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1. Introduction 

This chapter focuses on a specific application of two Natural Computation (NC)-based 

techniques: Simulated Quenching (SQ) and Genetic Algorithms (GA): the problem of 

channels’ assignment to radio base stations in a spectrum efficient way. This task is known to 

be an NP-complete optimization problem and has been extensively studied in the last two 

decades. We have decided to include both SQ and GA in the chapter so as o give an academic 

orientation to this work for readers interested in practical comparisons of NC methods. 

According to this point of view, our main interest is in describing and comparing the 

performances of these algorithms for solving the channel allocation problem (CAP). 

Therefore, the aim of our work is not the full theoretical description of SQ and GA. Surely, 

some other chapters in this book will cover this issue.  

There exists an important research activity in the field of mobile communications in order to 

develop sophisticated systems with increased network capacity and performance. A 

particular problem in this context is the assignment of available channels (or frequencies) to 

based stations in a way that quality of service is guaranteed. Like most of the problems that 

appear in complex modern systems, this one is characterized by a search space whose 

complexity increases exponentially with the size of the input, being, therefore, intractable 

for solutions using analytical or simple deterministic approaches (Krishnamachari, 1998; 

Lee, 2005). An important group of these problems −including the one we are interested in− 

belong to the class of NP-complete problems (Garey, 1979).  

Simulated Quenching (SQ) belongs to the family of Simulated Annealing (SA)-like 

algorithms. Simulated Annealing is a general method for solving these kind of 

combinatorial optimization problems. It was originally proposed by (Kirkpatrick, 1983) and 

(Černy, 1985). Since then, it has been applied in many engineering areas. The basic SA 

algorithm can be considered a generalization of the local search scheme, where in each step 
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of the iterative process a neighbour s’ of each current solution s is proposed at random. Then 

s is only replaced by s’ if cost does not rise. The main problems of SA are: (i) the possibility 

to get trapped in local minima, and (ii) the large computational load that leads to slow 

algorithms.  

Both of the algorithms described in this chapter try to solve these drawbacks. The first one, 

SQ, speeds up the algorithm by quickly reducing the temperature in the system, though, in 

the process, the advantage of SA, i.e. convergence to the global optimum, is defeated 

(Ingber, 1993). Due to this, SQ is termed as a greedier algorithm in terms of computational 

load compromising for the global optimum. Besides, the proposed method, occasionally 

allows moves to solutions of higher cost according to the so-called Metropolis criterion 

(Metropolis, 1953) (see section 4.1). However, Duque et al. (Duque, 1993) point out that the 

main drawback they found was to get trapped to a local minimum (by a misplaced 

transition) with a low chance to get out of it. 

The problem of convergence to suboptimal solutions can be efficiently addressed with 

another NC-based technique, the GAs. These algorithms are based on he principle of natural 

selection and survival of the fittest, thus constituting an alternative method for finding 

solutions to highly-nonlinear problems with multimodal solutions' spaces. GAs efficiently 

combine explorative and exploitative search to avoid convergence to suboptimal solutions. 

Unlike many other approaches, GAs are much less susceptible to local optima, since they 

provide the ability to selectively accept successive potential solutions even if they have a 

higher cost than the current solution (Mitchell, 1996).  

This chapter focuses on the application of these methods to solve the channel allocation 

problem found in cellular radio systems. In this kind of systems, the frequency reuse by 

which the same channels are reused in different cells becomes crucial (Gibson, 1996). Every 

cell is allocated a set of channels according to its expected traffic demand. The entire 

available spectrum is allocated to a cluster of cells arranged in shapes that allow for uniform 

reuse patterns. Channels must be located satisfying certain frequency separation constraints 

to avoid channel interference using as small a bandwidth as possible. Considering this 

framework, the CAP fits into the category of multimodal and NP-complete problems 

(Krishnamachari, 1998; Garey, 1979; Hale, 1980; Katzela, 1996).  

The fixed CAP −see section 3.2− has been extensively studied during the past decades. A 

comprehensive summary of the work done before 1980 can be found in (Hale, 1980). When 

only the co-channel constraint is considered, the CAP is equivalent to an NP-complete graph 

coloring problem (Sivarajan, 1989). In this simpler case, various graph-theoretic approaches 

have been proposed (Hale, 1980; Sivarajan, 1989; Box 1978; Kim, 1994). 

From the point of view of NC, some procedures based on NNs (Funabiki, 1992; Hopfield, 

1985; Kunz, 1991; Lochite, 1993) and SA or SQ (Duque, 1993; Kirkpatrick, 1983; Mathar, 

1993) have already been considered. SA-SQ techniques generally improve the problem of 

convergence to local optima found with NNs, though their rate of convergence is rather 

slow (specially in SA), and a carefully designed cooling schedule is required. On the other 
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hand, several GA-based approaches have been applied to solve the CAP: For instance, 

(Cuppini, 1994) defines and uses specific genetic operators: an asexual crossover and a 

special mutation. A disadvantage of such crossover is that it can easily destroy the structure 

of the current solution and, thus, make the algorithm harder to converge. In (Lai, 1996), Lai 

and Coghill represented the channel assignment solution as a string of channel numbers 

grouped in such a way that the traffic requirement is satisfied. The evolution is then 

proceeded via a partially matched crossover operator (PMX) −this type of crossover has also 

been used in (Ghosh, 2003)− and basic mutation. Two years later, Ngo and Li (Ngo, 1998) 

suggested a GA that used the so-called  minimum separation encoding scheme, where the 

number of 1's in each row of the binary assignment matrix corresponds to the number of 

channels allocated to the corresponding cell. Authors stated that this algorithm outperforms 

the NN-based approach described in (Funabiki, 1992). 

