Trust based multi objective honey badger algorithm to secure routing in vehicular ad-hoc networks

Abstract

A vehicular ad-hoc network (VANET) is a set of intelligent vehicles that interact without any fixed infrastructure. Data transmission between each transmitter/receiver pair is accomplished using routing protocols. However, communication over the VANET is vulnerable to malicious attacks, because of the unavailability of fixed infrastructure and wireless communication. In this paper, the trust based multi objective honey badger algorithm (TMOHBA) is proposed to achieve secure routing over the VANET. The TMOHBA is optimized by incorporating different cost functions, namely, trust, end to end delay (EED), routing overhead, energy, and distance. The developed secure route discovery using the TMOHBA is used to improve the robustness against the malicious attacks, for increasing the data delivery. Moreover, the shortest path discovery is used to minimize the delay while improving the security of VANET. The TMOHBA method is evaluated using the packet delivery ratio (PDR), throughput and EED. Existing researches such as hybrid enhanced glowworm swarm optimization (HEGSO) and ad-hoc on-demand distance vector based secure protocol (AODV-SP) are used to evaluate the TMOHBA method. The PDR of the TMOHBA method for 10 malicious attacks is 90.6446% which is higher when compared to the HEGSO and AODV-SP

    Similar works