528 research outputs found

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Fixed channel assignment in cellular radio networks using a modified genetic algorithm

    Get PDF
    With the limited frequency spectrum and an increasing demand for cellular communication services, the problem of channel assignment becomes increasingly important. However, finding a conflict-free channel assignment with the minimum channel span is NP hard. Therefore, we formulate the problem by assuming a given channel span. Our objective is to obtain a conflict-free channel assignment among the cells, which satisfies both the electromagnetic compatibility (EMC) constraints and traffic demand requirements. We propose an approach based on a modified genetic algorithm (GA). The approach consists of a genetic-fix algorithm that generates and manipulates individuals with fixed size (i.e., in binary representation, the number of ones is fixed) and a minimum-separation encoding scheme that eliminates redundant zeros in the solution representation. Using these two strategies, the search space can be reduced substantially. Simulations on the first four benchmark problems showed that this algorithm could achieve at least 80%, if not 100%, convergence to solutions within reasonable time. In the fifth benchmark problem, our algorithm found better solutions with shorter channel span than any existing algorithms. Such significant results indicate that our approach is indeed a good method for solving the channel-assignment problem. © 1998 IEEE.published_or_final_versio

    Contemporary Methods for Graph Coloring as an Example of Discrete Optimization

    Get PDF
    This paper provides an insight into graph coloringapplication of the contemporary heuristic methods. It discusses avariety of algorithmic solutions for The Graph Coloring Problem(GCP) and makes recommendations for implementation. TheGCP is the NP-hard problem, which aims at finding the minimumnumber of colors for vertices in such a way, that none of twoadjacent vertices are marked with the same color.With the adventof multicore processing technology, the metaheuristic approachto solving GCP reemerged as means of discrete optimization. Toexplain the phenomenon of these methods, the author makes athorough survey of AI-based algorithms for GCP, while pointingout the main differences between all these techniques

    On the optimization problems in multiaccess communication systems

    Get PDF
    In a communication system, the bandwidth is often a primary resource. In order to support concurrent access by numerous users in a network, this finite and expensive resource must be shared among many independent contending users. Multi-access protocols control this access of the resource among users to achieve its efficient utilization, satisfy connectivity requirements and resolve any conflict among the contending users. Many optimization problems arise in designing a multi-access protocol. Among these, there is a class of optimization problems known as NP-complete, and no polynomial algorithm can possibly solve them. Conventional methods may not be efficient arid often produce poor solutions. In this dissertation, we propose a neural network-based algorithm for solving NP-complete problems encountered in multi-access communication systems. Three combinatorial optimization problems have been solved by the proposed algorithms; namely, frame pattern design in integrated TDMA communication networks, optimal broadcast scheduling in multihop packet radio networks, and optimal channel assignment in FDM A mobile communication networks. Numerical studies have shown encouraging results in searching for the global optimal solutions by using this algorithm. The determination of the related parameters regarding convergence and solution quality is investigated in this dissertation. Performance evaluations and comparisons with other algorithms have been performed
    • …
    corecore