32 research outputs found

    A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability

    Get PDF
    Driver drowsiness is a major cause of fatal accidents, injury, and property damage, and has become an area of substantial research attention in recent years. The present study proposes a method to detect drowsiness in drivers which integrates features of electrocardiography (ECG) and electroencephalography (EEG) to improve detection performance. The study measures differences between the alert and drowsy states from physiological data collected from 22 healthy subjects in a driving simulator-based study. A monotonous driving environment is used to induce drowsiness in the participants. Various time and frequency domain feature were extracted from EEG including time domain statistical descriptors, complexity measures and power spectral measures. Features extracted from the ECG signal included heart rate (HR) and heart rate variability (HRV), including low frequency (LF), high frequency (HF) and LF/HF ratio. Furthermore, subjective sleepiness scale is also assessed to study its relationship with drowsiness. We used paired t-tests to select only statistically significant features (p < 0.05), that can differentiate between the alert and drowsy states effectively. Significant features of both modalities (EEG and ECG) are then combined to investigate the improvement in performance using support vector machine (SVM) classifier. The other main contribution of this paper is the study on channel reduction and its impact to the performance of detection. The proposed method demonstrated that combining EEG and ECG has improved the system’s performance in discriminating between alert and drowsy states, instead of using them alone. Our channel reduction analysis revealed that an acceptable level of accuracy (80%) could be achieved by combining just two electrodes (one EEG and one ECG), indicating the feasibility of a system with improved wearability compared with existing systems involving many electrodes. Overall, our results demonstrate that the proposed method can be a viable solution for a practical driver drowsiness system that is both accurate and comfortable to wear

    Automatic Detection and Prediction of the Transition Between the Behavioural States of a Subject Through a Wearable CPS

    Get PDF
    The PRESLEEP project is aimed at the fine assessment and validation of the proposed proprietary methodology/technology, for the automatic detection and prediction of the transition between the behavioural states of a subject (e.g. wakefulness, drowsiness and sleeping) through a wearable Cyber Physical System (CPS). The Intellectual Property (IP) is based on a combined multi-factor and multi-domain analysis thus being able to extract a robust set of parameters despite of the, generally, low quality of the physiological signals measured through a wearable system applied to the wrist of the subject. An application experiment has been carried out at AVL, based on reduced wakefulness maintenance test procedure, to validate the algorithm’s detection and prediction capability once the subject is driving in the dynamic vehicle simulator

    Driver Drowsiness Detection: A Machine Learning Approach on Skin Conductance

    Get PDF
    The majority of car accidents worldwide are caused by drowsy drivers. Therefore, it is important to be able to detect when a driver is starting to feel drowsy in order to warn them before a serious accident occurs. Sometimes, drivers are not aware of their own drowsiness, but changes in their body signals can indicate that they are getting tired. Previous studies have used large and intrusive sensor systems that can be worn by the driver or placed in the vehicle to collect information about the driver’s physical status from a variety of signals that are either physiological or vehicle-related. This study focuses on the use of a single wrist device that is comfortable for the driver to wear and appropriate signal processing to detect drowsiness by analyzing only the physiological skin conductance (SC) signal. To determine whether the driver is drowsy, the study tests three ensemble algorithms and finds that the Boosting algorithm is the most effective in detecting drowsiness with an accuracy of 89.4%. The results of this study show that it is possible to identify when a driver is drowsy using only signals from the skin on the wrist, and this encourages further research to develop a real-time warning system for early detection of drowsiness

    Driver drowsiness detection: a comparison between intrusive and non-intrusive signal acquisition methods

    Get PDF
    Driver drowsiness is a major cause of road accidents, many of which result in fatalities. A solution to this problem is the inclusion of a drowsiness detector in vehicles to alert the driver if sleepiness is detected. To detect drowsiness, physiologic, behavioral (visual) and vehicle-based methods can be used, however, only measures that can be acquired non-intrusively are viable in a real life application. This work uses data from a real-road experiment with sleep deprived drivers to compare the performance of driver drowsiness detection using intrusive acquisition methods, namely electrooculogram (EOG), with camera based, non-intrusive, methods. A hybrid strategy, combining the described methods with electrocardiogram (ECG) measures, is also evaluated. Overall, the obtained results show that drowsiness detection performance is similar using non-intrusive camera based measures or intrusive EOG measures. The detection performance increases when combining two methods (ECG + visual) or (ECG + EOG).info:eu-repo/semantics/publishedVersio

    A systematic review of physiological signals based driver drowsiness detection systems.

    Get PDF
    Driving a vehicle is a complex, multidimensional, and potentially risky activity demanding full mobilization and utilization of physiological and cognitive abilities. Drowsiness, often caused by stress, fatigue, and illness declines cognitive capabilities that affect drivers' capability and cause many accidents. Drowsiness-related road accidents are associated with trauma, physical injuries, and fatalities, and often accompany economic loss. Drowsy-related crashes are most common in young people and night shift workers. Real-time and accurate driver drowsiness detection is necessary to bring down the drowsy driving accident rate. Many researchers endeavored for systems to detect drowsiness using different features related to vehicles, and drivers' behavior, as well as, physiological measures. Keeping in view the rising trend in the use of physiological measures, this study presents a comprehensive and systematic review of the recent techniques to detect driver drowsiness using physiological signals. Different sensors augmented with machine learning are utilized which subsequently yield better results. These techniques are analyzed with respect to several aspects such as data collection sensor, environment consideration like controlled or dynamic, experimental set up like real traffic or driving simulators, etc. Similarly, by investigating the type of sensors involved in experiments, this study discusses the advantages and disadvantages of existing studies and points out the research gaps. Perceptions and conceptions are made to provide future research directions for drowsiness detection techniques based on physiological signals. [Abstract copyright: © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Bias Remediation in Driver Drowsiness Detection Systems Using Generative Adversarial Networks

