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ABSTR AC T

ON TH E OPTIM IZATION PROBLEM S  
IN  M ULTIACCESS COM M UNICATIO N SYSTEM S  

by 
Gangsheng Wang

In a  communication system, the bandwidth is often a primary resource. In 

order to support concurrent access by numerous users in a network, this finite 

and expensive resource m ust be shared among many independent contending users. 

Multi-access protocols control this access of the resource among users to achieve 

its efficient utilization, satisfy connectivity requirements and resolve any conflict 

am ong the  contending users. Many optimization problems arise in designing a  m ulti­

access protocol. Among these, there is a class of optimization problems known 

as NP-complete, and no polynomial algorithm can possibly solve them. Conven­

tional m ethods may not be efficient and often produce poor solutions. In this 

dissertation, we propose a neural network-based algorithm for solving NP-complete 

problems encountered in multi-access communication systems. Three combinatorial 

optim ization problems have been solved by the proposed algorithms; namely, frame 

pa tte rn  design in integrated TD M A  communication networks, optimal broadcast 

scheduling in multihop packet radio networks, and optimal channel assignment in 

FDM A mobile communication networks. Numerical studies have shown encouraging 

results in searching for the  global optimal solutions by using this algorithm. The 

determ ination  of the related param eters  regarding convergence and solution quality 

is investigated in this dissertation. Performance evaluations and comparisons with 

o ther  algorithms have been performed.
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C H A P T E R  1

IN TR O D U C TIO N

W ith  the  rapid development of communication techniques, a communication network 

is expected to  serve increasingly m any users for d a ta  transmissions, information 

exchanges and communications. In a communication system, the bandwidth is 

often a  prim ary resource. In order to support the concurrent access by numerous 

users in a network, this finite and expensive resource m ust be shared among many 

independent contending users. A typical example is the tim e division multiplexing 

(TOM ) system developed in the  1960’s, in which a powerful mainframe is accessed by 

a large num ber of users. Since each user has relatively small or infrequent demands, 

a dedicated system will greatly decrease the utilization of the  com puter resources. 

T he  T D M  scheme assigns a  fixed subset of the  time-bandwidth space to each user 

and the  com puter system has successfully provided satisfactory services for many 

sim ultaneous processing requirements from users.

T he  communication bandwidth  is usually divided into a  single or a num ber 

of channels. The channel resources can be shared by users in three domains -  

time, frequency and space. Multiaccess protocols control the  access of resources 

among users to achieve their efficient utilization, satisfy connectivity requirements 

and resolve any conflict among the contending users. The design of a multiaccess 

protocol depends on the type of communication network, the characteristics of da ta  

traffic in the  network and the quality-of-service (QOS) requirement. Multiaccess 

protocols can be classified into three classes. The first class is lime-division multiple 

access (TD M A ) in which each user is confined to access the  entire  channel bandwidth 

only during the allocated time slots. The second class, known as frequency-division, 

multiple access (FDM A), consists of assigning users a fraction of the bandwidth
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and limiting their access to the  allocated subband. The third class is code-division 

multiple access (CDM A ), which realizes orthogonality of signaling waveforms by 

the use of different signaling codes and allows overlap in transmission in both the 

frequency and t im e coordinates. The access mode can be random, fixed or dynamic. 

Multiaccess protocols also differ by the d istributed or centralized natu re  of the 

resource allocation algorithms.

Different multiaccess protocols have their own merits and disadvantages. In 

order to select a  proper protocol operating in a network, one must investigate the 

characteristics of traffic, network topology, network type and operation cost. In 

a satellite network, for example, a single wideband channel is shared by all earth  

stations. In light, traffic, a  random TDMA protocol can provide high throughput 

and a rather simple way to access the channel. When the network is overloaded, 

however, the collision probability is higher and the da ta  needed to re transm it  will 

further load the network. In this situation, a fixed TD M A protocol provides bette r  

performance.

The earliest multiplexing techniques, such as TDM  (time-division m ultiplexing) 

and FDM (frequcncy-division multiplexing), are very successful for s tream -type  

traffic such as voice. However, for d a ta  communication, especially for com puter 

communication, the  traffic is usually characterized as bursty. To serve the bursty- 

type traffic, Packet communication networks have been developed over the  past 

two decades [2][23][37][38][39]. Packet communication networks can be classified as 

store-ancl-forward point-to-point networks, LAN’s, packet radio networks, and packet 

satellite networks [38], Packet radio (PR) is a  technology which applies the  packet, 

switching technique to the  broadcast radio environment. Since a packet radio network 

has such advantages as allowing direct communications among mobile users over 

wide geographical areas, coexistence with different systems in the same frequency



3

hand, protection against, m ultipath effects as well as antijam ming protection [23], it 

has been widely used in computer and mobile communications [2][15][23][26].

1.1 M otivation of the D issertation

The objective of introducing multiple access protocols in communication networks is 

to fully utilize the channel resources and minimize the time delay of data . A given 

type of m ultiple access protocol usually involves many optimization problems. For 

example, for an integrated voice/data  communication system in which a  random 

TDM A protocol is applied, the different time-slot arrangements for d a ta  trans­

missions within a frame will result in a  different d a ta  throughput. T he  optimization 

problem in this system is to search for the optimal frame patterns ( the relative' 

positions of d a ta  transmissions in a frame) tha t  can provide the m axim um  da ta  

throughput while keeping satisfactory quality of voice service. We will present a 

detailed discussion of this problem in the sequel.

In packet communication networks, many complicated optimization problems 

arise as the  dem and and sophistication of the area grows. Conventional strategies 

may no longer meet the  new challenges. Especially for constrained optimization 

problems, conventional methods may get stuck in poor local optim a. There  is a 

class of optim ization problems known as NP-complete. It has been shown th a t  the 

computational complexity will exponentially increase with the problem size and no 

polynomial algorithms can be found for this class of problems. One alternative way 

to solve the  problems is using approximation techniques, i.e., instead of searching 

the exact global op tim a with rather complicated computations, the  approximation 

techniques a t te m p t  to find solutions th a t  are close to the global op tim a with much 

less com putational effort. Since neural networks have shown great promise in solving 

NP-complete problems, such as the traveling salesperson and content-addressable 

memory problems[lf)] [20] [31] [32] [33], we propose to apply neural networks to solve
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the  optim ization problems in multiaccess communication systems. In this disser­

ta t ion , we investigate the  feasibility of neural network methods. We propose a mean  

field annealing (MFA) based algorithm in solving difficult optimization problems 

encountered in multiaccess communication systems. MFA is oidy a general scheme 

used in statistical mechanics. Even though some applications in solving optimization 

problems by MFA have been found in literatures [31]-[35], there are still many 

open questions regarding convergence, stability and param eter selection. In this 

dissertation, we use the stability theory to discuss the  stability of MFA iterations 

and the determ ination of the  param eters related to convergence, computational 

complexity and solution quality. Three optimization problems have been successfully 

solved by our MFA approach. Numerical results have shown th a t  the proposed 

algorithm provides much bette r  performance in both computational complexity and 

solution quality  than some existing algorithms. We have proved th a t  two problems 

encountered in our dissertation are NP-complete. The derived convergence results 

and criteria  are applicable to many other NP-complete problems.

1.2 Arrangem ent of the D issertation

T he dissertation is organized as follows: After the Introduction, Chapter 2 presents 

the  fundam ental theory of NP-completeness. Two known NP-complete problems, 

namely 3-Satisfiability and CLIQUE, are introduced in order to prove the NP- 

completeness of the optimization problems encountered in the  dissertation. C hapter  3 

overviews the annealing process in statistical mechanics and simulated annealing 

(SA). Afterwards, mean field annealing is investigated. The convergence issue 

is discussed and the determ inations of the related param eters  are addressed. In 

C hap te r  4, MFA is applied to searching for the optimal pa tterns  in an integrated 

TD M A  communication system. C hapter  5 presents an optimal broadcast scheduling 

algorithm  based on neural networks in a  packet radio communication network.



Chapter  6 proposes an MFA-based optimal channel assignment, approach for FDMA 

mobile communication systems. The results and the achieved performances are 

dem onstra ted  in each individual chapter. Conclusions are made in the  last chapter. 

In the  appendices, we prove th a t  the broadcast scheduling and channel assignment 

problems are NP-complete.



C H A P T E R  2

NP-CO M PLETENESS

For many years m any researchers have tried to find efficient algorithms for solving 

various combinatorial optimization problems arising in areas such as telecommuni­

cation, com puter  science and operations research. Among them  there  is a class of 

difficult optim ization problems called NP-complete , for which efficient algorithms 

rarely exist. NP-complete problems are considered as intractable since the compu­

tational complexity increases exponentially with the problems size. In this chapter, 

we s tudy  the complexity class P of polynomial-time solvable decision problems and 

the class NP of decision problems. The proof procedures for NP-complete problems 

via polynomial-time “transform ation” are addressed. Two NP-com plete problems, 

namely 3-Satisfiability (3SAT) and CLIQUE, are introduced in order to prove the 

NP-completeness of the optimization problems studied in this dissertation. For 

detailed N P-com plete theory, we refer to [16],

2.1 Polynom ial T im e and Exponential Tim e A lgorithm s

A function f ( n )  is 0 (g (n ))  whenever there exists a positive constant c such tha t  

values of | / ( n ) |  <  c -  |</(n)| for all values of ri> 0. A polynomial t im e  algorithm is 

defined to  be the  one whose time complexity function is 0 (p(n))  for some polynomial 

function p , where n is used to denote the  input length, i.e., the  problem size [16]. A 

polynomial algorithm  is often considered efficient due to the following reasons:

•  It usually takes little computing time.

•  None of the  difficult problems have polynomial algorithms for their solutions.

6



•  If a problem can be solved in polynomial t im e in one model, it can also be 

solved in polynomial t im e in another model.

To illustrate  the  efficiency, we give the following example: Suppose tha t  there 

are two algorithms for a solution of a  given problem, Algorithm A is of complexity 

v2 (polynomial algor’ ' ) and Algorithm B is of 2n (exponential algorithm), where

the  complexity functions express execution time in terms of microseconds. If the  

problem  size n is 50, the  execution tim e is 0.0025 second for Algorithm A and 35.7 

years for Algorithm B ! This example demonstrates the  reason why a  polynomial 

t im e algorithm is more desirable than  its exponential counterpart. A problem is 

referred to as intractable if no polynomial time algorithms can possibly solve it.

2.2 Decision Problem s, Encodings and Languages

The theory of NP-completeness restricts attention to decision problems. Such 

problems have only two possible solutions: “yes” and “no” . A decision problem f] 

consists simply of a set Dj-j of instances and a  subset Yj-j C Dj-j of yes-instances, 

where an instance of a problem is obtained by specifying particular values for all 

the  problem parameters. However, in the real world, m any optimization problems 

are not decision problems. In order to apply the theory of NP-completeness to 

optim ization problems, an optimization problem is usually recast as a  decision 

problem by applying a numerical bound B  to the problem, i.e., a minimization 

problem can be recast as a  decision problem by asking whether there exists a 

s truc tu re  of the  required type  having value “no more th a n ” B. In the  analogous way, 

a. maximization problem can be recast by finding whether there is a struc ture  of the  

required type having value “at least” B.

T he reason for the restriction to decision problems is tha t  they make it easy 

to use the machinery of formal-language theory. For any finite set E of symbols, a

^



language L over E is defined as any set, of strings made up of symbols from E. For 

instance, if S  =  {0,1} , the  set of L={1, 11,101, 111, • • •} is the  language of binary 

representations of odd numbers. The language of all strings over E is denoted by E*. 

For example, if E =  {0,1} , then E* =  { e ,0 ,1,00, 01,10,11, 000, 001 , • • • } .  ( denotes 

the  em pty  string. An encoding scheme is introduced to represent problem instances 

in a, way th a t  com puters  understand. An encoding of a set 5  of abstract  objects is 

a m apping e from 5  to the set of binary strings. For example, the ASCII encoding 

for a lphabet a is e(a)=\  100001. Encoding schemes establish the correspondence 

between decision problems and languages. Therefore, a problem f] an<l ’Is encoding 

scheme e partition £j* into three classes of strings: those th a t  are not encodings of 

instances of n*t those th a t  encode instances of f]  f°r which the  answer is “no” , and 

those th a t  encode instances of n  for which the answer is “yes” . The third class of 

strings is the  languages we associate with n  ar*d e:

M I L  r] =  {.7; C E* : E is the alphabet used by e, and x  is the encoding under c by

an instance /  E Fh, Vh >s the set of yes instances}

Any decision problem f] may have many encoding schemes, and different 

schemes have different input lengths which are used to evaluate the time complexity. 

For example, the  binary encoding of decimal 13 is 1101 and its BCD encoding is 0001 

0011. The input lengths are 4 and 8 , respectively. A function /  : {0,1}* —> {0.1}* 

is defined polynom.ial-t.ime computable if there exists a polynomial-time algorithm 

tha t ,  given any input xE {0.1}*, produces an ou tpu t  f(x).  For some set /  of problem 

instances, we say th a t  two encodings e.[ and e2 are polynomiality related if there  exist 

two polynomial-time com putable  functions / '  and f "  such th a t  for any i-E / ,  we have 

./’,(e i (?.)) =  c2 {i) and / //(e2(7.)) =  e x(i). If two encodings e\ and e2 of a problem are 

polynomially related, the  encoding e2(z) can be computed from the encoding e t (i) by 

a polynomial-time algorithm, and vice versa. Therefore, two encoding schemes for 

a problem ]~[ W>H yield polynomially related input lengths. For a decision problem



f l  on an instance set /, if c\ and e2 are polynomially related encodings on /, then 

r,(n) £  P  if and only if € P . P  denotes the complexity class in which

the decision problems can be solved in polynomial time. If the property holds, we 

do not need to specify any specific encoding schemes any more when we prove the 

NP-completeness for a given decision problem.

2.3 The C om plexity Classes P  and N P

“N P ” stands for nondeterministic polynomial time. Before we proceed to the 

definition of “NP class” , we need to clarify the  following definitions:

Acception: A string xE {0,1}* is accepted by an algorithm A if given input x, the 

algorithm ou tpu ts  A (x )  =  1. The language accepted by the algorithm is the 

set L = {x  E {0,1}* : A{x) — 1}.

Rejection: An algorithm A rejects a  string x if the ou tpu t A (x)  =  0.

Decision: A language L is decided by an algorithm A if every binary string is either 

accepted or rejected by the algorithm.

Polynom ial-tim e acceptance: A language L is accepted in polynomial time  by an 

algorithm A if for any Iength-n string xE  L, the algorithm accepts x  in tim e 

0 ( n k ) for some positive constant k, To accept a language, an algorithm only 

needs to consider the strings in L.

Polynom ial-tim e Decision: A language L is decided in polynomial t im e  by an 

algorithm A if, for any length-?;, string xE  {0,1}*, the algorithm decides x  in 

tim e 0 ( n k ) for some positive constant k. To decide a language, an algorithm 

must accept or reject every string in {0 ,1}*.

Using the above definitions, we can address the complexity class P:

P — {A C {0,1}* : there exists an algorithm A  th a t  decides L in polynomial time.}
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A nondctcrministic polynomial lime algorithm  is one th a t  can verify whether 

a given instance /  E Vj-j in deterministic  polynomial time. V'n is the  set of yes 

instances. Here a verification algorithm is defined as a two-argument, algorithm A, 

one a rgum ent is an ordinary input string :r and the other is a  binary string y called a 

certificate. Such an algorithm A verifies an input string x if there exists a certificate 

y such th a t  A (x ,y )= l .  The language verified by a verification algorithm A is

L — {•x £  {0,1}* : there exists y 6  {0,1}* such th a t  A ( x , y )  =  1}

Thus, Class N P  is defined as the  class of languages th a t  can be verified by 

a polynomial-time algorithm. Notice tha t  polynomial time verifiability does not 

imply polynomial tim e solvability. In short, Class P  consists of problems th a t  can 

be solved in polynomial time, whereas the class N P  consists of problems for which a 

solution can be verified rather than solved in polynomial time. Obviously, if L& P, 

then  / ,£  N  P, e.g., P  C N P  since, if a  language L is decided by an algorithm A , it 

au tom atically  verifies the language. Intuitively we know tha t  to solve a problem is 

m ore difficult than to verify (check) a presented solution. This analogy extends to 

the  class P  and N P ,  and thus, N P  includes languages tha t  in P.

2.4 Transform ability and N P-C om pleteness

As shown above, we have P  C N P .  Thus, every decision problem solvable by a. 

polynomial tim e deterministic algorithm is also solvable by a polynomial tim e nonde- 

term inistic  algorithm. It is believed th a t  P ^  N P .  All problems in P  can be solved 

by polynomial t im e algorithms, whereas all problems in N P  — P  are intractable. 

