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ABSTRACT Drowsy driving is a prevalent and serious public health issue that deserves attention. Recent

studies estimate around 20% of car crashes have been caused by drowsy drivers. Nowadays, one of the main

goals in the development of new advanced driver assistance systems is the trustworthy drowsiness detection.

In this paper, a drowsiness detection method based on changes in the respiratory signal is proposed. The

respiratory signal, which has been obtained using an inductive plethysmography belt, has been processed

in real-time in order to classify the driver’s state of alertness as drowsy or awake. The proposed algorithm

is based on the analysis of the respiratory rate variability (RRV) in order to detect the fight against to fall

asleep. Moreover, a method to provide a quality level of the respiratory signal is also proposed. Both methods

have been combined to reduce false alarms due to changes of measured RRV associated not to drowsiness

but body movements. A driving simulator cabin has been used to perform the validation tests and external

observers have rated the drivers’ state of alertness in order to evaluate the algorithm performance. It has

been achieved a specificity of 96.6%, sensitivity of 90.3% and Cohen’s Kappa agreement score of 0.75 on

average across all subjects through a leave-one-subject-out cross-validation. A novel algorithm for driver’s

state of alertness monitoring through the identification of the fight against to fall asleep has been validated.

The proposed algorithm may be a valuable vehicle safety system to alert drowsiness while driving.

INDEX TERMS advanced driver assistance systems, driver drowsiness, safety, respiratory signal.

I. INTRODUCTION

DROWSINESS is an intermediate state between wake-

fulness and sleep that may be defined as the progressive

loss of cortical processing efficiency. It is also associated to

a desire or inclination to sleep. [1]. Drowsy driving can be

caused by a combination of sleep loss, driving when circadian

rhythms are low (early morning hours or mid-afternoon) or

for long periods of time. Drowsiness affects elements of

human performance that are critical to safe driving such as:

reaction time, alertness and information processing [2].

Drowsy driving is a prevalent and serious public health

issue that deserves attention. The AAA Foundation for Traf-

fic Safety in its 2015 Drowsy Driving Fact Sheet states that

for the 2009-2015 period, the percentage of licensed drivers

admitting drowsy driving (in the previous 30 days) has re-

mained essentially constant, hovering around 30 percent. In

the same report we can find that nearly all (97%) American

drivers believe it is somewhat or completely unacceptable

for somebody to drive when they are so sleepy that they

have trouble keeping their eyes open. However, nearly a third

(31.5%) of licensed drivers reported having driven when they

were so tired that they had a hard time keeping their eyes

open in the last 30 days. More than a fifth (22.3%) admitted

to doing this more than once, and 3.5 percent reported having

done this fairly often or regularly [3].

Road traffic injuries will rise to the worldwide seventh

leading cause of death in 2030 according to the latest WHO’s

forecast [4]. Recent studies estimate around 20% of car

accidents have been caused by drowsy drivers [5]. Moreover,

recent research has examined the effects of sleep deprivation

in crash rate. It was found that drivers who usually sleep for

less than 5 hours daily, and driver who have slept for 1 or

more hours less than their usual amount of sleep in the past

24 hours have significantly elevated crash rate. In addition,

this estimated crash rate is similar to the risk associated with

driving with a blood alcohol concentration equal to or slightly

above the legal limit for alcohol [6].

Furthermore, feeling of being sleepy is a gradual process

and drivers are not aware of their lack of attention during this

time. Thus, a real-time drowsiness driver assessment system
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to warn the driver when the first fatigue symptoms appear

can avoid crashes by preventing and reducing sleep episodes,

either for professional or for particular drivers.

Nowadays, one of the main goals in the development

of new advanced driver assistance systems is the trustwor-

thy drowsiness detection. The most widespread automatic

drowsiness detection methods may be divided into three main

categories based on: driving behaviour, visual and physio-

logical features. Driving behaviour-based methods analyze

information about the car position inside the lane, speed,

usage of the steering wheel, brakes and gear changes [7].

The main weakness of this method is the variation in accu-

racy for particular characteristics of the vehicle and driving

conditions.

On the one hand, other groups have focused on computer

vision methods of driver’s body analysis. These systems

process eye-state information by calculating percentage of

eye closure [8], eye closure duration and the frequency of

eye closure [9], [10]. Other systems combine this information

with head-movement, yawning and facial expression [11].

The main drawback of these systems is collecting eye-state

information properly when the driver wears dark sun-glasses,

which does not allow measuring these features properly. This

scenario may be frequent in the car environment.

On the other hand, and focusing in sleep monitoring,

polysomnography (PSG) is the gold-standard system for

sleep disorders diagnosis. This method is based on the

biomedical multisignal acquisition and processing, such as

electroencephalogram (EEG), electrocardiogram (ECG), gal-

vanic skin response and respiration. PSG is the most used

method for clinical purpose because these biomedical signals

provide useful information about the physiological response

during sleep stages. Therefore, several of these biomedi-

cal signals have been proposed as measuring methods for

drowsiness detection, the most used are EEG, ECG and

respiration. The performance of EEG records based methods

have been assessed by several authors [12]–[14], but this

method suffers from some serious limitations related both to

the EEG sensor ergonomics: it requires sensors and cables on

the body that disturbs the driver and the information related

to the open-eyes state of the driver disturbs the standard

diagnosis methods of PSG. On the one hand, EEG is a

low amplitude signal and car environment is electromagnetic

noisy which make difficult the signal detection. On the other

hand, the mechanical car vibrations may introduce artifacts

in the skin-electrode interface, which also complicates the

signal detection.

Heart rate variability (HRV) has been usefully employed

as a fatigue indicator for athletes [15]. Moreover, in PSG, the

extracted HRV from the ECG has been used for determining

sleep stages [16]. However, one major drawback of ECG-

based method is that it does not seem to be a feasible

indicator of sleepiness [17]. A driver drowsiness detection

algorithm has been proposed based on HRV analysis and the

EEG was used to determinate the sleep onsets by a sleep

specialist. The analysis is based on multivariate statistical

process control to detect abnormalities in HRV. This work

shows that FP rate is 1.7 times per hour on average, but it does

not report the false negative rate [18]. Another algorithm for

drowsiness detection, which is based on HRV analysis using

linear discriminant analysis technique have been developed.

