1,870 research outputs found

    Locating a bioenergy facility using a hybrid optimization method

    Get PDF
    In this paper, the optimum location of a bioenergy generation facility for district energy applications is sought. A bioenergy facility usually belongs to a wider system, therefore a holistic approach is adopted to define the location that optimizes the system-wide operational and investment costs. A hybrid optimization method is employed to overcome the limitations posed by the complexity of the optimization problem. The efficiency of the hybrid method is compared to a stochastic (genetic algorithms) and an exact optimization method (Sequential Quadratic Programming). The results confirm that the hybrid optimization method proposed is the most efficient for the specific problem. (C) 2009 Elsevier B.V. All rights reserved

    A comprehensive literature classification of simulation optimisation methods

    Get PDF
    Simulation Optimization (SO) provides a structured approach to the system design and configuration when analytical expressions for input/output relationships are unavailable. Several excellent surveys have been written on this topic. Each survey concentrates on only few classification criteria. This paper presents a literature survey with all classification criteria on techniques for SO according to the problem of characteristics such as shape of the response surface (global as compared to local optimization), objective functions (single or multiple objectives) and parameter spaces (discrete or continuous parameters). The survey focuses specifically on the SO problem that involves single per-formance measureSimulation Optimization, classification methods, literature survey

    A hybrid framework integrating machine-learning and mathematical programming approaches for sustainable scheduling of flexible job-shop problems

    Get PDF
    Flexible job shop scheduling has received considerable attention due to its extensive applications in manufacturing. High-quality scheduling solutions are desired but hard to be guaranteed due to the NP-hardness of computational complexity. In this work, a novel energy-efficient hybrid algorithm is proposed to effectively address the scheduling of flexible job shop problems within reasonable time frames. The hybrid framework hybridizes gene expression programming, variable neighborhood search, and simplified mixed integer linear programming approaches to minimize the total energy consumption. It is utilized to address 20 benchmark examples with moderate-or high-complexities. Computational results show that the hybrid algorithm can reach optimality for all considered moderate-size examples within two seconds. The proposed algorithm demonstrates significant competitive advantages relative to the existing mathematical programming approaches and a group-based decomposition method. Specifically, it shortens the computational time over one order of magnitude in some cases and leads to lower total energy consumption with a maximum decrease by 14.5%.info:eu-repo/semantics/publishedVersio

    Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: a review

    Get PDF
    YesDistributed generators (DGs) are a reliable solution to supply economic and reliable electricity to customers. It is the last stage in delivery of electric power which can be defined as an electric power source connected directly to the distribution network or on the customer site. It is necessary to allocate DGs optimally (size, placement and the type) to obtain commercial, technical, environmental and regulatory advantages of power systems. In this context, a comprehensive literature review of uncertainty modeling methods used for modeling uncertain parameters related to renewable DGs as well as methodologies used for the planning and operation of DGs integration into distribution network.This work was supported in part by the SITARA project funded by the British Council and the Department for Business, Innovation and Skills, UK and in part by the University of Bradford, UK under the CCIP grant 66052/000000

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Approximate Dynamic Programming for Military Resource Allocation

    Get PDF
    This research considers the optimal allocation of weapons to a collection of targets with the objective of maximizing the value of destroyed targets. The weapon-target assignment (WTA) problem is a classic non-linear combinatorial optimization problem with an extensive history in operations research literature. The dynamic weapon target assignment (DWTA) problem aims to assign weapons optimally over time using the information gained to improve the outcome of their engagements. This research investigates various formulations of the DWTA problem and develops algorithms for their solution. Finally, an embedded optimization problem is introduced in which optimization of the multi-stage DWTA is used to determine optimal weaponeering of aircraft. Approximate dynamic programming is applied to the various formulations of the WTA problem. Like many in the field of combinatorial optimization, the DWTA problem suffers from the curses of dimensionality and exact solutions are often computationally intractability. As such, approximations are developed which exploit the special structure of the problem and allow for efficient convergence to high-quality local optima. Finally, a genetic algorithm solution framework is developed to test the embedded optimization problem for aircraft weaponeering

    Toward Robust Manufacturing Scheduling: Stochastic Job-Shop Scheduling

    Full text link
    Manufacturing plays a significant role in promoting economic development, production, exports, and job creation, which ultimately contribute to improving the quality of life. The presence of manufacturing defects is, however, inevitable leading to products being discarded, i.e. scrapped. In some cases, defective products can be repaired through rework. Scrap and rework cause a longer completion time, which can contribute to the order being shipped late. In addition, complex manufacturing scheduling becomes much more challenging when the above uncertainties are present. Motivated by the presence of uncertainties as well as combinatorial complexity, this paper addresses the challenge illustrated through a case study of stochastic job-shop scheduling problems arising within low-volume high-variety manufacturing. To ensure on-time delivery, high-quality solutions are required, and near-optimal solutions must be obtained within strict time constraints to ensure smooth operations on the job-shop floor. To efficiently solve the stochastic job-shop scheduling (JSS) problem, a recently-developed Surrogate "Level-Based" Lagrangian Relaxation is used to reduce computational effort while efficiently exploiting the geometric convergence potential inherent to Polyak's step-sizing formula thereby leading to fast convergence. Numerical testing demonstrates that the new method is more than two orders of magnitude faster as compared to commercial solvers
    corecore