'I'he theory of NP-completeness for any NP-complete problem II focuses on proving 

results “if P ^  N P ,  then e  N P  -  P ' \
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2.4.1 Transform ability

A problem f] can be transformed to another problem f]7 if an.y instance x  E n  can be 

m apped into an instance x 1 E I l / • Thus, if a problem f] tan  be transformed to another 

problem then n  should be no harder to  solve than  n ; • This transformation is 

denoted by II oc 11'.

A language L\ is polynomial-time transformable to language L 2, denoted by 

/, i oc,, L 2, if there exists a polynomial-time computable function /  : {0,1}* —»• {0,1 }* 

such th a t  for all x  E { 0 ,1}*, x  E L\ if and only if f ( x )  E L 2.

The function /  is called a  transformation function. It provides a  polynomial­

tim e m apping so th a t  if x  E L \ ,  then f ( x )  E h 2- Moreover, if x  L\ ,  then f ( x )  £ L2. 

Thus, the transformation function maps any instance x  represented by Li  to an 

instance f ( x )  of the problem represented by L 2. Answering whether f(x.) E L 2 

directly provides the  answer to whether x  E L\.

Lem m a 2.1 [16] I f  L U L 2C  {0,1}* and  ocp L 2, then L 2 E P implies L\ E P  

(equivalently L\ (f P implies L 2 (f P )

2.4.2 N P-C om pleteness

A language L E {0,1}* is defined to be NP-complete  if L E N P  and IJ <xp L 

VL' E N P .  It is equivalent to say tha t ,  a decision problem n  is NP-complete if n  G 

N P  and for all o ther decision problems ^  £ N P  and ^  cxp n  • Therefore, NP- 

complete problems are the  hardest problems in NP. If any one NP-complete problem 

can be solved in polynomial time, then every problem in NP has a polynomial-time 

solution. If any problem in NP is intractable, then so are all NP-complete problems. 

If IJ ocp L for every IJ E N P ,  bu t  not necessarily with L E N P ,  then L is called 

NP-hard.
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Lem m a 2.2 [16] I f  L \ tL 2 £  N P ,  L\ is NP-complete, and L\ oc7, h 2, then L 2 is 

NP-complete.

This lem m a provides us an insight, for proving new problems NP-complete. 

Once we have a t least one known NP-complete problem available, to prove th a t  f] 

is NP-complete, we merely show tha t

1. n  e  N P ,  and

2. Some known NP-complete problem Pf transforms to f ] .

2.5 N P-com pleteness Proofs

For a  given problem f l  €  N P ,  we can prove it NP-complete if we can show th a t  

some already known NP-complete problem fp  can be transformed to f[- Therefore 

Lem m a 2.2 provides us with an approach to prove th a t  problem f l  represented by a 

language L  is NP-complete:

1. Prove L £  N P

2. Select a known NP-complete language L'

3. Find a transform ation function /  which satisfies x  £  U  if and only if f ( x )  £  L 

for all x  £  {0 , 1 }*

A. Prove tha t  the  function /  runs in polynomial time.

2.6 3-Satisfiability Problem  (3SAT)

T he satisfiability problem (SAT) is a decision problem which asks whether there 

is a  satisfying tru th  assignment for a given collection C  of clauses. Let U = 

{ui ,  u 2, ■ ■ •, «*■} be a set of boolean variables. Variable u or its negation u is defined
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as a literal over U. A clause over U is a set, of literals over U such as {?/,,, 17̂ , 11,4 } . A 

truth assignment for U is a  boolean function 0:U —> {0, 1} . If 0(u)  =  1, we say tha t  

u  is “true” under 0; if 0( u ) =  0 we say th a t  u. is “false” . The literal u  is t rue  under 

0  if and only if the  variable u is true under 0; the literal u  is true if and only if the 

variable u is false. A clause over U is satisfied by a t ru th  assignment if and only if 

a t  least one of its mem bers is true under th a t  assignment. For example, the  clause 

C = { u i  ,u 3, !/„)} is satisfied by 0  except 0(i4]) =  0, 0 (1 4 3) =  1 anti 0 (114) — 0.

A collection C  of clauses over U is satisfiable if and only if there exists some 

tru th  assignment for U  th a t  simultaneously satisfies all the clauses in C. Such a 

tru th  assignment is called a satisfying truth assignment for C. Equivalently if we 

express a  boolean form ula  $  as an AND of clauses, each of which is the  O R  of one 

or more literals, then a  t ru th  assignment is satisfiable if if results in <t> =  1. For 

example, U = {i41, u 2), C =  {{ui,il2}, { u i ,u 2}}, a satisfying tru th  assignment is 

given by 0(i4!) =  1,0(m2) =  1 since

$  =  ( « ,  V u 2 ) A (u , V i42) =  (1 V i )  A ( T V  1) =  (1 VO)  A (0 V 1) =  1

where A and V are logic AND and OR operations. Therefore, for a  given instance 

consisting of a set U of boolean variables and a collection C  of clauses over i f  the 

satisfiability asks whether there is a  satisfying tru th  assignment for an arb itra ry  

boolean formula.

The 3SAT problem is ju s t  a restricted version of SAT in which all instances 

have exactly three  literals per clause. The 3SAT problem can be described as

INSTANCE: Collection C  =  {6'i, C2, ..., Cm} of clauses on a finite set U of 

variables such th a t  |C,| =  3 for 1 <  i. < in.

QUESTIO N: Is there  a  tru th  assignment for U th a t  satisfies all the clauses in (7?

The naive algorithm to determine whether an arbitrary boolean formula is 

satisfiable does not run in polynomial time. There  are 2 n possible assignment S  in
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a formula $  with n  variables. As the following theorem shows, the 3SAT problem is 

NP-complete, so a polynomial-time algorithm is unlikely to exist.

T h e o r e m  2.1 [16] 3 S A T  is NP-complete

The proof can be found in [16]. Its simple structure  makes it useful to prove 

o ther NP-compIeteness results. Problem CLIQUE is to be proved NP-complete based 

on the known 3SAT problem in the next section.

2 .7  T h e  C L I Q U E  P r o b l e m

In an undirected graph G  =  (V, E ), a clique is a  subset V '  C V  of vertices, each pair 

of which is connected by an edge in E.  Therefore, a  clicpie is a complete subgraph of 

G. The size of a  clique is the  num ber of vertices it contains. The clique problem is 

an optimization problem of finding a clique of maximum  size in a graph. Recasting 

this optim ization as a  decision problem, we can describe the CLIQUE problem as

I N S T A N C E :  A graph G  =  ( V , E)  and a positive integer J  <  |U|

Q U E S T I O N :  Does G  contain a clique of size J  or more such that  a subset V'  £  V , 

|V"| >  ./ and every two vertices in V'  are jointed by an edge in E l

verlicc in tile clique 

vcrticc not in the clique

F i g u r e  2.1 An example of a clique 

Fig. 2.1 is an exam ple of a  clique in which the  maximum clique has size 4.



T h e o r e m  2 .2  The C L IQ U E  problem is NP-complete.

Proof:

1. Show th a t  CLIQ U E e  NP

For a  given graph G  =  ( V , E) ,  we use the set V'  C V  of vertices in the  clique

as a  certificate for G.  Verifying whether V'  is a  clique can proceed by checking 

whether, for every pair u , v  E V' ,  the edge (u , v ) E E.  The com putation is 

limited up to the  following number of checking operations

(n — 1 ) +  (n -  2 ) +  ... +  2  +  1 =  n( n  -  l ) / 2 .

The computional complexity of checking whether the set V'  C V  is a  clique is 

0 (n2), thus the  verification can be accomplished in polynomial time, therefore 

CLIQ UE GNP.

2. Transformation from 3SAT to CLIQUE

Here, we show th a t  the known NP-complete problem 3SAT can be transformed 

to CLIQUE, i.e., 3SAT ocCLIQUE, where a oc b stands for the transformation 

from a to b.

Given a 3SAT instance with boolean variable set u =  (?q, (/.2, M3 , • ■ ■, u .̂)

and clauses C = { C \ , C2, • • •, Cm} (|C;| =  3 Vi), a  boolean formula is formed

by 4> =  C)AC 2  A ••• A C m, each clause C; has exactly three distinct literals 

l\ , 1'2 and 1'3. We can construct a graph G =  {V, E)  as follows. For each 

clause Ci=(l\  V l l2 V l3) in C, we place a triple of vertex v\ , v '2 and v?4 in V. 

An edge between two vertices vj. and wj is added ( I <  x , y  < 3; i , j  < in)  if 

i j  and l'x /  l3y . To illustrate the graph construction, Fig. 2 . 2  shows a 

graph G  derived from the 3SAT boolean formula $  =  C\ A C2 A C3, where 

C, =  (u 1 V mi V u 3), C’2 =  (u\ V u 2 V a 3 ) and C3 =  (?q V n 2 V «;i). The m axim um  

size of a clique is 3.
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C,= {u,.u2. u3 }

F i g u r e  2 .2  T he  derived graph from <1>. The clique with size 3 is /' =  {1,2,3}

We show th a t ,  if a graph G is constructed in this way, a boolean formula 

4> is satisfiable if and only if G has a clique of size m.

Assume th a t  the  boolean formula <1> is satisfied by a tru th  assignment. 

Then, each clause C; should have at least one literal lx (x — 1 ,2 ,3 , /  =  

1,2, ••• ,m )  th a t  is assigned 1, and each such literal corresponds to a  vertices 

vx . A set of V'  of m  vertices can be formed if one “true” literal from each clause 

is picked up. For any two vertices vx,v^  G V'  , where i ^  j , both corresponding 

literals /{., l3y are m apped to 1 by the given satisfying assignment, and thus the 

literals cannot be complementary. Thus, by the construction of G, the  edge 

(vx i vy) £  H • Therefore, if the  formula $  has a  satisfying assignment, then the 

constructed graph G  has a  clique V'  of size rn. On the other hand, suppose th a t  

G  has a clique V '  of size rn . Since there are no edges in the same triple (clause) 

and V'  contains exactly one vertex per clause, there is no edge connecting two 

vertices vx ,v^  based on the rule for a  graph if lx = l3y. Thus, a literal and its 

complement will not be assigned 1 simultaneously. Therefore, each clause (7, 

is satisfied, which results in a satisfied <I>. Thus, if the constructed graph G  

has a clique of size m  , then the boolean formula $  is satisfied.
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In the exam ple of Fig. '2.2, a satisfying assignment of <I> is Uj =  1, u 2 — 

l ,U 3  - 1. A corresponding clique of size k =  3 consists of the  vertices 

{tti, 'it2 , 1/3 } • Based on the above observation, we can see tha t  the 3SAT problem 

can be transformed to the  CLIQUE problem, i.e., 3SAT ocCLlQUE.

3. Polynomial Transformation

The transformation from 3SAT to CLIQUE can be completed in polynomial 

time. For a given formula $  =  Ci A C 2 A • • • A Cm and C \= (l \ , l?2, l?}) Vz, 

each clause has three literals, therefore, each clause forms triple vertices. The 

num ber of vertices in the triple graph equals to 3m. The maximum  num ber 

of added edges is 3|V’| =  9m ( m  — 1). Therefore the  complexity transformation 

from 3SAT to CLIQ U E is 0 ( m 2), a polynomial t im e  transformation.

Since we have shown CLIQUE E N P  and the transformation 3SAToc CLIQ UE 

is of polynomial time. We have proved tha t  CLIQUE is NP-complete.



C H A P T E R  3

M E A N  F I E L D  A N N E A L I N G  T H E O R Y

3.1 C o m b i n a t o r i a l  O p t i m i z a t i o n  P r o b l e m s

In a combinatorial optim ization problem, cost is defined as a function of discrete 

variables representing configurations. A combinatorial optimization problem is 

described by n  =  ( / , S ) ,  where S  =  {s} is a finite set of configurations and /  is 

the  cost function, s G Z ” and f  : s —* R +. The objective is to find an optimal 

configuration s opt which provides the minimum cost, i.e.,

fopt = f(sopt) =  min f ( s ) .  (3.1)

3 .2  S t a t i s t i c a l  M e c h a n ic s

Since there exists a  significant analogy between statistical mechanics and the 

procedure of solving complicated combinatorial optimization problems, we first 

review the annealing process in statistical mechanics.

Statistical mechanics is concerned with the properties of a large num ber of 

particles in samples of liquid or solid m atter . Since the num ber of particles is quite  

large per cubic centimeter, only the behavior of the system in thermal equilibrium 

at a given tem pera tu re  is observable. Different position placements of particles in a 

liquid or solid m atte r  will yield different energies. At each tem pera tu re  all particles 

random ly move around until therm al equilibrium is reached. If a s ta te  is defined 

by the set of particle positions, then, a t  thermal equilibrium, the probability of the 

system being in s ta te  i is represented by the Gibbs distribution [lj[43j:



19

where Z  — Ylies exP ( —f p r )  ' s (:ahed the partition function, kb is the Boltzmann

constant, T  is the tem pera tu re  and E (i)  is the energy of s ta te  i, S  is the s ta te  space, 

and kb,T ,E { i )  6 R + . It is easy to find th a t  [1],

whcie S min — (?. . E{i)  — and Emjn — min^^ Ei^j f

From this equation, we can see that ,  as the tem pera tu re  approaches zero, the 

system will concentrate on the  states with the minimum energy, i.e., the states with 

the m inimum  energy are more probable.

In statistical mechanics, the crystalline lattice s truc tu re  in a solid usually yields 

lower energy. A physical process called annealing is often performed in order to form 

a  crystal. In the  annealing process, a  solid in a heat bath is heated up by increasing 

the  tem pera tu re  of the heat ba th  until it is melted into liquid, then the  tem pera tu re  

is slowly lowered. At each tem pera tu re , all particles randomly arranges themselves 

until therm al equilibrium is reached. If the cooling is slow enough to allow the solid 

to  reach thermal equilibrium at each tem perature , the low energy crystalline solid 

would be formed when the system is frozen (T  —> 0). If the  annealing is too fast, 

the  solid may become glass-like with non-crystalline s truc tu re  or consist of defective 

crystals with m eta-stable amorphous structures.

(3.3)

implying tha t ,  at a  very high tem perature , all states are equally probable. 

On the o ther hand, we have

Inn 7T; 
T —*Q

U e s n in ^xp  ^----

e x „ ( - a i f c f e )

J 15̂1 lf * e S m i n
1 0 otherwise,

(3.4)
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The entropy  a t  the  equilibrium is defined [1]:

H ( T )  = - E 71-’"  ln7r*’
i es

Tom Eqs. (3.3) and (3.4), we obtain:

i i m  / / ( r )  =  - E r e i l „ r a  =  i » l s | ,
T^°°  ieS I5 ! 1*1

l i m / / ( 7 ’) =  -  £  - L - l n - J — =  l n |5 ra;n|,
ieSm,„ P m m l |«>m«n|

and also,

d H (  T )  _  dm
o r  = “ S [ i+  ]"ari es

=  -E
i es khT

— In Z  + 1
dixi
d T '

If we define the average energy

E r  =  5 >  • E (0 -
ies

and the  variance

then, we have

<4 =  £  (£'(>') -  e t ) =  & T -  4 -
i es

dlTi 7T;

8 T  h T 2

8 H ( T )
o r E

ies

J5 ( i )

kBrl
’-i + l n Z - l

\E(i )  -  E r ] .

L2rl'3 2 
Kb 1 ie s

1
ies

k 2brn k?T3 '

(3.5)

(3.6)

(3.7)

(3.9)

(3.10)

(3.11)

l—  J 2  E( i ) m[ E( i )  -  Er]  +  £  tt, \e (i) -  E ,

(3.12)
.ies ies

Since T  > 0 and <rf. >  0, we have > 0. Combining the Eqs. (3.3) and (3.4), we 

can see th a t  the entropy is monotonically decreased as the tem pera ture  is lowered 

(See Fig. 3.1). In statistical mechanics, entropy is used to measure the order
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H(°) |-
0 t 00

F i g u r e  3 .1  The entropy I I ( T )  changes with the  tem pera tu re  T

of a physical system: the larger the  entropy, the  more chaotic the  system. In the 

annealing process, the  entropy monotonically decreases, so it will lead the system 

to the ordered (crystalline) if the  tem pera tu re  is lowered slowly enough so th a t  the  

system is allowed to relax to the  equilibrium at each tem pera tu re .

3 .3  S i m u l a t e d  A n n e a l in g

Based on the annealing process in statistical mechanics, K irkpatrick et al. [25] 

proposed an algorithm, namely simulated annealing (SA) for solving complicated 

combinatorial optimization problems. In the SA algorithm, a  simulation of the  

annealing process is performed. The cost function and configuration in optimization 

correspond to the energy function and sta te  of statistical physics, respectively. The 

tem pera tu re  is introduced as a control parameter.

Suppose tha t  a cost function /  : s —► R +, s £  S ,  to be minimized is defined on 

some finite set S .  For each configuration s £  S , there is a  neighboring set 

S ,  which is generated by a  small perturbation of s.

