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ABSTRACT

ON THE OPTIMIZATION PROBLEMS
IN MULTIACCESS COMMUNICATION SYSTEMS

by
Gangsheng Wang

In a communication system, the bandwidth is often a primary resource. In
order to support concurrent access by numerous users in a network, this finite
and expensive resource must be shared among many independent contending users.
Multi-access protocols control this access of the resource among users to achicve
its efficient utilization, satisly connectivity requirements and resolve any conflict
among the contending users. Many optimization problems arise in designing a multi-
access protocol.  Among these, there is a class of optimization problems known
as NP-complete, and no polynomial algorithm can possibly solve them. Conven-
tional methods may not be efficient and often produce poor solutions. In this
dissertation, we propose a neural network-based algorithm for solving NP-complete
problems encountered in multi-access communication systems. Three combinatorial
optimization problems have been solved by the proposed algorithms; namely, frame
pattern design in integrated TDMA communication networks, optimal broadcast
scheduling in multihop packet radio networks, and optimal channel assignment in
FDMA mobile communication networks. Numerical studies have shown encouraging
results in searching for the global optimal solutions by using this algorithm. The
determination of the related parameters regarding convergence and solution quality
is investigated in this dissertation. Performance evaluations and comparisons with

other algorithms have been performed.
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CHAPTER 1

INTRODUCTION

With the rapid development of communication techniques, a communication network
is expected to serve increasingly many users for data transmissions, information
exchanges and communications. In a communication system, the bandwidth is
often a primary resource. In order to support the concurrent access by numerous
users in a network, this finite and expensive resource must be shared among many
independent contending users. A typical example is the time division multiplexing
('TDM) system developed in the 1960’s, in which a powerful mainframe is accessed by
a large number of users. Since cach user has relatively small or infrequent demands,
a dedicated system will greatly decrease the utilization of the computer resources.
The TDM scheme assigns a fixed subset of the time-bandwidth space to each user
and the computer system has successfully provided satisfactory services for many
simultaneous processing requirements from users.

The communication bandwidth is usually divided into a single or a number
of channels. The channel resources can be shared by users in three domains -
time, frequency and space. Multiaccess protocols control the access of resources
among users to achieve their efficient utilization, satisfy connectivity requirements
and resolve any conflict among the contending users. The design of a multiaccess
protocol depends on the type of communication network, the characteristics of data
traffic in the network and the quality-of-service (QOS) requirement. Multiaccess
protocols can be classified into three classes. The first class is time-division multiple
access (TDMA) in which each user is confined to access the entire channel bandwidth
only during the allocated time slots. The second class, known as frequency-division

mulliple access ('DMA), consists of assigning users a fraction of the bandwidth



and limiting their access to the allocated subband. The third class is code-division
maultiple access (CDMA), which realizes orthogonality of signaling waveforms by
the use of different signaling codes and allows overlap in transmission in both the
frequency and time coordinates. The access mode can be random, fixed or dynamic.
Multiaccess protocols also differ by the distributed or centralized nature of the
resource allocation algorithms.

Different multiaccess protocols have their own merits and disadvantages. In
order to select a proper protocol operating in a network, one must investigate the
characteristics of traffic, network topology, network type and operation cost. In
a satellite network, for example, a single wideband channel is shared by all earth
stations. In light traflic, a random TDMA protocol can provide high throughput
and a rather simple way to access the channel. When the network is overloaded,
however, the collision probability is higher and the data needed to retransmit will
further load the network. In this situation, a fixed TDMA protocol provides better
performance.

The carliest multiplexing techniques, such as TDM (time-division multiplexing)
and FDM (frequency-division multiplexing), are very successlul for stream-type
traflic such as voice. However, for data communication, especially for computer
communication, the traffic is usually characterized as bursty. To serve the bursty-
type traffic, Packet communication networks have been developed over the past
two decades [2][23](37][38][39]. Packet communication networks can be classified as
store-and-forward point-to-point networks, LAN’s, packet radio networks, and packet
satellite networks [38]. Packet radio (PR) is a technology which applies the packet
switching technique to the broadcast radio environment. Since a packet radio network
has such advantages as allowing direct communications among mobile users over

wide geographical areas, coexistence with different systems in the same frequency



band, protection against multipath effects as well as antijamming protection [23], it

has been widely used in computer and mobile communications [2][15][23][26].

