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11 

Abstract: This article compares three multi-objective evolutionary algorithms (MOEAs) with 12 

application to the urban drainage system (UDS) adaptation of a capital city in North China. 13 

Particularly, the well-known NSGA-II, the built-in solver in the MATLAB Global Optimization 14 

Toolbox (MLOT), and a newly-developed hybrid MOEA called GALAXY are considered. A 15 

variety of parameter combinations of each MOEA are systemically applied to examine their 16 

impacts on optimization efficiency. Results suggest that traditional MOEAs suffer from severe 17 

parameterization issues. For NSGA-II, the distribution indices of crossover and mutation 18 

operators were found to have dominant impacts, while the probabilities of the two operators 19 

played a secondary role. For MLOT, the two-point and scattered crossover accompanying the 20 

adaptive feasible mutation gained the best Pareto fronts, provided that the crossover fraction is 21 

set to lower values. In contrast, GALAXY was the most robust and easy-to-use tool among the 22 
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three MOEAs, owing to its mechanism for substantially alleviating the parameterization issues. 23 

This study contributes to the literature by showing how to improve solution robustness through 24 

better selection of operators and associated parameter settings for real-world UDS applications. 25 

Keywords: urban drainage system adaptation; multi-objective evolutionary algorithm; method 26 

selection; parameter setting 27 

Introduction 28 

Many regions across the world are suffering from growing losses of life and property due to 29 

urban floods, and the levels of risks are likely to increase due to impacts of climate change and 30 

urbanization (IPCC 2014; Kaspersen et al. 2017). The urban drainage system (UDS) has been 31 

a crucial infrastructure to manage floods in cities. The proper adaptation of existing UDSs to 32 

meet challenges of future non-stationary conditions has significant socioeconomic benefits 33 

(Ranger et al. 2011; Yazdanfar and Sharma 2015; Zhou et al. 2012). In research, links between 34 

UDS adaptation and optimization methods are quickly made, since optimization tools can 35 

provide much higher computational efficiency and stronger robustness in solving complex 36 

problems compared to traditional design methods. Over the past two decades, applications of 37 

multi-objective evolutionary algorithms (MOEAs) to UDSs have been greatly expanded 38 

(Nicklow et al. 2010; Siriwardene and Perera 2006). Among those, the optimal design of system 39 

configuration (e.g., layout and component design) considering the constraints of budget and 40 

system performance has been one of the most popular topics (Giacomoni and Joseph 2017; 41 

Haghighi 2013; Navin and Mathur 2016; Steele et al. 2016). Automated model calibration and 42 

rehabilitation of UDS, particularly using Genetic Algorithms (GAs) and hydrological models, 43 

have attracted the attention of a number of researchers (Barco et al. 2008; Barreto et al. 2010; 44 
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Efstratiadis and Koutsoyiannis 2010). Meanwhile, the application of MOEAs to optimizing 45 

investment strategies (e.g., extent and timing) for UDS adaptation has also gained increasing 46 

attention given the recent development in flood modeling and damage evaluation capabilities 47 

(Barreto et al. 2010; Delelegn et al. 2011; Maharjan et al. 2009; Yazdi et al. 2017a). 48 

49 

Most comparative studies of MOEAs have been carried out in the field of water distribution 50 

systems (WDSs) (Choi et al. 2017; Perelman and Ostfeld 2007; Zheng et al. 2016) and 51 

groundwater management (Ketabchi and Ataie-Ashtiani 2015; Kollat and Reed 2006). It is 52 

shown that certain MOEAs perform better than others for selected problems and case studies. 53 

(Gibbs et al. 2010; Maier et al. 2014; Nicklow et al. 2010; Siriwardene and Perera 2006; Zheng 54 

et al. 2017). In the field of urban drainage systems, however, understanding on the performances 55 

of different MOEAs in solving UDS problems is still very limited (Yazdi et al. 2017a). Despite 56 

a large number of applications of MOEAs to UDS design and management studies, there has 57 

been surprisingly little research on how to robustly identify optimal solutions through more 58 

powerful search operators and better settings of associated parameters. In a majority of the UDS 59 

literature reviewed, besides the common parameters (e.g., population size, generations), the 60 

settings of operators (e.g., crossover, mutation) are either not discussed (Barreto et al. 2010; 61 

Dong et al. 2012; Muschalla 2008) or simply based on subjective judgment or recommended 62 

values in literature (Delelegn et al. 2011; Udias et al. 2012). Even with limited studies exploring 63 

the sensitivity of optimization results (Chui et al. 2016; Yazdi et al. 2017b; Zare et al. 2012; 64 

Zhou et al. 2017), the major attention has been dedicated to examining the settings of decision 65 

variables and objective functions rather than understanding the working principles of different 66 
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MOEAs. 67 

68 

Despite important conclusions made in previous comparative studies of MOEAs on other types 69 

of design problems (e.g., WDS design), they offer limited insight into how the particular 70 

algorithms perform in the UDS adaptation problems. It is not straightforward to directly transfer 71 

the conclusions to the drainage systems due to the complexity and difference in hydrological 72 

and hydraulic equations to be solved (Yazdi et al. 2017a). Gaining improved knowledge on the 73 

linkage between algorithmic behaviors and associated parameter settings of different MOEAs 74 

for UDS adaptation problems is important for practitioners who rely on the output of these tools 75 

for design, planning, and management. This paper contributes to the urban water community 76 

by exploring the suitability and efficiency of three representative MOEAs, thus offering 77 

guidance for users who lack the expertise of optimization algorithms to select appropriate 78 

