framework: Acceptable plan results 2 99
Framework: Rejectable plan oL 100
Framework: Rejectable planresults 100
Framework: Real test plan. Lo 102
Framework: Real test plan results 102
ALIVE architecture diagram 111
ALIVE workflow example 113

ALIVE agent architecture 114

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
9.5

Activities proposed by each broker oL 50
Resources of each alternative 0oL 51
Existing alternatives L Lo 52
Utilities of each activity L 56
Agents in the system 58
Utility values for the alternatives per agent 63

Utility values of complemented alternatives for agents and global utility values 64

PAWS-INGENIAS performative mapping 81
Example plan 95
Alternatives proposed by each broker L. 100
Resources of each alternative oo 101
Utilities of each activity 101

119

120 LIST OF TABLES

Bibliography

1]

2]

(9]

EU-ALIVE project Home page

(http://www.ist-alive.eu/) Visited 2009-August-23

Casati F., Ilnicki S., Jin L. ’Adaptive and Dynamic Service Composition in eFlow’,
In Proceedings of the 12th International Conference on Advanced Information Systems
Engineering, 2000

IST-CONTRACT project Home page

(http://www.ist-contract.org/) Visited 2009-June-12

CONTRACT Platform definition document

(http://wuw.ist-contract.org/index.php?option=com_docman&task=doc_
download&gid=13&Itemid=44) Visited 2009-June-12

Decker K. and Li J. ’Coordinating Mutually Exclusive Resources using GPGP’, In Au-
tonomous Agents and Multi-Agent Systems, Volume 3, page 133-157, 2006 - Jan -01

Decker K., Lesser V. ’Generalizing the partial global planning algorithm’. IN Int. J.
Intell. Cooperative Inf. Syst., pages 319-346 Volume 1, 1992

Dignum V. ’A Model for Organizational Interaction: based on Agents, founded in Logic’.
IN SIKS Dissertation Series 2004-1. Utrecht University, PhD Thesis. 2004

Dignum V., Okouya D. 'OperettA: a prototype tool for the design, analysis and de-
velopment of multi-agent organizations’. IN Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems: demo papers. Pages 1677-
1678 , Portugal, 2008

Dung P.M. ’On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games’, 1994

[10] Durfee E.H. 'Planning in Distributed Artificial Intelligence’ In Foundations of dis-

tributed artificial intelligence, Chapter 8, 1996

[11] eXists project home page.

(http://exist.sourceforge.net/) Visited 2009-August-20

[12] Factory Design Pattern (http://en.wikipedia.org/wiki/Factory_method_pattern) Vis-

ited 2009-March-12

[13] FIPA specifications page (http://www.fipa.org/specifications/index.html) Visited

2009-March-12

121

122 BIBLIOGRAPHY

[14] Gomez-Sebastia I., Manel Palau, Juan Carlos Nieves, Javier Vazquez-Salceda and Luigi
Ceccaroni 'Dynamic orchestration of distributed services on interactive community dis-
plays: the ALIVE approach’, In Advances in intelligent soft computing, Vol. 55, Jan.
2009, pages 450-459

[15] Graham J.R., Decker K.S. and Mersic M. 'DECAF - A Flexible Multi Agent System
Architecture ’, In Autonomous Agents and Multi-Agent Systems, Vol. 7 Numbers 1-2,
July 2003, pages 7-27

[16] Greenwood D. ’JADE Web Service Integration Gateway (WSIG)’, JADE tutorial on
AMAAS 2005.

[17] INGENIAS project Home page
(http://grasia.fdi.ucm.es/main/?q=en/node/127) Visited 2009-June-12

[18] Lesser V. et al. 'Evolution of the GPGP/TMS Domain-Independent Coordination

Framework’ In Autonomous Agents and Multi-Agent Systems, pages 87-143 Volume 9,
2004-07-01.

[19] Martin D. et al. ‘Bringing Semantics to Web Services: The OWL-S Approach’ In Se-
mantic Web Services and Web Process Composition, page 26-46, 2005

[20] Introduction to non monotonic logics

(http://plato.stanford.edu/entries/logic-nonmonotonic/) Visited 2009-June-12

[21] Nguyen G. et al. ’AGENT PLATFORM EVALUATION AND COMPARISON’, In
Advances in intelligent soft computing, Vol. 55, Jun. 2002

[22] OASIS Comitee 'Reference Model for Service Oriented Architectures 1.0’ Available at
http://www.oasisopen.org/committees/download.php/19679/soarmcs.pdf 2006

[23] Paurobally S., Tamma V. and Wooldridge M. 'Cooperation and Agreement between
SemanticWeb Services’. IN W3C' Workshop on Frameworks for semantic web services.
Austria, 2005

[24] PAWS project Home page
(http://sourceforge.net /projects/paws-ai/) Visited 2009-June-12

[25] Perelman C., Olbrechts-Tyteca L. "The New Rhetoric: A Treatise on Argumentation’,
University of Notre Dame Press, Notre Dame, 1969.

[26] Protege project home page
(http://protege.stanford.edu/) Visited 2009-June-12

[27] Searle J.R. , Kiefer F. and Bierwisch M. ’Speech act theory and pragmatics’, 1980

[28] Soft real time constraint definition

(http://en.wikipedia.org/wiki/Real-time_computing) Visited 2009-August-20

[29] van der Torre L. and Hulstijn J. ’Combining Goal Generation and Planning in an
Argumentation Framework’, In Workshop on Argument, Dialogue and Decision, 2004

[30] Wooldridge M., Jennings N.R. In Intelligent Agents: Theory and Practice, January
1995

BIBLIOGRAPHY 123

[31] Wijngaards N.J.E.,Overeinder B.J., van Steen M. Brazier F.M.T. In Supporting
Internet-scale multi-agent systems. Data Knowledge Engineering, 41, pages 229245, 2002.

[32] Wu D. et al. ’Automating DAML-S Web Services Composition Using SHOP2’, In Pro-
ceedings of the 2nd International Semantic Web Conference, page 195-210, 2003