1.1 Motivation of the Dissertation

The objective of introducing multiple access protocols in communication networks is
to fully utilize the channel resources and minimize the time delay of data. A given
type of multiple access protocol usually involves many optimization problems. For
example, for an integrated voice/data communication system in which a random
TDMA protocol is applied, the different time-slot arrangements for data trans-
missions within a frame will result in a different data throughput. The optimization
problem in this system is to search for the optimal frame patterns (the relative
positions of data transmissions in a frame) that can provide the maximum data
throughput while keeping satisfactory quality of voice service. We will present a
detailed discussion of this problem in the sequel.

In packet communication networks, many complicated optimization problems
arise as the demand and sophistication of the area grows. Conventional sirategics
may no longer meet the new challenges. Especially for constrained optimization
problems, conventional methods may get stuck in poor local optima. There is a
class of optimization problems known as NP-complete. It has been shown that the
computational complexity will exponentially increase with the problem size and no
polynomial algorithms can be found for this class of problems. One alternative way
to solve the problems is using approximation techniques, i.e., instead of scarching
the exact global optima with rather complicated computations, the approximation
techniques attempt to find solutions that are close to the global optima with much
less computational effort. Since neural networks have shown great promise in solving
NP-complete problems, such as the traveling salesperson and content-addressable

memory problems[19] [20] [31] [32] [33], we propose to apply neural networks to solve



the optimization problems in multiaccess communication systems. In this disser-
tation, we investigate the feasibility of neural network methods. We propose a mean
field annealing (MFA) based algorithm in solving difficult optimization problems
encountered in multiaccess communication systems. MFA is only a general scheme
used in statistical mechanics. Even though some applications in solving optimization
problems by MFA have been found in literatures [31]-[35], there are still many
open questions regarding convergence, stability and parameter selection. In this
dissertation, we use the stability theory to discuss the stability of MFA iterations
and the determination of the parameters related to convergence, computational
complexity and solution quality. Three optimization problems have been successfully
solved by our MFA approach. Numerical results have shown that the proposed
algorithm provides much better performance in both computational complexity and
solution quality than some existing algorithms. We have proved that two problems
encountered in our dissertation are NP-complete. The derived convergence results

and criteria are applicable to many other NP-complete problems.

1.2  Arrangement of the Dissertation
The dissertation is organized as follows: After the Introduction, Chapter 2 presents
the fundamental theory of NP-completeness. Two known NP-complete problems,
namely 3-Satisfiability and CLIQUE, are introduced in order to prove the NP-
completeness of the optimization problems encountered in the dissertation. Chapter 3
overviews the annealing process in statistical mechanics and simulated annealing
(SA). Afterwards, mean field annealing is investigated. The convergence issue
is discussed and the determinations of the related parameters are addressed. In
Chapter 4, MIFA is applied to searching for the optimal patterns in an integrated
'TDMA communication system. Chapter 5 presents an optimal broadcast scheduling

algorithm based on neural networks in a packet radio communication network.



Chapter 6 proposes an MIFA-based optimal channel assignment approach for FDMA
mobile communication systems. The results and the achieved performances are
demonstrated in each individual chapter. Conclusions are made in the last chapter.
In the appendices, we prove that the broadcast scheduling and channel assignment

problems are NP-complete.



CHAPTER 2

NP-COMPLETENESS

For many years many researchers have tried to find efficient algorithms for solving
various combinatorial optimization problems arising in arcas such as telecommuni-
cation, computer science and operations research. Among them there is a class of
diflicult optimization problems called NP-complete, for which efficient algorithms
rarely exist. NP-complete problems are considered as intractable since the compu-
tational complexity increases exponentially with the problems size. In this chapter,
we study the complexity class P of polynomial-time solvable decision problems and
the class NP of decision problems. The proof procedures for NP-complete problems
via polynomial-time “transformation” are addressed. Two NP-complete problems,
namely 3-Satisfiability (3SAT) and CLIQUE, are introduced in order to prove the
NP-completeness of the optimization problems studied in this dissertation. [For

detailed NP-complete theory, we refer to [16].