MOEAs for UDS adaptation problems. 79 
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Methodology 80 

The three MOEAs applied to the UDS adaptation in this study include: (1) the classic non-81 

dominated sorting genetic algorithm II (NSGA-II); (2) the built-in multi-objective solver 82 

located in the MATLAB Global Optimization toolbox (MLOT); and (3) a newly developed 83 

hybrid MOEA called GALAXY. The three MOEAs are chosen to cover a range of user groups. 84 

First, NSGA-II is widely used to solve various multi-objective optimization problems in water 85 

resources due to its reliability and optimization efficiency (Nicklow et al. 2010). Nevertheless, 86 

the parameterization of this algorithm has not received sufficient attention in UDS applications. 87 

Second, MLOT is a popular optimization tool for practitioners who prefer a user-friendly 88 

interface. It reduces the burden of the coding work, thus often being regarded as an easy-to-use 89 

tool by users who are proficient in using MOEAs. Third, GALAXY is reported to perform 90 

competitively well with Borg (Hadka and Reed 2013) and other representative MOEAs for 91 

various design problems of water distribution systems (Wang et al. 2017), which have similar 92 

features (e.g., discrete variables, non-linear, and highly combinatorial) as the UDS. Therefore, 93 

GALAXY is included in this study to examine its performance in UDS adaptation problems. 94 

95 

In the next section, a brief introduction to the three MOEAs is provided, with a special emphasis 96 

on the associated operators and parameterization. Note that this study focuses on the 97 

comparisons of features and performances of the three MOEAs under different parameter 98 

settings, rather than elaborating on their basic structures and functionalities. Readers are 99 

referred to the following references for further details on each method (Deb 2001; Deb et al. 100 

2002; Wang et al. 2017).  101 
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NSGA-II 102 

NSGA-II (Deb et al. 2002) is one of the most popular MOEAs in the community of water 103 

research (Maier et al. 2014; Reed et al. 2013). It is acknowledged as an ‘‘industry standard’’ 104 

algorithm and has been successfully applied to a variety of water resource optimization 105 

problems (Carlucci et al. 2015; Li et al. 2015). NSGA-II adopts a fast non-dominated sorting 106 

approach to rank solutions through an implicit elitist selection method based on the Pareto 107 

dominance concept and a secondary selection method based on the crowding distance. The use 108 

of the two selection methods can significantly improve its performance in solving complex 109 

multi-objective problems. Moreover, this MOEA provides a constraint-handling technique to 110 

efficiently deal with constrained problems and supports both binary and real coding 111 

representations. The standard NSGA-II applies the Simulated Binary Crossover (SBX) and the 112 

Polynomial Mutation (PM) to reproduce children from parental generations with designated 113 

probabilities. The functionalities of SBX and PM are further controlled by their distribution 114 

indices, respectively. A large value of the distribution index means a small variation in the 115 

distance from children to their parents during the reproduction process, and vice versa (Deb et 116 

al. 2002). For UDS adaptation problems, the default/recommended settings in the literature may 117 

not be suitable because the optimal settings of the SBX and PM operators can vary from case 118 

to case. Guidance on the selection of appropriate operators and associated parameters should 119 

be given individually according to the characteristics of the given problems. 120 

121 

MLOT 122 

MATLAB is a well-known commercial software in scientific and technical computing. It 123 
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provides a broad range of functions and toolboxes in a number of application fields. The multi-124 

objective solver in MLOT is a variant of NSGA-II with controlled elitism, which favors 125 

individuals with better fitness values in the Pareto sense (i.e., convergence), as well as those 126 

helping to increase the population diversity (Matlab R2017b Documentation, 2017). The 127 

balance between population convergence and diversity plays a key role in steering the search 128 

towards the true optimal region, in particular for non-linear, multi-modal and non-convex 129 

problems. 130 

131 

MLOT provides six crossover operators (i.e., heuristic, intermediate, scattered, single-point, 132 

two-point, and arithmetic) and three mutation operators (i.e., adaptive-feasible, Gaussian and 133 

uniform). The island model is also supported, in which the whole population is divided into a 134 

series of subpopulations (i.e., islands). At first, the subpopulation evolves by itself in each 135 

island. At a given interval, the best individuals from one island will replace the worst 136 

individuals in another one (known as migration). Many papers show that using the island model 137 

helps improve the quality of solutions (Alba and Tomassini 2002; Skolicki and De Jong 2005). 138 

However, there is no intuitive rule-of-thumb for setting appropriate island models for UDS 139 

problems, such as the direction, fraction, and interval of migration. Note that in comparison to 140 

NSGA-II, MLOT provides more options for users to solve optimization problems. On the other 141 

hand, it may require a large amount of extra work on the selection of appropriate operators and 142 

parameters before using the tool. This is especially challenging for users who lack expertise in 143 

MOEAs and usually, they are inclined to adopt the default or recommend settings in literature 144 

with or without minor adjustments. To guarantee the efficiency of MLOT, a systematical tuning 145 
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approach is generally requested to deal with the parameterization issue. 146 