It has achieved 98% of specificity, but 59% of sensitivity [19].

Furthermore, a multimodal drowsiness detection method

based on the analysis of ECG and EEG has been proposed.

These signals were processed using machine learning al-

gorithms such as random forest, multilayer perceptron and

support vector machines. A performance about 90% of ac-

curacy, precision and recall has been achieved but it has

been tested with only five volunteers [20]. Another, previous

work which integrates features of ECG and EEG to detect

driver drowsiness has been proposed. These features were

combined using SVM and it was achieved a level of accuracy

of 80% with 22 healthy subjects [21].

Finally, the analysis of respiratory rate variability (RRV)

may be useful to collect accurate information of sleepiness

cycles so, respiration-based methods can anticipate this risky

situation while driving [22], [23]. Furthermore, there is re-

search on non-contact respiratory signal acquisition systems

through thoracic effort monitoring based on camera [24],

[25]. This contactless solution will be more accepted by

drivers.

The aim of this work is to propose a method for drowsiness

detection based on changes in the respiratory signal. The res-

piratory signal has been obtained using an inductive plethys-

mography belt and it has been processed in real-time in order

to classify the driver’s state of alertness as drowsy or awake.

This paper assesses the ability of the proposed algorithm to

warn the driver when the early fatigue symptoms appear, thus

it may be a valuable safety system in car environments to

alert to these episodes. The paper is organized as follows:

the data collection procedure (Section II), the description

of the proposed algorithm (Section III) and the algorithm

validation procedure (Section IV). The experimental results

obtained and discussion are shown in Section V. Finally, the

conclusion section remarks the findings of this paper.

II. METHODS
A. PARTICIPANTS
Twenty adult volunteers (ten females and ten males), aged

from 20 to 60 years, participated in the study. 6 subjects

were classified underweight (<18.5 kg/m2), 7 normal weight

(18.5 to 25 kg/m2), and 7 overweight (25 to 30 kg/m2).

All participants were physically healthy and had no history

of any sleep disorder, they had a valid driving license and

they did not drink alcoholic or energy drink in the past 6

hours before the experiment. This study was performed in

accordance with the principles of the Declaration of Helsinki

[26] and all participants received detailed information about

the study and gave informed consent. Participants should

perform two driving tests on different days but four tests

were not recorded properly so 36 tests were considered for

the study.
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(a) (b)

FIGURE 1. Measurement setup for driver drowsiness detection at IBV
facilities. (a) Driving simulator room: front screen and car bodywork. (b)
Participant wore three RIP bands around: abdomen, diaphragm and chest.

B. MEASUREMENT SETUP
In order to assess the accuracy of the proposed drowsiness

detection algorithm, the volunteers of the study should drive

while they are fighting against to fall asleep. Since these

situations may be dangerous for volunteers, the test was car-

ried on a driving simulator cabin under controlled conditions.

Moreover, test conditions have been designed to observe the

behaviour of drivers in their fight against to fall asleep while

driving.

On the one hand, the experimental protocol is focused

on drowsiness detection while driving in well-known hard

conditions to keep alertness: night hours, boring and rela-

tively less crowded roadways. This protocol has been set-

up with a front screen within a simulator with car bodywork

in order to provide an immersive experience in the facilities

of the Institute of Biomechanics (IBV) in Valencia, Spain

as shown in Fig. 1a. The car was equipped with pedals,

steering wheel and automatic transmission. A projector was

used to display a virtual scenario on a screen in front of the

car. The experiments were conducted with the room climate

control to 24◦C, low lighting and with highway sounds. The

simulation scenario was a two-way highway with two lanes

in each direction, low density of traffic, night environment,

and path with no sharp curves. Moreover, a video camera,

which has been focused on the subject’s head, has recorded

the experiment. The camera device used to record video was

the Logitech webcam C120. Video recordings were used by

several external observers in order to generate the ground

truth driver drowsiness signal.

On the other hand, the breathing process involves several

muscles which act on both inhalation and exhalation. Breath-

ing is performed primarily by the diaphragm, a large muscle

that separates the thoracic cavity from the abdominal cavity.

In fact, the contraction and relaxation of diaphragm produce

volume changes in the thoracic and abdominal cavities. Thus,

the respiratory signal can be obtained from the tracking of the

displacements of diaphragm, abdominal and rib cage. Respi-

ratory inductive plethysmography (RIP) is the most widely

accepted non-invasive method for quantitative and qualitative

respiratory measurement [27]. Moreover, previous studies

have demonstrated that RIP can be also used to quantify the

breath-by-breath variability of ventilation [28]. As we can see

in Fig. 1b, in our test set-up the subject has worn three RIP

band sensors placed in thoracic, diaphragm and abdominal

positions in order to guarantee the best signal quality regard-

less of driver anthropometric characteristics. The respiratory

signals have been acquired by three synchronized channels of

a Bitmed EximPro monitor (Bitmed®, Sibel S.A., Barcelona,

Spain) and the sampling frequency was 40 Hz, which satisfy

Nyquist’s criteria for respiratory signals. The respiratory sen-

sor was the inductive band SleepSense model. The inductive

sensor is a commercial and validated device.

C. TEST PROTOCOL
Participants have performed the driving tests in two different

days. In one of them, the subject had sleep deprivation for

the last night so subjects have not slept in the 24 hours before

the experiment. The other experiment took place with the

normal sleep situation, so subjects must have slept at least

6 hours the night before the experiment. The two conditions

were randomised and the tests were performed at the time of

day at 9 a.m. Then, the difference between both experiments

was the subjects’ initial sleep condition. Subjects were asked

to remain in the simulator car seat, wearing a seatbelt and

keeping both hands on the steering wheel with both feet in the

pedals. During the first 5 minutes of the experiment, subjects

were asked to remain still and quiet. After that, they were

asked to drive the simulator car for an hour and a half. Finally,

they were asked to remain seated in the driving simulator

with their eyes closed for 5 minutes.