The particularities of the GA shown in section 5 are, mainly, a low computational load and 

the capability of achieving good quality solutions (optimal, minimum-span, solutions) while 

maintaining satisfactory convergence properties. The probabilities of mutation and crossover 

of the GA are on-line adjusted by making use of an individuals' fitness dispersion measure 

based on the Shannon entropy (San José, 2007). This way, the diversity of the population is 

monitored and the thus obtained method offers the flexibility and robustness peculiar to GAs.  

Another closely related problem that we are not going to deal with is the determination of a 

lower bound for the span (difference between the largest channel used and the smallest 

channel used) in channel assignment problems. For instance, (Mandal, 2004) and (Smith, 

2000) address this problem when proposing solutions to the CAP.  

The chapter is organized in the following sections:  

• The first section (section 2) presents a brief introduction to the frequency (or channel) 

allocation problem. As mentioned above, there exist many good articles covering this 

problem, and our main purpose is to introduce the basic references of SQ and GAs 

applied to the CAP, to pose the problem as well as to describe a first motivation to 

research into this field. 

• Next, section 3 explains mathematically the interference and traffic constraints that 

define the CAP. 

• Sections 4 and 5 are devoted to the detailed description of both the proposed SQ and the 

GA-based algorithms for frequency allocation, respectively. The first one is mainly based 

on the method proposed in (Duque, 1993), though incorporating some improvements 

concerning the weakest aspects outlined in the conclusions of the work of Duque et al. 

Important concepts such as the specific cooling procedure and the neighbourhood production 

are here described. On the other hand, the genetic algorithm included in section 5 is based 

on our previous work in the field of NC-based strategies for approaching not only the 

frequency allocation problem (San José, 2007), but also digital communications (San José, 

2008) or image processing problems (San José, 2009), most of them using GAs.  

• Finally, the last section of the chapter is devoted to the description of the numerical 

results, with special emphasis on the comparison between Neural Networks (NNs), SQ 
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and GAs:  advantages and drawbacks of each of them are here explained. For the sake of 

comparison, a set of well-known problem instances was selected since they have been 

used in most of the papers related to this problem, thus allowing a direct comparison. 

2. The Channel Assignment Problem (CAP) 

2.1. Interference constraints 

As mentioned in the Introduction, frequency reuse is a key issue in current mobile 

communication systems. It is well known that the co-channel interference caused by 

frequency reuse is the most restraining factor on the overall system capacity in wireless 

networks. Therefore, the main purpose is the simultaneous use of a given radio spectrum 

while maintaining a tolerable level of interferences. Specifically, each system cell is assigned 

a set of channels according to the expected traffic demand. This assignment of channels 

must satisfy the following constraints: 

• Co-site constraint (CSC): channels assigned to the same cell must be separated by some 

minimum spectral distance. 

• Co-channel constraint (CCC): the same channel cannot be simultaneously assigned to 

certain pairs of cells. The co-channel reuse distance is the minimum distance at which the 

same channel can be reused with acceptable interference (Katzela 1996). 

• Adjacent channel constraint (ACC): any pair of channels in different cells must have a 

specified minimum distance (Funabiki, 2000). 

The channel assignment algorithm must also take into account the specified traffic profile 

(number of channels) required in each cell. These non-uniform cell demand requirements 

imply that those cells with a higher traffic demand will need the assignment of more channels. 

2.2. Problem definition 

Let us consider the problem where a set of c channels must be assigned to n arbitrary cells 

(in this work we consider only the fixed CAP, where the channels are permanently assigned 

to each cell; the reader interested in dynamic and hybrid schemes can see (Gibson, 1996; Hale, 

1980; Katzela 1996).  

In our problem formulation we assume that the total number of available channels is given 

−it can be determined by either the available radio spectrum or the lower bound estimated 

by a graph-theoretic method (Mandal, 2004; Smith, 2000). Without loss of generality, 

channels can be assumed to be evenly spaced in the radio frequency spectrum. Thus, using 

an appropriate mapping, channels can be represented by consecutive positive integers. 

Therefore, the interference constraints are modelled by an n×n compatibility matrix C, whose 

diagonal elements cii represent the co-site constraint, i.e., the number of frequency bands by 

which channels assigned to cell i must be separated. The non-diagonal elements cij represent 

the number of frequency bands by which channels assigned to cells i and j must differ. 

When this compatibility matrix is binary, the constraints can be expressed more simply: if 

the same channel cannot be reused by cells i and j, then cij=1, and, otherwise, cij=0. 
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The traffic demand is modelled by means of an n-length demand vector d=[d1,d2,...,dn]T, 

whose elements represent the number of channels required in each of the cells. For instance,  

Fig. 1 shows the four demand vectors that will be used in the simulations' section. 

