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Volterra Graph-Based Outlier Detection for Air
Pollution Sensor Networks

Pau Ferrer-Cid, Jose M. Barcelo-Ordinas, and Jorge Garcia-Vidal

Abstract—Today’s air pollution sensor networks pose new
challenges given their heterogeneity of low-cost sensors and high-
cost instrumentation. Recently, with the advent of graph signal
processing, sensor network measurements have been success-
fully represented by graphs depicting the relationships between
sensors. However, one of the main problems of these sensor
networks is their reliability, especially due to the inclusion of
low-cost sensors, so the detection and identification of outliers is
extremely important for maintaining the quality of the network
data. In order to better identify the outliers of the sensors
composing a network, we propose the Volterra graph-based
outlier detection (VGOD) mechanism, which uses a graph learned
from data and a Volterra-like graph signal reconstruction model
to detect and localize abnormal measurements in air pollution
sensor networks. The proposed unsupervised decision process
is compared with other outlier detection methods, state-of-the-
art graph-based methods and non-graph-based methods, showing
improvements in both detection and localization of anomalous
measurements, so that anomalous measurements can be corrected
and malfunctioning sensors can be replaced.

Index Terms—Wireless Sensor Networks, Air Pollution Mon-
itoring, Outlier Detection, Graph Signal Processing, Low-Cost
Sensors.

I. INTRODUCTION

A IR pollution is a growing problem that affects millions
of people annually. In fact, air pollution is known to

cause everything from respiratory problems to heart diseases
[1]. Governments are therefore aware of the importance of
monitoring air pollution to take measures to mitigate its effects
on the population and the environment. Authorities currently
deploy high-cost instrumentation capable of measuring the
presence of pollutants in the air with high accuracy, but their
high cost implies that the number of instruments available
per area is limited. Given the growing field of the Internet
of Things (IoT), low-cost sensors have provided an alternative
solution that can coexist with precise instrumentation to im-
prove the resolution obtained by the government’s monitoring
networks [2], [3]. Although these sensors have a low accuracy,
their low-cost has led to the study of calibration techniques
based on machine learning to improve the accuracy of these
sensors; including both linear [4]–[9] and nonlinear models
[4], [10]–[13].

Once low-cost sensors have been calibrated in-situ at ref-
erence stations, they are deployed to increase the spatial
resolution of the monitoring network. Thus, one of the most
important aspects of a sensor network is the quality of the data,
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as they can be used by institutions to carry out measures and
raise public awareness. Therefore, the detection of outliers in
this type of networks is essential to increase the reliability of
the network [14]–[16]. Unsupervised methods are common in
this type of network since there is no prior information on what
measures may be outliers, and the sensors are assumed to work
well during a training or calibration period. Moreover, if a net-
work works cooperatively in correcting sensor measurements,
i.e. using information from neighboring nodes, it is essential
to be able to identify whether the network contains an outlier,
and to identify which sensor is giving abnormal measurements.
Once the sensor is identified, replacement actions or even the
recalibration of the malfunctioning sensor can be carried out
using the other sensors in the network.

There are many unsupervised outlier detection techniques,
ranging from univariate z-score based techniques [17], to
multivariate techniques based on machine learning models
[14], [18]–[20]. Spectral decomposition of data using principal
component analysis (PCA) is widely used [21]–[23], as well
as residual-based techniques, where a spatial model is fitted
and large sample residuals indicate the existence of outlierness
[15]. However, in this specific paradigm of air pollution, dif-
ferent techniques have been used for modeling these networks,
from spatial models [24] to graphs [25]. Indeed, the growing
field of graph signal processing (GSP) has shown its flexibility
in describing this type of network as well as providing classical
signal processing techniques for their analysis [26], [27].
This field is based on the assumption of signal smoothness,
assuming that similar sensors will be strongly connected while
non-similar sensors will be weakly connected or disconnected.
The interpretation of the measurements as a signal defined on
a graph allows the calculation of the Fourier basis and the
interpretation of the different frequency components through
the Graph Discrete Fourier Transform (GDFT) [28]. Thus,
the search for high frequencies to detect outliers has already
been used for outlier detection, as the magnitude of the high
frequencies are increased due to abrupt changes in similar
nodes [29]. That is why the description of the topology by
means of a graph and the subsequent application of filtering or
anomalous frequency detection techniques is a good candidate
for this type of sensor network. More recently, Xiao et al.
[30] have developed a third order nonlinear polynomial graph
filter (NPGF) to implement a residual-based outlier detector,
with good results in the detection and localization of daily
mean temperature outliers. These residual GSP-based tech-
niques offer great outlier detection capabilities in the sensor
network realm since they can locate which is the abnormal
sensor measurement. However, heterogeneous air pollution

1



2

monitoring networks with reference stations and low-cost
sensors have their own challenges, such as reporting data at the
granularity of the reference station, e.g., hourly, which makes
the amount of data to train an anomaly detection model small,
or the fact that the signals may depend on emission sources
such as vehicle traffic or industry. Most studies build graphs
based on the geographical distance between nodes, although
this approach performs well for some phenomena, networks
that measure air pollution and other phenomena can be very
complex. Therefore, as shown in [25], [31], the use of graphs
learned from the data, resulting in a smooth structure with
respect to the measured data, is a good candidate for these
air pollution sensor networks, and the one we explore in this
work. This approach is based on the fact of having a network
of sensors where there are implicit relationships between the
sensors that compose it so that the different sensors can benefit
from the information of other sensors. This idea is in line
with Heimann et al. [32] where it is explained that a dense
network of sensors is needed to distinguish local air pollution
emissions from regional emissions. Lately, it has been shown
how sensors deployed in sparse areas without any information
from nearby sensors, do not benefit from the network data nor
from the graph modeling the network [31].

In this paper, we propose a decision process based on the use
of a Volterra-based graph signal reconstruction (GSR) model
[33] superimposed on a graph topology, which is learned from
the network data using a signal smoothness criteria [34], to
detect outliers in air pollution sensor networks. We call this
algorithm Volterra graph-based outlier detection (VGOD). We
perform several experiments on networks of reference stations
in Spain measuring tropospheric ozone (O3), as well as a
sensor drift detection experiment using a small heterogeneous
sensor network involving high-cost instrumentation and low-
cost sensors, deployed in the Captor H2020 project [35].
Specifically, in this article we:

1) use a graph signal reconstruction Volterra-like model on
top of a graph, whose edges are built based on graph
signal smoothness criteria, as the principal components
of the outlier detection process,

2) propose the VGOD; an outlier decision process that goes
from graph learning and graph signal reconstruction, to
the thresholding of the graph signals residuals,

3) show the model’s ability to detect and identify signals
and sensors with outliers in air pollution networks, and
compare it with five state-of-the-art outlier detection
algorithms,

4) show its application in the detection of sensor drift using
a heterogeneous low-cost sensor network deployed by the
H2020 Captor project.