In SA, given the current s ta te  s(k) ,  a neighboring sta te  s' (k)  is randomly 

selected from A/”(.s), where k  is the  k-th trial. The transition probability from sta te
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s (k)  t.o s ' (k)  is given by the Metropolis criterion [29]:

[ / ( s ' m  -  n » m +P{s(k) ,s ' (k)}  =  P r { s ( k )  -  s'(A:)} =  exp
T

where

[x] =  max{0, x}.

E(|. (3.13) can be written in another form:

1
P r { s ( k  + \) = s ' (k)}  =

if f ( » ' ( k ) )  < f ( s ( k ) )
exp  otherwise.

(3.13)

( 3 . 1 4 )

(3.15)

From Eq. (3.15), it can be seen th a t  the Metropolis criterion while performing 

the  local search for the  minimum cost at a fixed tem pera tu re  T  allows occasional 

transition from a lower cost configuration to a higher cost configuration with certain 

probability, thus preventing the system from getting stuck in local minima. The 

random  process \  — (s (k) : k > 0) produced in SA can be characterized by a 

discrete tim e homogeneous Markov chain [l]. The one-step transition m atrix  is

P ( x ,  y)  =  Pr[s(k  +  1) =  ?/|s(A) =  x]

0 if y gAf (x )  and y  ^  x,
G(x, y)  mi n{ l , e xp( — jf y e  J\f(x ) and y ^  x,

1 ~  Ex'jfcr x')  rnin | l ,  exp( — if y =  x.

where G ( x , y )  is the probability of generating configuration y from x.

If the  generation probability of any configuration x is uniformly distributed in 

its neighboring configuration set Af ( x ) and the configuration transition is based on 

Eq. (3.16), the corresponding Markov chains are irreducible, aperiodic, and recurrent

[1]. Under these conditions, the  stationary equilibrium distribution 7r,- for configu­

ration i exists after infinite num ber of transitions,

Vi{T) =  lim Pr  {s{k) = i \T)
k —*oo

=  lim P r  {s(k)  = *|a-(0) =  So/T)
k —*oo

e x p ( - ^ j i )
(3.16)
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From Eq. (3.4), we know tha t

0 otherwise.
(3.17)

Therefore,

jllTo Lj&cJ, P (8W  6  =  Y1ies ies,n,„

Eq. (3.18) states th a t  the  SA algorithm asymptotically converges to the configu­

rations with the m inimum cost, i.e., if the tem pera ture  is slowly lowered and at 

each tem pera tu re  the system performs a sufficient num ber of transitions, the config­

urations (solutions) with the global minimum cost will be found with probability 

one.

3 .4  M e a n  F ie ld  A n n e a l in g  T h e o r y

Even though SA is proved to be able to reach the global op tim a asymptotically, it 

is often time-consuming to reach therm al equilibrium at each tem pera ture . Finite 

num bers of transitions a t each tem pera tu re  cannot guarantee convergence to the 

global optim a. In statistical physics, mean field approximation is often used. 

Mean field annealing (MFA) uses a set of deterministic equations to replace the 

stochastic  process in SA. It uses saddle point approximation in the calculation of the 

s ta tionary  probability distribution at equilibrium, and reaches equilibrium at each 

tem pera tu re  much faster than SA. Even though this approximation m ethod may not 

be guaranteed to converge to global minima, it does provide a good approximation 

in finding near-optimal solutions with much less computing effort.

As shown in the previous section, the stationary probability distribution at 

equilibrium for configuration s ' is given by
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2  =  E « p ( - ^ ) -

where s , s '  6  Z 7‘ are configurations and Z is the integer set. For a large optimization 

problem, exact calculation of the  partition function Z  is prohibitive. The saddle' 

point approxim ation [35] is used. Note tha t  the Dirac delta  function, <§(■), can be 

expressed as:

where the  integral is taken along the imaginary axis. Hence,

where

= C £ j ^ v j f e- ^ . e u(8- v>du

=  c j k r fv j J e" ^ ~ , l v - X > u'8du

-  C I  d v  / c - ^ - ' lv+1" E s ^ ,s 
JR  J I

=  C J  d v  J c - ^ u '^ d u ,

/c(Ui v) =  +  u v  -  In cu '9,

du

T

C  is a. complex constant, and /„  is called the effective energy in statistical mechanics. 

At saddle points,

9 fr  E s S - e " ’8—— — v  — — ----------- =  0
flu E«c«-“

dfe  1 d / ( v )
and

Therefore

d v  7’ d v
+  u =  0.

_ _  E s S - c 118 
V 8r E s c”-8 ’

1 d f { v )
» =  (3.2J)
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where s r  is the  therm al average of s a t  tem pera tu re  T.

In statistical physics, h =  — is called the mean field. If a configuratiion

s =  [.sj, .s-2 , • • •, s n]7 is represented by a sequence of binary values, i.e., s £  {0,1}", 

then we have v  =  [iq, v2, ■ • ■ , vn]T and

Vi Z l i=o * - e Ui«
E .U o

l
1 +  Cu '

1 +  tanh (3.24)

where u  =  [?q,?x2, • • • , u„]? and U{ = —^  • - l } p ■

For the  binary system, we have the following MFA equations:

Vi  = 1 +  tanh  (

hi = -
d /(v )

dm

(3.25]

(3.26)

In 1982, Hopfield [20] defined the following energy function of the  Hopfield net for 

optim ization,

A (s )  =  - 2 E E ^ - E ^ - (3.27)
* j

where .s,- 6  {0,1}. In the Hopfield model, the  system is represented by a  network 

composed of n  neurons. Each neuron i can be represented by an operational amplifier, 

Si is the  o u tpu t  of neuron i, and l ' tJ, which is symmetric (7}j = J'n and 7 ’lt =  0), 

represents the  synaptic connection between neuron i and j .  /, is the  input current 

to amplifier i. The  stable states of the  network correspond to the  2" corners of the 

hypercube {0,1}", the local m inim a of the energy function defined in Eq. (3.27). 

For the  MFA approximation, if the  energy is formulated as in Eq. (3.27), the mean 

field and the therm al average v, become

d // ,(v )  _

j
lu =  -

dx>i

1
Vi  =  S i  =  - 1 +  tanh

2T

(3.28)

(3.29)
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In MFA, the  iterative procedure to reach thermal equilibrium at each tem pera tu re  

is called relaxation, in which the mean field is updated by

d//i(v)
/?.,(/, +  A t)  — lift.) +  A t

dv. -  MO

'Faking the limit, we have

dh, /).,(/. +  A/,) — h{(t)
—r~ =  hm ---------------------- — ,dt. A(—*o At,

(3.30)

or
dh.; 9 fh{v)

(3.31)
dt dvi j

The MFA relaxation operation at each tem pera tu re  should lead the system to stable 

equilibrium. T he  stability and convergence of MFA will be analyzed in the  next 

section. T he  MFA procedure can be summarized in the flow chart shown in Fig. 3.2.

3 .5  C o n v e r g e n c e  o f  M F A

Before we prove the convergence of MFA, we need to review stability theory [30], 

Consider a  differential equation:

dx  „, sn  =  <; u 2 >

where x  £  R n, f  : x  —* R +n

D e f in i t io n  3 .5 .1  (Equilibrium Point.): x* is called an equilibrium point o f  Eq, (3.112) 

i f  ,[{x*) — 0. That is, at. the equilibrium point, the system will no longer change with 

time.

Since such an equilibrium point may be stable or unstable, we need to define 

the stability.
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•  Weights
•  Annealing Schedule
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I
Initialization

V js 0 .5  +  m d ( 6 , - 6 )  
i= l,2  N

k k+1 

T * - T k

Y

Iteration

Problem-dependent

h j(k)=h j(k - l)+  At 1 1  Vj  (k -D T jj+ I j-h  i(k - l) | 

v j (k)=O .S |l+ tanh(h j/ ! ') ]  ( i= i .2 ....N )

I < ~  1+1

Problem-dependent

Stop Criterion 

N

Print the Solution

Problem-dependent

Figure 3.2  The MFA iteration procedurre

D e f in i t io n  3 .5 .2  (Stability): Letx*( t )  be a solution x = f  (■>'). An equilibrium point, 

x * is stable if, f o r  every neighborhood set M  o f  x* , there is a neighborhood Af\ o f  x* 

such that every solution x (/) with initial point x ( t 0) in A f  \ is defined in both A f  \ and 

A f  fo r  all I > t0 . That is, fo r  any x 0 =  x ( t 0) and any given value c >  0, there exists 

an arbitrarily small value 6  > 0 so that i f  ||.7,'(/0) — <  6 , l hen\ \x( t )  — ;r*|| <  c,

where ||.'/:|| is the Euclidean norm, i.e.,

i

£ ( * ; *  ~  X j k f  2 • (3.33)
. k
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D e f in i t io n  3 .5 .3  (Asymptotically Stability): I f  x* is stable and  lim(_ 00.T(/) =  x ' , 

then x" is asymptotically stable.

T h e o r e m  3.1  (L iapunov’s Stability Theorem.)[30]: Let. x* be an equilibrium point 

fo r  Eq. (3.32). Let E  : A f—> R  be a continuous and differentiable function  defined 

on a neighborhood A f  o f  x* such that i f

(a )  E(x*)  - E mjn and E(x )  >  E(x*)  i f  x  f  x* ,

(b )  E  <  0 V.T G Af,  then x* is stable. Furthermore,

(c) E  < 0 V;i: eAf ,

then x * is asymptotically stable, where

V E ( x )  =
d E  d E  d E v r
d  x  i ’ d  x  'i ’ ’ d  x n

Nl

(a) (*>)

F i g u r e  3 .3  T he  illustration of stability, (a) stability, (b) asymptotically  stable

A function E ( x )  satisfying (a) and (b) is called a Liapunov function for .r*. If 

(e) also holds, we call E(x)  a strict Liapunov function.
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For MFA, if wo construct

£ ( v )  =  fh + i t ,  I  h i (y)dv,
i = i J o

then we have
OE(v)  _  a f h ( v )  

dv{ dv{ + hi — — T'jvj ~ It E h‘i (3.37)

or

V f i (v )  =  - T v  - I  +  h,

W here T  =  {T,j : V?', j}  and v , I ,  h  £ R n 

From Eq. (3.31), we can rewrite

li =  T  • v  +  I -  h.

If we construct

# ( v )  =  E (v )  — £(v*), (3.40)

and assume th a t  v* is an equilibrium point and a local minimum. Then we have:

(a )  tf(v*) =  £ (v* )  -  E(v*) =  0, and

t f(v )  =  E ( v )  -  JS(v') >  0, Vv e A f ( v ' )

(b )  From Eq.(3.25), we have

Vi = 1 +  ^ n h  (

Therefore
dvi 
dhi =

'i '(v) =

1 e h , / T

i + c - h , / T )  T{  l + e - /l' / 7’)2

dty dv{
 ̂ dv{ dl 

<9'P dv{ dvi

> 0.

^  d v {  d h i  dt.

s r  ( d f h i \  dl,i (  d Jh i
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=  — V £ r  • W  • V /?  <  0. (3.41)

where W  =  diag (§f^, • • •, §!“■)• It is shown th a t  if an equilibrium point v* is

a. local minimum , it will be asymptotically stable, 'fe(v), therefore, /£(v), is a  s tr ict  

Liaponov function, i.e., at each tem perature , the evolution of Eq. (3.31) will lead 

the system to converging to a local minimum.

3.6 Further Discussion o f MFA

As shown in Eq. (3.27), for a  binary neural network s - {(s,) : a, £  {0, l}Vi}, the 

energy function is described by

i j i

By taking the average of the  energy, we have

A ( s )  =  Y ,  Y  -  Y ^ ] <-
i j i

In order to find the mean field based on Eq. (3.26), we have to calculate sJ^J. 

Since there exist interactions between neurons, any neurons i and j  need not be 

independent. Therefore the  complexity to calculate their expected values will be 

0 ( 2 n ) ( taking into account all configurations), where N  is the num ber of neurons in 

a neural network. If we ignore the interactions, the average energy can be approx­

im ated by:
1

M s - j E E W - J i - E 3!'.--
; j  i

Then, the mean field can be obtained by

, _  d f h{s) _  ^
I'i -  -  Y  J I .? a j  +  A

u s '  j
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— V'' n I l exp(/tf • S i /T)  1 r /  / ) \•s'i =  /  S i Pr i s i }  = }  S{-----------—--------— - =  — 1 +  tanh —-
1 ^  l + e x p (  I n - . n / T )  2 .  \ 2 T )

(3.44)

Eqs. (3.43) and (3.44) are exactly the same as the MFA equations (3.25) and 

(3,26). From the approxim ation in Eq. (3.42), it can be seen th a t  the complexity of 

com puting the mean field is reduced from 0 ( 2 N ) to  O ( N )  (see Eq. (3.43)). This 

approxim ation is good, especially for a large system (optimization problem). In SA, 

random  perturbations  based on the Metropolis criterion move the system towards its

therm al equilibrium a t  each tem pera ture , i.e., / / t —> heq(T) .  Instead of the  stochasti1C

process in SA, MFA adopts  a  set of deterministic equations as shown in Eqs. (3.43),

(3.44) by considering the  therm al averages of neurons s a t  equilibrium. Even though 

this approximation may no longer guarantee the system convergence to the  global 

m inima, experimental results [8], [9], [31]-[33] have shown tha t  this approximation is 

effective in finding near-optimum  solutions whereas the computational complexity is 

greatly  reduced as compared to SA.

3 .6 .1  T h e  R e l a t e d  P a r a m e t e r s  in  M F A

Before performing the MFA iterations, several param eters  need to be determ ined in 

order to obtain good solutions:

a . W e ig h ts :  A combinatorial optimization problem can be described by an energy 

function in the  form of

E  — W \  • “cost" -p to2 • “c o n s tra in ts”

Assuming w i , w 2 G R + , we consider the  following extrem e situations:

1. w i —> +oo, the  first term  (cost) will dom inate  and the MFA iterations 

will lead the system to invalid solutions.

2. w\  =  0, the  MFA iterations may stop at a valid solution, however, the 

solution could be very far from the global mimimum.
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Therefore, (.lie proper determination of the  relationship between weights will 

greatly affect the  solution quality.

b .  C r i t i c a l  T e m p e r a t u r e :  Critical tem pera tu re  is defined as one at which on the

average each neuron begins to move predom inantly  towards 1 or 0. Obviously, 

a t  high tem pera tu re ,  the  iterations based on Eqs. (3.43), (3.44) are trivial 

and all averages of neurons are disorderly d istributed around 0.5. Therefore, 

sta r ting  iterations a t  too high a  tem pera tu re  simply introduces com putational 

cost w ithout any progress towards a solution. On the o ther hand, if the 

initial tem pera tu re  is too low, the evolution of neuron averages is jus t  like the 

quenching process in statistical mechanics and will result in a poor solution. 

Thus, the determ ination  of a  critical tem pera tu re  a t which the iterations s ta r t  

becomes crucial to the efficiency of the  MFA approach.

c. F in a l  t e m p e r a t u r e  o r  s to p p i n g  c r i t e r io n :  The system must decide when to

stop the iterations, which is equivalent to deciding the final tem pera tu re  at 

which the iterations terminate.

d .  A n n e a l in g  S c h e d u le :  Annealing schedule is the way the tem pera tu re  is

lowered. Fast decrement of tem pera tu re  might lead the system to poor 

solutions, whereas slow decrement will bring about computational inefficiency.

The determ ination of these param eters is correlated with each other and the choice of 

param eters  is still an open question. We will investigate these issues in the  following 

individual sections.



C H A P T E R  4

SE A R C H IN G  FOR THE O PTIM AL FRAM E PATTERNS IN  A N  
IN T E G R A T ED  TD M A  CO M M UNICATION NETW O R K

The integral,ion of d a ta  and voice in an integrated services d a ta  network (ISDN) 

has received extensive a ttention in recent years in order to efficiently share the 

system resources such as transmission, switching and control facilities. Many research 

works have been directed to the tirne-division multiple access (TD M A ) strategy 

[3][11][14][18][24][/12]. In an integrated TD M A system, transmission channels are 

shared by the circuit-switched type of traffic such as voice and the packet-switched 

data . To avoid conflicts in accessing channels, contending users m ust be assigned to 

use the channels a t  different, times. The t im e axis is divided into frames and each 

frame consists of a certain num ber of fixed-length tim e slots. A certain portion of the 

t im e slots in a  frame are assigned to voice transmission and the remaining portion 

is reserved for da ta . Many studies in the  literature  model the voice traffic as a lossy 

system and d a ta  as a queuing system. Therefore voice traffic will be blocked with no 

transmission if it cannot find an available t im e slot a t  the instant of its arrival. For 

d a ta  traffic, on the o ther hand, arrivals can be buffered and transm itted  whenever a 

tim e slot is available. Hence the objective of the system design is to minimize the 

blocking probability of voice traffic as well as the  tim e delay of d a ta  traffic. Two 

approaches, namely fixed-length boundary (FB) and movable boundary (MB) are 

generally used. In the FB scheme, a TDM A frame is partitioned into two regions, 

each consisting of a certain number of t im e  slots, one for voice traffic and the; o ther 

for d a ta  traffic. T he  idle time slots assigned to voice cannot be used to transm it  

data. Obviously, this scheme does not fully utilize system facilities. In contrast, the

33
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MB scheme utilizes any residual voice t im e slots to transm it  data . As a result the 

queuing delay is expected to decrease. Fig. 4.1 shows the two schemes.