    Get PDF
    Datasets are crucial when training a deep neural network. When datasets are unrepresentative, trained models are prone to bias because they are unable to generalise to real world settings. This is particularly problematic for models trained in specific cultural contexts, which may not represent a wide range of races, and thus fail to generalise. This is a particular challenge for Driver drowsiness detection, where many publicly available datasets are unrepresentative as they cover only certain ethnicity groups. Traditional augmentation methods are unable to improve a model's performance when tested on other groups with different facial attributes, and it is often challenging to build new, more representative datasets. In this paper, we introduce a novel framework that boosts the performance of detection of drowsiness for different ethnicity groups. Our framework improves Convolutional Neural Network (CNN) trained for prediction by using Generative Adversarial networks (GAN) for targeted data augmentation based on a population bias visualisation strategy that groups faces with similar facial attributes and highlights where the model is failing. A sampling method selects faces where the model is not performing well, which are used to fine-tune the CNN. Experiments show the efficacy of our approach in improving driver drowsiness detection for under represented ethnicity groups. Here, models trained on publicly available datasets are compared with a model trained using the proposed data augmentation strategy. Although developed in the context of driver drowsiness detection, the proposed framework is not limited to the driver drowsiness detection task, but can be applied to other applications.Comment: 9 pages, 7 figure

    Driver drowsiness detection based on respiratory signal analysis

    Get PDF
    Drowsy driving is a prevalent and serious public health issue that deserves attention. Recent studies estimate around 20% of car crashes have been caused by drowsy drivers. Nowadays, one of the main goals in the development of new advanced driver assistance systems is the trustworthy drowsiness detection. In this paper, a drowsiness detection method based on changes in the respiratory signal is proposed. The respiratory signal, which has been obtained using an inductive plethysmography belt, has been processed in real-time in order to classify the driver’s state of alertness as drowsy or awake. The proposed algorithm is based on the analysis of the respiratory rate variability (RRV) in order to detect the fight against to fall asleep. Moreover, a method to provide a quality level of the respiratory signal is also proposed. Both methods have been combined to reduce false alarms due to changes of measured RRV associated not to drowsiness but body movements. A driving simulator cabin has been used to perform the validation tests and external observers have rated the drivers’ state of alertness in order to evaluate the algorithm performance. It has been achieved a specificity of 96.6%, sensitivity of 90.3% and Cohen’s Kappa agreement score of 0.75 on average across all subjects through a leave-one-subject-out cross-validation. A novel algorithm for driver’s state of alertness monitoring through the identification of the fight against to fall asleep has been validated. The proposed algorithm may be a valuable vehicle safety system to alert drowsiness while drivingPeer ReviewedPostprint (published version

    Subjective Sleepiness Dynamics Dataset (SSDD) Presentation: the Study of Two Scales Consistency

    Full text link
    While the first references to the system of sleepiness assessment are associated with medical re-search and the study of the effects of drugs on sleep, currently subjective sleepiness assessment is widely used across fundamental and practically oriented studies. The Stanford Sleepiness Scale (SSS) and the Karolinska Sleepiness Scale (KSS) are often used as ground truth in sleepiness re-search. Only a few studies applied both scales and practically none aimed at studying their con-sistency and specific features. The present study is devoted to analyzing the dynamics and con-sistency of subjective sleepiness as measured by the KSS and the SSS in the adult population. A particular task of the paper is to present the Subjective Sleepiness Dynamics Dataset (SSDD) with the evening and morning dynamics of situational subjective sleepiness. A total of 208 adults took part in the experiment. The results of the study revealed that sleepiness generally increased from evening till night and was maximal at early morning. The SSS score appeared to be more sensitive to some factors (e.g., the presence of sleep problems). The SSS and KSS scores were strongly consistent with each other. The KSS showed a generally more even distribution than the SSS. SSDD continues to be collected, we are going to equalize the sample by sex, we are actively adding older people. We plan to collect a sample of 1,000 people. Currently SSDD contains a lot of in-formation that can be used for scientific research.Comment: 18 pages, 6 figures, 3 table

    Physiological Approach To Characterize Drowsiness In Simulated Flight Operations During Window Of Circadian Low

    Get PDF
    Drowsiness is a psycho-physiological transition from awake towards falling sleep and its detection is crucial in aviation industries. It is a common cause for pilot’s error due to unpredictable work hours, longer flight periods, circadian disruption, and insufficient sleep. The pilots’ are prone towards higher level of drowsiness during window of circadian low (2:00 am- 6:00 am). Airplanes require complex operations and lack of alertness increases accidents. Aviation accidents are much disastrous and early drowsiness detection helps to reduce such accidents. This thesis studied physiological signals during drowsiness from 18 commercially-rated pilots in flight simulator. The major aim of the study was to observe the feasibility of physiological signals to predict drowsiness. In chapter 3, the spectral behavior of electroencephalogram (EEG) was studied via power spectral density and coherence. The delta power reduced and alpha power increased significantly (
    corecore