 

Figure 1. Traffic demand vectors for the benchmark problems considered. 

The assignment to be generated is denoted by an n×c binary matrix A, whose element aij is 1 

if channel j is assigned to cell i, and 0 otherwise. This implies that the total number of 1's in 

row i of matrix A must be di (see Fig. 2). 

 

Figure 2. Structure of the allocation matrix A.  

The cost due to the violation of interference constraints can be written as 

 
1 CSC ACC

J J J= +   (1) 

where JCSC and JACC represent, respectively, the costs due to the violations of the co-site and 

the adjacent channel constraints. The first one can be written as  
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On the other hand, the cost due to the adjacent channel constraint violation is obtained as 
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where 
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Parameter λACC in Eq. (3) is set to weigh the relative importance of the adjacent channel 

constraint. Finally, the cost due to the violation of the traffic demand requirements is 

modelled as 

 

2
n
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i j

J d aλ= −
 
  
 

   (5) 

Gathering all the costs, the final cost function to be minimized is 

 
CSC ACC TRAFF

J J J J= + +  (6) 

If the traffic demand requirements are incorporated implicitly by only considering those 

assignments that satisfy them, then the cost function can be expressed by J=J1=JCSC+JACC, 

subject to ,
iijj

d ia = ∀ . For that reason, the fitness function to be used in the algorithms is 

given by ρ=1/J. 

Finally, the estimation of parameters λCSC and λACC has been achieved using the same 

inhomogeneous 25-cell network used by Kunz and Lai in (Kunz, 1991) and (Lai, 1996), 

respectively. After analyzing the number of iterations required for a proper convergence for 

different values of λCSC and λACC, the optimal values for the weights λCSC and λACC were 

found to be close to 1 and 1.3, respectively.  

It is important to note that the most important difference between different pairs of λCSC 

and λACC is the required computational load for each of them, since the number of 

generations required to converge proportionally acts on the execution time. This way, a 

precise computation of both λCSC and λACC is indispensable to get an efficient allocation 

algorithm. 

3. Simulated quenching algorithm for CAP 

3.1. Basic concepts 

As mentioned in the Introduction, SQ is methodology proposed to speed up the standard 

SA algorithms when applied to solve difficult (NP-complete) optimization problems. The 

original SA method can be viewed as a simulation of the physical annealing process found 

in nature, e.g., the settling of a solid to its state of minimum energy (ground state). SQ is 

stronger based on physical intuition though it loses some mathematical rigor. 

Generally speaking, an optimization problem consists of a set of S configurations (or 

solutions) and a cost function J that determines, for each configuration s, its cost J(s). Local 
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search is then performed by determining the neighbours s’ of each solution s. Thus, a 

neighbour structure N(s) that defines a set of possible transitions that can be proposed by s 

has to be defined. 

When performing local search, in each iteration of the algorithm, a neighbour s’ of s is 

proposed randomly, and s will only be replaced by s’ if cost does not increase, i.e., J(s’)≤J(s). 

Obviously, this procedure terminates in a local minimum that may have a higher cost than 

the global optimal solution. To avoid this trapping in a suboptimal solution, our proposed 

SQ method occasionally allows “uphill moves” to solutions of higher cost using the so-

called Metropolis criterion (Metropolis, 1953). This criterion states that, if s and s’∈N(s) are 

the two configurations to choose from, then the algorithm continues with configuration s’ 

with a probability given by min{l,exp(-(J(s’)-J(s))/t)}, with t being a positive parameter that 

gradually decreases to zero during the algorithm. Note that the acceptance probability 

decreases for increasing values of J(s’)-J(s) and for decreasing values of t, and that cost-

decreasing transitions are always accepted (see Fig. 3). 

 

Figure 3. SQ allows uphill moves up to a cost proportional to the instantaneous temperature t. 

Mathematically, SA-SQ can be modelled as an inhomogeneous Markov process, consisting 

of a sequence of homogenous chains at each temperature level t (Duque, 1993). Under this 

framework, it has been shown (Aarts, 1989; Geman, 1984) that there exist two alternatives 

for the convergence of the algorithm to the globally minimal configurations. On the one 

hand (homogenous case), asymptotic convergence to a global minimum is guaranteed if t is 

lowered to 0, and if the homogenous chains are extended to infinite length to establish the 

stationary distribution on each level. On the other hand (inhomogeneous case), convergence 

is guaranteed, irrespective of the length of the homogenous chains, if t approaches 0 

logarithmically slow. 

The problem arising here is that just the enumeration of the configuration space has an 

exponential time complexity and, in practice, some approximation is required. The formal 

procedure is to choose a cooling schedule to decide for:  

• the start condition (initial temperature, t0). 

• the rule for decreasing the temperature. 

• the equilibrium condition. 

• the stop condition (final temperature, tF). 
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The initial temperature should be chosen high enough in order to allow that most of the 

proposed transitions pass the Metropolis criterion. Hence, at the start of the algorithm, an 

explorative search into the configuration space is intended. Later on, the number of accepted 

transitions decreases as t→0. Finally, when 0t ≈ , no more transitions are accepted and the 

algorithm may stop. As a consequence, the algorithm converges to a final configuration 

representing the solution of the optimization problem. 