D. EXTERNAL OBSERVERS
Trained external observers were asked to rate the subject’s

state of alertness as “drowsy" or “not drowsy" from face

video recordings minute by minute in order to generate

the ground truth signal. For this classification, it has been

considered that drowsy state of alert is characterized by: loss

of facial expressivity, yawns and slow blinks [29]. Otherwise

the subject’s state of alertness has been classified as “not

drowsy". In addition, they were asked to classify minute by

minute the quality of the breathing signals as “good" or “bad"

from respiratory signal visual inspection.

According to minute by minute ratings of participant’s

state of alertness, we expect that a correct drowsiness de-

tection places in the same minute that a drowsiness event in

the gold standard. However, previous experiments have found

that fight against to fall asleep ratings may have some limi-

tations [29]. On the one hand, fight against to fall asleep is a

phenomena that involves several events such as sighs and eye

blinks that can be clearly identified from video face record-

ings by an external observer. Moreover, it is complicated for

external observers to rate when the first signs of sleepiness

appear, such as short periods of long blink duration, some

yawns, and some changes in body position. Then, although

several sleepiness states can be rated clearly, the starting

point sometimes does not seem clear. Therefore, an advanced

time (AT) region is defined to reduce the uncertainty in the

observers’ sleepiness ratings. The scored states which are
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FIGURE 2. Timeline of tracked events over the measurement and defined
time region of interest (TROI)

within the AT minutes before the first minute rated as drowsy

by the observers, they have remained out of performance

results of the drowsiness classification algorithm in order to

reduce the uncertainty associated with the observers’ ratings.

E. TIME REGION OF INTEREST (TROI)
In order to analyze the performance of the proposed algo-

rithm, some events must be tracked during the measurement

test. These events are defined as: event 1 is the beginning

of signal acquisition, event 2 occurs when the subject starts

driving, the event 3 happens when the subject starts fighting

against to fall asleep, the event 4 takes place when the

subject wakes up, the event 5 occurs when the subject stops

driving and the event 6 is the end of signal acquisition. In

addition, AT is the time region from AT minutes before event

3 happens. This time region is used to reduce the uncertainty

as detailed above. The drowsiness region of interest (DROI)

is the time interval within each subject test which has been

identified for drowsiness detection. DROI has been defined

from the first minute which the observers rate the subject as

drowsy to 5 five minutes later.

The Fig. 2 shows the timeline of the events in the measure-

ment test, it must be remarked that these events do not occur

at the same time for all tests. So, the events have been marked

for each subject by external observers from video recordings.

Although, the time of event 2 and 5 are fixed by the protocol

and it may vary from 1 to 2 minutes by subject due to protocol

limitations, but 3 and 4 instants depend on how each subject

feels during the test.

We have defined the start and endpoint as that which

limit the time region of the respiratory signal which will be

processed by the designed algorithm. We have established

event 2 as a start point because the system is designed to

be used under driving conditions. Then, the signal acquired

before starting to drive has remained out of the analysis. On

the other hand, the end point has been established at the

end of DROI. We have considered that the subject’s state

of alertness is no longer apt to drive after five minutes have

passed since the appearance of the first sleepiness symptoms.

Then, DROI has been defined to analyze the signal until an

affordable time after subjects start to be drowsy, so DROI has

been set to 5 minutes for all subjects. The total time interval

selected for each test has been called time region of interest

TABLE 1. Amount of data available to be analyzed for different inclusion criteria

Inclusion
criteria

# of
selected
testsa

Data from 2 to 5b Data within TROIb

AW
min

DW
min

DW
%

AW
min

DW
min

DW
%

All
available
subjects

36 2246 1035 31.6 2015 103 4.7

Any
drowsiness
alert

21 872 1035 54.3 424 103 19.5

Drowsiness
alert after
10 first
minutes

15 768 592 43.5 404 73 15.3

a Number of tests for different constraints of presence of drowsiness.
b Amount of respiratory signal data for each alertness state rated by
external observers for different time region of test. AW means awake and
DW means drowsy.

(TROI).

The analysis of respiratory signal inside the TROI provides

more reliable results than the analysis during the entire test

because the main goal of the designed algorithm is the

detection of the first time frame where signs of somnolence

appear. It has been obtained different TROI for each subject

based on external observers ratings. Thus, we have included

in the analysis the measurements which have a presence of

somnolence and the somnolence appears not before 10 min-

utes after start driving. 10 minutes has been chosen because

the initialization of the algorithm takes 5 minutes and the

duration of AT, which has been set to the same value as

DROI, must be added to obtain reliable results. Table 1 shows

the summary of the database: the number of participants, the

amount of minutes which have been rated as drowsy and

awake for different conditions and TROI. Finally, it must

be remarked that the percentage of time that subjects were

drowsy shows that more realistic results will be obtained

from the analysis during the TROI than from event 2 to

5. Therefore, the proposed algorithm has been optimized

and assessed from 15 different tests and 477 minutes of

respiratory signal.

III. PROPOSED ALGORITHM
In this section, we will describe the proposed real time al-

gorithm for drowsiness detection by Thoracic Effort Derived

Drowsiness index (TEDD). It must be remarked that the pro-

posed TEDD algorithm has been designed to analyze not only

thoracic effort signals, but also diaphragmatic and abdominal

effort signals. Mainly, the algorithm is based on the analysis

of the variability of the respiratory rate along the time, as

well as the presence of artifacts in the respiratory signal.

Fig. 3 shows the main blocks of the proposed algorithm.

The different steps of the drowsiness detection algorithm and

respiratory signal quality assessment are discussed next.

