2,367 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Classification and Clustering of Shared Images on Social Networks and User Profile Linking

    Get PDF
    The ever increasing prevalence of smartphones and the popularity of social network platforms have facilitated instant sharing of multimedia content through social networks. However, the ease in taking and sharing photos and videos through social networks also allows privacy-intrusive and illegal content to be widely distributed. As such, images captured and shared by users on their profiles are considered as significant digital evidence for social network data analysis. The Sensor Pattern Noise (SPN) caused by camera sensor imperfections during the manufacturing process mainly consists of the Photo-Response Non-Uniformity (PRNU) noise that can be extracted from taken images without hacking the device. It has been proven to be an effective and robust device fingerprint that can be used for different important digital image forensic tasks, such as image forgery detection, source device identification and device linking. Particularly, by fingerprinting the camera sources captured a set of shared images on social networks, User Profile Linking (UPL) can be performed on social network platforms. The aim of this thesis is to present effective and robust methods and algorithms for better fulfilling shared image analysis based on SPN. We propose clustering and classification based methods to achieve Smartphone Identification (SI) and UPL tasks, given a set of images captured by a known number of smartphones and shared on a set of known user profiles. The important outcome of the proposed methods is UPL across different social networks where the clustered images from one social network are applied to fingerprint the related smartphones and link user profiles on the other social network. Also, we propose two methods for large-scale image clustering of different types of the shared images by users, without prior knowledge about the types and number of the smartphones

    Anomaly Detection In Blockchain

    Get PDF
    Anomaly detection has been a well-studied area for a long time. Its applications in the financial sector have aided in identifying suspicious activities of hackers. However, with the advancements in the financial domain such as blockchain and artificial intelligence, it is more challenging to deceive financial systems. Despite these technological advancements many fraudulent cases have still emerged. Many artificial intelligence techniques have been proposed to deal with the anomaly detection problem; some results appear to be considerably assuring, but there is no explicit superior solution. This thesis leaps to bridge the gap between artificial intelligence and blockchain by pursuing various anomaly detection techniques on transactional network data of a public financial blockchain named 'Bitcoin'. This thesis also presents an overview of the blockchain technology and its application in the financial sector in light of anomaly detection. Furthermore, it extracts the transactional data of bitcoin blockchain and analyses for malicious transactions using unsupervised machine learning techniques. A range of algorithms such as isolation forest, histogram based outlier detection (HBOS), cluster based local outlier factor (CBLOF), principal component analysis (PCA), K-means, deep autoencoder networks and ensemble method are evaluated and compared

    Predictive intelligence to the edge through approximate collaborative context reasoning

    Get PDF
    We focus on Internet of Things (IoT) environments where a network of sensing and computing devices are responsible to locally process contextual data, reason and collaboratively infer the appearance of a specific phenomenon (event). Pushing processing and knowledge inference to the edge of the IoT network allows the complexity of the event reasoning process to be distributed into many manageable pieces and to be physically located at the source of the contextual information. This enables a huge amount of rich data streams to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud system. We propose a lightweight, energy-efficient, distributed, adaptive, multiple-context perspective event reasoning model under uncertainty on each IoT device (sensor/actuator). Each device senses and processes context data and infers events based on different local context perspectives: (i) expert knowledge on event representation, (ii) outliers inference, and (iii) deviation from locally predicted context. Such novel approximate reasoning paradigm is achieved through a contextualized, collaborative belief-driven clustering process, where clusters of devices are formed according to their belief on the presence of events. Our distributed and federated intelligence model efficiently identifies any localized abnormality on the contextual data in light of event reasoning through aggregating local degrees of belief, updates, and adjusts its knowledge to contextual data outliers and novelty detection. We provide comprehensive experimental and comparison assessment of our model over real contextual data with other localized and centralized event detection models and show the benefits stemmed from its adoption by achieving up to three orders of magnitude less energy consumption and high quality of inference

    Volterra graph-based outlier detection for air pollution sensor networks

    Get PDF
    Today's air pollution sensor networks pose new challenges given their heterogeneity of low-cost sensors and high-cost instrumentation. Recently, with the advent of graph signal processing, sensor network measurements have been successfully represented by graphs depicting the relationships between sensors. However, one of the main problems of these sensor networks is their reliability, especially due to the inclusion of low-cost sensors, so the detection and identification of outliers is extremely important for maintaining the quality of the network data. In order to better identify the outliers of the sensors composing a network, we propose the Volterra graph-based outlier detection (VGOD) mechanism, which uses a graph learned from data and a Volterra-like graph signal reconstruction model to detect and localize abnormal measurements in air pollution sensor networks. The proposed unsupervised decision process is compared with other outlier detection methods, state-of-the-art graph-based methods and non-graph-based methods, showing improvements in both detection and localization of anomalous measurements, so that anomalous measurements can be corrected and malfunctioning sensors can be replaced.This work is supported by the National Spanish funding PID2019-107910RB-I00, by regional project 2017SGR-990, and with the support of Secretaria d’Universitats i Recerca de la Generalitat de Catalunya i del Fons Social Europeu.Peer ReviewedPostprint (author's final draft

    3D Reconstruction of Building Rooftop and Power Line Models in Right-of-Ways Using Airborne LiDAR Data

    Get PDF
    The research objectives aimed to achieve thorough the thesis are to develop methods for reconstructing models of building and PL objects of interest in the power line (PL) corridor area from airborne LiDAR data. For this, it is mainly concerned with the model selection problem for which model is more optimal in representing the given data set. This means that the parametric relations and geometry of object shapes are unknowns and optimally determined by the verification of hypothetical models. Therefore, the proposed method achieves high adaptability to the complex geometric forms of building and PL objects. For the building modeling, the method of implicit geometric regularization is proposed to rectify noisy building outline vectors which are due to noisy data. A cost function for the regularization process is designed based on Minimum Description Length (MDL) theory, which favours smaller deviation between a model and observation as well as orthogonal and parallel properties between polylines. Next, a new approach, called Piecewise Model Growing (PMG), is proposed for 3D PL model reconstruction using a catenary curve model. It piece-wisely grows to capture all PL points of interest and thus produces a full PL 3D model. However, the proposed method is limited to the PL scene complexity, which causes PL modeling errors such as partial, under- and over-modeling errors. To correct the incompletion of PL models, the inner and across span analysis are carried out, which leads to replace erroneous PL segments by precise PL models. The inner span analysis is performed based on the MDL theory to correct under- and over-modeling errors. The across span analysis is subsequently carried out to correct partial-modeling errors by finding start and end positions of PLs which denotes Point Of Attachment (POA). As a result, this thesis addresses not only geometrically describing building and PL objects but also dealing with noisy data which causes the incompletion of models. In the practical aspects, the results of building and PL modeling should be essential to effectively analyze a PL scene and quickly alleviate the potentially hazardous scenarios jeopardizing the PL system
    • …
    corecore