147 

GALAXY 148 

GALAXY stands for the Genetically Adaptive Leaping Algorithm for approXimation and 149 

diversitY, which is a brand-new hybrid MOEA proposed for solving discrete and combinatorial 150 

multi-objective design problems (Wang et al. 2017). It is distinguished from traditional MOEAs 151 

by employing six search operators simultaneously and adaptively. Specifically, the SBX and 152 

PM are adapted to Simulated Binary Crossover for Integer (SBXI) and Gaussian Mutation (GM) 153 

to fit in the integer coding scheme. Another four operators include Turbulence Factor (TF), 154 

Differential Evolution (DE), Uniform Mutation (UM) and Dither Creeping (DC). GALAXY 155 

relies on global searching operators (i.e., TF, DE and SBXI) to drive the population towards the 156 

near-optimal region and then employs local searching operators (i.e., UM, GM and DC) to 157 

improve the Pareto front through fine-grained tuning. In addition, this MOEA implements 158 

several strategies (e.g., hybrid replacement, global information sharing, and duplicates handling) 159 

to guarantee the quality of Pareto fronts obtained (Wang et al. 2017). Despite the multiple 160 

operators employed, GALAXY eliminates the setting requirements in the reproduction process, 161 

which to a great extent alleviates the parameterization issue and the high computational 162 

overhead in optimization. The control parameters include only the population size and the 163 

number of function evaluations which are common ones in MOEAs, thus making GALAXY 164 

an easy-to-use optimization tool. 165 
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Applications 166 

Case study 167 

A portion of the drainage network in the city of Hohhot is selected for the case study to 168 

investigate the performance of the three MOEAs for UDS adaptation applications (Figure 1a). 169 

Hohhot, the capital of the Inner Mongolia Autonomous Region located in the northern China, 170 

has experienced an accelerated demographic and spatial growth in the past 20 years (Ding and 171 

Zhang 2012). The city area is about 1,398 hectares and mainly covered by high-density 172 

residential districts, with an overall mean imperviousness of 71%. The case study is located 173 

within the watershed adjacent to the Xiaohei River. The main land-use is categorized into 174 

residential, commercial, green space and others (see Figure 1b). A few key public facilities, 175 

such as institutes, hospitals, municipal administrative buildings, sport and recreational sites, are 176 

scattered over the area. 177 

178 

The stormwater drainage system (Figure 1c) is composed of 53 manholes, pipelines, 179 

subcatchments, and 3 outlet structures, with a total pipe length of approximately 37 km. The 180 

stormwater flows are conveyed from north to south and discharged to the recipient river in the 181 

southeast part of the city. Due to past promotion of industrial and high-density residential 182 

constructions in the area and limited system upgrades since the early 1970s, flooding has 183 

occurred more frequently in the catchment (Zhou et al. 2016). The current drainage system 184 

cannot cope with even 1-yr rainfall event. With increasing flood losses in the study site, the 185 

local authorities are under intense pressure to implement effective adaptation plans in the near 186 

future to improve the system performance up to a 3-yr service level (Zhou et al. 2016). Pipe 187 
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enlargement is applied as the adaptation measures to enhance the hydraulic capacity of existing 188 

pipelines (i.e., using larger pipes). Costs of pipe enhancement take into account primary 189 

construction and maintenance costs, including the installation/relocation of new pipes, costs of 190 

earthwork, and evacuation and clearing. The costs can vary depending on a number of factors, 191 

such as pipe materials, soil conditions and types of roads. In this study, costs are calculated 192 

using average costs derived from regional projects and construction budget manuals, which are 193 

a function of pipe diameter, pipe length and buried depth of the pipeline. 194 

195 

Drainage model 196 

SWMM (Rossman and Huber 2016) was used to simulate the hydrological and hydraulic 197 

response of the drainage system. The model was built based on data such as rainfall hyetograph, 198 

subcatchment properties (area, width, imperviousness and slope), network dimensions 199 

(manholes and pipes) and related spatial locations and elevations. The kinematic-wave method 200 

(Guo and Urbonas 2009; Xiong and Melching 2005) and the Horton equation were used in the 201 

flood routing and infiltration calculations, respectively. The input rainfall series corresponded 202 

to a 3-yr event with 45.6 mm rain depth over 4-hour duration, with a temporal resolution of 10 203 

minutes. Evaluation of system performance after incorporating different pipe enhancement 204 

measurements was conducted for each simulation during the optimization. Note that SWMM 205 

is not capable of simulating 2D surface inundation conditions and overflow from overloaded 206 

manholes is expressed as the value of total flood volume (TFV). As the adaptation goal in this 207 

study is to upgrade the system to the 3-yr service level (i.e., no system overloading occurs under 208 

3-yr event), it is reasonable to use TFV to reflect the UDS performance. Surface inundation 209 
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models, e.g. (Vojinovic and Tutulic 2009), are applicable if overland flow characteristics and 210 

related damage assessment are desirable for system performance. 211 

212 

Multi-objective optimization model 213 

The optimization problem concerned two objective functions: i.e., minimization of the expected 214 

TFV provided by adapted pipe capacities and the related pipe enhancement costs. These two 215 

objectives are conflicting, meaning that more investment reduces TFV and vice versa. There 216 

were in total 53 decision variables (i.e., 53 pipelines) for the identification of optimal locations 217 

and capacities of pipe enhancement. The optimization goal was to identify a set of optimal 218 

solutions (i.e., Pareto front) which reflect the trade-off between system overloading and 219 

required costs. 220 

221 

Experimental setup 222 

The parameterization of MOEAs was investigated from two aspects: common parameters and 223 

specific ones. The former refers to the parameters required by all MOEAs, including the 224 

population size (PS) and the number of function evaluations (NFEs). The latter is related to the 225 

individual MOEA applied to the optimization and may differ from case to case. Also note that 226 

in some cases similar parameter terms may have very different meanings and functionalities 227 