The proposed algorithm for drowsiness detection while

driving is based on the detection of the fight against to fall
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FIGURE 3. Main blocks of the proposed Thoracic Effort Drowsiness Detection
(TEDD) algorithm.

asleep from the analysis of RRV. Because of the respiratory

signal is acquired with an inductive band around the driver’s

chest while driving, artifacts can appear in the respiratory

signal due to movements, coughing and speaking. Moreover,

the respiratory signal amplitude may vary among subjects

and along the time so the algorithm is designed based on

frequency variations and not amplitude variations. Thus, the

signal is filtered and compressed in order to mitigate these

effects.

During the episodes of fight against to fall asleep, the RRV

increases but it is not equal for everyone. Then, the algorithm

searches for each subject the initial level RRV which is taken

as reference. The algorithm searches a respiratory signal

interval which is characterized by frequency and amplitude

stability, mean respiratory rate within the normal respiration

rate range and free of artifacts such as snores and movements.

The RRV level of the selected signal interval, which is taken

as reference, will be used by the following algorithm steps in

order to assess the increase of RRV over time. This process

has been called characterization, which is performed on-line.

The reference signal is used to obtain a threshold to estimate

the breathing rate.

Once the reference signal has been obtained, the respira-

tory rate (RR) is breath-to-breath estimated from the time

elapsed between threshold crossings of respiratory signal.

The RR has been averaged because it may be misled by

several kinds of artifacts which are not related to respi-

ration dynamics. This process was called breath-to-breath

frequency estimation.

It has been observed that the RRV increases while the

driver is fighting against to fall asleep and the driver’s state

of alertness decreases slowly. Hence, the RRV has been

smoothed and the algorithm searches a sequence of peaks

in RRV time series for a period of time in order to identify

the fight episodes. The quasi-peak based method described

below has been used for this purpose, the whole process was

called RRV smoothing and maximum searching.

One of the major drawback of drowsiness detection based

on RRV analysis is that high RRV are not only caused by

fighting to fall asleep but also driver’s movements, speaking

and coughing. Therefore, the algorithm assess the quality

of respiratory signal from the presence or absence of these

events and the quality index has been combined with quasi-

peak detection in order to avoid that events which are

not related to drowsiness episodes may mislead. Speaking,

coughing or other movements happened spontaneously dur-

ing signal acquisition, without any action taken by the mea-

suring device. Once the signal acquisition was finished, they

were detected by visual inspection of the video recordings

and the respiratory signal. In addition, the signal quality

algorithm has been designed in order for the signal quality

to decrease in presence of speaking, coughing and other

movement events.

As was mentioned above, the state of alertness decreases

slowly while driving and the aim of this algorithm is alert

when the subject is not apt to drive, so the algorithm provides

a minute-by-minute binary indicator. It has been found an

optimized threshold in order to convert the level of one-

minute averaged RRV into a binary indicator of drowsiness

detection. The threshold is obtained by means of the maxi-

mization of the F1-scores of drowsiness detection algorithm.

This optimization process is described in Section IV-B and

the obtained results are shown in Section V-B1. The accuracy

of the algorithm has been assessed from the comparison of

this binary indicator with external observers’ ratings of driver

drowsiness. The mentioned different blocks of the proposed

TEDD algorithm are particularly fully described below and

illustrated in Fig. 4.

A. RESPIRATORY SIGNAL FILTERING

The normal breathing frequency varies with age and gender.

The normal respiratory rate ranges from 14 to 20 breaths per

minute in healthy adults [30]. The respiratory signal filtering

block consists of a low-pass filter with a cut-off frequency of

0.5 Hz in order to reduce noise spikes, followed by a high-

pass filter with a cut-off frequency of 0.05 Hz to remove

the baseline of the signal. Both have been designed as a

forth order Butterworth filter. The filter coefficients have been

calculated as a function of the respiratory signal sampling

rate according to digital filter theory. Then, the designed

filtering block is suitable to reduce noise and eliminates the

baseline in our measurement conditions. Finally, we have

applied a non-linear enhancement function to reduce artifacts

based on the arctangent that can be described as:

VOLUME 4, 2016 5
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FIGURE 4. Detailed flowchart of TEDD algorithm

respfn(n) = arctan
respf(n)

√∑300∗fs
k=1 (respf(k)−respfm)2∗√2

300∗fs

(1)

where fs is the sampling frequency, respf is the previously

filtered respiratory signal and respfm is the arithmetic mean

of respf within the 300∗fs first samples. The nonlinear trans-

formation normalizes the signal by the standard deviation

and calculates the arctangent of the quotient [31]. In fact,

it reduces the amplitude of large artifacts in the respiratory

signal. Fig. 5 illustrates an example of raw respiratory signal

and the same signal after filtering.

B. CHARACTERIZATION OF SUBJECT RESPIRATION
RATE VARIABILITY
This block is in charge of finding the reference pattern of the

initial subject’s state. It enables us to deal with differences

among subjects and different initial subjects’ state of alert-

ness. The constant algorithm parameters have been obtained

in previous a experiment [32]. The algorithm searches a

region of stable respiratory signal as a reference pattern for

a maximum of five minutes of the signal from the start

of the recording. The estimation of the duration of breath

cycles is based on the elapsed time between consecutive

threshold crossings of the respiratory signal, so the reference

pattern will be also used to set this threshold. Finally, the

reference RRV is also obtained from the reference pattern.