As (Duque, 1993) shows, when doing this most cooling schedules lean on the homogenous 

variant and try to establish and maintain equilibrium on each temperature level by 

adjusting the length of the Markov chains and the cooling speed. 

According to this, the main steps required for solving an optimization problem applying SQ 

involves that, first, the problem must be expressed as a cost function optimization problem 

by defining the configuration space S, the cost function J, the neighbourhood structure N. 

Next, a cooling schedule must be chosen, and, finally, the annealing process is performed.  

3.2. Simulated quenching applied to the CAP 

In order to apply SQ to solve the CAP, we have to formulate the CAP as a discrete 

optimization problem, with S, J and N defined. In section 3.2 we have already presented the 

problem together with its mathematical characterization: a mobile radio network of n radio 

cells, each of them capable to carry any of the n available channels. The channel assignment 

is given by binary matrix A, with aij=1 meaning that channel j is assigned to cell i. Since the 

traffic demand is modelled by vector d, the total number of 1's in row i of matrix A must 

equal di. 

The cost function J is then given by Eq. (6) that quantifies the violation of the interference 

constraints defined in section 3.1. Thus J(s) reaches its minimum of zero if all constraints are 

satisfied. 

In this work we will use the same simple strategies for generating the neighbourhood than 

those used in (Duque, 1993) but with probabilities specifically tuned for our application: (i) 

single flip: just switching on or off channel i in cell j, −this procedure mimics the mutation 

operation that will be described later in the GAs context, and (ii) flip-flop: replacing at cell j 

one used channel with one unused. 

Considering the particularities of the channel allocation problem with hexagonal cells, the 

same channel should be reused as closed as possible. To approach this goal, the basic flip-flop is 

modified as follows: (ii-1) a cell j is chosen at random, (ii-2) from all the channels not used in 

cell j, the channel that is most used within the nearest cells to j that may share that channel 

with cell j is switched on, (ii-3) one of the channels previously used at cell j is randomly 

selected and switched off. This modified flip-flop is used in conjunction with the basic one. 

For the cooling schedule we have implemented of a mixture of different cooling schemes 

−(Aarts, 1989; Huang, 1986; Romeo, 1989)− with a polynomial-time approximation 

behaviour. The initial value of the temperature is set to assure a user specified transitions’ 
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acceptance ratio. For that, first, t is set to 0, and then it is iteratively changed until the 

desired acceptance ratio is reached. Our simulations worked fine with acceptance ratios 

between 0.55 and 0.6. 

Temperature decrement follows a restriction proposed by Huang et al. (Huang, 1986): the 

decrease ΔJ in the average cost between two subsequent temperatures t and t’ should be less 

than the standard deviation of the cost (on level t). After some calculus (Huang, 1986; 

Romeo, 1989) this rule is expressed as 

 exp
t

t t
λ

σ
′ = −

 
 
 

 (7) 

Since testing for the establishment of equilibrium at a specific t would involve an unacceptable 

monitoring load, Huang et al. (Huang, 1986) approximate this check in two respects: (i) a 

Gaussian form for the equilibrium distribution is assumed, whose average and standard 

deviation are estimated from the Markov chain itself, and (ii) the process is considered 

stationary if the ratio of the number of accepted transitions, their costs being in a 2δ-legth 

interval, to the total number of accepted transitions, reaches a stable value erf(2δ/σ). In those 

cases where the criterion for stationarity can not be reached the length of the chain is bounded 

proportionally to the number of configurations which can be reached in one transition. 

The final temperature is reached if a substantial improvement in cost can no more be 

expected. In (Huang, 1986; Duque 1993) this is monitored by comparing the difference 

between the maximum and minimum costs encountered on a temperature level with the 

maximum single change in cost on that level. If they are the same, the process is assumed to 

be trapped in a local minimum and the algorithm is stopped. 

Numerical experiments show that once being trapped into a suboptimal solution 

(suboptimal minimum) it is almost impossible to get out of it. Technical literature has 

described simple approaches to partially improve this situation such as tuning the 

neighbourhoods to prefer flip-flops which resolve existing interference, or preset violations 

and to disadvantage those that introduce new ones. 

Another solution is based on occasionally allowing arbitrary long jumps while preserving a 

fast cooling schedule. These long jumps open up the possibility to detrap from any 

minimum in a single transition, without being questioned by a maybe long chain of 

acceptance decisions. A simple method for producing these long jumps is to extend the basic 

transitions −flip-flops− to a chain of consecutive ones. By properly adjusting the chain 

length, this allows to tunnel through a hill of the cost function landscape in one single jump, 

instead of painfully working to its top just to fall down into the next valley.  

4. Genetic algorithm for CAP 

This section describes a low complexity GA (known as μGA) that is applied to solve the 

channel assignment problem. Next sections present the proposed method, particularizing 

the concepts to the CAP for a better understanding.  
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4.1. Basic concepts 

The golden rule of GAs is that a set of potential solutions (population) can be represented 

with a predetermined encoding rule. At every iteration k, each potential solution 

(chromosome) is associated to a fitness value, ρi(k), in accordance to its proximity to the 

optimal solution. Considering the problem of frequencies assignment, the goal is to avoid 

violating any of the constraints described in section 3.1, while satisfying the traffic demand 

in each cell and minimizing the required overall bandwidth.  