The outline of this paper is as follows: section II shows
the related work. Section III describes the proposed Volterra
graph-based outlier detection process. Then, section IV intro-
duces the data sets used in this paper, and section V shows
the different experiments performed and their results. Finally,
section VI presents the conclusions of the paper.

II. RELATED WORK

Data quality in low-cost air pollution sensor networks: the

enhancement of low-cost sensor technologies has enabled the
study of their use for air pollution monitoring [2], [6]. In fact,
despite being a less accurate solution than the government’s
instrumentation, they have proven to be useful in conjunction
with the government’s air pollution monitoring networks.
Most of the literature focus on the use of machine learning
techniques for the in-situ calibration of low-cost sensors [4],
[5], [7]–[13], [36], with the aim of finding the best machine
learning model and those features that improve the prediction
of the measured pollutant. Nevertheless, these sensors are
known to have aging and drifting problems as time progresses
and environmental conditions change [16], [36], that is why
the detection of sensor outliers is important for data correction,
possible recalibration, or replacement of low-cost sensors.

Outlier detection in air pollution monitoring networks using
univariate models: unsupervised models for detecting abnor-
mal measurements in air quality monitoring networks is an
important challenge [37], [38]. Most simple approaches use
statistics such as the interquartile range or the z-score of
samples from different sensors separately [14], [15], detecting
whether the observed values correspond to extreme values with
respect to the training set distribution. Nevertheless, this type
of methods do not take into account the spatial distribution of
the different sensors deployed together. In fact, in the field of
spatial outlier detection, different studies use as statistic the
difference between the value at one sensor with the mean or
median [17] of the neighboring sensors at a given time instant
without the need of a training stage. Beyond that, Shekhar
et al. [39] describe spatial relationships with a graph where,
instead of finding the nearest spatial sensors, the neighbors
of a node are used. Kou et al. [40] do the same but using
the weighted average of a node’s neighbors measurements. A
combination of these techniques is residual-based modeling,
where a reconstruction model is fitted, and the observed value
is compared to the value predicted by the model (potentially
from nearby sensors) [15]. The benefit of all these techniques
is that they compute a statistic per sensor, so the identification
of the sensor that is causing the anomaly is implicit. Yet, most
of these models are too simple to capture outliers that depend
on other sensors jointly deployed (or other variables).

Outlier detection in air pollution monitoring networks using
machine learning: there is also another type of outlier detec-
tion method used in environmental sensors, which are multi-
variate methods, where instead of looking sensor by sensor,
the measurements of all sensors in the network are observed as
a sample. In this way, machine learning methods such as local
outlier factor (LOF) [41] or K-nearest neighbors (KNN) [16]
have been used to detect whether an observation is anomalous.
In addition, within the field of neural networks, many studies
have been carried out using autoencoders to detect anomalies
[19], [20]. Detection is performed by comparing the recon-
structed vector with the observed values, as in the case of
residual-based methods. This problem has also been tackled
from another point of view, that of spectral decomposition,
where using principal component analysis (PCA) it is assumed
that normal information is contained in the components that
explain more information, and anomalous changes affect the
components with less information. Furthermore, Karkat et al.
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[21] show how to identify which sensor is anomalous from the
vector norm of the principal components that do not explain
much information. However, most multivariate models do not
naturally identify which sensor (or variable) is causing the
anomaly, thereby limiting their use in this field.

Outlier detection using graph signal processing: recently,
the field of graph signal processing has provided the possi-
bility of using many classical signal processing and machine
learning techniques on graphs [26], [27]. Thus, since sensor
networks have already been modeled using graphs [25], outlier
detection by studying signals over graphs is an important
research topic, based on the fact that graphs learned from
the data tend to be smooth with respect to the network
measurements. In particular, Egilmez et al. [29] show how, in a
similar way to the PCA, it is possible to perform data filtering
with the graph, and through the Fourier transform detect an
increase in high frequencies. Similarly, Gopalakrishnan et al.
[42] directly use the signal smoothness, represented by total
variation (TV), as a statistic to determine whether the joint
signal from the sensors is anomalous, or at least different to
the signals already observed in the training phase. However,
the most important problem with approaching sensor outlier
detection from a multivariate perspective (i.e. treating all
measurements observed at a time step as one sample) is that
it indicates that the entire sample is anomalous, but gives no
clue as to which sensors are producing the anomalous values.
Besides, graph neural networks have also been used for the
detection of outliers for telemetry data [43]. However, neural
networks are nonconvex models that present optimization
difficulties when being fed by little training data [44], [45],
requiring specific training methodologies. Thus, their use is
limited in the field of low-cost air pollution sensor networks,
where data for training are scarce. To overcome this problem,
Xiao et al. [30] use a convex nonlinear polynomial graph filter
(NPGF) to reconstruct the graph signals (temperature) and use
a threshold on the differences of the reconstructed signal and
the original signal to detect and locate the outliers. Thus, this
residual-based method has proven to be a good alternative
to other graph signal processing methods, as it is able to
locate the abnormal sensors by inspecting the errors produced.
Moreover, the NPGF has proven to be a convex alternative to
neural networks with better outlier detection capabilities [46].
A shortcoming of these methods lies in the way the graph
is constructed. Most of the proposed methods use as shifting
matrix a matrix whose weights are calculated using a function
that decays exponentially with the distance between nodes,
and does not take into account the correlation of the data taken
[28], [30].

Our proposal: In the area of air pollution monitoring
networks, most of the work has focused on the calibration
of low-cost sensors, and there is little research on how to
detect outliers produced by air pollution sensors measuring
signals such as O3, NO2 or PM2.5. In order to benefit from
the advantages of the field of graph signal processing and the
intrinsic topology defined by a sensor network, we approach
the problem of unsupervised sensor outlier detection from a
graph-based perspective. Thus, in this paper, we propose an
outlier detection process that first learns the graph encoded by

the sensor network data, and then detects the outliers using a
residual-based method based on a Volterra-like graph signal
reconstruction model [33]. Indeed, this methodology poses
three advances with respect to the literature:

1) Outlier detection methods for air pollution sensor net-
works are scarce, previously used methods include LOF,
KNN and statistical methods [14]–[16]. Now, with the
advent of graphs for air pollution monitoring networks
[25], we propose a more complex graph-based outlier
detection mechanism with localization capabilities, which
allow the identification of outliers as in the case of
drifting low-cost sensors in heterogeneous air pollution
sensor networks.