The respiratory signal is analyzed in intervals of 40 seconds

of signal with a sliding window and the pattern finding

28 28.5 29 29.5 30 30.5 31 31.5
time(min)

-100

-50

0

50

100

Am
pl

itu
de

(a)

28 28.5 29 29.5 30 30.5 31 31.5
time (min)

-1.5

-1

-0.5

0

0.5

1

1.5

Am
pl

itu
de

(b)

(c)

FIGURE 5. Example of one respiratory signal. (a) Raw respiratory signal. (b)
Filtered respiratory signal. (c) The respiratory signal which has taken as
reference and the obtained threshold

strategy is based on the analysis of signal stationarity from a

heteroscedasticity test [33]. The most stationary signal frame

will be selected as reference pattern. On the one hand, the

stationarity indicator mHtr has been estimated as:

htr(n) =

∑n
j=0(x(j)− x̄)2∑N
k=0(x(k)− x̄)2

mHtr = max
k=1..N

htr(k) (2)

where x is respfn, N is the number of samples (N =
40 ∗ fs) and x̄ is the mean of respfn from 0 to N. On

the other hand, two more indices have been used to find

the reference pattern: the mean respiratory rate called mRR

in Hz and the standard deviation of the respiratory rate in

seconds called stdRR. In this block, the respiratory rate has

been obtained from the zero-crossing rate of respfn. The

selected reference signal will be the first 40 s interval that

meets the next conditions: mHtr must be lower than 0.03,

mRR values must be within the range 0.04 Hz to 0.5 Hz

and stdRR must be lower than 0.7 s. If the mHtr index of all

signal intervals are higher than 0.03, the respiratory interval

with the lowest mHtr which satisfies the mRR and stdRR

mentioned conditions is selected. In previous experiments,
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FIGURE 6. Comparison of IndTedd and qpTedd indices which have been
obtained from one participant.

it has been tested that these three conditions are suitable in

order to obtain a stable quasi-periodic reference pattern.
It has been used the moving average (MA) filter which is

defined as follows:

MAN (x(k)) =
1

N
∗

k∑
j=k−N

x(j) (3)

where x is the input data and N is the length of the moving

average filter.
Once the reference signal has been obtained, it is used to

obtain the threshold for breath cycle detection called thref.

It is obtained from the value of the 60th percentile in the

reference respiratory signal. An example of the respiratory

signal which has taken as reference and the thref obtained

is shown in Fig. 5. Moreover, a reference index of RRV has

been computed by the following equation:

dind =
1

M

M∑
k=5

|MA4(T (k))−MA4(T (k − 1)) (4)

where dind is the RRV reference index, M is the number of

breathing cycles detected within the reference pattern and

T(k) is the breathing duration of the kth detected breath

cycle. In addition, k starts at 5 in order to take care of initial

transient of 4-point MA. Furthermore, dind has been lower

bounded to a basal level, dind=7, in order to normalize stable

and periodic respiratory patterns. The algorithm keeps the

obtained dind in order to normalize the RRV index obtained

along the recording.

C. BREATH-TO-BREATH RESPIRATORY RATE
VARIABILITY ASSESSMENT AND DROWSINESS
INDICATOR
The purpose of the algorithm is to obtain an indicator that

responds to the changes in the respiratory rate associated with

fatigue. This response must be cumulative, indicating the

increase or decrease of fatigue level. The proposed indicator,

which is based on breath-to-breath respiration rate variability

(RRV), is described as:

Tma(n)= MAWLBC(T (n))

IndTedd(n)=
MAWLD(|Tma(n)− Tma(n− 1)|)

dind
(5)

where IndTedd is the indicator, WLBC=4 is the window

length of the MA of breathing cycles and WLD is the window

length of the MA of the difference between successive respi-

ration cycles. The value of WLD parameter will be found

by the optimization method. T(n) has been obtained from

the time interval between consecutive positive thref crossings

and RRV has been computed from the first derivative of the

estimated breathing rate. Then, the MAWLD smooths the

RRV changes in order to obtain the trend of RRV and it has

been normalized by the initial reference state.

After that, a quasi-peak detector (QPD) has been applied

to IndTedd in order to estimate RRV changes in a cumulative

way. QPD is a peak detection method employed to measure

conducted and radiated emissions of electronic equipment

in electromagnetic compatibility testing. The QPD has the

characteristics of fast-attack (charge time) and slow-decay

response (discharge time) [34], which result from low-pass

filter R-C components. The qpTedd has been obtained as

follows:

qp(xn)=

{
α ∗ xn + (1− α) ∗ qpn−1, for xn ≥ qpn−1

β ∗ xn + (1− β) ∗ qpn−1, otherwise

qpTeddn= qp(IndTeddn) (6)

where the designed QPD has an increase rate faster than

the decrease rate defined by α=1 and β=0.02 respectively.

Then, qpTedd provides a cumulative indication of RRV

changes along the time by obtaining a greater weighting to

closer IndTedd peaks. Fig. 6 illustrates the result of applying

the described QPD-based method over the IndTedd.

Finally, qpTedd was discretized by averaging over non-

overlapped consecutive one-minute intervals. The discretized

index has been called TeddDis, which not only takes into

account the amplitude of RRV changes but also the time

duration of RRV changes. It must be remarked that the events

of fight against to fall asleep are rated by several external

observers from video recordings of driver’s face and these

videos are usually rated minute-by-minute [35]. Thus, the

TeddDis is an indicator of RRV changes for a specified time

interval whose resolution is suitable to be compared with the

external observers ratings. Therefore, TeddDis has been used

to classify the subject’s state of alertness based on decision

threshold (ThTedd) which has been optimized by maximizing

classification performance defined in Section IV-A.

D. QUALITY SIGNAL ASSESSMENT ALGORITHM AND
COMBINATION WITH DROWSINESS DETECTION
ALGORITHM
The proposed indicator for respiratory signal quality assess-

ment is based on the analysis of the respiratory waveform

changes. The quality indicator (qua) has been defined as

follows:

qua(n) =
MAWLR(|x(n)|)

max
k=n−WLR...n

x(k)− min
k=n−WLR...n

x(k)
(7)
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FIGURE 7. An example of results of TEDD algorithm in combination with
quality assessment for one test. (a) Comparison of quasi-peak TEDD with and
without quality: quaTedd and qpTedd respectively. (b) Comparison of
discretized TEDD (TeddDis) and TEDD with quality (TeddDisQ). (c) IndQuaMin
over the time, the dashed line is QuaTh and the solid line is QuaTh/2.

where x is respfn defined in (1), k is the kth respiratory

sample and WLR is the window length of MA in samples.