The initial set of potential solutions, P[0] (population at k=0), is randomly generated when 

no a priori knowledge of the solution is available (in our specific CAP, some a priori 

information is available and will help to generate the initial population −see (Lai, 1996). Let 

us denote 
1

[ ] { } p
n

i i
k

=
= u  to the population at iteration k, with np being the number of 

individuals ui per generation. In our problem, ui consists of a string structure containing all 

the channels required for each base station (see Fig. 4). This way, each string represents a 

particular assignment for all the base stations. By assigning, the number of elements in each 

string to satisfy the required number of channels for each cell, such computations can be 

effectively ignored in the objective function. 

 

Figure 4. Schematic representation of the chromosome structure for the CAP. Channels for each base 

station are coded consecutively into the chromosome.  

The number of individuals that constitute the population, np, is an important issue to be 

addressed. In (Lai, 1996), Lai and Coghill suggest that a reasonable choice should be in the 

range 30-110 in order to have a large variability within the population. Since we propose a 

μGA, the population size would be much smaller, in the range 10-20. 

4.2. Genetic operators 

Once individuals are generated and given a fitness value, the next step consists in applying 

the genetic operators, mainly mutation and crossover, to those individuals selected using a 

fitness-based selection algorithm (Fig. 5 shows the pseudocode that outlines the main steps 

of the proposed GA). This selection procedure is based on a biased random selection, where 

the fittest individuals have a higher probability of being selected than their weaker 

counterparts. This way, the probability of any individual to be selected is

1
( ) ( ) / ( )

i i

pn

jj
P k k kρ ρ

=
=  , with ρi(k) being the fitness of the ith individual in the population 

during the kth iteration of the algorithm. The simplest way to implement this concept is 

based on a roulette wheel, where the size of each slot in the wheel is proportional to the 

individual's fitness (Mitchell, 1996). 
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Figure 5. Pseudocode of the proposed GA. 

The main genetic operators are: 

• Mutation: the mutation operator modifies specific individuals with probability pm, 

changing the value of some concrete positions in the encoding of individual ui. The 

number of positions within the encoding of the channels of each cell that are candidates 

for possible mutation is half the number of channels present at that base station. Both 

the specific positions and the new values are randomly generated, and mutation is 

performed with probability pm. Notice that this genetic operator promotes the 

exploration of different areas of the solutions space. A low level of mutation serves to 

prevent any element in the chromosome from remaining fixed to a single value in the 

entire population, while a high level of mutation will essentially result in a random 

search. Hence, probability pm must be chosen carefully in order to avoid excessive 

mutation. To maintain a good balance between such extremes a good initial value for pm 

is 0.02-0.05 (Lai, 1996; Grefenstette, 1986). In our application, pm(0)=0.04. 

• Crossover: the crossover operator requires two operands (parents) to produce two new 

individuals (offspring), which are created merging parents by crossing them at specific 

internal points. This operation is performed with probability pc. Since parents are 

selected from those individuals having a higher fitness, the small variations introduced 

within these individuals are intended to also generate high fit individuals.  

Simulation results show that with the simple crossover operator, a significant number of the 

generated configurations have the same frequency assigned to a group of base stations that 

interfere with each other. To alleviate this problem we have implemented the partially 

matched crossover operator (Lai, 1996). This operator partitions each string into three 

randomly chosen portions. When this operator encounters that the same frequency has been 
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assigned more than once, it solves this conflict by rearranging the conflicting elements in 

each string −see (Lai, 1996) for a detailed description. Our range for pc is [0.35, 0.85]. 

4.3. Elitism, termination criteria and convergence 

The proposed algorithm also implements an elitism strategy, where the elite for P[k+1] is 

formed by selecting those individuals from both the elite of P[k] and the mutated elite of 

P[k] having the highest fitness value in the population. The mutation of the elite is 

performed with a probability pm,e=0.25pm. No crossover is performed on the elite. 

This elitist model of the GA presents some convergence advantages over the standard GA. 

Using Markov chain modelling, it has been proved that GAs are guaranteed to 

asymptotically converge to the global optimum −with any choice of the initial population− if 

an elitist strategy is used, where at least the best chromosome at each generation is always 

maintained in the population (Bhandari, 1996). 

The whole procedure is iterated until a termination criterion is satisfied. In our simulations, 

the search is terminated when there are no significant changes between the maximum and 

minimum values of the objective function in any two successive generations. Notice that, it 

can not be guaranteed that a valid solution is found in a finite number of iterations. Besides, 

the time required to compute an optimal solution increases exponentially with the size of 

the problem (Beckmann, 1999; Kunz, 1991; Funabiki, 1992). Thus, it is necessary to develop 

approximate methods capable of finding at least a near-optimum solution within a 

reasonable amount of time. 

However, Bhandari et al. provided the proof that no finite stopping time can guarantee the 

optimal solution, though, in practice, the GA process must terminate after a finite number of 

iterations with a high probability that the process has achieved the global optimal solution. 

Note that, in our problem, the optimal string is not necessarily unique and there may be 

many strings that provide the optimal value (Bhandari, 1996). 