2) While most previous work on graph-based outlier de-
tection has used a graph based on distances between
nodes [29], [30], we propose to use a graph learned
from data. As discussed in [25], graphs learned from
network data best describe complex networks than those
using functions that decay exponentially with distance,
such as low-cost heterogeneous sensor networks for air
pollution monitoring. The choice of the shift matrix S
defines the nodes’ neighborhoods N (xi)={xj :Sij ̸=0}
and has impact on the signal reconstruction model as it
participates in the shifting of the graph signals.

3) We apply a graph signal reconstruction model based on
the classical Volterra series defined by Xiao et al. [33]. In
fact, Volterra-like models have already been successfully
applied to graphs [33], [47]. This model is similar to the
NPGF model [30], which has proven a good performance
in outlier detection, but requires fewer parameters to
learn. This means a better computational response when
reconstructing the signal.

These features give VGOD a better outlier detection capability
compared to other algorithms such as LOF, KNN, NPGF,
frequency-based GSP, or a linear graph filter (LGF). Finally,
missing data are also a major problem in the use of low-cost
sensors [25], [48], given the possible connectivity and data
capture problems. Nevertheless, in this paper we focus on
the outlier detection task, assuming that the data are complete
when applying the graph signal reconstruction model. In fact,
in the case of having missing data, these should first be
imputed before going through the outlier detector.

III. VOLTERRA GRAPH-BASED OUTLIER DETECTION
(VGOD) PROCESS

The sensor network is described by means of a graph
G defined as the triplet G={W, E ,V}, where W∈RN×N is
the weight matrix defining the relationship between nodes,
E={eij : Wij≥0} is the set of edges, V={1, .., N} is the
set of nodes, and a signal defined over a graph is defined
as the map x:V→R [26]. Table I summarizes the different
symbols used throughout the paper. Bold lowercase symbols
denote vectors, uppercase bold symbols denote matrices and
lowercase symbols denote scalars. Throughout the following
subsections we describe the three most important parts of the
proposed Volterra graph-based outlier detection process; the
graph learning, the graph signal reconstruction model, and the
residual-based outlier detection.
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TABLE I
NOTATION SUMMARY

SYMBOL MEANING

N | P Number of nodes | Number of observations
G | V | E Graph | Set of nodes | Set of edges

S Graph shift matrix
A | W Graph adjacency matrix | Graph weight matrix
D | L Graph degree matrix | Graph Laplacian matrix

xi | N (xi) ith vertex value | ith vertex neighborhood
x | ⊙ Graph signal at a given time | Hadamard product

tr(·) | ∥ · ∥2 Trace of a matrix | l2-norm of a vector
∥ · ∥1 | ∥ · ∥F l1-norm of a matrix | Frobenius norm of a matrix

α | β Graph learning hyperparameters
τ | Nlof GSP hyperparameter | LOF hyperparameter
Nknn | W KNN hyperparameter | Adaptive window
D | K Graph signal reconstruction model degree | Depth
0 | 1 Vector of zeros | Vector of ones

A. Graph learning: smoothness-based

The first step in our outlier detection process is discovering
the underlying relationships between the sensors composing
the network via a graph G. So, given the training data
X∈RN×P, the goal is to learn a graph shift matrix S, which
can be the weighting matrix W or the Laplacian matrix
L. The Laplacian matrix is object of study of the GSP
[26], its combinatorial form is defined as L=D−W, where
Dii=

∑
j Wij is the degree matrix. Moreover, the Laplacian

eigendecomposition provides the Fourier basis for performing
the graph discrete Fourier transform, and its quadratic form
xTLx provides the signal smoothness criterion. Many of the
works related to environmental sensors such as temperature
or air pollution construct the shift matrix using a distance
exponential-decaying function between nodes [28], [30]. In
this paper, we propose to construct the graph from the network
data, thus creating edges between nodes that measure similar
signals. Most of the optimization problems proposed in the
literature to learn the graph connectivity from the data are
based on the smoothness criterion and the imposition of a
sparsity penalty on the resulting network. Some works focus
on learning the weight matrix [49], and others focus on
learning the Laplacian matrix directly [34]. For simplicity, we
use the optimization problem defined by Dong et al. [34] since
we adopt the Laplacian matrix as the graph shift operator S to
detect outliers. Besides, this method has already been proved
to efficiently describe air pollution sensor networks [25]. The
Laplacian learning optimization problem solved in [34]1 is
defined as:

min
L,Y

∥X−Y∥2F + α tr(YTLY) + β∥L∥2F

s.t. tr(L) = N,

Lij = Lji ≤ 0, i ̸= j,

L · 1 = 0.

(1)

Where Y is a filtered version of X, and the hyperparameters
α∈R and β∈R control the smoothness and the sparsity of the
resulting Laplacian L. The network topology only needs to
be learned once, with the training data, since it is assumed

1The authors of [34] provide the implementation of the graph learning
problem.

that the deployed sensors will at least work well for a certain
period of time right after deployment. Thus, the temporal
distribution of measurements may change, but the relationship
between sensors, when working properly, is maintained over
time. Once, the graph is learned from the data, the next step
is to train a graph signal reconstruction model.

We would like to emphasize that one of the advantages
of constructing the graph from measured sensor data rather
than distances is that low-cost air pollution sensors have to
be calibrated during deployment. This implies that a poorly
calibrated sensor will actively participate in outlier detection
in a distance-based method as the weights in the adjacency
matrix A do not depend on how well calibrated the sensor is.
In contrast, a poorly calibrated sensor will participate little if
the Laplacian matrix L has been learned from the data, as the
bad sensor data will be poorly correlated with the rest of the
sensors.

B. Graph signal reconstruction: Volterra-based

As in all models based on the residual R(x) between a
graph signal x and the reconstructed signal itself f(x), a signal
reconstruction model is needed. In the VGOD mechanism, we
apply a model similar to the Volterra series2, recently defined
by Xiao et al. [33]. For understanding purposes, we will now
explain the relationship of the used model with the classical
Volterra discrete model. The classical discrete Volterra model
can be defined as:

y(t) = h0+

D∑
d=1

b∑
τ1=a

· · ·
b∑

τd=a

hd(τ1, . . . , τd)

d∏
j

x(t−τj) (2)

Where x(t) is a discrete signal defined at different time steps
t, hd(·) are the different learnable parameters of the model, D
is the order of the Volterra series, and x(t−τj) can be seen as
a signal shift by τj as in classical discrete signal processing.
This model is known for being nonlinear and memory-based,
since the output y(t) depends on the inputs at previous times
x(t− τ) in a nonlinear way.