The best WLR has been found by optimizing from 20 to 60

seconds. A normalized index quan has been defined in order

to analyze changes of quality over the time as:

quan(n) =

∣∣∣∣ qua(n)quaRef
− 1

∣∣∣∣ (8)

where quaRef is the arithmetic mean of qua over the first five

minutes. Furthermore, the quan has been filtered in order to

smooth sudden changes and it has been scaled. In fact, it can

be expressed as:

IndQua(n) = 100 ∗
(
1− MAWLQ(quan(n))

0.6

)
(9)

where WLQ is the window length of MA applied to quan.

The best WLQ has been also searched from 20 to 60 seconds.

Finally, the assessment of respiratory signal quality has been

combined with the assessment of changes in the RRV. Thus,

they are combined with a quasi-peak detector block in order

to accumulate RRV changes in a suitable way through avoid-

ing wrong estimations due to the low quality of respiratory

TABLE 2. Classifier performance metrics used for tuning parameters and
model assessment

Performance
Metric

Description

True positive (TP) # correctly recognized drowsy states

True negative (TN) # correctly recognized not drowsy states

False positive (FP) # wrongly recognized not drowsy states

False negative (FN) # wrongly recognized drowsy states

Sensitivity (SEN)
TP

TP + FN

Specificity (SPC)
TN

TN + FP

F1-score (F1)
2 ∗ TP

2TP + FN + FP

Gmean (G)
√
SEN ∗ SPC

Accuracy (ACC)
TP + TN

TP + TN + FN + FP

Cohen’s kappa (K)

pa =
(TN + FP ) ∗ (TN + FP )

TP + TN + FN + FP

pb =
(TP + FN) ∗ (TP + FP )

TP + TN + FN + FP

pe =
pa+ pb

(TP + TN + FN + FP )

K =
ACC − pe

1− pe

signal. quaTeddn denotes the combination of TEDD and

quality indices, which has been defined as follows:

IndQuaMinn = min
k=nNBC ...n

IndQua(k)

quaTeddn =

⎧⎨
⎩
yn, if xn ≥ QuaTh

yn−1, if QuaTh
2 ≤ xn < QuaTh

0, otherwise

(10)

where xn is IndQuaMinn, yn is qpTeddn and nNBC

is NBC breath cycles before n. IndQua has been minimized

taking previous samples in order to obtain a conservative

indicator because poor respiratory signal patterns may ap-

pear in consecutive breath cycles. As in qpTedd discretiza-

tion, quaTedd has been discretized by averaging over non-

overlapped consecutive one-minute intervals. The discretized

index has been called TeddDisQ. Fig. 7 illustrates the effect

of the signal quality assessment combination with qpTedd

over time for one subject test.

IV. ALGORITHM PERFORMANCE EVALUATION
A. PERFORMANCE METRICS
The ratings generated by external observers were used as ref-

erence in order to assess the correctness of the proposed algo-

rithm for drowsiness detection. In fact, it has been evaluated

by computing the number of correctly recognized drowsy

states (true positives), the number of correctly recognized not

drowsy states (true negative) and states that either were in-

correctly classified as drowsy (false positive) or that were not
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recognized as drowsy (false negative). These counts can be

represented as a matrix which is known as confusion matrix

[36]. The metrics which have been used in order to evaluate

the performance of TEDD algorithm classifier, are shown in

Table 2. Sensitivity (SEN) and specificity (SPC) are well-

known metrics most used joint in order to evaluate the perfor-

mance of binary classification algorithms. On the one hand,

SEN measures the proportion of positives, in our case drowsi-

ness detection, which are correctly detected by the algorithm

and SPC measures the proportion of negatives (not drowsy

detection) which are properly identified. On the other hand,

we have also used other performance metrics such as: F1-

score (F1), G-mean (G) and Cohen’s kappa coefficient (K). G

is insensitive to changes in class distribution; on the contrary,

F1 is well suited for tasks with lots of negative instances (not

drowsy). K coefficient is a measure of agreement between

classifiers and it has been proposed the following as standards

for strength of agreement: ≤0=poor, .01–.20=slight, .21–

.40=fair, .41–.60=moderate, .61–.80=substantial, and .81–

1=almost perfect [37]. In addition, K has been used to

measure the classifier performance, because it has measured

the agreement between predicted and observed subjects’ state

of alertness, while correcting for an agreement that occurs by

chance [38].

B. ALGORITHM OPTIMIZATION AND VALIDATION
The data have been partitioned into a training set and test

set in order to obtain an unbiased estimation of accuracy of

the optimized algorithm. Moreover, the training data must

be partitioned into a training set and validation set again in

order to get an unbiased estimation of accuracy during the

optimizing process (e.g. to select the best size of WLD).

One of the main limitations of a single data partition

is that we may not have enough data to make sufficiently

large training, validation and test sets. Therefore, we have

performed a cross-validation method to use the available data

for validation and testing efficiently. A leave-one-subject-

out cross-validation (LOSOCV) was used to select the best

model parameters and to assess the performance of the

selected drowsiness classifier. In LOSOCV technique, all

but one tests’ data were used to train the classifier and the

remained test’s data were used for testing. This process was

repeated for every subject until each subject has been a

test sample once [39]. Then, this cross-validation method is

suitable for our scenario because any subject’s data are not

wasted.

The performance results of the optimized algorithm will be

so optimistic because the cross-validation results were sub-

ject to maximization. Therefore, nested-loop cross-validation

has been performed to combine model selection and per-

formance evaluation. The method consists in two nested

cross-validation loops: an inner one to select the algorithm

parameters with the best cross-validation performance and

an outer one to assess the tuned model on the remaining

test set. Then, the results of the drowsiness classification

algorithm with selected parameters have been obtained for

1: Divide dataset in N folds

2: for i = 1 to N do
3: Use N-1 as validation set

4: Use the remaining as test set

5: Divide the validation set in N-1

6: for j = 1 to N − 1 do
7: Use N-2 to train the classifier

8: Use the remaining to evaluate the classifier

9: end for
10: Select the classifier with best AUC

11: Build the classifier selected with the validation set

12: Store the predictions in the test set

13: end for
14: Estimate the mean performance metrics in the test set

FIGURE 8. Nested LOSOCV algorithm for model selection and assessment
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FIGURE 9. (a) An example of ACC of quality signal classification algorithm for
different decision threshold (QuaTh) and NBC parameter of IndQuaMin. In this
example, the other parameters that are involved in the optimization process
have been fixed (WLR= 20 and WLQ= 20). (b) F1 classification results for
different values of WLR and WLQ parameters. The NBC and QuaTh
parameters have been optimized for each WLR and WLQ.

the estimation of the performance metrics. The pseudo-code

of the LOSOCV procedure has been described in Fig. 8.