In our proposed GA, the coding scheme guarantees that the traffic demand is always 

satisfied. However, in hard assignment instances it can be impossible to minimize the cost 

function to zero, i.e., some of the interference constraints may be violated by the generated 

assignment. In those cases where the optimal solution is not achieved in a finite time, 

invalid assignments should be resolved by manually assigning more frequencies to the 

affected cells (thus yielding a span that is larger that the lower limit). Nevertheless, none of 

the proposed test problem instances led to this situation. 

At the end, the string ui corresponding to the highest fit chromosome is finally chosen as the 

channel allocation problem solution. 

4.4. Diversity and related genetic operators 

Convergence properties become notably improved with the introduction of procedures to 

adjust the parameters in order to achieve and maintain a good population diversity. This 
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diversity is a crucial issue in the performance of any evolutionary algorithm, including GAs: 

standard GAs have a tendency to converge prematurely to local optima, mainly due to 

selection pressure and too high gene flow between population members (Ursem, 2002). A 

high selection pressure will fill the population with clones of the fittest individuals and it 

may result in convergence to local minima. On the other hand, high gene flow is often 

determined by the population structure. In simple GAs, genes spread fast throughout the 

population, and diversity quickly declines. 

On the other hand, one of the main drawbacks of standard GAs is their excessive 

computational load: the application of the genetic operators is often costly and the fitness 

function evaluation is also a very time-consuming step. Besides, population sizes np 

normally are 100, 200 or even much higher −for instance, (Ursem, 2002) uses np=400 

individuals. The method used in this paper works with much smaller population sizes, in 

the order of 10 to 20 individuals. An elite of 3 individuals is selected and the crossover and 

mutation probabilities depend on the Shannon entropy of the population (excluding the 

elite) fitness, which is calculated as 
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When all the fitness values are very similar, with small dispersion, H(P[k]) becomes high 

and pc is decreased −it is not worthwhile wasting time merging very similar individuals. 

This way, the exploration character of the GA is boosted, while, conversely, exploitation 

decreases. On the other hand, when this entropy is small, there exists a high diversity within 

the population, a fact that can be exploited in order to increase the horizontal sense of 

search. Following a similar reasoning, the probability of mutation is increased when the 

entropy is high, so as to augment the diversity of the population and escape from local 

suboptimal solutions (exploitation decreases, exploration becomes higher). Therefore, we 

have that probabilities pm and pc are directly/inversely proportional to the population fitness 

entropy, respectively. 

Finally, some exponentially dependence on time k is included in the model −making use of 

exponential functions− in order to relax, along time, the degree of dependence of the genetic 

operators' probabilities on the dispersion measure.  

The complexity of the thus obtained GA is notably decreased since crossover is applied with 

a very low probability (and only on individuals not belonging to the elite), and the diversity 

control scheme allows the algorithm to work properly with a much smaller population size. 
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5. Numerical results 

This section evaluates the performance of the proposed algorithms in terms of convergence 

and solution accuracy under different conditions. Radio base stations are considered to be 

located at cell centers and the traffic is assumed to be inhomogeneous, with each cell having 

a different and a priori known traffic demand. Following the ideas shown in (Lai, 1996), the 

initial population is constructed using the available a priori information, i.e., the algorithm 

assigns a valid string of frequencies to all the cells following a simple approach: first, the 

algorithm attempts to assign a set of valid frequencies to as many base stations as possible. 

In the event that valid frequencies cannot be located to some of the cells, they are then 

randomly assigned. 

5.1. Benchmark problems 

In order to evaluate the performances of the proposed methods and compare them to other 

approaches, performance is analyzed using the set of thirteen benchmark problems defined 

in (Sivarajan, 1989) (also used in (Funabiki, 2000) as well as problems 1, 2 and 4 from (Ngo, 

1998) (we will refer to these problems with numbers 14, 15 and 16). The characteristics of the 

first 13 benchmark instances can be found in (Sivarajan, 1989). The definition of problems 

14, 15 and 16 are summarized in Table 1, where all the channel demand vectors were shown 

in Figure 1, and the compatibility matrices are: C1 (matrix in Example 1, page 846, in 

(Sivarajan, 1989)), C2 (matrix in Fig. 3 (c) (Funabiki, 1992), p. 435) and C3 (matrix in Fig. 3 (a) 

(Funabiki, 1992), p. 435). The total number of frequencies varies from 11 to 221. Benchmark 

problem 15 belongs to a particular set of useful benchmark tests for cellular assignment 

problems called Philadelphia problems. Notice that (Sivarajan, 1989) presents some variations 

from the original Philadelphia problems, which were first presented by Anderson 

(Anderson, 1973) in the early 70's. These problems constitute, by far, the most common set of 

benchmark problems for channel assignment algorithms, making it possible to compare the 

obtained solutions with previously published results. Notice that problems 1−4 and 9−14 

consider the three constraints defined in the beginning of section 3.1, while problems 5−8, 15 

and 16 consider only the co-channel and co-site constraints. 

 

Problem 

No. 

No. of 

Cells 

Lower 

Bound 

Compatibility 

Matrix 

Demand 

Vector 

14 4 11 C1 d1 

15 21 221 C2 d2 

16 25 73 C3 d4 

Table 1. Specifications of benchmark problems No. 14, 15 and 16. 

