785 research outputs found

    A WOA-based optimization approach for task scheduling in cloud Computing systems

    Get PDF
    Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this work, for the first time, we apply the latest metaheuristics WOA (the whale optimization algorithm) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called IWC (Improved WOA for Cloud task scheduling) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks

    The edge-disjoint path problem on random graphs by message-passing

    Get PDF
    We present a message-passing algorithm to solve the edge disjoint path problem (EDP) on graphs incorporating under a unique framework both traffic optimization and path length minimization. The min-sum equations for this problem present an exponential computational cost in the number of paths. To overcome this obstacle we propose an efficient implementation by mapping the equations onto a weighted combinatorial matching problem over an auxiliary graph. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behaviour of both the number of paths to be accommodated and their minimum total length.Comment: 14 pages, 8 figure

    Robust and Low-Complexity Timing Synchronization for DCO-OFDM LiFi Systems

    Get PDF
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Light fidelity (LiFi), using light emitting devices such as light emitting diodes (LEDs) which are operating in the visible light spectrum between 400 and 800 THz, provides a new layer of wireless connectivity within existing heterogeneous radio frequency wireless networks. Link data rates of 10 Gbps from a single transmitter have been demonstrated under ideal laboratory conditions. Synchronization is one of these issues usually assumed to be ideal. However, in a practical deployment, this is no longer a valid assumption. Therefore, we propose for the first time a low-complexity maximum likelihood-based timing synchronization process that includes frame detection and sampling clock synchronization for direct current-biased optical orthogonal frequency division multiplexing LiFi systems. The proposed timing synchronization structure can reduce the high-complexity two-dimensional search to two low-complexity one-dimensional searches for frame detection and sampling clock synchronization. By employing a single training block, frame detection can be realized, and then sampling clock offset (SCO) and channels can be estimated jointly. We propose three frame detection approaches, which are robust against the combined effects of both SCO and the low-pass characteristic of LEDs. Furthermore, we derive the Cramér-Rao lower bounds (CRBs) of SCO and channel estimations, respectively. In order to minimize the CRBs and improve synchronization performance, a single training block is designed based on the optimization of training sequences, the selection of training length, and the selection of direct current (DC) bias. Therefore, the designed training block allows us to analyze the trade-offs between estimation accuracy, spectral efficiency, energy efficiency, and complexity. The proposed timing synchronization mechanism demonstrates low complexity and robustness benefits and provides performance significantly better than achieved with existing methods.Peer reviewe

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance

    Accelerating ant colony optimization by using local search

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2015.Cataloged from PDF version of thesis report.Includes bibliographical references (page 42-45).Optimization is very important fact in terms of taking decision in mathematics, statistics, computer science and real life problem solving or decision making application. Many different optimization techniques have been developed for solving such functional problem. In order to solving various problem computer Science introduce evolutionary optimization algorithm and their hybrid. In recent years, test functions are using to validate new optimization algorithms and to compare the performance with other existing algorithm. There are many Single Object Optimization algorithm proposed earlier. For example: ACO, PSO, ABC. ACO is a popular optimization technique for solving hard combination mathematical optimization problem. In this paper, we run ACO upon five benchmark function and modified the parameter of ACO in order to perform SBX crossover and polynomial mutation. The proposed algorithm SBXACO is tested upon some benchmark function under both static and dynamic to evaluate performances. We choose wide range of benchmark function and compare results with existing DE and its hybrid DEahcSPX from other literature are also presented here.Nabila TabassumMaruful HaqueB. Computer Science and Engineerin
    corecore