Subframe 1 Subframe 2

A

Fixed boundary 

(a)

--------------5> *=--------------=>

1 1 1 m
Data Slot 

□  Voice Slot

Movable boundary 

(b)

F i g u r e  4 .1: Integrated voice and d a ta  TD M A frame format: (a) FB scheme, (b) 
MB scheme.

4.1 The M ultiaccess Protocol

In this chapter, we are concerned with the single-hop multiaccess/broadcast packet 

transmission network. In this type of network, a single wideband channel is shared by 

all users. A slotted ALOHA random access protocol is employed for transmission,

i.e., whenever a  user is ready to transm it  a packet, it simply goes a t will. The 

only constrain t is th a t  users m ust s ta r t  to transm it  a t  the  beginning of each time 

slot. W hen two or more users a t te m p t  to transm it  at the same tim e slot, collision 

occurs and  all of the collided packets are required to be re transm itted . Although 

the m axim um  achievable channel utilization is low, the slotted ALOHA scheme is 

superior to  fixed assignment schemes when there  is a large population of bursty 

users [37], The ALOHA multiaccess protocol provides a simple control scheme for 

the  channel access. Typical examples of this type of network arc the  ALOHA network

[2], SA TN ET [22], and E T H E R N E T  [28], Fig. 4.2 shows a  packet satellite network 

in which a slotted ALOHA protocol can be used. A single satellite in geosynchronous 

orbit is used to provide connectivity among a num ber of earth stations. A global- 

coverage an tenna  is used on the satellite, allowing each station to com m unicate  with



35

Satellite

w

jFFntlio'y 
I Unit J

Digital
.Conlrollci

WS/I’honc/Host

Earth Stations A Station

F i g u r e  4 .2  A packet satellite network

any others in time. A single transponder is used on the satellite to repeat received 

uplink packets on the downlink. All earth  stations share a  single wideband channel 

in the uplink transmissions, which is from an earth station to the satellite.

4 .2  F r a m e  P a t t e r n  a n d  D a t a  T h r o u g h p u t

For the  ALOHA-type networks, we assume tha t  each user has two types of traffic - 

d a ta  and voice. Since voice traffic is very sensitive to tim e delay, once a user with 

voice traffic wins access to the  channel at a certain tim e slot, the same time slot in 

the  successive frames will be reserved for this user until the voice communication is 

completed. If a voice user finds no available tim e slots, its call will be rejected. A 

tim e frame consists of N  t im e  slots, some for voice and others for data. T he  MB 

scheme is adopted in our approach. Therefore, d a ta  traffic can be t ransm itted  in 

both its nominal slots and the silent voice slots at a  time. For each d a ta  slot, all 

d a ta - type  users access the  channel based on contention. The collided d a ta  packets 

m ust be re transm itted  after a  random number of tim e slots. Instead of the  distinct 

boundary as shown in Fig. 4.1 (b), the  positions of d a ta  slots are arranged in different



places within a frame. The frame format is shown in Fig. 4.3. Each frame consists 

of N  t im e slots, including N,i slots for da ta  transmission. We denote:

Slot Number 1 2  k. k2 k, N̂d N

........
SI i S2 i I I  Data Slot 

[ ]  Voice Slot

Figure 4.3  A frame format.

N,i : The  num ber of tim e slots th a t  can be used for d a ta  packets at a given frame, 

which includes the nominal data, slots and silent voice slots. The silent voice 

slots are the ones which are unused at certain time.

A-,: T he  slot num ber of the zth available da ta  slot, where ] <  A:,- <  N ,  1 <  i <  N,t-

. s T h e  interdistance between the zth da ta  slot and its first, successor (i +  1 )th da ta  

slot, where

k i + 1 -  la, if i = 1,2, • • •, N,i -  1,
fci +  N  — A-/v,( if i — N,t-

s =  (.sj, ,s*2 , • • • ,-l’Nd) is called a fram e pattern, which represents the relative positions 

of d a ta  slots. Obviously,

s i  +  £>2 +  • • ■ +  s / v (i =  A ^, ( 4 - 1 )

and

S i  >  1 V z . ( 4 . 2 )

Before we get an insight into the frame pattern , we make the following assumptions:

1. The holding t im e of the voice call is much longer than the frame tim e so th a t  

the  c|ueuing behavior of d a ta  for a  given frame pattern  can reach steady state.
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2. The slotted ALOHA random access protocol is used for d a ta  transmission. The 

total d a ta  traffic, new and retransm itted , constitutes a Poisson process with a 

mean arrival rate  of G  packets/slot.

3. Packets have a fixed length, and the length of a t im e slot equals the  tim e 

required to t ransm it  a  packet.

Based on the above assumptions, the  probability th a t  there are I data, packets in the 

interval [k, k +  s,] is given by

{ G - S i ) 1 ■ e~G's’
P( l )  =

/! (4.3)

and the  probability of no collision in the interval s,- is the probability tha t  no Poisson 

d a ta  traffic is generated during the time interval S{ (see Pig. 4.4), i.e.,

P r(no  collision in the time interval s,) =  e~G'!>’

and

Pr(packets successfully t ransm itted  in the time interval s;) =  G ■ s t- • e~G s' .

Therefore the average d a ta  throughput is given by

■ Nd

N d t l
(4.4)

- S i  ■

§  Data Slot 
Q  Voice Slot

Figure 4.4 Illustration of no-collision interval.

From Eq. (4.4), it can be seen that  the relative positions of voice and d a ta  

will generate  different d a ta  throughput. Pig. 4.5 is an example of the throughput
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G= 0.5 N=10, Nd= 4

s=(l, 1,1,7) y = 0.254

s= (2, 2, 2, 4) y= 0.344

F i g u r e  4 .5  The throughput generated by the two frame patterns.

generated by two frame patterns. For a given N  and N j,  there are C $  frame 

patterns. For example, assuming N  =  40 and Nj, =  10, the  total num ber of feasible 

frame patterns  is Cj18 =  8.4 X  108. An optimal frame pattern  is the one which provides 

the  m axim um  d a ta  throughput. The computational complexity using exhaustive 

search for finding the optim al frame pa tte rn  among the set of all frame patterns  

becomes in tractab le  as the problem size increases.

4 .3  R a n d o m  S e a rc h  fo r  t h e  O p t i m a l  F r a m e  P a t t e r n s

T he  general way to obtain a good frame pa tte rn  is to pick up a bunch of feasible 

frame patterns  th a t  satisfy the constraint Eq. (4.1), then calculate the  th roughput 

for every single frame pattern . The one having the highest throughput among all 

the  selected frame patte rns  will be used as the optimal frame pattern . Obviously, 

the  random search is a local search scheme. Its performance strongly depends on the 

initial selection of a  frame pattern , the way used to pick up another frame pattern  

from the current one and the number of the selected frame patterns. In evaluating the 

performance of the  random  search, we take the average throughput of the  randomly 

selected frame patterns.
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4.4 Searching for the O ptim al Frame Patterns 
by U sing M ean Field Annealing

As shown in Section 4.2, maximizing d a ta  throughput is equivalent to finding a

specific frame pa tte rn  s opl =  s ^ 1, • • • , Syvj} such

1 Nd
7 sapt =  m a x  7 S =  m a x  - -  ^  G • .s, • e~G's' , (4.5)

s g s  s e s

subject, to

and

At,
y~) S{ = N, where I <  Si < N  — Nd +  1. (4-h)
i=i

Si > 1 Vt (4.7)

The MFA procedure for solving this constrained optimization problem is summarized 

as follows:

1. Form an energy function which reflects both da ta  throughput to be maximized 

and the constraints.

2. Select the  weights th a t  keep the balance between maximization of d a ta  

throughput and satisfaction of the  constraints.

3. Determine the annealing schedule.

4. Del,ermine the  critical tem pera tu re  Tc to  achieve fast convergence.

5. Define the term ination criterion.

6. Perform the iterative procedure to find optimal solutions:

(a) Initialize the  average of neuron i j  with u,j ~ 0.5+0.001 x r a n d [ —\, 1] V / , j ,  

and s ta r t  annealing from the critical tem perature . Neuron i j  is defined in 

the  sequel.
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(b) At each tem pera tu re  7', upda te  Vi, j  according to Eq. (3.25) and

Eq. (3.26) through the synchronous or asynchronous m ethod until a  

certain criterion is satisfied. One complete updating  of all neurons a t a, 

fixed tem pera tu re  is referred to as a sweep.

(c) Decrease the tem pera tu re  T  according to the annealing schedule, repeat 

Step 6(b) until the convergence criterion is satisfied. Each tem pera tu re  

corresponds to an iteration which consists of a  bunch of sweeps.

To m ap this optimization problem onto the MEA framework, we need to determ ine 

the param eters  defined in the  Step 1-Step 5 above.

4.4.1 Energy Function

i n  Nd i n  ( N <‘ \  N ‘< m

m  = - ^ r X G ■ + - f  ! > - "
\ i = i  }  ; = i  j = iN d f r l ~  -  “ 1 *> 1 '

=  — W\ * E\  +  W2 • /?2 +  U>3 * ^3 (4-8)

and
m

= 2J (4.9)
j=i

where m  =  [log2( /V — Nd +  1)] +  1 and |".t] is the  ceiling of x.  For example, for 

N  =  40, if Nd =  9, then m  = 5, and if N d =  5, then m  =  6. .s,2 E {0,1 }Vz, y are 

binary neurons, wi > 0 ,  I =  1 ,2 ,3 , are called the weights.

The in terdistance between the  i th  d a ta  slot and its first successive d a ta  slot is 

denoted by s ;. Since s, is an integer and 1 <  s, < N  — N d +  1, s, can be expressed 

in term s of m. binary neurons defined by Eq. (4.9). The first, term  in Eq. (4.8) is 

the negative weighed da ta  throughput, and therefore maximizing da ta  throughput 

is equivalent to  minimizing the negative throughput. T he  second term introduces 

a penalty  for constraint violation. If the  constraint in Eq. (4.6) is satisfied, the
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energy introduced by the  second term is zero. The third term equals zero only if 

all neurons converge to e ither 0 or 1. If the weights (wi,iu2 ,w3) are properly chosen, 

the  annealing procedure will lead the  system to a  configuration with the minimum 

energy corresponding to the  optim al frame pattern.

4.4.2 D eterm ination of th e W eights

1'aking the derivative of E\ and setting it equal to yields

rj n

—:-  =  (1 -  G  • s 1) e x p ( - G  • Si) -  0. 
asi

Therefore, the  frame pa tte rn  s — {.s, =  T Vz} provides the m axim um  throughput 

7max — e_1- However, this frame pattern  may not satisfy the constraint of Eqs. (4.6) 

and (4.7). On the o ther hand, the m inimum value of E 2 is zero when s i = N ,  but 

any combinations of s; would not achieve the m axim um  d a ta  throughput. Therefore, 

there  exists a  profound relationship between uq and w 2.

T he annealing procedure a t tem p ts  to relax the system into a s ta te  with the 

m inimum  energy, and simultaneously with all constraints satisfied. A sta te  (frame 

pa tte rn )  s' th a t  violates the  constraint should yield higher energy than a s ta te  s 

which satisfies the constraints. Consider the situation th a t  a s ta te  s satisfies the 

constra in ts  Eqs. (4.6) and (4.7), and each neuron has converged to either 0 or ]. If a. 

neighboring s ta te  s' of s differing from s only in one element violates the constraint 

such tha t
, _  J Sk — 1 if i = k, for a certain A, . .

S| 1 S{ Vi except i =  k.

then

and

Nd
J 2 s't = N - l ^ N ,
i = 1

=  (4.11!
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(4 .12 )

According to the  above s ta tem ent, E(s ' )  >  E ( s). Therefore from Eq. (4.11) 

and (4.12), we have

t V ) - c ( s )  =

_  iv2 u>i ■ G \ ,
~ 2 ~  N d "
W2 W\ ■ G
~2 W

N d

2 N d
iv2 W\ • G
~2 N T

, e - ^ : +
w 2

2

W \

N d

N rf

^ 2  G ■ S i  • e_(7'S|
; = i

4  • e - G '4  .-  S k  • e ~ G ^ ]

0 * - i ) • e - G - ( s k - i ) -  • e " G - * ]

e - ° - ‘ [l - 1 )
G

• e - * ]

e~G'Sk [|l s k - 1 ) • e °

e - G i s k - i )  .
(•S k  - • 1 ) • [1 -  e " G ]

Using the fact th a t

E ( s ' ) - E ( s )  >  ^ - ^ . ( i - e - * ) . e- ' > 0 .

=> ^ 2  > • (i -  e~°)  ■ e_ I . (4.13)
J \ d '

Here only one specific case is considered, indicating th a t  the  selection of w t and w 2 

is related to G  and N d. The  adjustm ent of the  weights according to G  and N d is 

required to obtain be tte r  solutions. The term , re3, is a weak constraint, and t/;3 =  1 

in this paper.
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4.4.3 Critical Tem perature

According to Eqs. (3.43) and (3.44), each neuron is updated  as follows

+  St) =  i  -f tanh
1 d E ( v , t )
T  dv{j V i J - (4.14)

where

1 <  i < Nd,  1 <  j  <  m,

v = {t'i,U2,---,w;vd}, Vi =  {v i i , v i2,

T he critical tem pera tu re  is defined as the  tem pera ture  at which the sharp state  

transition s tarts . In Eq. (4.14), a very large value of T  leads each uq to fluctuate 

around and the sta te  transition is very slow. Therefore there m ust exist a critical 

tem pera tu re  a t which quick s ta te  transitions arc expected to s ta r t .  In this paper, the 

critical tem pera tu re  is obtained by tvial-and-crror. T h a t  is, tem pera tu re  is slowly 

decreased from a very high value. At each tem perature , only one sweep is taken. At 

the  end of each sweep, compute the average absolute error

|  N ,1 rn

A / +  ( 4 . 1 5 )
n<i ‘ 171 i=l j=l

where t s tands for the  time a  sweep s tarts  and t + St for the  tim e a sweep ends. 

W hen e >  0.1, the above procedure stops, and the corresponding tem pera tu re  is the 

critical one.

4.4.4 A nnealing Schedule

The following annealing schedule is employed.

Tn+i = ~  ■ (4.16)1 +  a  • n

where a  is a  small positive value, and n is the iteration index.
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4.4.5 Term ination of Sweeps

At, each tem pera tu re , each neuron is updated according to Eq. (4.14). The sweep is 

te rm ina ted  when e < Sj, where 8 \ is a  small positive value. On the other hand, at 

some tem pera tu re , the condition may not be satisfied after a  large num ber of sweeps. 

To avoid infinite sweeps, the sweep procedure is forced to end after a fixed num ber 

of sweeps „cep. Then the tem pera tu re  is further decreased, and a new iteration 

begins.

4.4.6 Convergence Criterion

All Vij should converge to e ither 0 or 1 after the last iteration. Therefore, we define 

the  convergence criterion as

■ N j  m

( 4 ' 1 7 )

where S2 is a small positive value. When the criterion is satisfied, all neurons are 

c lam ped, and the interdistances for the  optimal frame pa ttern  are found to be

m /  1 \
=  ]C  v  ■u  {vij ~  g j  v?:- (4 -18)

where (/(•) is a  step function.

4.5 Num erical R esults

hour instances with N,{ — 5 ,8 ,10 ,15 , and N  =  40 are tested by using the MFA 

algorithm. To dem onstrate  the advantage of the MFA scheme, a comparison with 

the  random  search and the SA approach [10] is m ade in terms of computational 

complexity and throughput optimality.

1. Random Search (RS): In random search, a frame pa ttern  is randomly selected 

from the frame pa tte rn  space, and the one th a t  yields the largest throughput 

is kept until term ination. There is 110 fixed rule for term inating the procedure.
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Usually, the  procedure term inates after a certain num ber of iterations. Mere an 

iteration  consists of a  frame pa ttern  generation and a throughput comparison.

2. Simulated Annealing: To make the comparison fair, a.n iteration in [10] consists 

of a  pattern  generation and transition test based on the Metropolis criterion.

3. Mean Field Annealing: In MFA, to exploit the parallelism of neural networks, 

synchronous updating is adopted, i.e., the  current value for each neuron is 

updated  by using the previous neurons’ values. Therefore, neurons in the  

neural network opera te  in parallel, and an iteration implies tha t  the  whole 

network is updated once, i.e., all neurons are updated  once.