Equivalently, the notion of signal shift [26] has been ex-
tended to the graph signal processing paradigm by applying a
graph shift matrix S to a graph signal x, x(1)= Sx. The graph
adjacency matrix A and the Laplacian matrix L have been
widely used as the graph shift operator in the literature [26],
[27]. In the specific case of a circular graph, the graph shift is
equivalent to the signal shift in discrete signal processing. In
this way, the Volterra-like model that describes the interactions
between the signal at node xi with the shifted versions of the
signal at that node (Ljx)i is defined in the following way:

f(x) = h0 +

D∑
d=1

K−1∑
kd=0

· · ·
K−1∑
k1=0

hd(kd, . . . , k1)ψd,kd,...,k1
(x)

(3)

2A python implementation of the proposed VGOD mechanism along with
an implementation of the Volterra model [33] and the graph learning problem
[34] using the CVXPY library are available at: http://sans.ac.upc.edu/?q=node/
231.

http://sans.ac.upc.edu/?q=node/231
http://sans.ac.upc.edu/?q=node/231
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Fig. 1. General view of the VGOD process.

Where D is the order of the Volterra series, K is the
maximum number of shifts to be applied (model depth),
h0∈RN and hd(kd, . . . , k1)∈RKd

are the parameters to be
learned, and ψd,k1,...,kD

(x) are the interactions defined as:


ψ1k1

(x) = Lk1x

ψ2k2k1
(x) = (Lk2x)⊙ψ1k1

(x)

. . .

ψDkD...k1
(x) = (LkDx)⊙ψ(D−1)kD−1...k1

(x)

(4)

Where ⊙ is the Hadamard product and ki= 0, ..,K−1. For
instance, the second order interactions take into account the
interactions between the values at one node xi (and its shifted
versions) and the values at that node in its shifted versions
(Ljx)i.

Now, the graph signal reconstruction model used for outlier
detection is trained to recover the original signal x given a
perturbed version of it x̃=x+ϵ, acting as a denoising model,
and the following convex objective function is minimized to
find the model’s coefficients h:

min
h

∑
i

∥xi − f(x̃i)∥22 (5)

When an unusual perturbation is present in a signal the
model will incur in a larger error, being capable of identifying
the anomalous node given the residuals R(x)=|x−f(x)|. This
problem constitutes a convex optimization problem since it
is linear with respect to the coefficients of the model h, so
its optimization is easier than in nonconvex models such as
neural networks. This is of special interest in cases such as the
monitoring of air pollution sensor networks, where the training
periods used to learn the models may be relatively small. We
also expect the choice of the shift operator to have a very
high impact on the model. In general, for many signals the
distance between nodes does not have to be a good choice for
generating the shift operator, as shown in [25].

Although the model can be trained correctly using a few
weeks of data, air pollution data can suffer from a problem
known as data set shift, commonly known as non-stationarity
in the field of time series analysis. This is because the data
present in the training set may not be representative of the
testing set (or the posterior deployment conditions), e.g., mean
concentrations may vary from month to month. Therefore,
special care must be taken when applying the graph signal
reconstruction model. A common approach to overcome this

problem [50] consists of updating the detection model peri-
odically with new data. For example, we can incorporate into
the training set the samples predicted as normal during the test
phase, and retrain the signal reconstruction model every time
we have W normal samples. This increases the computational
burden, but as we are solving convex optimization problems
the increase remains bounded. However, it is important to keep
the complexity of the models limited, i.e. their depth or number
of learnable parameters, so that it is feasible to retrain them
periodically.

C. Outlier detection: residual-based

Now, having learned the graph L and trained the graph
signal reconstruction (GSR) model f(·), the remaining stage
is the identification of outliers through the inspection of the
signal reconstruction residuals R(x), it is to say, the difference
between the observed signal x and the reconstructed signal
f(x):

R(x) = |x− f(x)| (6)

Normal samples are supposed to have small residuals since the
model has been trained with a similar pattern, while abnormal
samples tend to have larger residuals, as they deviate from the
normal pattern seen during the training. Then, using a thresh-
olding value, TH , an indicator function can be implemented:

Ii(x) =

{
1 , Ri(x) > TH
0 , Ri(x) ≤ TH

(7)

where Ii(x)=1 indicates that the node xi is the suspicious one.
Other outlier scoring metrics can be used to detect outliers,
for instance, if we are not interested in locating the error,
but in indicating whether the whole sample is an outlier,
using the norm of the residual ∥R(x)∥2 can be useful to
find abnormal graph signals. The threshold value TH can
be defined depending on the application target performance,
it is to say, the maximum false positive rate (FPR) or the
minimum true positive rate (TPR) required by the application
[29], [30]. This threshold TH can also be recomputed along
with the signal reconstruction method to better adapt to the
non-stationarity nature of the data.

Figure 1 summarizes the overall outlier detection process
developed while algorithm 1 gives a precise description of the
process. The outlier detection process parameters are; {α, β}
hyperparameters to control the graph learning algorithm, the
training data Xtr, model depth K, model order D, acceptable
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TABLE II
STATISTICS OF THE DATA SETS USED.

DATA SET LABEL POLLUTANT # NODES # SAMPLES PERIOD RESOLUTION MEAN (µgr/m3) POOLED STD. (µgr/m3)

D.1 O3 14 2798 2019/01/01 - 2019/05/31 1 h 45.32 31.78
D.2 O3 43 1076 2021/09/01 - 2021/11/01 1 h 50.79 25.72
D.3 O3 8 2368 2017/06/18 - 2017/09/01 30 min 68.82 35.14

Algorithm 1 Volterra Graph-Based Outlier Detection(VGOD).
Input: {α, β,Xtr,K,D, fpr, ϵ,W}

1: X̄tr ← Standardization(Xtr)
2: L← Graph Learning(α, β, X̄tr)
3: f(·)← Reconstruction Model(X̄tr,K,D)
4: TH ← Define Threshold(f(·), X̄tr, fpr, ϵ)
5: rec← 0
6: while xnew do ◁ Detection Phase
7: x̄new ← Standardization(xnew)
8: R(x̄new)←| x̄new − f(x̄new) |
9: if Ri(x̄new) > TH then

10: xnew,iis outlier !
11: else ◁ Adaptive Phase
12: Xtr ← {Xtr,xnew}
13: rec ← rec+ 1
14: if rec = W then
15: X̄tr ← Standardization(Xtr)
16: f(·) ← Reconstruction Model(X̄tr,K,D)
17: TH ← Define Threshold(f(·), X̄tr, fpr, ϵ)
18: rec ← 0
19: end if
20: end if
21: end while

maximum false positive rate fpr to define the threshold, the
perturbation ϵ to be introduced to define the threshold, and
the model updating window size W . {α, β,K,D} are hyper-
parameters that are obtained based on the training data Xtr,
while {fpr, ϵ,W} are user-defined parameters that depend on
the specific data domain on which the algorithm is used.

