4,290 research outputs found

    Open-ended evolution to discover analogue circuits for beyond conventional applications

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-012-9163-8. Copyright @ Springer 2012.Analogue circuits synthesised by means of open-ended evolutionary algorithms often have unconventional designs. However, these circuits are typically highly compact, and the general nature of the evolutionary search methodology allows such designs to be used in many applications. Previous work on the evolutionary design of analogue circuits has focused on circuits that lie well within analogue application domain. In contrast, our paper considers the evolution of analogue circuits that are usually synthesised in digital logic. We have developed four computational circuits, two voltage distributor circuits and a time interval metre circuit. The approach, despite its simplicity, succeeds over the design tasks owing to the employment of substructure reuse and incremental evolution. Our findings expand the range of applications that are considered suitable for evolutionary electronics

    Evolutionary computing and particle filtering: a hardware-based motion estimation system

    Get PDF
    Particle filters constitute themselves a highly powerful estimation tool, especially when dealing with non-linear non-Gaussian systems. However, traditional approaches present several limitations, which reduce significantly their performance. Evolutionary algorithms, and more specifically their optimization capabilities, may be used in order to overcome particle-filtering weaknesses. In this paper, a novel FPGA-based particle filter that takes advantage of evolutionary computation in order to estimate motion patterns is presented. The evolutionary algorithm, which has been included inside the resampling stage, mitigates the known sample impoverishment phenomenon, very common in particle-filtering systems. In addition, a hybrid mutation technique using two different mutation operators, each of them with a specific purpose, is proposed in order to enhance estimation results and make a more robust system. Moreover, implementing the proposed Evolutionary Particle Filter as a hardware accelerator has led to faster processing times than different software implementations of the same algorithm

    A new Taxonomy of Continuous Global Optimization Algorithms

    Full text link
    Surrogate-based optimization, nature-inspired metaheuristics, and hybrid combinations have become state of the art in algorithm design for solving real-world optimization problems. Still, it is difficult for practitioners to get an overview that explains their advantages in comparison to a large number of available methods in the scope of optimization. Available taxonomies lack the embedding of current approaches in the larger context of this broad field. This article presents a taxonomy of the field, which explores and matches algorithm strategies by extracting similarities and differences in their search strategies. A particular focus lies on algorithms using surrogates, nature-inspired designs, and those created by design optimization. The extracted features of components or operators allow us to create a set of classification indicators to distinguish between a small number of classes. The features allow a deeper understanding of components of the search strategies and further indicate the close connections between the different algorithm designs. We present intuitive analogies to explain the basic principles of the search algorithms, particularly useful for novices in this research field. Furthermore, this taxonomy allows recommendations for the applicability of the corresponding algorithms.Comment: 35 pages total, 28 written pages, 4 figures, 2019 Reworked Versio

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano RodrĂ­guez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano RodrĂ­guez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study

    Improving resiliency using graph based evolutionary algorithms

    Get PDF
    Resiliency is an important characteristic of any system. It signifies the ability of a system to survive and recover from unprecedented disruptions. Various characteristics exist that indicate the level of resiliency in a system. One of these attributes is the adaptability of the system. This adaptability can be enhanced by redundancy present within the system. In the context of system design, redundancy can be achieved by having a diverse set of good designs for that particular system. Evolutionary algorithms are widely used in creating designs for engineering systems, as they perform well on discontinuous and/or high dimensional problems. One method to control the diversity of solutions within an evolutionary algorithm is the use of combinatorial graphs, or graph based evolutionary algorithms. This diversity of solutions is key factor to enhance the redundancy of a system design. In this work, the way how graph based evolutionary algorithms generate diverse solutions is investigated by examining the influence of representation and mutation. This allows for greater understanding of the exploratory nature of each representation and how they can control the number of solution generated within a trial. The results of this research are then applied to the Travelling [sic] Salesman Problem, a known NP hard problem often used as a surrogate for logistic or network design problems. When the redundancy in system design is improved, adaptability can be achieved by placing an agent to initiate a transfer to other good solutions in the event of a disruption in network connectivity, making it possible to improve the resiliency of the system --Abstract, page iii

    Approximate Computing for Energy Efficiency

    Get PDF

    Comparison of multiobjective optimization methods applied to urban drainage adaptation problems

    Get PDF
     This is the author accepted manuscript. The final version is available from American Society of Civil Engineers via the DOI in this recordThis article compares three multiobjective evolutionary algorithms (MOEAs) with application to the urban drainage system (UDS) adaptation of a capital city in North China. Particularly, we consider the well-known NSGA-II, the built-in solver in the MATLAB Global Optimization Toolbox (MLOT), and a newly-developed hybrid MOEA called GALAXY. Avariety of parameter combinations of each MOEA is systemically applied to examine their impacts on optimization efficiency. Results suggest that the traditional MOEAs suffer from severe parameterization issues. For NSGA-II, the distribution indexes of crossover and mutation operators were found to have dominant impacts, while the probabilities of the two operators played a secondary role. For MLOT, the two-point and the scattered crossover operators accompanied by the adaptive-feasible mutation operator gained the best Pareto fronts, provided the crossover fraction is set to lower values. In contrast, GALAXY was the most robust and easy-to-use tool among the three MOEAs, owing to its elimination of various associated parameters of searching operators for substantially alleviating the parameterization issues. This study contributes to the literature by showing how to improve the robustness of identifying optimal solutions through better selection of operators and associated parameter settings for real-world UDS applications.National Natural Science Foundation of ChinaPublic Welfare Research and Ability Construction Project of Guangdong Province, ChinaScience and Technology Program of Guangzhou, ChinaWater Conservancy Science and Technology Innovation Project of Guangdong Province, Chin
    • …
    corecore