330 research outputs found

    MARINE: Man-in-the-middle attack resistant trust model IN connEcted vehicles

    Get PDF
    Vehicular Ad-hoc NETwork (VANET), a novel technology holds a paramount importance within the transportation domain due to its abilities to increase traffic efficiency and safety. Connected vehicles propagate sensitive information which must be shared with the neighbors in a secure environment. However, VANET may also include dishonest nodes such as Man-in-the-Middle (MiTM) attackers aiming to distribute and share malicious content with the vehicles, thus polluting the network with compromised information. In this regard, establishing trust among connected vehicles can increase security as every participating vehicle will generate and propagate authentic, accurate and trusted content within the network. In this paper, we propose a novel trust model, namely, Man-in-the-middle Attack Resistance trust model IN connEcted vehicles (MARINE), which identifies dishonest nodes performing MiTM attacks in an efficient way as well as revokes their credentials. Every node running MARINE system first establishes trust for the sender by performing multi-dimensional plausibility checks. Once the receiver verifies the trustworthiness of the sender, the received data is then evaluated both directly and indirectly. Extensive simulations are carried out to evaluate the performance and accuracy of MARINE rigorously across three MiTM attacker models and the bench-marked trust model. Simulation results show that for a network containing 35% MiTM attackers, MARINE outperforms the state of the art trust model by 15%, 18%, and 17% improvements in precision, recall and F-score, respectively.N/A

    Reliable and efficient data dissemination schemein VANET: a review

    Get PDF
    Vehicular ad-hoc network (VANET), identified as a mobile ad hoc network MANETs with several added constraints. Basically, in VANETs, the network is established on the fly based on the availability of vehicles on roads and supporting infrastructures along the roads, such as base stations. Vehicles and road-side infrastructures are required to provide communication facilities, particularly when enough vehicles are not available on the roads for effective communication. VANETs are crucial for providing a wide range of safety and non-safety applications to road users. However, the specific fundamental problem in VANET is the challenge of creating effective communication between two fast-moving vehicles. Therefore, message routing is an issue for many safety and non-safety of VANETs applications. The challenge in designing a robust but reliable message dissemination technique is primarily due to the stringent QoS requirements of the VANETs safety applications. This paper investigated various methods and conducted literature on an idea to develop a model for efficient and reliable message dissemination routing techniques in VANET

    Survey and Review on Various Topology and Geographical based Routing Protocol Parameters to Ensure the QOS Parameters of VANET

    Get PDF
    Vehicular Ad Hoc Network (VANET) is a type of wireless network that allows communication between vehicles and infrastructure. One of the critical considerations in VANET is Quality of Service (QoS) parameters, which determine the network's performance. The effective management of QoS parameters is essential for VANET's reliable and efficient operation. In this research paper, we aim to explore topology-based and geographical-based routing protocol parameters to ensure QoS parameters in VANET. The former uses the network topology to make routing decisions, while the latter uses the location information of vehicles.  We will first provide an overview of VANET and QoS parameters. Then, we will delve into the key parameters of topology-based and geographical-based routing protocols and how they affect QoS. We will also survey and review the existing routing protocols and parameter values used in these protocols. The findings of this research paper will provide insights into the effective management of QoS parameters in VANET and contribute to the development of more efficient routing protocols

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    A multi-tier trust-based security mechanism for vehicular ad-hoc network communications

    Get PDF
    Securing communications in vehicle ad hoc networks is crucial for operations. Messages exchanged in vehicle ad hoc network communications hold critical information such as road safety information, or road accident information and it is essential these packets reach their intended destination without any modification. A significant concern for vehicle ad hoc network communications is that malicious vehicles can intercept or modify messages before reaching their intended destination. This can hamper vehicle ad hoc network operations and create safety concerns. The multi-tier trust management system proposed in this paper addresses the concern of malicious vehicles in the vehicle ad hoc network using three security tiers. The first tier of the proposed system assigns vehicles in the vehicle ad hoc network a trust value based on behaviour such as processing delay, packet loss and prior vehicle behavioural history. This will be done by selecting vehicles as watchdogs to observe the behaviour of neighbouring vehicles and evaluate the trust value. The second tier is to protect the watchdogs, which is done by watchdogs’ behaviour history. The third security tier is to protect the integrity of data used for trust value calculation. Results show that the proposed system is successful in identifying malicious vehicles in the VANET. It also improves the packet delivery ratio and end-to-end delay of the vehicle ad hoc network in the presence of malicious vehicles

    Trust based multi objective honey badger algorithm to secure routing in vehicular ad-hoc networks

    Get PDF
    A vehicular ad-hoc network (VANET) is a set of intelligent vehicles that interact without any fixed infrastructure. Data transmission between each transmitter/receiver pair is accomplished using routing protocols. However, communication over the VANET is vulnerable to malicious attacks, because of the unavailability of fixed infrastructure and wireless communication. In this paper, the trust based multi objective honey badger algorithm (TMOHBA) is proposed to achieve secure routing over the VANET. The TMOHBA is optimized by incorporating different cost functions, namely, trust, end to end delay (EED), routing overhead, energy, and distance. The developed secure route discovery using the TMOHBA is used to improve the robustness against the malicious attacks, for increasing the data delivery. Moreover, the shortest path discovery is used to minimize the delay while improving the security of VANET. The TMOHBA method is evaluated using the packet delivery ratio (PDR), throughput and EED. Existing researches such as hybrid enhanced glowworm swarm optimization (HEGSO) and ad-hoc on-demand distance vector based secure protocol (AODV-SP) are used to evaluate the TMOHBA method. The PDR of the TMOHBA method for 10 malicious attacks is 90.6446% which is higher when compared to the HEGSO and AODV-SP
    • …
    corecore