IV. DATA SETS

To study the performance of the proposed outlier detection
process for air pollution data sets, we use two different types
of data. First, we use two data sets provided by the Spanish
government consisting of forty-three nodes deployed in the
Catalonia area, and fourteen nodes deployed in the Barcelona
city area. These data are public and can be downloaded at the
Catalonia open data web page3. In this way, we can simulate
outliers and see how outlier detection works for tropospheric
ozone sensor networks. Secondly, we use a data set collected
by a heterogeneous network consisting of five low-cost sensors
and three reference stations, deployed during summer 2017
for the H2020 Captor project, to detect drifting sensors. In
summary, we experiment with the following three data sets:

1) Spanish air pollution reference station network for O3 for
Barcelona city area: this data set is formed by fourteen

3https://analisi.transparenciacatalunya.cat/en/Medi-Ambient/Qualitat-de-l-
aire-als-punts-de-mesurament-autom-t/tasf-thgu

nodes, capturing hourly tropospheric ozone data between
the months of January and May of 2019, with a total of
2798 samples.

2) Spanish O3 reference station network for Catalonia: this
data set is formed by forty-three nodes in the area
of Catalonia capturing hourly tropospheric ozone data
between the months of January and February of 2021,
with a total of 1076 samples.

3) H2020 Captor network [35]: this data set is formed by
eight nodes, five low-cost sensors and three reference
stations, deployed in the area of Catalonia (Spain) during
the summer of 2017 to capture half-hourly tropospheric
ozone concentration levels. This data set has a total of
2368 samples.

These data sets are representative of air quality monitoring
networks. The first two data sets correspond to governmental
reference stations, while the third corresponds to a hybrid net-
work of governmental reference stations and low-cost sensors.
Table II shows the statistical characteristics of the three data
sets. In addition, heterogeneous data from the Captor network
allows us to explore one of the most important outlier detection
applications in sensor networks, the detection of drifting or
malfunctioning sensors. Large air pollution monitoring sensor
networks can be reduced to smaller subnetworks using clus-
tering techniques [31]. This reduces the computational cost,
without losing the ultimate goal of the graph-based method,
which is to detect anomalies using neighboring nodes selected
with an algorithm that learns the connectivity of the graph
based on a smoothness criterion.

V. RESULTS

This section shows the performance of the VGOD algo-
rithm explained in section III applied to the real air quality
monitoring data sets described in section IV. The proposed
model is compared with other state-of-the-art outlier detection
methods. In particular, we compare VGOD with i) outlier
detection algorithms using global models which do not allow
localization, such as the frequency-based GSP [29], the local
outlier factor (LOF) [41], and the k-nearest neighbors (KNN)
[16], and ii) with models based on reconstruction residuals and
graph signal processing, such as the linear graph filter (LGF,
f(x)=h0+

∑K−1
i=0 h1iS

ix) [28], and the third order NPGF
model with a distance-based graph [30]. The data sets are
divided into 60% of the data for training, and the remaining
40% for testing. Thus, the first 60% of the samples are used
as training, and the remaining 40% as testing, mimicking the
real case where the outlier detection model is trained just
after the sensor network deployment and applied sequentially
throughout the deployment lifetime. Four experiments are
conducted, divided into the following five sections:
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(A) Model training & selection: the different models’ pa-
rameters are described for both global and residual-
based models, as well as the selection process of their
hyperparameters.

(B) Outlier detection over the training set: outliers are sim-
ulated on the training of the data set D.1. The different
models are applied non-adaptively on the training data
set, i.e., they are trained using the training data set and the
detection is also performed on the training data set. This
simulates the best case, where the data distribution in the
detection phase does not change. Such experiments allow
us to analyze which parameters internal to the models will
be used later in testing, e.g., the model depth K.

(C) Outlier detection over the testing set: outliers are sim-
ulated in the testing of the data sets D.1 and D.2. The
models are applied adaptively, as shown in the algorithm
1 since the data distribution changes over time.

(D) Sensor drift detection: a sensor drift is simulated in the
testing set of data set D.3. As the data set D.3 contains
both sensors and reference stations, a malfunctioning
sensor can be simulated. Again, the models are applied
adaptively to detect and locate the drifting sensor.

(E) VGOD scalability: the scalability of the two best perform-
ing graph-based models, the graph signal reconstruction
model using the Volterra-based model and the NPGF
model, is compared.

The perturbations δ added to simulate the outliers have no
units since these perturbations are introduced to the standard-
ized data. Indeed, it is fairer to add perturbations proportional
to the standard deviation of each of the sensor nodes.

A. Model training & selection

In this section, we explain what are the parameters of the
different models, explaining from how to learn the graph and
the signal reconstruction model, to how to define the thresh-
olds. We assume that the sensors have no outliers during the
graph learning and signal reconstruction training phases. The
different resulting hyperparameters for the different models are
summarized in Table III.

TABLE III
MODELS’ HYPERPARAMETERS.

MODEL INPUTS HYPERPARAMETERS
Shift Matrix S Data

Linear Graph Filter (LGF) [28] A Xtr Depth (K)
Third Order NPGF [30] A Xtr Depth (K)
VGOD L Xtr {α, β}, Depth (K), Order(D)
Frequency-based GSP [29] L Xtr Variance kept (τ )
Local Outlier Factor (LOF) [41] Xtr Neighbors (Nlof )
K-nearest Neighbors (KNN) [16] Xtr Neighbors (Nknn)

1) Graph learning: residual-based models require a shift
matrix S to perform the graph signal reconstruction, for
example the adjacency matrix A or the Laplacian matrix L.
The state-of-the-art models LGF and NPGF use a distance-
based adjacency matrix A as defined in [28], to define
the relationships between the different network sensors. The
VGOD process uses a Laplacian matrix learned from the
network data using a signal smoothness criterion [34], i.e.

based on the data collected during the training. As seen in
[25], air pollution sensor networks encode highly complex
relationships, which are best described by a data-driven graph,
thus learning the Laplacian matrix implies learning more
meaningful relationships. The Laplacian matrix L is learned
from the data using the training set Xtr and the values of
the hyperparameters {α, β}, which control the sparsity of the
graph in the optimization problem shown in section III-A. In
this case, we choose a dense graph with a high number of
neighbors per node, so that all nodes have enough neighboring
information to detect the outliers. Further information on how
to learn graphs for air pollution networks and the effect of
different {α, β} values can be found in [25].