2.1 Polynomial Time and Exponential Time Algorithms
A lunction f(n) is O(g(n)) whenever there exists a posilive constant ¢ such that
values of |f(n)| £ ¢-|g(n)| for all values of n> 0. A polynomial time algorithm is
defined to be the one whose time complexity function is O(p(n)) for some polynomial
function p, where n is used to denote the input length, i.e., the problem size [16]. A

polynomial algorithm is often considered efficient due to the following reasons:

o It usually takes little computing time.

e None of the difficult problems have polynomial algorithms for their solutions.



e If a problem can be solved in polynomial time in one model, it can also be

solved in polynomial time in another model.

To illustrate the efficiency, we give the [ollowing example: Suppose that there
arc two algorithms for a solution of a given problem, Algorithm A is of complexity
n? (polynomial algorithm) and Algorithm B is of 2™ (exponential algorithm), where
the complexity functions express execution time in terms of microseconds. If the
problem size n is 50, the execution time is 0.0025 second for Algorithm A and 35.7
years for Algorithm B ! This example demonstrates the reason why a polynomial
time algorithm is more desirable than ils exponential counterpart. A problem is

referred to as intractable if no polynomial time algorithms can possibly solve it.

2.2 Decision Problems, Encodings and Languages

The theory of NP-completeness restricts attention to decision problems. Such
problems have only two possible solutions: “yes” and “no”. A decision problem []
consists simply of a set DH of instances and a subset YH C DH of yes-instances,
where an instance of a problem is obtained by specifying particular values for all
the problem parameters. However, in the real world, many optimization problems
are not decision problems. In order to apply the theory of NP-completeness to
optimization problems, an optimization problem is usually recast as a decision
problem by applying a numerical bound B to the problem, i.e., a minimization
problem can be recast as a decision problem by asking whether there exists a
structure of the required type having value “no more than” B. In the analogous way,
a maximization problem can be recast by finding whether there is a structure of the
required type having value “at least” B.

The reason for the restriction to decision problems is that they make it casy

to use the machinery of formal-language theory. For any finite set ¥ of symbols, a



language L over ¥ is defined as any set of strings made up of symbols from . For
instance, if ¥ = {0,1}, the set of L={1,11,101,111,-:-} is the language of binary
representations of odd numbers. The language of all strings over ¥ is denoted by X
FFor example, if ¥ = {0,1}, then ¥* = {¢,0,1,00,01, 10, 11,000,001, --}. ¢ denotes
the empty string. An encoding scheme is introduced to represent problem instances
in a way that computers understand. An encoding of a set S of abstract objects is
a mapping ¢ from S to the set of binary strings. For example, the ASCII encoding
for alphabet a is e(a)=1100001. Encoding schemes establish the correspondence
between decision problems and languages. Therefore, a problem [] and its encoding
scheme e partition 3" into three classes of strings: those that are not encodings of
instances of []; those that encode instances of [] for which the answer is “no”, and
those that encode instances of [ for which the answer is “yes”. The third class of

strings i1s the languages we associate with [] and e:
L[H,c] = {2 C ¥": ¥ is the alphabet used by e, and x is the encoding under ¢ by

an instance I € Yn, Yn is the set of yes instances}

Any decision problem [] may have many encoding schemes, and different
schemes have different input lenglths which are used to evaluate the time complexity.
For example, the binary encoding of decimal 13 is 1101 and its BCD encoding is 0001
0011. The inpul lengths are 4 and 8, respectively. A function [ : {0,1}" — {0.1}"
is defined polynomial-time computable if there exists a polynomial-time algorithm
that, given any input z€ {0.1}", produces an oulput f(x). For some set I of problem
instances, we say that two encodings e; and e; are polynomially related if there exist,
two polynomial-time computable functions f and f” such that for any 7€ [, we have
J(e1(7)) = ex(z) and f"(e2(i)) = e1(2). If two encodings e, and ey ol a problem are
polynomially related, the encoding e2(2) can be computed from the encoding e,(z) by
a polynomial-time algorithm, and vice versa. Therefore, two encoding schemes for

a problem [] will yield polynomially related input lengths. For a decision problem



IT on an instance set I, if e; and ey are polynomially related encodings on [, then
ci(JT) € P if and only if ex([T) € P . P denotes the complexity class in which
the decision problems can be solved in polynomial time. If the property holds, we
do not need to specily any specific encoding schemes any more when we prove the

NP-completeness for a given decision problem.