V. RESULTS AND DISCUSSION
A. QUALITY SIGNAL ASSESSMENT ALGORITHM:
OPTIMIZATION AND PERFORMANCE EVALUATION
The algorithm performs a binary classification of respiratory

signal quality as good or bad, which is based on QuaDis

parameter, which has been defined in Section III-D. The

classification performance results were used to optimize the

algorithm parameters. These results have been obtained by

comparing the classifications of the quality signal assessment

algorithm with the quality signal rated by the external ob-

servers.

The optimized parameters are: WLR, WLQ, NBC and

QuaTh. The range values of the parameters WLR and WLQ,

have searched from 20 to 60 seconds in order to comprise

several breath cycles without too much algorithm delays.

Then, we have evaluated the classification results with differ-

ent values of these parameters to obtain the best results. The

algorithm has been optimized by following bottom-up steps.

Firstly, the QuaTh which maximizes the ACC has been found

in each one of the other parameters. An example is shown
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TABLE 3. Performances metrics of quality signal classification algorithm

Performance Metrics Optimized parameters

ACC SPC SEN F1 WLR WLQ NBC QuaTh

MA 0.63 0.36 0.81 0.70
20 50 11 75

MI 0.63 0.35 0.83 0.72

in Fig. 9a. It shows the ACC of classification for different

QuaTh and NBC cycles when WLQ and WLR are fixed.

Secondly, the obtained QuaTh has been used to find the best

NBC that maximizes F1 for each combination of WLQ and

WLR. In case of similar F1 results have been obtained for

different NBC values, the lowest NBC has been selected in

order to reduce the complexity of the algorithm. Thirdly, the

WLR and WLQ which provides the best F1 results have been

found. Fig. 9b shows the F1 values of these parameters with

NBC previous optimized.

On the other hand, F1 is more sensitive to good quality

classification and G provides balanced results for good and

bad quality classification. Then, F1 is known to give a trade-

off between high recall rates and accuracy for predictions,

so the parameters have been optimized following the F1

maximization criterion. Table 3 summarizes the performance

results of the signal quality classification algorithm. The

table shows micro-average (MI) and macro-average (MA)

performance results because while the MA-metrics are used

when training independent classifiers per class, MI-metrics

are used when all classes are trained jointly. Between MI and

MA, MI have been used for tuning parameters because the

same classifier was trained for all subjects and MA results

have been used in order to assess the overall performance

without bias the most populated ones. Table 3 shows that the

obtained MI and MA results are quite similar. Furthermore,

this optimized quality algorithm will have applied to TEDD

algorithm in order to obtain more reliable drowsiness classi-

fication results.

B. TEDD ALGORITHM: DROWSINESS CLASSIFICATION
RESULTS
1) TEDD algorithm parameters tuning
The proposed algorithm has been optimized by tuning WLD

and ThTedd parameter, which has been defined in Sec-

tion III-C, in order to obtain the algorithm with the best

drowsiness classification results. The LOSOCV method was

used to select the best WLD and ThTedd and to assess the

performance of the selected drowsiness classifier. Therefore,

each different WLD has been considered as a different model

so the WLD with the best results has been selected in the

inner loop whereas the generalized performance results have

been obtained in the outer loop. The WLD ranges from 1 to

20, because higher to 20 may cause undesirable delays. The

ThTedd was optimized within the range 0 to 15 and 0.025

step, the range is widely enough and the step has enough

resolution for optimizing the algorithm. Fig. 10 shows the
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FIGURE 10. Drowsiness classification results of TEDD by varying ThTedd
and WLD values for finding the best parameters. (a) and (c) G and F1 results
of the TEDD without quality signal algorithm respectively. (b) and (d) G and F1
results of the TEDD with quality signal algorithm respectively

G and F1 of TEDD algorithm with and without quality

signal assessment varying WLD and ThTedd values during

tuning phase in the validation set. This figure also reveals

that different optimal ThTedd have been found for each

WLD parameter value. Whereas the best ThTedd has been

searched by maximizing G or F1, the WLD optimization

maximizes the area under the ROC curve (AUC). AUC is

an overall indicator of classifier performance independently

of the threshold decision chosen, in our case ThTedd. The

AUC has been computed by the Wilcoxon–Mann–Whitney

statistic, which is more efficient than integrating the ROC

curve.

2) Evaluation of TEDD algorithm results
The results of drowsiness detection algorithm combined with

the quality respiratory signal classification algorithm and

without this combination have been obtained. These results

have been obtained in order to assess the improvement of

the contribution of the quality signal classification algorithm.

Moreover, it have been assessed the effect of choosing G

or F1 maximization criteria for optimizing ThTedd. The

confidence intervals of each performance classification met-

rics have been obtained to compare and evaluate different

algorithms. The uncertainty of the accuracy must be assessed

taking into account inter-subject variability effects. The ran-

dom effects analysis method has been used to estimate the

average and confidence intervals of algorithm performance

metrics taking into account this variability. Therefore, the

average and 95% confidence interval of the cross-validation

algorithm results over the folds have been obtained from

pooling the across all subjects by using random effects

analysis [40]. The values of these performance metrics for
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TABLE 4. Drowsiness detection performance results for different advanced time (AT). TEDD algorithm (TeddDis) and TEDD combined with signal quality
assessment (TeddDisQ)

TEDD
method &

max. criteria

AT=5 AT=4

SPC SEN F1 G K SPC SEN F1 G K

TeddDis F1 80.2 ± 10.1 89.9 ± 14.9 77.2 ± 15.0 84.9 ± 8.8 0.59 ± 0.22 75.7 ± 10.5 89.9 ± 14.9 73.7 ± 17.6 82.5 ± 8.9 0.55 ± 0.23