2) Graph signal reconstruction: once the shift matrix S
has been learned, the second step is to train the reconstruction
models to remove noise, as if it were a signal denoising
task, by taking the training set Xtr and adding noise to a
variable percentage of nodes for each signal, so using as
input an artificially perturbed version X̃tr of the training data.
Regarding the hyperparameters of the signal reconstruction
models, we have the filter depth K, which indicates the
maximum number of shifted versions of the signal taken into
account, and therefore controls the model complexity. As a
general rule, the maximum value of K is set to the degree Nm

of the minimal characteristic polynomial of the shift matrix S,
that is K≤Nm≤N . As the graph diameter in dense graphs is
low, and we want the models to extrapolate to the test set, we
explore simple models with small depths. The model based
on the Volterra series [33] also includes the model order D,
which indicates the maximum degree of interactions to take
into account. This parameter drastically affects the complexity
of the model as well as the number of parameters of the
model. But in this experiment, we only take into account the
third order model, D=3, so that we can fairly compare this
model with the third order NPGF shown in [30]. The best filter
depth K value is found by adding artificial outliers randomly
in the training, and obtaining the K that corresponds to the
best true positive rate and the least complex model so that it
generalizes better, a common procedure used in the literature
[29], [30]. Next section V-B shows the selection of the best
K results. Once the graph signal reconstruction models are
trained, we find the corresponding threshold TH for each
model above which the residual Ri(x) considers that sensor xi

is a possible outlier. The selection of the threshold can be done
in different ways, but the most common choice depends on the
false positive rate (FPR) or false alarm, and true positive rate
(TPR) or probability of hit required by the application. Since
the outlier detection process is used to maintain the network
data quality, the TPR is maximized and the acceptable rate of
false positives is set to 10%. In the paradigm of sensor data
quality, it is important to have a high sensitivity (true positive
rate) and the fact of having any false positive does not imply
any high-cost action (e.g. sensor replacement). The decision
on the value of W is shown in section V-C, where the adaptive
application of the different models (adaptive phase, algorithm
1) is explained.

3) Global models: As for the global models, the frequency-
based GSP needs the Laplacian L, the training data Xtr,
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(a) Outlier detection using the LGF.
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(b) Outlier detection using the third order NPGF.
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(c) Outlier detection using the VGOD process with
the third order Volterra-based graph model.

Fig. 2. Average true positive rates results for ten different repetitions and different perturbation magnitudes (|δ|) using the residual-based models for data set
D.1.

and the τ hyperparameter, which indicates the amount of
variance retained by the selected frequencies as the normal
components of the signal. The LOF uses the training data
Xtr, and the number of neighbors Nlof to take into account to
compute the outlier score. Finally, the KNN uses the training
set Xtr as a dictionary to compute distances, and the number
of neighbors Nknn to consider when computing the distance.
The hyperparameters and the thresholds for these models are
selected in the same way as in the case of residual-based
models.

B. Outlier detection over the training set

This section shows the results of applying the different
models in a non-adaptive way in the training so that the
models are trained and used on the same data. This process
allows exploring the best case, where the data distribution
does not change as the opposite of the adaptive case, and
allows different hyperparameters to be examined and set as a
baseline for testing. This is important because in the adaptive
application case the model is retrained with an increasing
training set, and the threshold is also recomputed based on
the most recent samples of this same increasing training set.

Models are trained with different values for their hyperpa-
rameters, Table III. The only tested parameter for the VGOD is
the filter depth K since the other have been set in the previous
section. To this end, 30% of the training set is perturbed by
adding different outlier perturbations δ (delta) at random, and
ten repetitions are performed.

Figures 2a), b) and c) show the average TPR for the different
residual-based models and a FPR of 10%. As for the depths
of the models, it can be seen how from K=4 on wards the
improvement for all three models is very little. Therefore, K=4
seems to be a good choice to keep the models’ complexity
bounded. In fact, for perturbations of one standard deviation
(|δ|=1) the LGF obtains a 27% TPR, the NPGF obtains around
a 44% TPR, and in the case of the VGOD the TPR is 52%.
Thus, using the combination of a graph learned from the data
and the Volterra-based reconstruction outperforms the other
two residual-based models using the distance-based adjacency
matrix. Looking at the VGOD results we see that with a
perturbation of |δ|=1.0 standard deviation obtains a TPR of

52%, with perturbations of |δ|=1.25 standard deviations the
TPR reaches 69%, and with perturbations of two standard
deviations it can nearly detect all the outliers with a TPR
of 95%. Recall that in this case one standard deviation is
approximately 31 µgr/m3, this means that readings with
deviations of around 39µgr/m3 (1.25 standard deviations) are
effectively detected with a 69% TPR. This value is actually
good, since air pollution sensing nodes exhibit large variability,
so stating that a measurement is an outlier can be difficult.
Thus, this outlier detection process provides the necessary
tools to detect outlying measures and sensors. Indeed, the
proposed model can slightly improve the results of the NPGF
even when this has larger depths (more complexity).
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Fig. 3. Average true positive rate for the different models for data set D.1.

Now, Figure 3 compares the TPR for the residual-based
models, with K=4, with the TPR for the three global models
(frequency-based GSP, LOF, and KNN) with their best hyper-
parameters. It is clearly seen that the nonlinear residual-based
models perform better than the global models. Indeed, VGOD
is able to improve the detection rate by more than a 10% for
perturbations greater than |δ|=0.75 standard deviations. The
NPGF improves the results of LOF by a 5% of TPR for
perturbations in the range of |δ|=0.5-1.5 standard deviations.
The frequency-based GSP has a similar performance to the
LGF, since they both use the high-frequency components of
the signal to detect outliers, but the LGF performs slightly
better than the frequency-based GSP for high magnitude
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TABLE IV
AVERAGE OUTLIER DETECTION RESULTS OVER THE TEST SET WITH δ STANDARD DEVIATION PERTURBATIONS FOR DATA SET D.1.