2.3 The Complexity Classes P and NP
“NP” stands for nondeterministic polynomial time. Belore we procced to the

definition of “NP class”, we need to clarify the following definitions:

Acception: A string € {0,1}" is accepled by an algorithm A il given input z, the
algorithm outputs A(z) = 1. The language accepted by the algorithm is the

set L={z € {0,1}": A(z) = 1}.
Rejection: An algorithm A rejects a string z if the outpul A(z) = 0.

Decision: A language L is decided by an algorithm A if every binary string is either

accepled or rejected by the algorithm.

Polynomial-time acceptance: A language L is accepled in polynomial time by an
algorithm A if for any length-n string € L, the algorithm accepts z in time
O(n*) for some positive constant k. To accept a language, an algorithm only

needs to consider the strings in L.

Polynomial-time Decision: A language L is decided in polynomial time by an
algorithm A if, for any length-n string z€ {0,1}7, the algorithm decides x in
time O(n*) for some positive constant k. To decide a language, an algorithm

must accept or reject every string in {0,1}".
Using the above definitions, we can address the complexity class P:

P = {LC{0,1}": there cxists an algorithm A that decides L in polynomial time.)
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A nondelerministic polynomial time algorithm is one that can verify whether
a given instance [ € YH in deterministic polynomial time. Yy is the set of yes
instances. Here a verification algorithm is defined as a two-argument algorithm A,
one argument is an ordinary input string = and the other is a binary string y called a
cerlificate. Such an algorithin A verifies an input string  if there exists a certificate

y such that A(z,y)=1. The language verified by a verification algorithm A4 is
L ={z € {0,1}" : there exists y € {0,1}* such that A(x,y) =1}

Thus, Class NP is defined as the class of languages that can be verified by
a polynomial-time algorithm. Notice that polynomial time verifiability does not
imply polynomial time solvability. In short, Class P consists of problems that can
be solved in polynomial time, whereas the class N P consists of problems for which a
solution can he verified rather than solved in polynomial time. Obviously, if Le P,
then Le NP, e.g., P C NP since, if a language L is decided by an algorithm A, it
automatically verifies the language. Intuitively we know that to solve a problem is
more difficult than to verify (check) a presented solution. This analogy extends to

the class P2 and NP, and thus, NP includes languages that in P.

2.4 Transformability and NP-Completeness
As shown above, we have P C NP. Thus, every decision problem solvable by a
polynomial time deterministic algorithm is also solvable by a polynomial time nonde-
terministic algorithm. It is believed that P> 3 N P. All problems in P can be solved
by polynomial time algorithms, whereas all problems in NP — P are intractable.
The theory of NP-completeness for any NP-complete problem 11 focuses on proving

results “if P £ NP, then[le NP - P”.
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2.4.1 Transformability
A problem [] can be transformed to another problem [T' if any instance x € Il can be
mapped into an instance 2’ € []'. Thus, il a problem [] can be transformed to another
problem [T’, then [] should be no harder to solve than [I'. This transformation is
denoted by T o I,

A language Ly is polynomial-time transformable 1o language Lo, denoted by
Ly o, Lg, il there exists a polynomial-time computable function f: {0,1}* — {0,1}*
such that for all x € {0,1}", x € L, if and only if f(z) € L,.

The function [ is called a transformation function. It provides a polynomial-
time mapping so that if & € Ly, then f(z) € L. Moreover, if @ ¢ Ly, then f(z) ¢ L,.
Thus, the transformation function maps any instance x represented by L, to an
instance f(x) of the problem represented by L,. Answering whether f(z) € L,

directly provides the answer to whether @ € L;.

