13,916 research outputs found

    Advanced recommendations in a mobile tourist information system

    Get PDF
    An advanced tourist information provider system delivers information regarding sights and events on their users' travel route. In order to give sophisticated personalized information about tourist attractions to their users, the system is required to consider base data which are user preferences defined in their user profiles, user context, sights context, user travel history as well as their feedback given to the sighs they have visited. In addition to sights information, recommendation on sights to the user could also be provided. This project concentrates on combinations of knowledge on recommendation systems and base information given by the users to build a recommendation component in the Tourist Information Provider or TIP system. To accomplish our goal, we not only examine several tourist information systems but also conduct the investigation on recommendation systems. We propose a number of approaches for advanced recommendation models in a tourist information system and select a subset of these for implementation to prove the concept

    Effective Mechanism for Social Recommendation of News

    Get PDF
    Recommendation systems represent an important tool for news distribution on the Internet. In this work we modify a recently proposed social recommendation model in order to deal with no explicit ratings of users on news. The model consists of a network of users which continually adapts in order to achieve an efficient news traffic. To optimize network's topology we propose different stochastic algorithms that are scalable with respect to the network's size. Agent-based simulations reveal the features and the performance of these algorithms. To overcome the resultant drawbacks of each method we introduce two improved algorithms and show that they can optimize network's topology almost as fast and effectively as other not-scalable methods that make use of much more information

    Tag-Aware Recommender Systems: A State-of-the-art Survey

    Get PDF
    In the past decade, Social Tagging Systems have attracted increasing attention from both physical and computer science communities. Besides the underlying structure and dynamics of tagging systems, many efforts have been addressed to unify tagging information to reveal user behaviors and preferences, extract the latent semantic relations among items, make recommendations, and so on. Specifically, this article summarizes recent progress about tag-aware recommender systems, emphasizing on the contributions from three mainstream perspectives and approaches: network-based methods, tensor-based methods, and the topic-based methods. Finally, we outline some other tag-related works and future challenges of tag-aware recommendation algorithms.Comment: 19 pages, 3 figure

    Hybrid Collaborative Filtering with Autoencoders

    Get PDF
    Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the well-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework

    Recommendation, collaboration and social search

    Get PDF
    This chapter considers the social component of interactive information retrieval: what is the role of other people in searching and browsing? For simplicity we begin by considering situations without computers. After all, you can interactively retrieve information without a computer; you just have to interact with someone or something else. Such an analysis can then help us think about the new forms of collaborative interactions that extend our conceptions of information search, made possible by the growth of networked ubiquitous computing technology. Information searching and browsing have often been conceptualized as a solitary activity, however they always have a social component. We may talk about 'the' searcher or 'the' user of a database or information resource. Our focus may be on individual uses and our research may look at individual users. Our experiments may be designed to observe the behaviors of individual subjects. Our models and theories derived from our empirical analyses may focus substantially or exclusively on an individual's evolving goals, thoughts, beliefs, emotions and actions. Nevertheless there are always social aspects of information seeking and use present, both implicitly and explicitly. We start by summarizing some of the history of information access with an emphasis on social and collaborative interactions. Then we look at the nature of recommendations, social search and interfaces to support collaboration between information seekers. Following this we consider how the design of interactive information systems is influenced by their social elements

    An empirical comparison of social, collaborative filtering, and hybrid recommenders

    Full text link
    This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Intelligent Systems and Technology, http://dx.doi.org/10.1145/2414425.2414439In the Social Web, a number of diverse recommendation approaches have been proposed to exploit the user generated contents available in the Web, such as rating, tagging, and social networking information. In general, these approaches naturally require the availability of a wide amount of these user preferences. This may represent an important limitation for real applications, and may be somewhat unnoticed in studies focusing on overall precision, in which a failure to produce recommendations gets blurred when averaging the obtained results or, even worse, is just not accounted for, as users with no recommendations are typically excluded from the performance calculations. In this article, we propose a coverage metric that uncovers and compensates for the incompleteness of performance evaluations based only on precision. We use this metric together with precision metrics in an empirical comparison of several social, collaborative filtering, and hybrid recommenders. The obtained results show that a better balance between precision and coverage can be achieved by combining social-based filtering (high accuracy, low coverage) and collaborative filtering (low accuracy, high coverage) recommendation techniques. We thus explore several hybrid recommendation approaches to balance this trade-off. In particular, we compare, on the one hand, techniques integrating collaborative and social information into a single model, and on the other, linear combinations of recommenders. For the last approach, we also propose a novel strategy to dynamically adjust the weight of each recommender on a user-basis, utilizing graph measures as indicators of the target user's connectedness and relevance in a social network.This work was supported by the Spanish Ministry of Science and Innovation (TIN2008-06566-C04-02), Universidad Autonoma de Madrid (CCG10-UAM/TIC-5877), and the Scientific Computing Institute at UAM
    • 

    corecore