MODEL |δ|=0.0 |δ|=0.5 |δ|=1.0 |δ|=1.25 |δ|=1.5 |δ|=2.0
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

LGF [28] 0.0 0.19 0.20 0.18 0.31 0.15 0.41 0.14 0.56 0.13 0.80 0.12
Third order NPGF [30] 0.0 0.19 0.24 0.17 0.40 0.13 0.54 0.13 0.64 0.12 0.82 0.12
Third order VGOD 0.0 0.18 0.23 0.16 0.41 0.13 0.56 0.12 0.71 0.12 0.91 0.13
LOF [41] 0.0 0.15 0.20 0.15 0.32 0.15 0.45 0.14 0.61 0.15 0.84 0.16
KNN [16] 0.0 0.15 0.18 0.16 0.26 0.16 0.36 0.16 0.49 0.16 0.83 0.16
Frequency-based GSP [29] 0.0 0.15 0.19 0.15 0.34 0.15 0.48 0.15 0.61 0.15 0.78 0.16

perturbations. The KNN is observed to have a similar per-
formance to GSP and LGF, with slightly higher detection
capabilities for large perturbations. In addition to their lower
detection capabilities, global models are not able to localize
which one of the sensors in the network is producing the
outlier, and this limits their application in real sensor network
deployment scenarios. In the following section, we show the
detection results using the adaptive algorithm to deal with
unseen data distributions, as well as we show the localization
abilities of the models.

C. Outlier detection over the testing set

Once we have seen how the different models work on the
training, let’s check how they work when applied adaptively,
as for algorithm 1, on the test set. As already mentioned, in
non-stationary environments is necessary to update the models
by introducing samples with the new data distribution to adapt
them. To this end, we use a time window of 10 samples
(W=10), which is equivalent to recalculating the model once
ten samples are considered normal. This approach is feasible
for hourly measurements since in the best case the model
would need to be recomputed every ten hours. Smaller time
windows (e.g. W=1) could lead to problems depending on
the data availability, the model’s complexity, and the required
training time. Thus, in the adaptive approach we add the new
samples considered as non-outliers to the training set. This
parameter is user-defined since its value will always depend on
the specific data domain of the application and data resolution.
In addition to recalculating the model, we recompute the
threshold using the latest samples collected. We apply the same
adaptive procedure for all models, global and residual-based.
Perturbations of different magnitude δ are applied to the 30%
of the test set, and five repetitions per perturbation magnitude
are performed.

Table IV shows the average TPRs and FPRs for the selected
models and perturbations of different magnitude δ. The same
trend is observed as in the training results but with slightly
lower TPRs in general. Firstly, in the case of the true positive
rates, the VGOD process is the best method followed by
the NPGF, in particular, the VGOD is able to improve the
NPGF by about 2.5-11% TPR for outliers in the range between
|δ|=1.0-2.0 standard deviation. In general, VGOD and NPGF
are better able to detect outliers with smaller perturbations,
e.g. in the range of |δ|=1.0, thus showing better sensitivity in
these ranges than LGF, LOF, KNN and frequency-based GSP.
For large perturbation values (|δ|=2.0), all methods show a

similar high ability, in the order of 78-84%, to detect outliers,
except VGOD which goes up to 91%, outperforming all other
methods.

On the other hand, Table IV also shows the FPR committed
by the different models. In fact, given the non-stationarity
of the test set, we can see FPRs around 15-19% for |δ|=0,
although in the case of the residual-based methods (LGF,
NPGF, and VGOD) these FPRs are reduced to 12-14% as
the magnitude of the outliers increases. That is, as outliers
are larger in magnitude the residual-based models have better
sensitivity and also produce fewer false positives. Depending
on the characteristics of the data set and the computational ca-
pabilities, the adaptive window W can be reduced to improve
the models.
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Fig. 4. Localization rate test set results for the three residual-based models
for data set D.1.

Now, let’s see how the residual-based models work with
respect to the localization of the sensor that has the outlier.
This step is very important in sensor networks in order to
carry out actions to mitigate the effects of the outlier, actions
such as the imputation of the sensor measurement, the removal
of the measure, and even the replacement of the sensor if it
malfunctions. Figure 4 shows the true localization rate results
for the test set, this rate is defined as the precise detection of
the outlying sensor, where the localization rates are slightly
smaller than the detection rate, meaning that sometimes the
models fails in locating the specific outlying sensor. However,
the results show how VGOD outperforms the NPGF and
the LGF. For perturbations of 1.0 standard deviation the two
nonlinear models behave similarly with a location rate of about
a 37%. Nevertheless, as the perturbation magnitude increases
the performance gap between the three models also increases,
leading to a localization rate of 70% with a 1.5 standard
deviation perturbations with the VGOD process, more than
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10% higher location rate than the others.
Figure 5, shows the outlier localization results for the data

set comprising the Catalonia reference stations (D.2). The
same trend as in the previous case is verified, where the
nonlinear models have a better localization for outliers of mag-
nitude in the range |δ|=1.0-1.5 standard deviation. However,
the gap between the localization performance of the VGOD
and the NPGF is larger in this case for outliers of magnitude
in the range |δ|=1.0-2.0 standard deviation since the network
is very heterogeneous, and a graph learned from the data
captures better the relationships between nodes. The sensor
network represented by the D.2 data set includes sensors
whose relationships are not well defined by distances, which
is a common scenario in air pollution sensor networks whose
nodes are deployed in specific locations with high concentra-
tions of air pollution, and whose signals are highly dependent
on ambient conditions and other pollutants. Therefore, outlier
detection models using distance-based graphs do not work
well in that case given that the graph signal reconstruction
stage is distorted by erroneous sensor-to-sensor relationships.
This problem does not happen with a graph learned from
the data since uncorrelated sensors are weakly connected to
other sensors or disconnected, proving to be a more robust
alternative for air pollution monitoring networks.
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Fig. 5. Localization rate test set results for the three residual-based models
for data set D.2.