'File three algorithms are implemented and compared. Each algorithm is executed 

1000 times, and the throughput is averaged over the 1000 runs. Each run is defined 

as an execution of an algorithm. Fig. 4.6 shows the first 100 iterations of a  run 

a), the  arrival rate G =  0.5. It can be seen th a t  the  MFA approach reaches its 

s teady throughput within the  first 100 iterations. Fig. 4.7 is the  results after 500 

iterations. Fig. 4.8 shows th a t ,  after 1000 iterations, all of the  algorithms reach the 

s teady throughput. Fig. 4.9 shows the average d a ta  throughput over an ensemble 

of 1000 runs when the  arrival rate  G is 0.5. Fig. 4.10 shows the average throughput 

achieved by the three algorithms over an ensemble of 1000 runs at different arrival 

rates. It can be seen th a t  the  average throughput achieved by both MFA and SA are 

very close. At some arrival rates, MFA can achieve even be tte r  average throughput 

than its counterpart because finite-time implementation (1000 iterations) of SA does 

not guarantee convergence to global optima. The RS algorithm is not effective in 

searching for the optimal pa ttern . It can be seen from these results tha t  MFA achieves 

faster convergence than SA while achieving sub-optimal performance.
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4.6 Sum m ary

Searching for the  optimal patterns in an integrated TDMA communication system 

is a  combinatorial optimization problem. As the problem size gets large, the  com pu­

tational complexity becomes intractable. SA is a good algorithm in finding global 

optim al solutions, bu t  it is usually time-consuming. MFA, which uses saddle point 

approxim ation, is proposed to solve for the  optim al patterns. It is computationally  

efficient, and is able to acquire (sub) optim al solutions comparable to those obtained 

by SA. The determ ination of related param eters are addressed, and comparisons with 

the RS and SA approaches are presented. Numerical results have shown th a t  MFA 

is 5-6 times faster than SA and at the  same tim e achieves comparable solutions.
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C H A P T E R  5

O PTIM AL B R O A D C A ST SCH EDULING  IN  M ULTIHOP PACK ET  
RADIO  NETW O RK S

Another type of packet network is the mullihop store-and-forward multiaccess/broadcast 

network. In this type  of network, each station is equipped with a  transm itter/receiver  

and a control unit. Stations communicate with each other via broadcast radio. 

T he  control unit performs the packet switching functions. Connectivity between 

neighboring stations is established, which means th a t  the neighboring sta tions can 

directly receive transmissions from each other. All stations employ omni-directional 

antennas and share a  high speed radio channel. W hen a station intends to t ransm it,  

it broadcasts through its antenna. Each neighboring station receives the trans­

mission. If the transmission is destined for it, the neighboring station will absorb the 

packets. Otherwise, it will store the packets in its buffer and send them out later. 

Therefore, for any two d istan t stations where direct connectivity does not exist, the 

in term ediate  stations act as repeaters and perform store-and-forward functions. The 

typical example of the  multihop store-and-forward packet radio is the packet radio 

network (PR N E T ) sponsored by the Advanced Research Projects Agency (ARPA) 

[23]. It perm its mobile communication over a  wide geographic area, provides efficient 

multiaccess for bursty-type traffic, and allows coexistence with different systems in 

the  sam e frequency band and anti jam protection. Fig. 5.1 shows a  packet radio 

network in the  internet. The communication between geographically separated hosts 

arc established through the PR N E T . Fig. 5.2 illustrates the broadcast transmission 

of d a ta  packets.
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<Cj~
PCI

H OST

NIU
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F i g u r e  5.1 A P R N E T  in the internet.

Broadcast Destination

Broadcast Source

'  -*A

Network Topology

Broadcast Transmission W
^  IIosl/S ubN el/lcrm inal

F i g u r e  5 .2  The broadcast transmission in a  PR N E T .
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5.1 The Spatial T D M A  Protocol and the Scheduling Problem

In a multihop P R  network, since a single channel (usually broadband) is shared by 

all users, the  transmission for each station must be scheduled to avoid any collision 

or interference. Based on the  characteristics of a m ultihop network, the single radio 

channel can be shared by all stations in both tim e and space domains. A multiaccess 

protocol, namely spatial TD M A , can be used to schedule conflict-free transmission 

[2G], In the  spatial TD M A  network, tim e is divided into frames which consist of 

fixed-lcngth tim e slots. W hen certain stations transm it  simultaneously, collision or 

interference will occur. Therefore, any two stations th a t  may result in collision or 

interference must be scheduled to transm it at different tim e slots, while the stations 

some distance away may be arranged to transm it a t  the same tim e slots without 

causing interference. Since the primary objective of the  P R  network is to provide 

high throughput with low delay, a scheduling scheme must provide a  schedule which 

can achieve maximum  channel utilization as well as lower delay. For a fixed-topology 

P R  network in which locations of stations are fixed, the problem is to schedule a  frame 

in which each station transm its  at least once. Additional transmissions can be added 

into the frame if the addition does not cause any collision. There are two approaches 

for the  scheduling. T he  first approach is to schedule the transmissions within a 

frame under the condition th a t  the  num ber of tim e slots in a frame (frame length) 

equals N ,  the num ber of stations in a PR  network. The optimal schedule is the  one 

which can provide the m axim um  num ber of collision-free transmissions in a  frame. 

T he  second approach is to find an optimal frame schedule which has the minimum 

frame length while keeping a  m axim um  number of transmissions. Such a scheduling 

problem is NP-complete (Appendix A), which implies a  good algorithm rarely exists. 

In this chapter, an approxim ation algorithm based on mean field annealing (MFA) 

is presented to solve the scheduling problem.
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5.2 Problem  Formulation

A PR. network can be represented by a graph G — {V, E)  where the  vertices in V  

are network sta tions, and E  is a  set of edges. We assume th a t  the  network lias a 

fixed topology. T he  total traffic passing through station i consists of packets received

unit-length slots. Each frame consists of a  fixed number of tim e slots. D ata  can 

be transm itted  in successive frames. T he  transmission time of stations in a frame

transmission for stations in a  frame. Thus, once the optimal transmission patterns 

( the arrangem ent of transmissions) are determined, the frame is repeated in the  time 

axis. W ithou t loss of generality, we assume th a t  a time slot is equal in length to the 

am ount of t im e  for a  station to transm it one packet over the channel. We also assume 

th a t  all sta tions have the same transmission range R  and they are synchronized. 

Zero-capture is assumed, i.e., when some stations receive two or more overlapping 

packets, regardless of the difference of received signal power between the stations, 

collision occurs and all of the  packets are destroyed. For any two stations z, i' £  V , if 

the distance between them  is less than /?, they can receive the packets transm itted  

from each other. Therefore, there exists an undirected edge e =  (z,z') £  E  incident 

to station i and i', and the two stations are one-hop apart. If £  E  and there 

is such an in term edia te  station j  as ( i , j )  £  E  and £ E,  then station i and i'

are two-hop apart.  The topology of a PR  network can be described by an ( N  x N)  

sym m etric  binary m atr ix  C , where N  =  | V\  is the  num ber of stations in the  network. 

T he  m atrix , C  =  (cp) ( i , j  =  1, - • - A^), also known as the connectivity m atrix , is 

defined by

from other s ta tions which will be routed through station i and the packets from the 

term inals a t tached  to  it. The spatial TDM A protocol is adopted in which a single 

wideband channel is shared by all stations of the network. T im e is divided into

is scheduled to avoid any collision. We are concerned with the fixed assignment of

(5.1)
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To ensure th a t  a. packet is correctly received in a station, the following 

constra in ts  must be satisfied:

1. A station cannot have transmission and reception sta tus simultaneously, i.e., 

if ( m v) E E,  s tation i and i' must be scheduled to transm it  in different tim e 

slots.

2. A station is not allowed to receive two or more transmissions simultaneously, 

i.e., if ( i , j )  £ E  and (j,  k)  E E,  but (i , k ) $  E,  station i and k must t ransm it  

in different time slots in order to avoid collision in station j .

If the  first constraint is violated, Primary interference (collision-type) occurs. 

Secondary interference happens if the  second constraint is violated. Fig. 5.3 

illustrates the  two types of interference. The optimal schedule must guarantee 

interference-free transmissions. In short, a station and its one-hop or two-hop 

neighboring stations must be scheduled to transm it in different t im eslo ts .

Primary Interference Secondary Interference

We can form a new (M  x  N )  matrix  called the compatibility matrix  F  =  (f i j)  

from m atr ix  C , where

*
©  sta tio n  in  tran sm ission

O  sta tio n  in  recep tio n

F i g u r e  5 .3  Illustration of interferences.

1 if stations i and j  are one-hop or two-hop apart, 
0 otherwise. (5.2)

Note th a t  f a  =  0 V?’ and F  is symmetric, i.e., f i j  — fji .



57

Therefore, for any two stations i and j ,  if f i j  = 0, both stations can transmit, in 

the  same slot with no collision. We assume th a t  each frame consists of M  t im e slots. 

In a frame, each station m ust be scheduled to transm it  at least once (one tim e slot). 

Additional transmissions can be arranged provided th a t  the addition does not cause 

collision. We use an (M  X  N )  binary m atrix  5  —  ( s , j )  to express a  transmission 

schedule, where

1 if station j  transm its  a t  the  i-th  slot in a  frame, 
0 otherwise.

Let pk be the  channel utilization for station At, then

(5.3)

num ber of transmission slots assigned to station A: sa-
Pk =  ----------------------------z-------- :----- -t- 2 ------------------------  =  . 5.4

frame length M

The channel utilization for the whole network, /?, is given by

L N  j  M  N

P = = (5-5)
n  j = i  yv m  i= i j =  i

Denote S '  as a set of collision-free schedules where S ' — { A1, • ■ •, S N}, and each 

feasible schedule S '  is an M  x N  binary m atrix  defined by Eq. (5.3). Define ps , as 

the channel utilization achieved by schedule S '.  Therefore, the  optimal scheduling 

problem is described as follows.

Find the optim al schedule S opL G S '  so tha t

1. It has the frame length M  — N  (Approach 1), or 

It has the minimum frame length M  (Approach 2),

2. It satisfies the  constraints

M
E ST ^ 1 ( i  =  1 ,2 , - - - ,  AA), (5.6)
t=i

and
M  N  N

EEE/rf«? = o. “J (s.?)
k= l t'=i j=i
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3. it, yields the  m axim um  channel utilization, i.e.,

Ps°p‘ =  max ps>. (5.8)
S '  G S '

For a  given M  and N ,  there are 2 MN schedule configurations. An exhaustive 

search for the  optimal schedules is prohibitive when M  and N  are large.

For the  second approach, the m inimum  frame length depends on the topology 

of the  network and is generally unknown for a P R  network. However, a tight lower 

bound for a frame length can be found analytically, thus allowing one to es tim ate  the 

m inimum  required frame length. By defining the degree of a vertex i as the  num ber of 

edges incident to it and denoting the degree as deg(f), we have the following lemma:

Lem m a 5.1 The fram e length M  satisfies

M > A ( G )  +  1, (5.9)

where

X ( G )  = m $x  deg(i). (5.10)
V?, G V

Proof: It is obvious th a t  deg(?i) equals the  num ber of one-hop neighbors of station

i. Denote D( i ) as the set of one-hop neighbors of station i. For any two 

s ta tions j , j '  G B(i ) ,  since ctJ = 1 and c,y =  1, station j  and j '  are one-hop 

neighbors if cjg =  1 and two-hop neighbors if Cjy = 0. According to the 

constraints mentioned above, station i and all its deg(i) one-hop neighbors 

m ust be arranged to transm it in different distinct time slots in order to obtain 

collision-free transmissions. Any two stations j ,  j '  G B( i )  cannot transm it  in 

the  sam e slot. Therefore, the  required num ber of t im eslo ts  for transmission for 

station i and its one-hop neighbors is deg(/) -f 1, and the least required num ber 

of t im e  slots of a frame for the  network, A(G'), is given by

A (G) — X { G)  +  1 =  max deg(f) +  1. (5.11)
Vi  G V
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□  in c e p t io n  n lo t

<»> (b)

F i g u r e  5 .4  Two P R  networks and their transmission schedules.

5 .3  T h e  O p t i m a l  S c h e d u l in g  A l g o r i t h m  B a s e d  o n  M F A

Eq. (5.11) only provides a  lower bound for the frame length. For a given network, 

the  frame length for any of the collision-free schedules is always greater than  or equal 

to A (G ), i.e., the  inequality M  > A (G ) holds. The real frame length for an optimal 

schedule depends on the topology of a  network. For certain networks, a  feasible 

schedule with exact frame length A(G') may not exist. Therefore, a longer frame 

length is required. T he  example shown in Fig. 5.4 is used to illustrate  this point. In 

this figure, two networks and the  corresponding optimal schedules are given. In Fig. 

5.4 (a), X ( G )  =  2, A ( G)  =  3, M  =  .Y(G) +  J =  3, and the equality M  — A(G') holds. 

In Fig. 5.4 (b), however, X ( G)  = 2, A(G') =  3, M  =  4, and the inequality M  >  A(G’) 

holds. Thus, a  feasible schedule with the frame length A(G') does not exist. From 

this exam ple, we can see th a t  the minimum required frame length is dependent on 

the connectivity  of a network, and cannot in gereral, be predetermined. The lower 

bound for the  frame length in Eq. (5.9) provides useful information when collision- 

free transmissions are scheduled. We can sta r t  to search for the optimal schedules
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with a frame length equal to the lower bound A (G ). If no feasible schedules with 

this length can be found, we will increase the frame length, and then search further 

for feasible solutions. In this way, the scheduled frame length would be minimized. 

Once the frame length is determined, the  optimal scheduling procedure will continue 

until a collision-free schedule with m axim um  channel utilization, defined in Eq. (5.5), 

is found. This schedule provides the  optimal solution for the scheduling problem. 

In the sequel, we will discuss how to use neural networks to solve such an optimal 

scheduling problem.

5.3.1 Energy Function

To solve the optim al scheduling problem by using MFA, we first need to m ap the

channel utilization to be maximized and the constraints into an energy function.

We assume th a t  the  frame length is M  and there are N  stations in a P R  network. 

M  X  N  neurons are required to represent a schedule. Each neuron (i = J, • ■ •, M; 

j  =  1, • • •, N )  is defined in Eq. (5.3). The following energy function is derived

, M  N  \  . . .  M  N  N  M  N

/; = - arjuEE4+yEEE E E -M i -»«)• (s.i«“ i= ij= i j  z k=u=lj= i t=ij=i

where weights > 0, i =  1,2 ,3 . The first term  in Eq. (5.12) is negatively weighted 

channel utilization. The second term is a  penalty function for constraint violations. 

When the constra in t is satisfied, it becomes zero. The third term is used to force 

neurons to converge to either 0 or 1 (if all .s,j =  0 or 1, the third term equals zero). 

The mean field of neuron i j  is

C 7  =  =  -jpM  ■ v ij -  f j k  ■ Vik -  w 3 ( l  -  2v i j ) ,  ( 5 . 1 3 )
*•7 k — 1

w lie re
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5.3.2 T he MFA Scheduling A lgorithm

The updating  of the  neuron average is given by

+  A/,) =  X-  j l  +  tanh ^  ' Vii ~  u ’2 1 2  ft*  ' v *  ~  w '-'( 1 ~  2,’o ) j  } •

(5.14)

Then the  MFA iteration proceeds until freezing occurs. For the  first, approach, 

the  frame length is equal to  the  num ber of stations in a PR. network. For the second 

approach, since the exact frame length is unknown, we can s ta r t  to schedule the 

frame with length A (G ), the lower bound of the frame length shown in Eq. (5.11). 

The proposed scheduling algorithm includes three steps:

Step 1: P rese tting  neurons

Approach 1: The frame length equals the  number of stations in a PR 

network. Set vn — 1 Vz € V

Approach 2: Find the station p which has the maximum degree X ((.!), then 

set the  initial frame length M  =  A (G ) as defined in Eq. (5.11), and assign 

station p and its one-hop neighboring stations j  £  B(p)  =  : cpk =  1}

to the  different distinct tim e slots. For example, set v >v =  1 and u,j =  1 

Vj 6  B(p)  (i. = 2, ■ • • , A (G )) . For the i-th slot, since Vjj =  1, T he  A:-1h 

neuron with f jk — 1 must, be set to  «,•<. =  0 to  resolve collisions (see Eq. 

(5.7)). The preassigned neurons no longer need to be updated and their 

values will be used to upda te  the  o ther neurons.

Step 2: Performing the MFA iterations based on Eq. (5.14)

d'he iteration continues until freezing occurs and the freezing s ta te  should

provide the m axim um  channel utilization within the frame length M .