(e.g., the probability of SBX in NSGA-II versus the crossover fraction in MLOT). For a given 228 

combination of parameter settings, each MOEA was run 10 times independently using different 229 

random seeds. The main parameters considered for each MOEA are shown in Table 1. 230 

231 
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The settings of common parameters were determined by preliminary sensitivity analyses to 232 

ensure a satisfactory level of convergence of all MOEAs (see Figures S1-S3 and Tables S1-S3 233 

in Supplemental Materials for more details). It was found that NSGA-II and MLOT with a PS 234 

of 200 and 20,000 NFEs delivered the best results among all combinations. In contrast, 235 

GALAXY with a PS of 20 (denoted as GALAXY20) and 20,000 NFEs reported the best Pareto 236 

fronts. To compare the performance of GALAXY with NSGA-II and MLOT, both GALAXY20237 

and GALAXY200 were tested in this study. 238 

239 

For NSGA-II, four specific parameters were selected, including the probabilities of SBX and 240 

PM (denoted as Pc and Pm respectively) and the associated distribution indices (denoted as DIc241 

and DIm respectively). The Pc was varied from 0.6 to 0.9 with an increment of 0.1, which was 242 

believed to cover the most effective range of SBX (Zheng et al. 2017). The recommended 243 

setting of the Pm in the literature is the inverse of the number of decision variables (Wang et al. 244 

2015). In this case, this rate is roughly equal to 0.02 (i.e., 1/53). Besides, three additional values 245 

of the Pm (i.e., 0.002, 0.2 and 0.05) were examined to represent the much lower, much higher 246 

and a comparable level of mutation rates, respectively. The minimum and maximum 247 

distribution indices of SBX and PM (i.e., DIc and DIm) were bounded to 1 and 20, respectively, 248 

based upon preliminary tests with 100,000 random samples from the decision variable space to 249 

investigate their impacts on the distribution of children from parents (see Figures S4-S5 in 250 

Supplemental Materials for details). As a result, there were in total 64 groups of parameter 251 

combinations for NSGA-II. 252 

253 
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The parameterization of MLOT was arranged in two stages. At the first stage, the focus was 254 

given to examining the impact of operator settings (types of operators and related functional 255 

options) on optimization. More specifically, the six crossover operators, the three mutation 256 

operators and four types of island models (i.e., 1, 2, 4, and 8 subpopulations implemented on a 257 

single processing core) were considered. The first stage only evaluated the performance of the 258 

combination of the aforementioned operators and functional options with the associated 259 

parameters set to their default values. As a result, there were a total of 72 groups of parameter 260 

combinations for MLOT at this stage. At the second stage, only the combinations of operators 261 

with high efficiency found at the first stage were considered. The focus was then shifted to 262 

investigate the influence of the associated parameters within their corresponding effective 263 

ranges. 264 

265 

Performance Metrics 266 

Four kinds of performance criteria were used to evaluate the quality of solutions, including the 267 

hypervolume (HV, Zitzler and Thiele 1999) and the generational distance (GD, Veldhuizen 268 

1999) metrics to assess the diversity and convergence of Pareto fronts obtained by different 269 

MOEAs, respectively. Both metrics range from 0 to 1, and a larger HV and a smaller GD 270 

suggest better performance in terms of diversity and convergence, and vice versa. On the other 271 

hand, since the solutions which can eliminate TFV (i.e., located on the x-axis) are of special 272 

interest to local decision makers, the averaged costs of such solutions from multiple 273 

independent runs (denoted as CostTFV=0) and the associated frequency to identify them are used 274 

as complementary indicators to measure the convergence and reliability of MOEAs 275 
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simultaneously. 276 

277 

Note that the optimization efficiency in terms of CPU running time was not taken into 278 

consideration in this study, because all the optimization tools were implemented within the 279 

MATLAB environment, and the most time-intensive part during optimization came from the 280 

hydraulic simulations via the SWMM toolkit. Therefore, the differences among three tools can 281 

be neglected as long as the same NFEs are permitted. 282 

283 

Results and discussion 284 

Pareto fronts from tested MOEAs 285 

The best Pareto fronts (BPFs) obtained by each MOEA are shown as colored solid dots in Figure 286 

2a, with the colored hollow circles demonstrating the corresponding Pareto fronts derived by 287 

all parameter combinations. Both NSGA-II and MLOT suffered from severe parameterization 288 

issues since their solutions disperse widely in the objective space. The Pareto fronts achieved 289 

by NSGA-II are mainly within a range of costs less than $4.5 million and a TFV lower than 290 