As an example, Fig. 6 shows the cellular geometry of the Philadelphia problem with n=21 

cells (the cluster size for CCC is Nc=7). 
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Figure 6. Cellular geometry for the Philadelphia benchmark problem with n=21 cells. 

5.2. Adjustment of parameters and convergence performance 

In this section, the convergence properties of the proposed methods are studied. Results 

shown in Table 2 are average values over 25 trials for each problem. The parameters to be 

set in the GA are: the number of iterations ng, the initial mutation and crossover 

probabilities, the population size np, and the parameters of functions pc(k) and pm(k). After 

several trials that helped to fine tune the parameters ensuring that the computation is 

manageable, the optimal values were found to be: 

• Number of fitness evaluations: 100 (for problem 14), 25,000 (problems 5−8 and 11), 

50,000 (problems 12, 15 and 16), 75,000 (problem 13), 100,000 (problems 1−4), 150,000 

(problem 10) and 300,000 (problem 9). If the values corresponding to problems 10, 12, 14 

and 16 are compared to those shown in (Ngo, 1998) it can be seen that these values 

mean a reduction of 75% (in problems 15, 12 and 16) and 62.5% (in problem 10) with 

respect to the number of iterations needed in (Ngo, 1998); in problem 14 both 

approaches require 100 iterations. Notice that, since not every offspring needs to be 

evaluated in each generation, the number of fitness evaluations is a more representative 

parameter of the performance than the number of generations. 

• Initial crossover probability, pc(0): this parameter is set to 0.35 in problems 5−8 and 

11−16, while instances 1−4, 9 and 10 showed better results with 0.25. 

• Initial mutation probability, pm(0): 0.04 for all the problems. 

• Population size, np: 10 individuals, except in problems 1−4, 9 and 10, which required 20. 

• Simulations show that λCSC=1 and λACC=1.3 lead to faster convergence as compared to 

λACC=1. This result is in accordance to (Lai, 1996), where λACC-optimal=1.1/2 was 

obtained. 

On the other hand, the SQ algorithm has been implemented with a mixture of standard and 

modified flip-flops (described in section 4.2). Problems 5−8, 11−12, 14−16 are solved with a 

configuration of 50-70% of modified flip-flops, while problem instances 1−4, 9, 10 and 13 

used 20-40% of modified flip-flops. The remaining cases, in all problem instances, were 

implemented with standard flip-flops. To explain this experimental adjustment, just notice 

that the more complex is the problem instance, the more explorative must be the global 

search for solutions in order to avoid convergence to suboptimal local minima. 

Comparative results are shown in Table 2. The performance is measured using the 

percentage of convergence to the solutions, defined as the ratio of the total number of 
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successful convergence to the total number of runs. Table 2 shows the results for problems 

10, 12, 14, 15 and 16, whose convergence properties have been previously studied by Ngo 

and Li using a GA-based scheme (Ngo, 1998) and by Funabiki and Takefuji, who applied a 

NN-based algorithm to solve these instances (Funabiki, 1992). 

 

 Percentages of convergence (%) 

Problem 

No. 

Funabiki & 

Takefuji’s NN 

(Funabiki, 1992) 

Ngo & Li’s 

MGA (Ngo, 1998)

Proposed 

μGA 

Proposed 

SQ 

10 - 21 24 15 

12 23 80 86 78 

14 100 100 100 100 

15 77 92 90 95 

16 9 99 99 98 

Table 2. Comparison between convergence results. 

Results show that both GA or SQ based procedures outperform the convergence results of 

the neural network for solving the fixed CAP. The four approaches converge properly in 

100% of cases in problem 14. In problems 12, 15 and 16, both genetic methods converge 

more frequently than the neural network-based approach, and SQ is slightly better than GA 

in problem 15, while marginally worse in problems 12 and 16. In problem 15 the GA shows 

a little bit worse convergence results than (Ngo, 1998) (only in about 2%) while SQ 

moderately improves the MGA. In spite of that, the proposed method involves fewer 

computational load than that required by (Ngo, 1998) (see Table 3) and the complexity of the 

SQ method is intermediate between that of the standard GA (MGA) and that of the 

proposed μGA. In contrast, the μGA presents notably better convergence in problems 10 

and 12, where MGA and SQ offer very similar results. In essence, in problems 12, 15 and 16 

algorithms exhibit very similar results, with the μGA being less complex. 

5.3. Computational complexity 

Table 3 shows the execution times required to solve these problems. Bold figures show the 

CPU time normalized to the time required to solve problem 15 using the μGA. 

It can be seen how the computational burden of the proposed method is about 20% lower 

than that of the standard GA by Ngo and Li (Ngo, 1998) (18% in problem 15, 23% in 

problem 12, and 20% in problems 10 and 16).  

On the other hand, the SQ method shows larger execution times in order to obtain similar 

convergence figures (as noticed in previous sections). Only in problem No. 15 SQ requires 

less computational load than the MGA algorithm, although, even in this problem, the μGA 

obtained the results faster. Notice that this reduction in the computational load observed in 
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GA-based approaches is achieved maintaining a very similar −or even better− percentage of 

convergence (Table 2) and with the three approaches getting optimal conflict-free solutions. 