Step 3: Applying the heuristic algorithm for unassigned stations (only for Approach

2 )
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After completing the above two steps, some stations might remain unassigned 

for transmission due to the collision-free constraint. The num ber of unassigned 

sta tions depends on the topology of the  network. Usually, after the first, two 

steps, only a few stations are unassigned. Ex tra  t im e slots are needed to 

arrange the remaining transmissions. We use the following heuristic algorithm 

to schedule the  transmissions of the  unassigned stations. Denote the  unassigned 

sta tions as U =  {IJ\ , ■ • •, Uq}

1. Sort the  stations in U in a  descending order of station degree such that 

deg(£/,-) >  dcg(U1+l).

2. Add a  tim e slot for the  frame, and assign the stations in U to transm it 

in the  slot. The priority of assigning a s ta t ion’s transmission is based 

on the  order of U\  i.e., the  priority of //, is greater than th a t  of UI+i . 

T he  stations arranged in the  slot must be conflict-free. Repeat the above 

procedure until U is empty.

3. T he  actual frame length M  equals A((7) +  the num ber of added time 

slots.

A. Check the stations which have been assigned to transm it  in the  first A(G') 

t im e slots. If any of the  stations can transm it in the  added tim e slots 

w ithout conflict, assign the  transmissions of the stations in the  corre­

sponding tim e slots.

After the  three steps are completed, the optimal schedule represented by <;,j 

V / , j  is transla ted  into the actual transmission assignment (i.e., i;;j =  1 means that 

station j  can t ransm it  in slot /).

To illustrate  the  scheduling algorithm, we use the network shown in Fig. 5.2(a) 

as an example. Fig. 5.2(b) is the  result from the  first step. T he  value in the  /-th 

row and j - t h  column is Vij, the value of neuron i j .  Vij =  1 means th a t  station j  can
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transmit, in slot, i, whereas Vij — 0 implies that, it, is prohibited from transm itting . 

The values for the em pty neurons are decided in the successive steps. Fig. 5.5(c) is 

the  result, after the second step is performed. For this example, after the second step 

is completed, all stations have been arranged for transmission. Therefore, the  third 

step is not executed.

rccciption slot 
transmission slot 

slot to be arranged

(a )

STA TIO N  STATION

SLO T

¥
8 9 1011 1 2 1 3  14 1 5

3 1

1011 12 1 4 p

n

(b )  _ (c)
F i g u r e  5.5: Illustration of the  procedure involved in the MFA algorithm, (a) the
15-station network, (b) the result from the first step, (c) the  result after the second
step is executed.

5 .3 .3  C r i t i c a l  T e m p e r a t u r e

Each neuron is updated according to:

v u , ,6.,5,

where w,-j = <  ,s,-j >'/■, and <  • >  is the averaging operator, v  =  (u,j) is the neuron 

m atr ix  of dimension M  >< N,  and n  stands for the n-th iteration.
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From Eq. (5.15), it is seen tha t  iterations starting  at too high a  tem pera tu re  

result in trivial solutions. S tarting  at too low a tem pera tu re , on the o ther hand, might 

force the system into a poor or invalid solution. Critical tem pera ture  is defined as 

the  tem pera tu re  at which fast s ta te  transitions begin.

For the scheduling problem,

(n) 1 , 1 ,  t (  1
=  — —  tanh I --- —-------- — rr— 1

2 2 I 2 T  d v^ - l) J
1 1 =  -  H—  tanh
2 2

1
2T

v
w l  ( n — 1 )

M  N  V,J

N

+ «»2 J 2  Ijk ■ Wife ) +  W'\{ 1 -  2uj" ‘ )
k= 1

(5.16)

It is seen from Eq. (5.16) tha t  the  s ta te  of each neuron remains relatively 

unchanged a t high tem peratures. The iteration procedure in Eq. (5.16) should 

s ta r t  a t  a tem pera tu re  (the critical tem pera ture) a t  which fast transition begins as 

illustrated in Fig. 5.6 until steady s ta te  is reached. Thus,

0 .9
S teady State

0.8

0 .7

0.6

0 .5

0 .4  -

Fast T ransition
0.3

.. .  F as t T ransition
0.2

S teady  S tate
0.1

3 ■2 - a  0  a 2 3

F i g u r e  5 .6  The illustration of s ta te  transition.

8 E
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where 0.1 <  a  <  0.2 is chosen, a t  which s ta te  transition becomes rapid. Since all 

neurons arc initialized to  0.5±<5l (61 is a  small random num ber), we choose

T r

Thus,

1
2a  

1
2 a

J _  
2a

T c  >

d E
(0 )
>i

0 . 5 V F ,  

' M N

0 . 5 I T ]

'  M N

N

+ W 2 ^ 0.5f jk + W , ( l - 2v ^ )
k=t

+  w 2 f ; o . 5 / iifc
k—1

( 5 . 1 7 )

or

Tc <

4a

1

IT,
~MN

n  \

+  W '2 • min f jk  I , 
J *=i /

l l/’ +  W 2 • max f jk  ) • 
j fc=i4 a  ^  M N

T he lower bound for the  tem pera tu re  is taken as

T r  =
1

4 a

W t

M ~ N
+  W 2  • m i n!'H E f j k ]  ■

.1 k J
( 5 . 1 8 )

T he  derived critical tem pera tu re  is suitable only for the synchronous mode, 

in which all v}"  ̂ are updated simultaneously using the previous v^n~lK For the 

asynchronous mode, each neuron is sequentially updated. The critical tem pera tu re  

for asynchronous iteration can be es tim ated  by a trial-and-error m ethod, i.e., the 

iteration s ta r ts  a t  a very high tem pera tu re  and the tem pera ture  is gradually lowered. 

At each tem pera tu re ,  each neuron is sequentially updated once. At the  end of each 

iteration, the  absolute average value

1
cl

M N 2 E E C - - ! ; ( 5 . 1 9 )

is checked. At high temperatures, el <C a  for some constant a. When cl >  cv, 

significant state transitions begin. Therefore, when el > cv, the trial process ends, 

at which point, the corresponding temperature is critical.
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5.3.4 A nnealing Schedule

T he annealing schedule reflects the way the tem pera tu re  is reduced, and the following 

empirical annealing schedule

Tn+1 =  0.9 • Tn (5.20)

is adopted  in our simulations.

5.3.5 Stopping Criterion

At a  very low tem pera tu re , all neurons converge to cither 0 or 1. Let

(5.21)

Thus, the  iterative process may stop either when the error is approaching 0 (in our 

case, c.2 <  0.01) or when the tem pera tu re  reaches 0. The final values of neurons 

represent the  schedule.

utilization and average tim e delay. The channel utilization is defined in Eq. (5.5). 

Before we derive the average tim e delay, the following assumptions are made:

1. Packets have a  fixed length, and the length of a  tim e slot equals the time

required to transm it a packet.

2. T he  interarrival tim e for each station i is statistically independent from other

stations, and packets arrive according to a  Poisson process with a  rate  of A;

(packets/s lo t). The total traffic in stations i consists of the  traffic incoming 

from other  stations and the da ta  from terminals attached to it. Packets are 

stored in buffers in each station and the buffer size is infinite.

5.4 Num erical Exam ples and Performance Analysis

5.4.1 Channel U tilization  and Average T im e Delay

T he performance of the  resulting schedules can be evaluated by two criteria: channel
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3. The probability distribution of the  service tim e of station i is deterministic 

and statistically independent from other stations. T he  average service rate  is 

fii (packets/slot).

4. Packets can be transm itted  only at the  beginning of each tim e slot.

Under the  above assumptions, a  network can be modeled as N  M /D / l  queues, where

N  is the  num ber of stations. According to the Pollaczek-Khinchin formula  [7], the

average delay for each queue i is given by

Oi = X ,  +  — f r y  (5.22)
2 ( 1  -  P i )

where .V,- =  2- is the average service time for station i ,

Pi — is the  utilization factor for station i. and' 1 u i ’

X f  is the  second m oment of service tim e for station i.

Since the service tim e is deterministic, the variance equals zero, and thus

X f  =  X-2 -  - 1 ,  (5.23)

and
y m_ v

Hi =  — ■ (packets/slot). (5.24)

The total tim e delay is given by

»  =  (5-25)
2^i= 1 *

5.4.2 Num erical R esults

T hree  PR  networks with 15, 30, and 40 stations are scheduled in our numerical 

examples. The networks are shown in Fig. 5.7. The scheduling results for the two 

networks are shown in Fig. 5.8 for Approach 1 and in Fig. 5.9 for Approach 2. For 

the  three networks in Approach 2, A(G') - 9, 10,9 and the scheduled frame length 

is 9,1 1,10 respectively, which are close to the lower bound shown in Eq. (5.9).
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We compare the performance achieved by the  MFA scheduling algorithm with 

the o ther two scheduling algorithms [13], [41] in which the  objective of scheduling is 

to achieve the maximum  channel utilization. The tim e delay and channel utilization 

are plotted in Fig. 5.10. From this figure, if is seen th a t  the  tim e delay experienced 

by the MFA schedule is much less than th a t  of the o ther two scheduling algorithm s 

which have the same tim e delay, and the channel utilization achieved by MFA is a 

little  bit less than the o ther two.

5.5 Summary

In this chapter, an MFA-based algorithm is proposed to solve the broadcast 

scheduling problem in P R  networks. Two approaches are used in the  scheduling. 

Approach 1 provides the  highest channel utilization among all of the approaches, 

bu t the  tim e delay is much larger than Approach 2. Approach 2 has the minimum 

tim e delay at the expense of lower channel utilization. As compared with the E&T 

algorithm  [13], the proposed MFA approaches provide superior performance in both 

channel utilization and average tim e delay.
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a

(b)

( c )

F i g u r e  5.7: T he  radio networks used in the  simulation, (a) the 15-station network, 
(b) the  30-station network, (c) the 40-station network.
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.station

timeslot

Figure 5.8: The MFA broadcast schedules for Approach 1: (a) the 15-station 
network, (b) the 30-station network, (c) the 40-station network.
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itation

s ta tio n

time slot

Figure 5.9: The MFA schedules (Approach 2): (a) (.he 15-sf,ation network, (b) the 
30-station network, (c) the 40-station network.
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C H A P T E R  6

O PTIM AL C H A N N EL  A SSIG N M ENTS IN  FDM A MOBILE  
CO M M UNICATIO N NETW O RK S

In the  FDMA protocol, the  whole available bandwidth is subdivided into a num ber of 

subbands called channels. Each user in the network is confined to access an allocated 

channel only. Although FD M A takes a  fraction of the  bandwidth to achieve adequate  

frequency separation, it is relatively easy to implement and requires no real time 

coordination. One of the FDMA examples is cellular communication systems, in 

which the frequency band is allocated by the Federal Communications Commission 

(FCC) to be on 824-849 MHz for uplink transmissions (from a mobile to a  base 

sta tion) and on 869-894 MHz for downlink transmissions (from a base station to a  

mobile). The frequency band is subdivided into a  certain num ber of narrowband 

channels, each capable of supporting one phone circuit tha t  can be accessed by any 

user. The channels are indexed by a sequence of numbers {1,2, , N } .  Channel i

and Channel i -\-1 are called adjacent. The channel spacing is 30 kHz. Therefore this 

frequency band can accom m odate  832 duplex channels [12][17][27][36]. Furthermore, 

the  832 duplex channels are equally divided into Bands A and B .  Voice and control 

channels arc assigned at each base station from the allocated spectrum, either A or B  

band. Therefore, there are 416 channels for each band, including 21 control channels 

for call setup. Thus, each band has 395 available traffic channels for voice trans­

missions. Fig. 6.1 shows a cellular communication system in which a geographical 

a rea  is divided into hexagonal cells. The number of cells A', which cannot use the 

sam e channel, is called the frequency reuse factor. This prevents adjacent cells from 

interfering with one another. A frequency pattern , or cluster, is determined by the 

equation K  - i2 + i j + j 2, where i , j  £  Z +. The cluster shown in Fig. 6.1 corresponds

74
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i — 1 and j  =  2, or I\ =  7. K  is related to the distance, D, between two adjacent 

cells which use the same frequency, and the  radius of a  cell ?■, by

F i g u r e  6.1 A cellular network with K  =  7.

There are currently 395 traffic channels available for a cell a t  each band. To 

account for interference, a cell can only use 3 9 5 /A' channels. Each cell is further 

divided into 3 sectors for be tter  reception. Thus, a cell sector can support 395 /3A' 

traffic channels. For example, for K  — 7 as shown in Fig. 6.1, each cell can support 

395/7 =  56 traffic channels and each sector in a cell can only support 56/3 =  18 

traffic channels (calls).

As the dem and for communications increases, hundreds of channels may be 

required to serve thousands of concurrent users. To meet this requirement, channels 

must be reused in a certain way. In a cellular rnobile-telephone system, the whole 

geographical communication area is divided into cells. Each cell covers a sub-area.
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T he  sam e channel used in one cell might be reused in another cell provided th a t  the 

two cells are separated by a certain distance in space. Interference may occur when 

the  sam e cell or different cells use certain pairs of channels. In order to avoid any 

interference, three types of interference constraints, namely co-channel, adjacent- 

channel  and co-site, must be satisfied. We will address the constraints in the  next 

section. The channel assignment task, given a group of available channels, is to 

find an assignment th a t  satisfies the  users’ communication demands and various 

constraints.

6.1 The O ptim al Channel A ssignm ent Problem

For an n-cell inhomogeneous cellular radio network, the cell system is expressed by 

A’’ —- {.i'i, .t2, .!■„}, where aq Vz is called a cell. The  requirement on A’ is an n-vector

R  =  (r,)  where r t is the num ber of required channels by cell .r,. The interference 

constra in ts can be described by an n  x  n  non-negative m atrix  C  =  C  is called

a. compatibility matrix  on X  and it is defined as follows.

1. Co-channel constraint ctJ =  1 (i ^  j):  if / ,  f  are the channels assigned to cell

Xi and x j  respectively, then they must satisfy |/  — f  | >  1. T h a t  is, the pair of

cells X{ and Xj cannot use the same channel.

2. Adjacerit-channel constraint e,, =  2 (i, /  j ) :  in this case, it requires \ f  — f ' \  > 2. 

T he  use of adjacent channels (i.e., \ f  — f ' \  =  1) in ,r, and Xj is prohibited.

3. Co-site constraint ca — I: here I is a  positive integer. If the channels /  and f

are allocated to cell aq, \ f  — f ' \  >  I must hold, i.e., the  channels used in the

sam e cell m ust be separated by a  certain distance in the  frequency domain.

We define an n-vector F  =  (/'"j), where /'j is a bundle of channels assigned to cell .r, 

and |/ 'jj is the  num ber of channels assigned to cell x t. A triple \ \ c  = ( X , R , C )  is



calk'd a channel assignment, problem. F  will he called a, feasible channel assignment  

for l ie  if t-lie following conditions are satisfied.

1. I^il =  r i, V?;

2. | /  -  f  | >  cij, for all Xi,Xj  G  X , f  G  G F j .

If rn successive channels are assigned to cells in an assignment, then m  is called 

the  span of the  assignment. For a given channel assignment problem P ,  the  objective 

of the  assignment is to  find a  feasible channel assignment F  th a t  has the  minimum 

span while satisfying all interference constraints. Like the broadcast scheduling 

problem, the m inimum  span cannot be decided in a straightforward way, hence some 

lower bound is expected to assist the searching for the  optimal assignment.

In the simplest, form of the  channel assignment problem where only a  co-channel 

constra in t is considered, it is shown to be equivalent to a graph coloring problem, and

therefore an NP-com plete optimization problem. The extension of the  constraints

will show tha t  the  channel assignment is NP-complete. We will prove this NP- 

cornpleteness in Appendix B.

6.2 Neural Network Solutions to the Channel Assignm ent Problem

Since the  channel assignment problem is NP-complete, we use the  effective MFA 

approach once again. To m ap the problem onto a neural network, we define tha t

_  J 1 if channel j  is assigned to cell ,r,,
S<J |  0 otherwise. ( }-f)

For a channel assignment problem Uc  =  (A ', /?., C), assume th a t  there  are n 

cells and rn channels (to be decided); the  energy function can be formulated as 

follows.
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where

9{x)  =

1 if x < L,
x  if 1 <  x < rn, (6.3)
rn i f . r > m .

S' =  (.sjj) is an n  x  rn matrix  representing a neural network, and sp expresses the 

sta tus  of neuron i j .  T he  steady sta te  of the neural network S corresponds to an 

assignment. T he  first term  in Eq. (6.2) is the penalty function for constraint 

violations. It consists of

n m  a { p + c-n — I)  n n m  )

e. = y E E  E w ,  + y E  E E  E w * -  (M)
1 =  1 ; ) = 1  q = g ( p - c „  +  l )  “  1 = 1  j = l j ^ i  P = 1  7 = ; / ( j ) - c , j  +  l )

T he first term  in Eq. (6.4) reflects the  co-site constraint. The second term represents 

the  co-channel and adjacent-channel constraints. For an interference-free assignment, 

E\ is equal to zero. The P 2 term in Eq. (6.2) reflects the requirement constraint. 

W hen an assignment, meets the requirement R, E? is zero. Therefore, the minimum 

energy of the  neural network is zero. The optimal assignment will yield the minimum 

energy.