60,000 m3. Impacts of parameterization on MLOT are more pronounced as the obtained 291 

solutions in Figure 2a disperse over a wider area than those by NSGA-II. In contrast, GALAXY 292 

converged to a satisfactory level compared with the two traditional MOEAs despite the use of 293 

two different population sizes. Main differences in MOEA performances are found in the 294 

middle part of the BPFs, in which traditional MOEAs converged better. However, it should be 295 

emphasized that the BPFNSGA-II and BPFMLOT were not achieved by any single combination of 296 

their parameters, but actually composed of Pareto fronts from several efficient parameter 297 
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combinations. In addition, in the region near the maximum TFV, NSGA-II converged worse 298 

than GALAXY and MLOT, and missed the boundary point which represents the solution 299 

without any pipe enlargement. In the region near the x-axis (Figure 2b), the differences between 300 

GALAXY and traditional MOEAs become smaller. By comparing the solutions with zero TFV 301 

(i.e., no system overloading) on each BPF (Figure 2c), results show that GALAXY with a PS 302 

of 20 (i.e., the green solid dot) found the cheapest solution with an investment cost of 303 

approximately $4.4 million. This cost saves 0.3% and 16.2% of the ones found by NSGA-II 304 

and MLOT, respectively. 305 

306 

A further quantitative comparison among three MOEAs is presented in Table 2. The BPFMLOT307 

achieved the best convergence and diversity according to HV and GD indicators. Recall that 308 

the BPF of each MOEA was generated by filtering all the non-dominated solutions via multiple 309 

runs using the fast non-dominated sorting procedure (Deb et al. 2002); consequently, the HV 310 

and GD values of each BPF (Rows 2-5) are superior to those of the averaged performance of 311 

each MOEA through independent runs (Rows 6-9). Despite the BPFMLOT exhibiting the best 312 

diversity and convergence, it was actually achieved at the price of the highest computational 313 

overhead (i.e., 810 runs). In contrast, GALAXY of both population sizes achieved a much 314 

higher level of diversity and similar convergence compared with NSGA-II and MLOT when 315 

comparing their averaged HV and GD values. Furthermore, there is a high reliability in 316 

GALAXY20’s performance to identify better (cheaper) boundary solutions on the x-axis (i.e., 317 

no TFV). In contrast, traditional MOEAs, especially the MLOT, suffered different levels of 318 

difficulties in locating such boundary solutions (i.e., more expensive with lower frequencies). 319 
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This implies that GALAXY can provide better solutions to UDS problems at a much lower 320 

computational burden. 321 

322 

Comparison of best solutions 323 

Figure 3 shows the best pipe enlargement configurations (i.e., most economical solutions to 324 

eliminate system overloading under 3-yr event) optimized by GALAXY, NSGA-II, and MLOT, 325 

respectively. The extents of pipe increments are distinguished by the line thickness and 326 

associated colors as shown in the figure legend. Note that pipe diameters were not enlarged 327 

gradually, since different parts of current drainage networks are served with varying pipe 328 

capacities due to uncoordinated historical adaptations in the area. Generally speaking, all the 329 

three MOEAs found similar locations for pipe increment, but with different sizes. Pipelines in 330 

the upstream were augmented appropriately through the optimization. It is agreed that the pipes 331 

near the Outlet O1 have sufficient capacities to cope with the 3-yr event and are therefore kept 332 

unchanged (black lines). Nevertheless, the pipes near the Outlet O2 and O3 are found to have 333 

different extents of system overloading and were enlarged accordingly. In particular, 334 

GALAXY20 managed to identify the most cost-effective solution for pipe enlargement (i.e., 335 

about $4.4 million), with most of optimized pipe increments ranging between 0.2 m and 0.6 m. 336 

In contrast, NSGA-II and MLOT suggested 0.4-0.8 m for the same pipelines, which resulted in 337 

additional investment costs of $0.011 and $0.8 million, respectively. 338 

339 
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Parameterization of MOEAs 340 

NSGA-II 341 

Figure 4 demonstrates the parameterization impacts of NSGA-II in the compass plot, in which 342 

the combinations of controlling parameters of NSGA-II (i.e., DIc, DIm, Pc, and Pm) are shown 343 

in four colored rings and their contributions to the BPFNSGA-II are shown in the outermost grey 344 

ring. For each combination, the contribution is computed as the ratio of the number of solutions 345 

by the specific parameter settings found in the BPFNSGA-II to the total number of solutions in the 346 

BPFNSGA-II. The whole plot is sorted by the contribution ratio in a descending order in the 347 

counter-clockwise direction. Results show that DIc and DIm have significant impacts on the 348 

performance of NSGA-II. That is, the combinations with a larger DIc and a smaller DIm made 349 

more than 5% contributions (i.e., the top seven slots) to the BPFNSGA-II . The DIc seems to 350 

dominate the NSGA-II performance in solving the UDS adaptation problem presented. With 351 

the DIc set to 1, the majority of the combinations made minor or no contributions to the 352 

BPFNSGA-II, regardless how the other three parameters were set. When the DIc was set to 20, half 353 

of associated parameter combinations (i.e., 16 out of 32 groups) made identifiable contributions. 354 

In terms of delivering efficient solutions, the DIm with a value of 20 has a 31.25% chance of 355 

failure, which is 1.7 time the chance (i.e., 18.75%) of those with a value of 1. This finding is 356 

essential to guide the further use of NSGA-II as previous applications neglected the setting of 357 

these two parameters and default values were often adopted (Barreto et al. 2010; Jia et al. 2015; 358 