 

 
MGA 

(Ngo, 1998) 
μGA SQ 

10 4.129 26.12 3.285 20.78 6.101 38.61 

12 0.959 6.07 0.738 4.67 1.022 6.468 

14 0 0 0 0 0.01 0.06 

15 0.192 1.22 0.158 1 0.189 1.196 

16 0.284 1.80 0.226 1.43 0.386 2.443 

Table 3. Execution times (in seconds) for benchmark problems 10, 12, 14, 15 and 16. CPU: AMD Athlon 

XP 2100+ 1.8 GHz. Bold figures show the CPU time normalized to the time required to solve problem 15 

using the μGA 

Comparing the values given in Table 3 for (Ngo, 1998) with the specific values reported in 

the original author’s paper, a small difference can be observed. The reason is that the 

algorithm has been programmed and run in a different computer and language. In order to 

get the comparative figures shown in Table 3, both methods were similarly programmed 

and run in the same computer environment. 

5.4. Optimal solutions 

Now, different search techniques are compared when they run without any time constraint 

and an optimal solution is guaranteed. Figure 7 shows the execution times for three different 

algorithms: (i) the IDA (Iterative Deepening A) algorithm (Nilsson, 1998), which offers a 

quite simple algorithm that can solve large problems with a small computer memory, (ii) the 

so-called BDFS (Block Depth-Fist Search) real-time heuristic search method proposed in 

(Mandal, 2004), (iii) the proposed GA, and (iv) the proposed SQ method. For the sake of 

comparison, we have chosen the same number of cells and number of channels than in 

(Mandal, 2004). 

It can be seen first that the BDFS algorithm produces an increasing average speedup over 

the IDA method. On the other hand, the proposed μGA outperforms BDFS (and, hence, 

IDA) whenever the complexity of the problem becomes considerable. In these cases, the 

running time of the μGA is about 20% smaller than the BDFS. Only in the three simplest 

cases (a: n=5, c=3), (b: n=5, c=4) and (c: n=7, c=3), the minimum computational load required 

to implement the μGA is larger than the BDFS, though still much better than the IDA.  

When SQ is used, results show that for simple configurations, computational load is 

approximately that of the GA-based method. However, as complexity (in terms of the 

number of channels) is increased, the computational load of the SQ procedure tends 

towards that of the IDA algorithm. These results are in accordance with those outlined in 

the other numerical simulations. 
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Figure 7. Execution time performance comparison between three different methods for CAP.  

5.5. Performance with harder instances 

To conclude this analysis of the performance of the proposed methods, two more cases that 

are more difficult have been studied. Their main characteristics are shown in Table 4. 

 

 

 

No. of 

Cells, n 
d ACC CCC CSC 

A 21 2d3 Yes Yes Yes (cii=5) 

B 21 4d3 Yes Yes Yes (cii=5) 

Table 4. Definition of benchmark instances A and B. 

Our methods are going to be compared with the GA-based approach by Funabiki et al. 

(Funabiki, 2000). Using the μGA the best assignments we were able to find required 855 and 

1713 channels, for problems A and B, respectively, while the method in (Funabiki, 2000) 

required slightly higher values, 858 and 1724 (results are shown in Table 5). On the other 

hand, the SQ method requires 855 and 1715 channels, respectively. Thus, in case A –which is 

a bit simpler than case B- both SQ and GA achieve near optimal results, while in case B –a 

rather more complex network- SQ requires two more channels than the GA, and 9 less than 

the NN method. In terms of computation times, the μGA took 11.86 and 23.76 seconds, for 

problems A and B, respectively; the other GA-based algorithm took about 16.73 and 32.8 
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seconds, respectively, and, finally, the SQ approach took 15.20 and 37.15 seconds, 

respectively (see Table 6). This means a reduction in time of 38−41% in favour of the 

proposed μGA method, while the NN and SQ approaches showed very similar execution 

times.  

 

 

 
μGA 

NN 

(Funabiki, 2000)
SQ 

A 855 858 855 

B 1713 1724 1715 

Table 5. Best assignments for benchmark instances A and B. 

 

 

 
μGA 

NN 

(Funabiki, 2000) 
SQ 

A 11.86 16.73 15.20 

B 23.76 32.80 37.15 

Table 6. Computation time for benchmark instances A and B. 

6. Conclusions 

NC-based algorithms (GA and SQ) have been proven to fit very well for solving complex 

NP-complete problems such as the fixed channel allocation problem. Both of them show 

good convergence properties and reduced computational load. We have solved 18 different 

benchmark instances with successful results, proving, this way, the accuracy, flexibility and 

robustness of the proposed methods. Making use of several well-known benchmark 

instances, their performances have been shown to be superior to those of the existing 

frequency assignment algorithms in terms of computation time, convergence properties and 

quality of the solution. Even when compared to one of the best previous approaches −based 

on a NN-based scheme−, GA and SQ methods have been able to find better solutions to the 

most complex benchmarks tested.  

While both the μGA and SQ offer similar computational load, convergence properties and 

quality of the solution for simple and moderately-simple benchmark instances, the proposed 

μGA shows the most reduced computational load when applied to complex problems. 
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