652 research outputs found

    Novel Mooring Design Options for high-intensity typhoon conditions - An investigation for wave energy in China

    Get PDF
    Structural Load & Fatigue on Floating Structures conference, London UK, 25 February 2015The industrialised and densely populated coastal regions in China are in search of local energy supplies in order to avoid expensive energy transmission from the West of China. Wave energy technology is considered as one of the possible solutions with a potential installed capacity of 13GW around China. However, typhoons are a major meteorological threat for China’s coastal regions with estimated damages of over 20bnRMB. Prediction, prevention and mitigation of typhoons have greatly improved and coastal regions at risk are readily identified. This paper will outline the environmental load conditions that are faced by floating installations in the Chinese Sea. The paper assesses the feasibility of novel mooring solutions that aim to absorb energy during the most severe load conditions in order to reduce peak and fatigue loads. Their suitability for wave energy converters in high-intensity typhoon conditions is assessed by a fully-coupled hydrodynamic analysis. Initial modelling has been conducted in the time-domain employing a moored cylindrical buoy with six degrees of freedom. The mooring line properties have been chosen to be characteristic of the strongly nonlinear behaviour of novel mooring designs. The results show a reduction in peak loads along the entire length of the mooring line in comparison to standard rope mooring, whilst crucially not restricting the heave motion of the buoy. These initial results will inform the refinement and optimisation of the mooring design of floating installations for high-intensity typhoon conditions.Newton Fund, administered by Engineering and Physical Sciences Research Council (EPSRC

    2nd Edition of Health Emergency and Disaster Risk Management (Health-EDRM)

    Get PDF
    Disasters such as earthquakes, cyclones, floods, heat waves, nuclear accidents, and large-scale pollution incidents take lives and incur major health problems. The majority of large-scale disasters affect the most vulnerable populations, which often comprise extreme ages, remote living areas, and endemic poverty, as well as people with low literacy. Health emergency and disaster risk management (Health-EDRM) refers to the systematic analysis and management of health risks surrounding emergencies and disasters, and plays an important role in reducing the hazards and vulnerability along with extending preparedness, responses, and recovery measures. This concept encompasses risk analyses and interventions, such as accessible early warning systems, the timely deployment of relief workers, and the provision of suitable drugs and medical equipment to decrease the impact of disasters on people before, during, and after an event (or events). Currently, there is a major gap in the scientific literature regarding Health-EDRM to facilitate major global policies and initiatives for disaster risk reduction worldwide

    Proceedings Of The 18th Annual Meeting Of The Asia Oceania Geosciences Society (Aogs 2021)

    Get PDF
    The 18th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2021) was held from 1st to 6th August 2021. This proceedings volume includes selected extended abstracts from a challenging array of presentations at this conference. The AOGS Annual Meeting is a leading venue for professional interaction among researchers and practitioners, covering diverse disciplines of geosciences

    A Study of Types of Sensors used in Remote Sensing

    Get PDF
    Of late, the science of Remote Sensing has been gaining a lot of interest and attention due to its wide variety of applications. Remotely sensed data can be used in various fields such as medicine, agriculture, engineering, weather forecasting, military tactics, disaster management etc. only to name a few. This article presents a study of the two categories of sensors namely optical and microwave which are used for remotely sensing the occurrence of disasters such as earthquakes, floods, landslides, avalanches, tropical cyclones and suspicious movements. The remotely sensed data acquired either through satellites or through ground based- synthetic aperture radar systems could be used to avert or mitigate a disaster or to perform a post-disaster analysis

    A Study of Types of Sensors used in Remote Sensing

    Get PDF
    Of late, the science of Remote Sensing has been gaining a lot of interest and attention due to its wide variety of applications. Remotely sensed data can be used in various fields such as medicine, agriculture, engineering, weather forecasting, military tactics, disaster management etc. only to name a few. This article presents a study of the two categories of sensors namely optical and microwave which are used for remotely sensing the occurrence of disasters such as earthquakes, floods, landslides, avalanches, tropical cyclones and suspicious movements. The remotely sensed data acquired either through satellites or through ground based- synthetic aperture radar systems could be used to avert or mitigate a disaster or to perform a post-disaster analysis

    Hydrometeorological Extremes and Its Local Impacts on Human-Environmental Systems

    Get PDF
    This Special Issue of Atmosphere focuses on hydrometeorological extremes and their local impacts on human–environment systems. Particularly, we accepted submissions on the topics of observational and model-based studies that could provide useful information for infrastructure design, decision making, and policy making to achieve our goals of enhancing the resilience of human–environment systems to climate change and increased variability

    Advancements in Enhancing Resilience of Electrical Distribution Systems: A Review on Frameworks, Metrics, and Technological Innovations

    Full text link
    This comprehensive review paper explores power system resilience, emphasizing its evolution, comparison with reliability, and conducting a thorough analysis of the definition and characteristics of resilience. The paper presents the resilience frameworks and the application of quantitative power system resilience metrics to assess and quantify resilience. Additionally, it investigates the relevance of complex network theory in the context of power system resilience. An integral part of this review involves examining the incorporation of data-driven techniques in enhancing power system resilience. This includes the role of data-driven methods in enhancing power system resilience and predictive analytics. Further, the paper explores the recent techniques employed for resilience enhancement, which includes planning and operational techniques. Also, a detailed explanation of microgrid (MG) deployment, renewable energy integration, and peer-to-peer (P2P) energy trading in fortifying power systems against disruptions is provided. An analysis of existing research gaps and challenges is discussed for future directions toward improvements in power system resilience. Thus, a comprehensive understanding of power system resilience is provided, which helps in improving the ability of distribution systems to withstand and recover from extreme events and disruptions

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    Power Transmission Lines: Worldwide Research Trends

    Get PDF
    The importance of the quality and continuity of electricity supply is increasingly evident given the dependence of the world economy on its daily and instantaneous operation. In turn, the network is made up of power transmission lines. This study has been carried out based on the Scopus database, where all the publications, over 5000 documents, related to the topic of the power transmission lines have been analyzed up to the year 2022. This manuscript aims to highlight the main global research trends in power transmission lines and to detect which are the emerging areas. This manuscript cover three main aspects: First, the main scientific categories of these publications and their temporal trends. Second, the countries and affiliations that contribute to the research and their main research topics. Third, identification of the main trends in the field using the detection of scientific communities by means of the clustering method. The three main scientific categories found were Engineering, Energy and Computer Science. This research is most strongly developed in China, as the top 10 institutions are from this country, followed by USA and in third place by Russia. Twelve lines of research have been detected: Line Inspection, Leakage Current, Magnetic Fields, Fault Location, Icing, Lines Design, Natural Disasters, Temperature, Half-wave, Arc Flash, Pattern Recognition, and Artificial Intelligence. This research will open new perspectives for future research on power transmission lines
    • …
    corecore