D. Application: sensor drift detection

Let us now check the performance of the proposed outlier
detection process for a special type of sensor error, sensor drift.
Since an outlier detection model detects samples that have an
unusual behavior, this technique can be further used to detect
specific sensor errors by the inspection of the outlier detection
results. Here, we use the data set of a real heterogeneous
network deployment, described in section IV, composed by
three reference stations (high-precision nodes) and five low-
cost sensor nodes. Thus, forming an heterogeneous air pollu-
tion monitoring sensor network, to simulate a drifting sensor.
To this end, we add an offset of increasing magnitude in one
of the low-cost sensors, as ϵt∼N(2.0/t, 0.1) and t∈(0, 2.0].
Figure 6 shows the result of applying the VGOD mechanism,
where sensor 3 is the drifted sensor, and the model is able to
detect the simulated drift after its magnitude nearly becomes
half standard deviation. The obtained TPR is of 78% and a
FPR of 13%, the linear graph filter obtained a TPR of 58% and

a FPR of 10%, and finally, the NPGF obtained a TPR of 70%
and a FPR of 13%. Again our proposed model outperforms
the other two graph-based models. This example shows the
importance of these graph-based techniques that enable the
localization of the faulty sensor. In fact, given the localization
capability of this model, this type of sensor malfunction can
be detected, and the sensor can be replaced or can undergo a
recalibration process.

20
17
-08
-21

20
17
-08
-23

20
17
-08
-25

20
17
-08
-27

20
17
-08
-29

20
17
-08
-31

20
17
-09
-01

2

4

6

8

Se
ns
or
 L
ab

el

True Outlier
Predicted Outlier

Fig. 6. Outlier detection results for a drifted sensor over the H2020 Captor
data set.

E. VGOD scalability

VGOD has been the best performer in the different ex-
periments, followed by the other state-of-the-art graph-based
method, the third order NPGF [30]. It has been seen that these
graph-based methods are a great option for outlier detection
and localization for this type of network. In this section, we
compare the scalability of the core element of the VGOD, the
Volterra-based graph signal reconstruction model [33], with
the third order NPGF [30]. There are two main differences
between their outlier detector and ours: i) the authors in
[30] use a shift operator built from a distance-based function
between nodes, and we propose to use a shift operator that
is built using the data measured by the nodes, and ii) the
authors in [30] use the NPGF, whose structure is similar to
the Volterra-based model but the higher order interactions
differ. Indeed, the number of NPGF parameters for a degree of
interaction D and depth K is (N +K+K2+

∑D−2
i=1 K2N i),

while the number of the parameters for the Volterra-based
model is (N +

∑D
i=1 K

i). Table V compares the number of
parameters for third order models (D=3) with models’ depth
four (K=4), for different network sizes N .

TABLE V
NUMBER OF PARAMETERS FOR THIRD ORDER NPGF AND THIRD ORDER

VOLTERRA MODEL, WITH K=4.

MODEL N=10 N=50 N=100

Third order NPGF 190 870 1720
Third order Volterra model 94 134 184

Now, to show how the number of model parameters of
both, the graph signal reconstruction Volterra model and NPGF
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model, affect the solving time of the convex problem in
equation (5) we perform the following experiment: given a
certain depth K=4, we simulate data sets with increasing
number of nodes N and increasing number of samples P .
To do this, we simulate the sensors coordinates in the unit
square as cx, cy∼U(0, 1), and define an adjacency matrix by

the distance-based radial basis function Aij=e
−d(i,j)2

2∗0.5 , where
d(i, j) is the distance between sensor xi and sensor xj . The
samples are generated as a zero-mean multivariate Gaussian
with precision matrix equal to the Laplacian pseudoinverse
with noise injected on the diagonal x∼N(0, L†+σIN ). Then,
for each pair (N ,P ) we perform five repetitions to calculate the
average solving time. Figure 7 shows the optimization solving
times for both models. In fact, the Volterra-based model is
invariant to the number of nodes in the network, resulting in
much lower solving times as the number of network nodes
increases. The opposite happens with the third order NPGF,
where the solving time increases dramatically as the number of
nodes increases. For instance, for 1000 samples and 46 nodes
the third order NPGF takes almost 8 minutes, while the third
order Volterra model takes just over 1 minute.
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Fig. 7. Optimization problem solving times, using the Splitting Conic Solver
(SCS) for the third order Volterra-based and the third order NPGF models.

VI. CONCLUSION

In this paper, we have proposed a novel outlier detec-
tion mechanism named Volterra graph-based outlier detection
(VGOD) based on graph signal processing. The detection
process consists of three stages: learning a graph based on
the measured data, a graph signal reconstruction model based
on the Volterra series, and the subsequent inspection of the
residuals of the signal reconstruction task to identify and locate
the outlying measurements. This process allows not only to
detect an outlier in a sensor network sample, but also to
localize the sensor that produces the outlier, which is of great
importance in the air pollution sensor network realm so that
replacement or recalibration actions can be done.

In summary, the VGOD method uses a shift matrix that
is constructed using the measured data, unlike other graph-
based methods that use shift matrices based on functions
that decay exponentially with the distance between nodes.
This aspect is key to the method as the shift matrix actively
participates in two modules of the outlier detector, i) the
selection of the edges of the graph and therefore of the
neighbors of a node, and ii) in the graph signal reconstruction

model. This feature improves the detection and localization of
outliers. The second differential aspect is the use of Volterra
series as a signal reconstruction method, which improves the
computational performance by requiring fewer parameters than
other nonlinear methods, such as NPGF.

The VGOD process has been compared to three state-of-
the-art global outlier detection methods that detect but do
not allow localization, the frequency-based GSP, the k-nearest
neighbors (KNN), and the local outlier factor (LOF), and to
two models based on reconstruction residuals and graph signal
processing that detect and allow localization, the linear graph
filter (LGF) and the third order NPGF model with a distance-
based graph. The results show that VGOD increases the
detection rate by at least 10% over the other models and has
better localization of the sensors producing the outliers than
the other two graph-based models. In addition, it is shown that
the VGOD reconstruction model requires less training time
than its closest graph-based competitor, the NPGF. Therefore,
the proposed mechanism improves both outlier detection and
model scalability with respect to NPGF.

Finally, the VGOD graph-based detection model has been
applied to sensor drift detection in a low-cost heterogeneous
sensor network. The results show the ability of the proposed
method to detect the outlying samples and locate the drifting
sensor, thus allowing the identification of the drifting sensor
for a possible replacement or sensor recalibration. Regarding
the method’s weaknesses, it is worth mentioning that in the
case of having a network with sensors deployed in sparse areas
without significant relationships, the method may not be able
to detect outliers in those sensors. In addition, the mechanism
needs the graph to be learned from correct sensor values, so
it is assumed that the sensors will function well during the
training phase. As future work, it would be interesting to study
the applicability of graph neural networks for air pollution low-
cost sensor network outlier detection, with specific training
techniques to deal with training on small data sets and the
need for periodic retraining.
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