6.3 The D eterm ination of the Frequency Span

fo r  a given compatibility  matrix  C  and the  channel requirement vector R,  we first 

need to  determ ine the minimum frequency span (the number of required successive 

channels), which is denoted by in. However, as it is shown in Appendix B, the 

determ ination of the  minimum span is polynomially-related to the  graph coloring 

problem which is an NP-complete problem. Therefore, the problem itself is NP- 

complete. In order to apply the MFA scheme to solve the channel problem, the 

following two m ethods are used to approximately determine the minimum span. 

After this, the MFA algorithm is used to search for the feasible channel assignment. 

If no satisfiable assignments can be found, the  span rn is incremented by one or more, 

depending on how far the assignments are from the channel requirement R. The  two 

m ethods are described as follows.



6 .3 .1  M ethod  1 of D eterm ining the Frequency Span m

T he out,put of M ethod 1 is denoted 0 | .  Usually, c„, the  minimum frequency 

separations for any channels assigned to Cell i (V/), are larger than c,7, the  frequency 

separations for the  channels assigned to any two different cells i , j .  If c„ c,j, we 

can simply decide m  by the formula

0 \  — Ca • ( r ,  —  1) +  1

i =  { k :  ?'i. =  max r , ] (6.5)Vj^k J 1

6 .3 .2  M ethod 2 of D eterm ining the Frequency Span m

The ' of M ethod 2 is denoted 0 2. If ('a is close to c,-j for all i , j ,  Method 1 

may not work properly. The following heuristic algorithm is used to determine the 

minimum span rn. It can provide a tighter value close to the minimum required span 

only when c,, =  2 and c,j =  0 or 1. A denotes the set of cells which have been counted 

in the calculation of 0 2, and U denotes the  set of the remaining uncounted cells.

l . 0 2 = CpP(rp — 1) +  1; A  <— x p, IJ <— X  — x p, where p satisfies the inequality 

ci>p(rP ~  1) >  ca(r i — i) V.'c,; y -i— <9 ( if y =  0, 0 2 remains unchanged in the 

next step; if y = 1, 0 2 will be incremented ).

2. Select q £  U such th a t  cqq(rq — 1) >  ctl(rt — 1) V x t £  U

If cqi = 1 V Xi £  A and y = 1 then 0 2 <— 0 2 +  c,lq(rq — 1), y <— 0.

If c.qi =  1 V Xi £  A  and y — 0 then y  <— 1.

3. A <— A  +  q, U <— U — q, repeat Step 2 until U is empty.

In our numerical examples, both m ethods are applied to computing rn and they

provide satisfactory results. The determination of the exact required frequency span 

is still an open question.

35
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6.4 Convergence of the MFA Channel Assignm ent A lgorithm

If we define

Z m(a, b) =  {/ : /, a, b £ Z+, a <  I < 6}

and

Z m(a,b) = {/ : / 6 Zm( l ,m )  and / ^  Zm(a, &)}

( 6 .6 )

( 6 . 7 )

Then
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where

T  • -  _!£L ■* ipi jq — ~ C|7 n (i-4*)
\1=Z„,  ( a iv +c i j - \ ) , a ( v + c i j ~  l))

-  -  W 2 M  I -  S p m )  (  I I  (] _  8 1l)

h

ll«ll ! = E ' ' . ?i=l
Since ^ | | 7 ? | | 2 is a  constant for a given w 2 and does not afTect the iteration 

procedure, this term can be ignored, and the energy function can be written in the 

form of

Note th a t

n n m m  n m

fi(S) =  - E  £ £ £  f i p i j q  S ipS jq - E E v . >1=1 j =  1 p= 1 9=1 i=l p=l

T- — T1 'Pi]<i — 1 jqi'p

( 6 .8 )

(6.9)

In C hap ter  3, we have proved tha t ,  if the energy function can be written in

a. form as Ecp (3.27), the MFA iterations based on Eq. (3.29) will guarantee the 

convergence at each tem pera ture . Since Eq. (6.8) is written in the  form of the 

Hopfield energy function as defined in Eq. (3.27) and the m atrix  (7'iP,j,; ) is symmetric, 

the  MFA approach to solve the channel assignment problem will lead the iterations 

to converge to the  local m inim a at each tem perature.

By taking the derivative of the  energy, we have

W » )  A  ‘ • ' S r ' *  ,  i r  1
= ";i E  E  CikSki + u;2 E  s n ~~ r< •

^ S 'p  k = 1  i=g(p-c,k+i)
Therefore, the MFA iterations are

(=i
( 6 . 10 )

\  \  tanl, 27’

n fl(p+c,k-1)
E  E
k= I l=g(p-c,k + l)

i(,l E  E  cikvkl 0  +  w 2 E  ( 4 n l )  -  r <)
1=1

(6.11)
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6.5 The D eterm inations of MFA Param eters

We use approaches similar to those presented in the previous chapters to determ ine 

such param eters as critical tem perature , annealing schedule and iteration term ination 

criteria. Only m inor changes are made in the determinations and the details are 

skipped in this chapter.

6.6 Num erical Exam ples and Results

T hree  instances with 5, 10 and 25 cells have been tested by the proposed MFA channel 

assignment algorithm. Fig. 6.2 list the compatibility matrix  and the requirement 

vectors for all of the instances. Assume th a t  the  available channels are numbered 

from 1 to rn. The  assignments are shown in Fig. 6.3. In Fig. 6.3, Cell i represents 

.r,. In Fig. 6.3 (a), (b), the frequency spans rn are estimated by Method 1 described 

in Section 6.3.1 and they are 67 and 204, respectively, which are equal to the  spans 

of the  actual assignments. In Fig. 6.3 (c), the estimation of rn by M ethod 2 is 69 

and the actual required span of the assignment is 73, so the es tim ate  is a good one. 

Although the determ ination of m is NP-complete, the m ethods we proposed provide 

satisfactory results in our simulations. The running tim e for all of the three examples 

is only a few seconds on a  Sun Sparc 20.

6.7 Sum m ary

T he channel assignment problem arises when the scarce and expensive frequency 

resource must be fully utilized. It is proved th a t  the assignment problem is NP- 

complete. In this chapter, an MFA-based algorithm is proposed to solve the  difficult 

optimization problem. Three interferences constraints, namely co-cell, adjacent, and 

co-site, are considered. The energy function can be written in the form of Mopfield 

net, which has been proved to guarantee the MFA iteration convergence. Two
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"7 2 1 2 2 ’ V

2  6  2  1 2 9

1 2  6  2  1 9

2  1 2  6  1 8

2  2  1 2  6 12

7 3 1 0 1 3 3 I 0 0
3 7 3 1 0 0 3 3 1 0
1 3 7 3 0 0 1 3 3 0
0 1 3 7  3 1 0 1 3 3
1 0  0  3 7 0 1 0 1 3
3 0  0 1 0 7 3 1 0 1
3 3 1 0 1 3 7 3 1 0
1 3 3 1 0 1 3 7 3 1
0 1 3 3 1 0 1 3 7 3
0 0  0  3 3 1 0 1 3 7

18
17
8
4

5
9
10
2 0
2 4
3 0

(a ) (b)

2 1 
1 2 
1 1 
0 0 
1 1 
0 0 
1 1 
1 1 
1 0 
1 1 
0 0 
1 1 
1 1 
1 I 
1 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0

1 1 1 
0 1 
1 1 
1 1

1 0  2 0 0 0 0 1

0  1 0  1 
0 10 11
1 1 1 1 I
2 0 0 11

0 0 2 0 0 0 
2 1 1 

2 
1 
I 
1 
1 
1

0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 1 
10 0 0 0 0 0 
10 0 0 1 1 1 
10 0 0 0 10

0 1 1 1 1 0  
0 1 1 1 1 0  
1 1 1 1 0  0 
1 1 1 0  0  0
1 1 1 I 1 1 
1 1 1 1 1 1  
1 1 1 0  0 0 
1 1 1 0  0  0 
1 1 0  0  0  0 
1 1 1 1 1 1
2 0 1 1 1 1  
0 2 1 1 0  0 
1 1 2  1 1 1  
1 1 1 2  1 1  
1 0  1 1 2  1 
1 0  1 1 1 2  
0 0  1 I 1 1 
1 0  1 1 1 1  
1 0  1 1 1 1  
1 0  1 1 1  
1 0  0  0  1 0  
1 0  0  0  1 0  
10 0 0 0 0 
1 0  0  0  0  0 
10 0 0 0 0

(c)

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 1 
0 1 1 1 1 1  
0 0 0 0 0 0

0 0 
0 0 
0 0

1 0 0 
1 0 0 
1 1 1 
1 0 0 
0 0 0

10 1 1 2  11

0 0

0 0 0 
0 0 0 
0 0 0 
1 1 1 
0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 1 1 
0 1 0 
1 1 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 0 0 

0 0

12 11 
1 1 1 1 2  1

0 0 0 0 0 1 
0 0 0 0 0 1

1 0

F i g u r e  6 .2 : Com patibility  m atrix  and requirement matrix, (a) Cl and R.1, (b) C2 
and R.2, (c) C.'l and R3

m ethods are presented to  es tim ate  the  m inimum span and they provide satisfactory 

results. T he  related param eters  encountered in the  MFA iterations are determined 

in the  similar ways similar to those in the previous chapters. Three instances are 

tested by the algorithm and it provides feasible solutions for all of instances.



cell channel number

1 3 10 17 27 34 41 51

2 5 15 21 29 39 45 53 59 65

3 2 8 18 24 32 42 48 56 62

4 12 22 30 36 44 54 60 66

5 1 7 13 19 25 31 37 43 49 55 61 67

(a)

cell channel number

1 66 73 80 87 94 101 108 115 122 129 138 147 154 161 168 175 183 190 198

2 76 83 90 97 104 111 118 125 144 151 158 165 172 180 187 194 201

3 141 148 155 162 169 176 197 204

4 179 186 193 200

5 4 11 18 25 32
6 3 10 17 24 31 38 45 52 59

7 6 13 20 27 34 41 48 55 62 69
8 2 9 1623 30 37 44 5158  65 72 79 8693 100 107 114 121 128 135

9 5 12 19 26 33 40 47 54 61 75 82 89 96 103 110 117 
124 131 138 145 152 159 166 173

10 1 8 15 2 2 2 9 3 6 4 3 5 0 5 7  6 4 7 1 7 8 8 5 9 2  99 106 113 120 127 
134 141 148 155 162 169 176 183 190 197 204

(b)

cell channel number cell channel number

1 1 9 17 25 33 41 49 57 64 70 14 8 1624 32 40 4 8  56
2 2 1018 26 34 42 5058 65 71 73 15 3 11 19 27 35 43 51
3 3 11 19 27 35 43 51 59 66 16 2634 42 50 58 66
4 1 9 17 25 33 17 2 101841
5 4 1220 28 3644  52 60 67 18 2025 28 33 36
6 4 12 20 28 4149  57 64 19 1 4 6 9  12
7 36 44 52 60 67 20 5 13 17 21 29 37 45
8 8 16 24 32 4048  56 21 53 55 58 60 62 65
9 26 3 4  42 50 22 30 68 71 73

10 5 13 21 29 37 45 53 61 23 3 11 19 27 35
11 2 10 18 41 49 57 64 70 24 3843 51 59 65 67 69 72
12 6 1 4  22 3 0 3 8 4 6  54 62 68 25 4 6 12 14 22
13 7 15 23 31 39 47 55 63 69 72

(c)

F igure 6.3 Channel assignments (a) F 1, (b) /'’2, (c) F3.



C H A P T E R  7

CONCLUSIONS

In this dissertation, mean field annealing theory is applied to solve difficult combi­

natorial optim ization problems encountered in multiaccess communication systems. 

T hree  problems, namely optim al frame pattern search, broadcast scheduling and 

optim al channel assignment, are thoroughly investigated. The main conclusions are 

as follows:

1. In order to  meet the  increasing demand for telecommunication services, the 

limited frequency spectrum  resources must be efficiently utilized. Multiaccess 

protocols have been proposed in order to reuse the  scarce and expensive 

channel resource in frequency, tim e and space domains. It has been shown 

th a t  most optimization problems encountered in the  multiaccess systems are 

NP-com plete, and so polynomial algorithms for finding solutions are unlikely 

to exist.

2. In solving the  combinatorial optimization problems, heuristic algorithms 

usually provide fast search procedures for finding solutions. However, as 

the  problem size increases, there will be many local ex trem a (m axim a or 

m inim a), and heuristic algorithms may get stuck in local op tim a which 

m ay be far away from the  global optima. Also, heuristic algorithms are 

usually problem -dependant, that  is, one efficient heuristic algorithm th a t  

efficiently solves optim ization problem may not be applicable or effective 

for ano ther  problem. In contrast, the simulated annealing approach usually 

yields good approxim ate  global op tim a for a wide range of problems. The 

annealing process allows the system search to occasionally jum p  out from local 

m in im a while keeping the local search behavior a t  each tem perature . As the

85
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tem pera tu re  decreases, the probability for the system to stay in the global 

op t im a  approaches one. However, the iterations in reaching global optima, 

in SA are very time-consuming. Usually, the  efficiency of an algorithm is 

evaluated by the computational complexity and the  solutions quality, where 

solutions quality measures how close the solutions found are to the  global 

ones. Mean field annealing, which uses the approximation technique, is a  good 

trade-oir between the computational complexity and the solutions quality. 

Instead of the  stochastic searches in SA, MFA finds the thermal averages at 

each tem pera tu re  by a sequence of deterministic equations, leading to fast 

convergence to the thermal equilibrium at each tem perature . On the o ther 

hand, the  analogous annealing process is applied to MFA to avoid its getting 

stuck in local optima.

.‘5. T he  convergence and stability of the MFA approach are discussed in this disser­

tation. It has been shown th a t  MFA uses saddle point approximation to 

calculate the partition function, which results in the MFA iteration equations 

updating  the thermal averages of neurons. The MFA iteration process is proved 

to be able to quickly reach therm al equilibriums at each tem pera tu re  and finally 

to  reach steady states near optima.

4. In this disertation, MFA is applied to the optimal frame pattern  design in an 

integrated TDM  A communication system in order to provide the maximum 

d a ta  throughput. It is shown th a t  different frame patterns may yield different 

d a ta  throughputs . The num ber of frame patterns dram atically  increase as the 

problem size increases, and the  complexity becomes in tractable  in searching for 

the  optim al frame patterns which provide maximum da ta  throughputs in the 

frame pa tte rn  space. Numerical examples have shown th a t  the proposed M FA - 

based searching algorithm is efficient in both solutions quality and com puta­

tional complexity. As compared with the random search algorithm, it provides



much b e lte r  solutions with comparable complexity. In comparison with the SA 

approach, its computational complexity is one order of m agnitude less and the 

solutions are quite  close to the  SA’s. This implies tha t  the MFA approach can 

reach near-optimal solutions with acceptable complexity.

An MFA-based algorithm is proposed to find the broadcast schedules in a 

packet radio network. It has been proved th a t  the problem of searching for the 

optim al interference-free transmission schedules is NP-complete, so efficient 

polynomial algorithms rarely exists. Two scheduling approaches are inves­

tigated. The channel utilization and tim e delay performance are evaluated 

and compared with one existing heuristic algorithm. The M FA provides better  

performance than the existing algorithm.

Cellular networks offer challenging and attractive research areas in a variety of 

aspects. Channel assignment in the  frequency domain is one of the  practical 

optim ization problems. It has been proved th a t  the  channel assignment, 

problem is NP-complete when three types of interferences, namely co-channel, 

adjacent and co-site, are considered. It is also shown th a t  it is NP-complete 

oven for the  simple case in which only a co-channel constraint is considered. 

T he  feasible assignments provide efficient use of the spectrum  resource and meet 

the  increasing service requirement for communications. In this dissertation, 

the  proposed MFA algorithm succesfully solved the assignment problem.

The convergence speed and the solutions quality strongly depend on the 

selection of param eters such as weights, annealing schedule, critical tem perature , 

and criteria  of iteration term ination. The determ ination of the  related 

param eters  is discussed for the  different problems. The selections derived from 

the determ ination  criteria provide satisfactory results in all of the  numerical 

and simulation results presented in this dissertation.



Our m ajor contributions of this dissertation are pointed out in (3)-(7) above. 

O ur primitive targets  are directing to solve the difficult optimization problems 

in multiaccess communication systems. Our motivation to use MFA approaches 

comes from the its applications [31 ]-[35]. However, after we recast our optimization 

problems into the s tructures required by MFA, we have found that  there are many 

variables th a t  may affect, the MFA applicability and efficiency. The determ inations 

of the  param eters are still open questions. Therefore, we have worked on the open 

questions and a t te m p te d  to find a general way to determine the related param eters. 

Our derivations and numerical tests have shown satisfactory results in searching 

for the optimal solutions and reducing computational complexity. Hopefully, more 

applications by our approach can be found in the near future.