Yazdi et al. 2017a) without investigating their impacts. 359 

360 

The probabilities of SBX and PM played a secondary role on NSGA-II’s performance, when 361 
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the DIc and DIm were fixed at 20 and 1, respectively. The combination with Pc and Pm set to 0.9 362 

and 0.05 obtained the best optimization results across all 64 groups. A larger Pm generally 363 

yielded a higher contribution to the BPFNSGA-II, despite the variations in the Pc. For example, 364 

the second best combination had a contribution rate of 16.4% and was achieved with the Pm set 365 

to 0.2. When reducing the Pm by an order of magnitude (i.e., from 0.2 to 0.02), a noticeable 366 

damping effect on the contribution rate (i.e., from 9.2% to 1.7%, highlighted by the black 367 

dashed line in Figure 4) was observed. In general, the combinations with larger Pc and Pm368 

captured more solutions in the BPFNSGA-II. Nevertheless, both parameters, in particular the Pc,369 

showed no dominant impacts on the performance of NSGA-II. This is somewhat different to 370 

the previous literature that treated the probabilities of SBX and PM as the main driving 371 

parameters (Khu et al. 2006; Yazdi et al. 2017a). In summary, the results imply that for the case 372 

study the best parameter settings for NSGA-II should consider a larger DIc (i.e., a smaller search 373 

step) with a higher crossover probability, coupling with a smaller DIm (i.e., a larger search step) 374 

with a much higher mutation probability than the recommended value in the literature (i.e., 375 

0.02). 376 

377 

MLOT 378 

Impacts of the investigated operators on the performance of MLOT are shown in Figure 5a. 379 

There were only four combinations leading to noticeable contributions (i.e., with contribution 380 

rates larger than 5%) to the BPFMLOT. Surprisingly, all these combinations corresponded to the 381 

use of a complete population rather than the island models. The scattered, two-point, and single-382 

point crossover functions accompanying with the adaptive feasible mutation are found to be 383 
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more efficient in identifying optimal solutions. Although the Gaussian mutation was also 384 

competitive, it was not included at the second stage since it has two additional parameters and 385 

may yield infeasible solutions. The other three types of crossover operators (i.e., heuristic, 386 

intermediate and arithmetic) were generally inefficient no matter what types of mutation and/or 387 

island models were used. 388 

389 

To verify the effect of island models, additional sensitivity analyses were conducted to expand 390 

the testing ranges of the migration fraction (i.e., 0.5 and 0.8, the default value was 0.2) for island 391 

models with two subpopulations, using the top three combinations found in Figure 5a. No 392 

improvement was identified from the BPFMLOT over the initial 720 runs (Figure 5b), which 393 

implies that the island models do not fit well to the optimization problem in this study. 394 

Consequently, at the second stage, only the three efficient crossover operators (i.e., scattered, 395 

two-point, and single-point), as well as the adaptive feasible mutation, were employed as the 396 

underlying settings, combined with varying crossover fractions (i.e., 0.6, 0.7, and 0.9, the 397 

default value was 0.8). It is worth noting that the crossover fraction controls both the crossover 398 

and mutation rates in MLOT, which is intrinsically different from the Pc in NSGA-II. For 399 

instance, a crossover fraction of 0.7 means that 70% of the population will undergo crossover 400 

randomly and the remaining 30% will be mutated. However, in NSGA-II a child may be 401 

generated via both crossover and mutation. Figure 5c shows the Pareto fronts obtained by the 402 

additional 90 runs. It is clear that the original BPFMLOT over the 720 runs was further improved 403 

by the combination of the two-point crossover, the adaptive feasible mutation, and the newly 404 

set crossover fraction with a value of 0.6. A subsequent statistical analysis revealed that the 405 
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two-point and scattered crossover functions with a relatively low crossover fraction (i.e., less 406 

than 0.8) delivered more efficient solutions, which gained more than 7.5% of the improved 407 

BPFMLOT over the 810 runs. 408 

409 

GALAXY 410 

Figure 6 shows the dynamics of the six searching operators employed by GALAXY throughout 411 

the optimization process for solving the UDS adaptation problem. It is shown that the operators 412 

which are good at global search (i.e., TF, DE and SBXI) are found to dominate the behavior of 413 

GALAXY at very early generations (with clearer tendency in Figure 6b due to fewer 414 

generations). Afterwards, the operators which are good at local search (i.e., UM, GM and DC) 415 

gradually stepped in and steered the optimization from diversification to intensification. The 416 

patterns observed are in line with the original design concept of this algorithm, as well as the 417 

searching behavior when applied this MOEA to the WDS applications (Wang et al. 2017). 418 

419 

Conclusions 420 

Three types of MOEAs, namely the NSGA-II, MLOT, and GALAXY, were compared in an 421 

application to the multi-objective adaptation of a district-wide urban drainage system in 422 

northern China. With a focus on the impacts of parameterization, the efficiency of each MOEA 423 

was evaluated to gain improved understanding of how different operators and associated 424 

parameter settings affect the performances of these MOEAs. Results indicate that both NSGA-425 

II and MLOT suffered from severe parameterization issues due to the fact that they involve 426 

many controlling parameters for fine-tuning. It seems that the more parameters an MOEA 427 
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contains, the more significantly its performance would be affected. Among the three MOEAs, 428 