TeddDis G 80.2 ± 10.1 89.9 ± 14.9 77.2 ± 15.0 84.9 ± 8.8 0.59 ± 0.22 75.7 ± 10.5 89.9 ± 14.9 73.7 ± 17.6 82.5 ± 8.9 0.55 ± 0.23

TeddDisQ F1 96.6 ± 3.6 90.3 ± 14.3 83.7 ± 12.7 93.4 ± 7.6 0.75 ± 0.19 93.1 ± 5.1 90.3 ± 14.3 80.4 ± 14.0 91.7 ± 7.7 0.69 ± 0.20

TeddDisQ G 96.6 ± 3.6 90.3 ± 14.3 83.7 ± 12.7 93.4 ± 7.6 0.75 ± 0.19 93.1 ± 5.1 90.3 ± 14.3 80.4 ± 14.0 91.7 ± 7.7 0.69 ± 0.20
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FIGURE 11. Performance metrics of TEDD drowsiness classification varying
AT for TeddDis and TeddDisQ. The F1 maximization criteria has been used to
find the most suitable ThTedd. The number over each symbol indicates the
value of AT

different TEDD method (TeddDis and TeddDisQ), different

maximization criteria (F1 and G) and for AT=5 and AT=4 are

summarized in Table 4. On the one hand, this table shows

that the same classification performance have been achieved

using both maximization criteria.

On the other hand, Welch’s t-test has been used to test the

significance of differences between TeddDis and TeddDisQ

methods. This test is commonly used to compare the means

of two independent samples with unequal variances. It is an

adaptation of Student’s t-test and is more reliable when the

variances of the two samples are not equal [41]. In fact, it

has been found that SPC, F1, G, K obtained from TeddDisQ

for both optimization criteria are significantly better than

self TeddDis for both AT (p<0.05) while keeping the same

SEN. Furthermore, this table shows that SPC of TeddDisQ

has increased from 80.2% to 96.6% while keeping the same

sensitivity around 90%. Finally, the obtained TeddDis K

shows a moderate agreement while substantial agreement has

been obtained with TeddDisQ.

Fig. 11 shows several performance metrics of classification

results for TeddDis and TeddDisQ by varying AT. Both of

them have been optimized with the same criterion (max-

imization F1) in order to compare only the effect of AT

changing. The AT ranges from 5 minutes to 0 minutes and

the number over the marker indicates the number of minutes

of AT. This figure shows that SPC, F1 and G decrease when

AT decreases, because of the FP increase near to drowsiness

event keeping the same SEN for TeddDis and TeddDisQ.

Moreover, the performance of TeddDisQ is better than Ted-

dDis for all different AT values. Furthermore, it must be

remarked that AT only affects to negative labels (TN increase

or FP increase) so the increase of the number of FP close to

drowsiness event can poor the SPC result. In fact, for AT=5

the obtained FPR (FPR=1-SPC) is 3% whereas the obtained

FPR increases to 23% for AT=0.

The results obtained with the proposed method can only be

compared with results obtained from other methods which

do not use the respiratory signal, for example EEG, due to

the novelty of the respiratory signal processing for driving

drowsiness detection. The method [12] based on EEG records

achieved an accuracy of 87.4% for drowsiness state and

83.6% for awake state. These results are worse than the ones

obtained by the proposed method. The method [19] based

on HRV variability obtained a high specificity (98%) but the

sensitivity is poor (59 %). A method based on both EEG

and ECG obtained a performance about 90% of accuracy,

precision and recall but this performance has been evaluated

with only five tests [20]. In our method the sensitivity is

around 90% but our specificity is higher (96.6%) and the

proposed method was tested with 15 tests.

C. STUDY LIMITATIONS

One limitation of this work is that no prior approaches

of driver drowsiness detection based on respiratory signal

analysis were found to compare the obtained results. More-

over, the results may be somewhat limited by the controlled

experiment conditions because of the experiments were per-

formed in a driving simulator. Then, a further study with

more focus on real driving drowsiness detection is therefore

suggested. Furthermore, this study was limited by the number

of subjects that were 15 people and by the amount of data

analyzed that was 474 minutes of respiratory signal.
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VI. CONCLUSION
A novel algorithm (TEDD) for the driver’s state of alertness

monitoring through the identification of the fight against

to fall asleep has been proposed based on the analysis of

changes of RRV. Moreover, it has been also proposed a

method to provide a confidence quality level of the respira-

tory signal. In addition, the obtained quality signal level has

been combined with the drowsiness detection algorithm in

order to improve the classification results by means of reduc-

ing the number of false positives due to changes of measured

RRV associated not to drowsiness but body movements or

talking.

Furthermore, the designed algorithm has been validated

under a driving simulator and several sleepiness episodes

have been identified for each one of 15 test sessions. The

gold-standard of drowsiness events has been generated by

external observers from video recordings of the subject

while driving. The performance results have been obtained

following LOSOCV procedure in order to achieve an un-

biased estimate of the generalized algorithm performance.

The improvement of drowsiness classification results due to

the signal quality algorithm has been also assessed and the

differences for each optimization criteria and AT have been

discussed.

In summary, the obtained results are similar for different

training criteria but significant results improvement have

been found with respiratory signal quality combination.

Therefore, the algorithm can be maximized with different

criteria as long as the criteria were insensitive to class dis-

tribution. Finally, the optimal values for drowsiness detec-

tion TEDD algorithm parameters have been: WLD=17 and

ThTedd=3.025.

Finally, the generalized performance of drowsiness detec-

tion has been assessed achieving a specificity of 96.6% ±
3.6%, sensitivity of 90.3% ± 14.3% and Cohen’s Kappa

agreement score of 0.75± 0.19 on average across all subjects.

Therefore, the proposed algorithm may be a valuable vehicle

safety system to alert drowsiness while driving.
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