A P P E N D I X  A

N P - C O M P L E X N E S S  O F  T H E  B R O A D C A S T  S C H E D U L I N G
P R O B L E M S

We denote the  two approaches of broadcast scheduling problems described in 

Chap ter  4 as Obi and IIg2- H si is the  scheduling problem that ,  given a  packet radio 

network, finds an interference-free frame transmission schedule with the maximum 

throughput under a fixed frame length A , where N  is the num ber of stations in the 

packet radio network. II 1^2 is defined as finding an interference-free transmission 

schedule with the  m inimum frame length. The NP-completeness of the  two problems 

are proved individually in the following sections.

A . l  N P - c o m p l e t e n e s s  o f  t h e  B r o a d c a s t  S c h e d u l in g  P r o b l e m  n Bi 

I N S T A N C E :  The scheduling problem IIbi =  [G, A '], where G =  (V, E)  represents 

a  packet radio network and K  is a  positive integer ( K  <  | V | ).

Q U E S T I O N :  Is there an interference-free schedule which provides the average 

num ber of transmissions -yav > I\ ?

where
i  N N

1 i= 1 j=l

and
| 1, if station j transm its  at time slot i,

=  i  n 41 • A -][ 0  otherwise. v '

Using graph theory to assist the  proof of NP-completeness of the  scheduling 

problem, we form an augmented graph G'a =  ( Va , Ea) in such a  way tha t

V = Vya — 1 ^

89
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E a = E  U  (MO- 

( i j )  e  E  
(j, At) G 
( i , k ) t E

Augumcntcd link

F i g u r e  A . l :  The derivation of an augmented graph from a graph G. (a) Graph C 
(b) Graph C„

Fig. A.l illustrates the  augmented graph Ga derived from a graph Cl. For 

problem Hai, finding an interference-free transmission schedule in any tim e slot 

within a frame is equivalent to finding a  set of vertices V'  C V  in Ga such tha t ,  

if any i , j  G V \  then ( i . j )  Ea. All stations (vertices) in the set V  can t ransm it  

s imultaneously with no interference.

In graph theory, a subset V'  C V  is called au independent set in a graph 

(1 =  (F, E)  if, for all i , j  C F ', the  edge ( i , j  )^  E.  Vertices are said to be independent  

from each o ther in the subset V'.  Therefore, the problem Wb \ is identical to finding 

a  m axim um  independent set V'  C F  in graph Ga. We denote an independent set 

problem as II /n /j  and use a O  6 to represent equivalence between a and 6, then we 

have ll/5 i <=> H/Am

T h e o r e m  A . l  11/n is NP-complete.

Proof: 'L'o prove 1I«| is NP-complete, we first need to show 11/^ G N P ,  and then give 

a polynomial transformation from the known NP-complete CLIQUE , 1 'em.74
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1. Hm  £ NP .

For a given graph G  =  (V ,E ) ,  we can arbitrarily guess a schedule and use it 

as a certificate of G. Equivalently a  subset V  C V  of vertices is used as a 

certificate of G.  Here a vertex j  £  V  if .s,j =  1 for the  i-th slot in the  schedule. 

An augm ented graph Ga is derived from G, which can be formed in polynomial 

time 0 ( N 2), where N  — |V|. Checking whether V  is an interference-free 

set of vertices can be proceed by checking whether, for every i , j  £ V ' , the 

edge ( i , j )  £  E a. This check performs up to N ( N  — 1) operations, which has 

polynomial t im e complexity. Therefore, Hhi £  NP .

2. Polynomial Transformation CLIQUE ocp

We prove th a t  IT /.j j is NP-hard by showing th a t  CLIQUE ocp II//v/> This 

transformation is based on the notion of the complement  of a graph. For an 

undirected graph G = (V, E) ,  the complement of G  is defined as G c ~  (U, E c), 

where E c= { ( i , j )  : (i , j ) ^  E}  . Fig. A.2 shows a  graph and its complement and 

the transforma tion from CLIQUE to 11 / /v/j -

1 2  1 2

3

5 6

3i

65

(a) Clique {1,4,5} (b) Independent set {1,4,5}

F i g u r e  A .2 Illustration of the complement of a  graph (a) Graph G, (b) Graph Gc

T he transform ation takes an instance of the  clique problem [G, A'] as 

input. It computes the complement G°, which is easily derived in polynomial
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t im e 0 ( N 2). The  output  of the  transformation algorithm is the  instance [Gc, f\] 

of the  problem fl/wo- To show this transformation is valid, we need to prove 

th a t  the  graph G has a  clique of size I\ if and only if the  graph Gc has an 

independent set of size A .

Suppose that  G has a  clique V'  C V  with \V'\ — A', we claim tha t  V'  is 

an independent set in G c. Based on the formation of Ge, if any i , j  £  V  and 

(?’, j )  6  E , we have ( i , j )  ^  E c, which implies tha t  vertices i,,j are independent 

in G r . Since ( i , j )  is chosen arbitrarily  from E  and every edge ( i , j )  £ E  is 

not in E c, therefore all vertices K  =  \V'\ in a clique V'  are independent in 

E c. Hence, the  set V'  of size K  forms an independent set in Gc. Conversely, 

suppose th a t  G 1' has an independent set V  C V  of size 1\ = \ V'\, then, for all 

i , j  €  V ,  we have ( i , j )  ^  E c, therefore, ( i , j )  £  E  in G, which forms a complete 

subgraph of V'  €  V  in E.  In o ther words, V 1 is a  clique with size K  in G.

From above sta tem ent, we conclude tha t  a graph G has a clique V'  if and only 

if the graph G r has an independent set V ' . The derivation of G ,? from G can be 

completed in polynomial time, therefore CLIQUE cx;) H//v/> Equivalently, CLIQUE 

(xv Ilgi and 11/? | is NP-hard.

Since we have shown tha t  Hjyi £  N P  and Hei is NP-hard, therefore we have 

proved th a t  II#! is NP-complete.

A .2 N P - c o m p l e t e n e s s  o f  t h e  B r o a d c a s t  S c h e d u l in g  P r o b l e m  11 hi

T he broadcast scheduling problem Wb2 can be described as a decision problem:

I N S T A N C E :  T he  scheduling problem Ug-i =  (G, K ), where G =  (U, E)  represents 

a  packet radio network. K  is a  positive integer (I\ <  |V''|).

Q U E S T I O N :  I s there a  schedule which has the frame length K  or less and each 

station transm its  at least, once in such a frame ?
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T h e o r e m  A .2 II #2 is NP-complele.

Proof: In the same way as for II#i, we first form an augmented graph Ga - (V, E a) 

from graph G described in the preceding section. Thus, scheduling an interference- 

free transmission in any tim e slot within a frame is equivalent to finding such a set 

V  C V  of vertices such tha t ,  if any i , j  6 V ' , then (?, Ea• To prove l l g 2 is NP- 

complete, we first need to  show FIg2 £  NP, and then give a  polynomial transformation 

from a  known NP-complete problem.

1. ri#2 e  n p

To prove H # 2  £  NP, we first need to guess  a  frame schedule with an arbitrary  

frame length M  <  N  ( N  is the number of stations in the packet radio network), 

then form the augm ented graph Ga = (P, E a) from graph G  at each tim e slot I. 

Denote P / — {/ : i G V,su  =  1} , where s# is defined as Eq. (A .l). We need to 

check whether E  for any i , j  G V,'. At the same time, we need to check

if the  guessed schedule length A7 <  I \.  It is easy to verify tha t  the  checking 

process can be completed in polynomial tim e 0 ( N 2). Therefore, Hjy-i £ NP.

2. IIB2 oc„ CLIQUE

Finding an interference-free schedule with the minimum frame length is 

equivalent to coloring vertices in G„ so tha t ,  for any pair of vertices i , j  G V, 

if U, j ) £  Ea, then i and j  must be assigned to different colors. The coloring 

problem is to find the m inimum number of colors tha t  can cover all vertices in 

a  graph. Here the color corresponds to a tim e slot and the frame length to the 

total num ber of colors n c. In order to find the m inimum n c, we should assign 

a  color to as many vertices as possible provided the coloring does not cause 

conflict. Therefore, solving the problem 11 jy2 can be performed as follows:

a )  Form an augm ented graph G'a based on G', I, <— 1.
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b )  Find the  m axim um  independent set Vt' for Ga =  (F, E a) and assign a color

ct to  the  set Vt'.

c) V  <= V  -  I/ / ,  E a 4= Ea -  {(*, j )  : * G V', ( i j )  G E  Vj} and ,

if G'„ is not empty, then /,<— /. -f 1 and repeat Step b), else the  coloring 

procedure ends, the  results are encoded into a frame schedule by

s tj =  /  lf ^ 6  V} ’ (A 2)
J 1 0  otherwise.

4
j?

8
-o

(c) CD

8
6

<g)

F i g u r e  A .3 The decomposition of the  scheduling problem

Fig. A.3 illustrates the  formulation of the  graph Ga and the coloring process. 

We have V{ =  {1 ,5 ,9} , V'  =  {2,6}, V'  = {3},V '  =  {4}, V'  =  {7}, V/,' =  {8}. Fig. 

A.4 is the  decoding of the  graph coloring result.

We notice th a t  the  coloring problem is equivalent to finding the maximum 

independent set in Ga. Therefore, the broadcast scheduling problem H #2 can be 

transformed into the independent set problem H / / v d  by finding an augmented graph 

G„ from 6', which is easily generated in polynomial time. Thus, we have fl/wD °c7,
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%  
s l o t0j> 1 2 3 4 5 6 7 8 9

1

2

3

1

4

5 m
6 i m

F i g u r e  A .4 T he  decoding of the coloring graph.

II/J2 - We have proved th a t  C L I Q U E  ocp H i n d , therefore, CLIQUE ocp H/j2. Since 

the CLIQ U E problem is NP-complete, we can conclude th a t  Vlbz is NP-hard.

As we proved 11 m  €  N P  and FIB2 is NP-hard, we can conclude th a t  11^2 is 

NP-complete.



A P P E N D IX  B

N P-C O M PLE T E N E SS OF THE CH A N N EL A SSIG N M E N T  
PROBLEM  ric

As addressed in Chapter 6 , the channel assignment problem, He, is to assign channels 

to cell sites while satisfying channel constraints described by the compatibility matrix  

C — (C{j). In the FDMA cellular communication systems, the  frequency band is 

subdivided into a, certain num ber of narrowband channels, each capable of supporting 

one phone circuit th a t  can be accessed by any user. The channels are labeled as a 

sequence of numbers {1, 2, • • •, A^}. Channel i and Channel i +  I are called adjacent.  

The frequency distance between channel i and j  is |i — j |  . c,j represents the  channel 

constrain t th a t  the  frequency distance A ,j  between the channels assigned to cell i 

and cell j  must be greater than  or equal to c,-j. Each diagonal element c.a in C  

represents the minimum separation distance between any two channels assigned to 

cell /. We use the vector X  — (.7:1 , .T2 , • • •, x n) to represent the 11 cell sites for a 

given cellular communication system. R  = ( n ,  r 2, • • •, rn) is the requirement vector, 

where r t represents tha t  cell x t is requesting for r, channels. F  =  ( /q ,  , Fn) is

a feasible channel assignment, where F, =  ( / ; i , / ; 2,- ■ • and /,■* is the  channel

num ber assigned to cell ; r F o r  example, if three channels numbered 2, 5, 7 are 

assigned to cell a:, and r, =  3, then /q =  (2 ,5 ,7).  Thus, the problem l ie  can be 

defined as a decision problem:

INSTANCE: l ie  =  [X, R,  C, K],  where K  is a  positive integer.

Q UESTIO N: Is there a  feasible channel assignment vector F  such th a t  the 

frequency span is k or less ? Here the frequency span is defined as the  frequency 

distance between the largest channel number and the  smallest channel num ber 

assigned to cells.
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We group Tic into two sub-categories: cochannel and cosite. Those where only 

cochannel constraints occur are called cochannel cases. Those where all channel 

constraints - cochannel, adjacent channel and cositc, occur, are called cosite cases. 

The channel assignment problems for both cochannel and cosite cases are denoted 

as ITe?i and 11(72.

T h e o r e m  B . l  IIc\ NP-completc.

Proof: To prove IIci is NP-complete, we first need to show 1’Ici G N  P, then show that  

rici is NP-hard by finding a  polynomial transformation from a known NP-complete 

problem.

1. He, G N P

For a given instance l lc t  =  [A', R , C ] , we can check whether a  given assignment 

is feasible in polynomial time. The checking procedure is as follows:

For the  assignment F,  check whether the  frequency distance |/,-* — / , / |  >  c,-j 

for i , j  — 1,2, k =  1,2, - * - , T't- and I =  1,2, •••,? ',. Then we check if

the frequency span is K  or less . Obviously, the checking operations can be 

completed in polynomial time. Therefore, ITc’i G NP.

Let TIclique  denote the CLIQUE problem. We prove n ci is NP-hard by 

showing th a t  I lc i  II//vo and IIcl ique  0<-p II in  !)■> where a <=> h means tha t  

solving problem a. is equivalent to solving problem h.

2- Uc l i q u e  ocp IIci

In the problem IIc i ,  only cochannel constraints are considered. Therefore, 

c-a =  J , ct] G {0,1} for all i , j  (i ^  j ) .  We can use a graph G — ( 1/ , F ) 

to represent IIc i .  Vertex v G V  represents a. requirement and a  link (u,v) 

connects pairs of requirements u, v th a t  cannot be assigned the same channel;
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i.e., {u ,v )  E E  if cU), =  1 and ^  E  if cu„ =  0. For example, a given

instance of IIci is

X = {* 11 •£•2, X;U 5}

'  1 1 0 0 0 0 ' ‘ 2 "
1 1 1 0 0 0 1
0 1 1 1 0 0 /?.= 1
0 0 1 1 1 1 2
0 0 0 0 1 L 1

F i g u r e  B . l  The construction of the graph

where iJ s tands for the j - th  requirem ent by cell .rt. The derived graph is shown 

in F’ig. B .l .  In the  derived graph G, every connected pair of vertices cannnot be 

assigned the  same channel. The channel assignment problem Hci is to find the 

m inimum  num ber of channels which satisfy the cochannel constraints and the 

cells’ requirements. By observation, we find th a t  Hci is equivalent to the  graph 

coloring problem. In a graph coloring problem, inter-connected vertices may 

not have the  same color. The objective is to find the minimum num ber of colors 

required to color all vertices. In IIc i , the vertices represent requirements and 

the colors represent channels. Obviously, if we use one color to cover as many 

vertices as possible, the number of required colors will be minimum . Since the 

unconnected vertices can use the same color, the graph coloring problem is 

transformed into the independent set problem H/jvd; i-c., finding the minimum
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num ber of colors is equivalent to the problem II/a//j by simply finding the 

m axim um  independent set for the graph. Then the independent set V'  and 

the links a tta tched  to the vertices in V'  are removed. For the reduced graph, 

repeat the search procedure for a new m axim um  indepent set until the  graph is 

reduced to empty. We have shown tha t  Wclique  °c,, N//VO and Hci <=> II / /vo , 

therefore we prove th a t  Uceique  °cP Hci-

Since IIci €  N P  and Uclique  ocp H ci,  we can conclude th a t  Ifci is NP- 

complete.

4

(a)

- 0  4 ’

(b)

Channel number 

1 2 3

( c)  W)

F i g u r e  B .2  The decompostions of graph (a)-(c). (d) the the channel assignment.

In the  example shown in Fig. B.l , the graph can be decomposed into a  bunch 

of subgraphs. In each subgraph, the maximum independent set is found. The decom ­

position and coloring procedure are illustrated in Fig. B.2 (a)-(c). The shaded circles 

(cells) will be assigned to use the same channel. T he  feasible channel assignment is 

shown is Fig. B.2 (d).

T h e o r e m  B .2  I Ic 2 is NP-complele.
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Proof:

1. Hc2 G N P .

We can show th a t  0c2  G N P  by performing the same checking procedure as 

in the  proof of IIci G N P .  Therefore, l l c 2 G N P .

2. Hci 0Cp I IC2

Once we have proved tha t  Hci is NP-complete, the NP-complete proof of II(-2 

is relatively easy. Since we have shown IIc 2 G N P ,  what we still need to prove 

is th a t  there is a  transformation Hci <xp VI0 2 -

All of the  constraints in I lc 2 can be described by the cornpatability matrix 

C  =  (c ,j)  with Cij E Z +. IIci is ju s t  the subset of I Ic 2 with E {0,1}. 

Therefore, every instance of IIci can be directly mapped to an instance of 

I Ic 2 - i.e., every instance /  G l lc i  if and only if / ( / )  G IIc’2 - W here / ( / )  =  I. 

Therefore, we have IIci ocp r ic 2 -

Since IIci is NP-complete and I‘Ic 2 G N P  and Hci ocp H c 2 , we can conclude 

tha t  IIc-2 is NP-complete.
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