GALAXY turned out to be the most robust and easy-to-use tool for UDS users, especially for 429 

those who lack the expertise in evolutionary computation and are challenged by the parameter 430 

settings of MOEAs.  431 

432 

The distribution indices of SBX and PM dominate the optimization efficiency of NSGA-II, 433 

which have been generally ignored in previous applications. This implies that users need to pay 434 

special attention to fine-tuning of those two parameters before applying NSGA-II to given 435 

optimization problems. The reason lies in the fact that the variations of children from their 436 

parents mainly depend on the values of the distribution indices. The smaller the distribution 437 

indices are, the farther the children will be evolved from their parents. Proper settings of the 438 

two parameters will benefit the search by ensuring more balanced convergence and diversity in 439 

the population. The probabilities of SBX and PM play a secondary role in NSGA-II on the 440 

problem studied. A larger SBX rate (i.e., 0.9) with a relatively higher PM rate (i.e., 0.05) than 441 

the recommended literature value (i.e., the inverse of the number of decision variables) 442 

delivered the best performance. However, note that this finding is perhaps more suitable for 443 

problems involving only discrete decision variables. For those concerning continuous variables, 444 

the best combinations of SBX and PM rates should be fine-tuned via trial runs. 445 

446 

MLOT provides a good deal of flexibility, although the various options and parameters without 447 

appropriate/efficient guidance can also frustrate or even mislead users who are proficient in 448 

MOEAs. It was found that the two-point and scattered crossover functions accompanying the 449 
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adaptive feasible mutation gained the best Pareto fronts, provided that the crossover fraction 450 

was set to a lower value (e.g., 0.6 or 0.7). Importantly, this study showed that using the island 451 

GA models for multi-objective optimization seemed to be inefficient. The failure might be due 452 

to the loss of diversity by dividing the entire population into subgroups. 453 

454 

GALAXY has distinct advantages in comparison to the two traditional MOEAs. First, except 455 

the common parameters (i.e., PS and NFEs), there is no need to set any accompanying 456 

parameters for GALAXY’s searching operators, which inherently ensures the robustness of its 457 

performance. Second, it deploys six searching operators based on their features in terms of the 458 

scale of variations in the objective space, and employs them adaptively and simultaneously 459 

rather than using them individually. This mechanism releases the capabilities of various 460 

operators in a synergetic way. Third, the performance of GALAXY is insensitive to the settings 461 

of population sizes as long as the NFEs are sufficient, which further simplifies the usage of this 462 

tool for real-world applications. In contrast, a sufficient population size is requested for 463 

traditional MOEAs to work properly. In summary, GALAXY can save substantial time and 464 

effort to cope with the parameterization issue of MOEAs. This is essential for users from a 465 

practical perspective as they only need to set up the appropriate objective functions and NFEs 466 

according to the scale/characteristics of the optimization problem at hand. 467 

468 

In addition to the parameterization strategy as suggested in the GALAXY, there are other two 469 

ways to solve the parameterization issue: (1) the development of the self-adaptive strategy that 470 

is able to automatically adjust the parameters based on the searching performance, with a typical 471 
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example by Zheng et al. (2013) applied to WDS design problems; and (2) the development of 472 

the hybrid methods to reduce the impacts of the parameterizations, as the starting positions of 473 

MOEAs are the optimal solutions from some deterministic methods (e.g., Linear Programming 474 

or Non-Linear Programming) rather than the randomly generated solutions. A number of 475 

studies have been undertaken in the latter area, such as Ostfeld (2012) and Zheng et al. (2011). 476 

477 

For simplicity, this study only considered two-objective functions and one type of variables. 478 

Nevertheless, the approach adopted in this study can be applied to other types of optimization 479 

problems where different objectives and/or decision variables are concerned. However, it 480 

should be born in mind that if more objectives (e.g., 3 or 4) are considered the performances of 481 

tested MOEAs in identifying the near-optimal Pareto front may deteriorate dramatically due to 482 

the “dominance resistance” encountered in the hyper Pareto space (Hadka and Reed 2013). In 483 

that case, more efficient sorting procedures are required to maintain appropriate selection 484 

pressure and prevent the population from premature. Moreover, given the complexity and 485 

variability in applicable optimization methodologies (e.g., approach, configuration and 486 

parameter), the role of this work is to propose appropriate optimization strategies that not only 487 

enable an assessment of optimal measures in compliance with the predefined physical and/or 488 

economic objectives, but more importantly provide insightful guidance on the selection and use 489 

of efficient optimization approaches for UDS applications. In particular, a systematical analysis 490 

on the impacts of parameter settings should be conducted before using any MOEAs, rather than 491 

simply following the recommended settings in other applications. Furthermore, the fewer 492 

parameters that require fine-tuning, the more robust an MOEA tends to be. On top of that, an 493 
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MOEA with multiple searching operators employed simultaneously is likely to provide a more 494 

balanced behavior between exploration and exploitation during optimization. 495 

496 

Although benchmark models are widely applied to WDS design problems to test the robustness 497 

of the performance of MOEAs (Choi et al. 2017; Zheng et al. 2016), due to a lack of well-498 

acknowledged and publicly available benchmark drainage networks for UDS problems (Yazdi 499 

et al. 2017b), this work used only one case study for the comparative assessment of the MOEAs. 500 

Future work is planned on the applications of these MOEAs to multiple benchmark drainage 501 

networks of different scales and types. For instance, the current work only considers the option 502 

of drainage pipe enlargement. The potential of low impact development measures, such as green 503 

roofs and rain gardens, are not incorporated into the structure of decision variables. The 504 

increased complexity of decision variables and performance criteria will undoubtedly make the 505 

optimization even more challenging and is consequently worth investigating. 506 
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Figure Captions 686 

Fig. 1. Location (a), main land-use (b), and drainage system(c) of the case study in the city of 687 

Hohhot, North China 688 

Fig. 2. Best Pareto fronts discovered by each MOEA via multiple independent runs 689 

Fig. 3. Comparison of optimized pipe increments to upgrade the drainage to planned service 690 

level suggested by the three MOEAs 691 

Fig. 4. Parameterization of NSGA-II contributing to its BPF over 640 runs (source data can 692 

be found in Table S4 in Supplemental Materials) 693 

Fig. 5. Parameterization of MLOT contributing to the best Pareto front over 810 runs through 694 

two stages of test: (a) Parameterization over 720 runs at the 1st Stage (source data can be 695 

found in Table S5 in Supplemental Materials); (b) Pareto fronts considering the migration 696 

fraction; and (c) Pareto fronts obtained over 90 runs at the 2nd Stage 697 

Fig. 6. Dynamics of search operators within GALAXY over 10 runs 698 

699 
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Tables 700 

Table 1. Main parameters and the corresponding ranges of three MOEAs 701 

MOEAs Main Parameters Effective Range Number of 

Combinations 

Number of 

Runs 

NSGA-II Pc [0.6,0.7,0.8,0.9] 4x4x2x2=64 64x10=640 

Pm [0.002,0.02,0.05,0.2] 

DIc [1,20] 

DIm [1,20] 

MLOT1 crossover 

operators 

[heu,sca,int,sin,two,ari] 6x3x4=72 72x10=720 

mutation 

operators 

[unif,adap,gaus] 

number of 

subpopulations 

[1,2,4,8] 

MLOT2 crossover 

operators 

[sca,two,sin] 3x3=9 9x10=90 

crossover fraction [0.6,0.7,0.9] 

GALAXY20 PS 20 1 1x10=10 

NFEs 20,000 

GALAXY200 PS 200 1 1x10=10 

NFEs 20,000 

Notes: The subscripts of MLOT refer to different stage of parameterization. The full spellings 702 

of the abbreviations of crossover and mutation operators in MLOT can be found in the 703 

corresponding subsection in Methodology. The subscripts of GALAXY denote the minimum 704 

and maximum population sizes used in this study. 705 

706 
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Table 2. Comparison of Pareto fronts obtained by three MOEAs707 

Row No. Pareto Fronts 
HV 

(-) 

HVrelative

(-) 

GD 

(-) 

Avg(CostTFV=0)/Frequency 

million $/% 

1 Best-Known PF 0.8705 - - - 

2 BPFNSGA-II 0.8491 0.9754 0.0044 - 

3 BPFMLOT 0.8663 0.9951 0.0009 - 

4 BPFGALAXY20 0.8388 0.9636 0.0239 - 

5 BPFGALAXY200 0.8434 0.9689 0.0268 - 

6 NSGA-II (640 runs) 0.7259 0.8339 0.0223 4.8774/99.2% 

7 MLOT (810 runs) 0.5391 0.6193 0.0494 5.9189/1% 

8 GALAXY20 (10 runs) 0.8166 0.9380 0.0319 4.5502/100% 

9 GALAXY200 (10 runs) 0.8244 0.9470 0.0440 5.9941/100% 

Notes: The maximum values of cost and TFV objectives were set to $8 million and 70,000 m3, 708 

respectively (i.e., the upper-right corner in Figure 2a). To avoid the impacts of different scales 709 

of the two objectives, the Pareto front obtained by each MOEA was first normalized using the 710 

maximum values of both objectives. The HV indicators of the four BPFs and the best-known 711 

PF were then calculated using the reference point (1,1). The HVrelative indicator refers to the ratio 712 

of each HV indicator obtained by a specific MOEA to that of the best-known PF. The best value 713 

according to each criterion is shown in bold. 714 

715 
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Figures 716 

717 

Fig. 1. Location (a), main land-use (b), and drainage system(c) of the case study in the city of 718 

Hohhot, North China 719 

720 
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721 

Fig. 2. Best Pareto fronts discovered by each MOEA via multiple independent runs 722 

723 
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724 

Fig. 3. Comparison of optimized pipe increments to upgrade the drainage to planned service 725 

level suggested by the three MOEAs 726 

727 
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728 

Fig. 4. Parameterization of NSGA-II contributing to BPFNSGA-II over 640 runs (Each colored 729 

ring represents one controlling parameter with different levels of darkness showing the 730 

considered values in the legend on the right-hand side. Therefore, every four-slot in the radial 731 

direction corresponds to a specific parameter combination of NSGA-II. The outermost grey 732 

ring indicates the contribution rates of different parameter combinations sorted in the 733 

descending order in the counter-clockwise direction. Source data can be found in Table S4 in 734 

Supplemental Materials) 735 

736 
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737 

Fig. 5. Parameterization of MLOT contributing to the best Pareto front over 810 runs through 738 

two stages of test: (a) Parameterization over 720 runs at the 1st Stage (source data can be 739 

found in Table S5 in Supplemental Materials); (b) Pareto fronts considering the migration 740 

fraction; and (c) Pareto fronts obtained over 90 runs at the 2nd Stage 741 

742 
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743 

Fig. 6. Dynamics of search operators within GALAXY over 10 runs 744 

745 