Lemma 2.1 [16] If Li,L,C {0,1}" and Ly , L,, then L, € P implies L, € P
(equivalently Ly ¢ P implies L, ¢ P)

2.4.2 NP-Completeness

A language L € {0,1}* is defined to be NP-complete if L € NP and I’ , L
VL' € NP. It is equivalent to say that, a decision problem [] is NP-complete if [] €
NP and for all other decision problems [' € NP and [T’ «, [T . Therefore, NP-
complete problems are the hardest problems in NP. If any one NP-complete problem
can be solved in polynomial time, then every problem in NP has a polynomial-time
solution. If any problem in NP is intractable, then so are all NP-complete problems.
If L' <, L for every L' € NP, but not necessarily with L € NP, then L is called

NP-hard.
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Lemma 2.2 [16] If [\ L, € NP, Ly is NP-complele, and L, o, Ly, then L is

NP-complete.

This lemma provides us an insight for proving new problems NP-complete.
Once we have at least one known NP-complete problem available, to prove that []

is NP-complete, we merely show that

I. [Te€ NP, and

2. Some known NP-complete problem []’' transforms to [].

2.5 NP-completeness Proofs
For a given problem [] € NP, we can prove it NP-complete if we can show that
some already known NP-complete problem [’ can be transformed to []. Therefore
Lemma 2.2 provides us with an approach to prove that problem [] represented by a

language L is NP-complete:

1. Prove Le NP

o

Select a known NP-complete language L'

3. I'ind a transformation function f which satisfies € L’ il and only if f(z) € L

for all 2 € {0,1}"

4. Prove that the function f runs in polynomial time.

2.6 3-Satisfiability Problem (3SAT)
The satisfiability problem (SAT) is a decision problem which asks whether there
is a satisfying truth assignment for a given collection C of clauses. Let U =

{wy,uz,- -+, ur} be a set of boolean variables. Variable u or its negation @ is defined
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as a literal over U. A clause over U is a set of literals over U such as {uy,%s, uq}. A
truth assignment for U is a boolean function 6:U — {0,1}. Il 0(u) = 1, we say that
w is “true” under 0; if O(u) = 0 we say that u is “false”. The literal u is true under
0 if and only if the variable u is true under 8; the literal @ is true if and only if the
variable u is false. A clause over U is salisfied by a truth assignment if and only if
at least onc of its members is true under that assignment. For example, the clause
C={w,, T3, u4} is satisfied by 0 except 0(u;) = 0, O(uz) = | and O(uy) = 0.

A collection C of clauses over U is satisfiable if and only il there exists some
truth assignment for U that simultaneously satisfies all the clauses in C. Such a
truth aSsignment is called a satisfying truth assignment for C. Equivalently if we
express a boolean formula ® as an AND of clauses, each of which is the OR of one
or more literals, then a truth assignment is satisfiable if it results in @ = 1. For
example, U = {u, w2}, C = {{u, W}, {W,uz}}, a satisfying truth assignment is
given by 0(u;) = 1,0{uz) = 1 since

P=(u, Vi)A(@ Vu)=(1VHAAVI)=(1IVOADOVI]) =]

where A and V are logic AND and OR operations. Therefore, for a given instance
consisting of a set U of boolean variables and a collection C of clauses over U, the
satisfiability asks whether there is a satisfying truth assignment for an arbitrary
boolean formula.

The 3SAT problem is just a restricted version of SAT in which all instances

have exactly three literals per clause. The 3SAT problem can be described as

INSTANCE: Collection C = {Cy,C%,...,Cp} of clauses on a finite set U of

variables such that |Ci| =3 for 1 < i < m.
QUESTION: Is there a truth assignment for U that satisfies all the clauses in C'?

The naive algorithm to determine whether an arbitrary boolean formula is

satisfiable does not run in polynomial time. There are 2™ possible assignment S in
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a formula ¢ with n variables. As the following theorem shows, the 3SAT problem is

NP-complete, so a polynomial-time algorithm is unlikely to exist.
Theorem 2.1 [16] 3SAT is NP-complele

The proof can be found in [16]. Its simple structure makes it useful to prove
other NP-completeness results. Problem CLIQUE is to be proved NP-complete based

on the known 3SAT problem in the next section.

2.7 The CLIQUE Problem
In an undirected graph G' = (V, E), a clique is a subset V' C V of vertices, each pair
of which is connected by an edge in E. Therefore, a clique is a complete subgraph of
(. The size of a clique is the number of vertices it contains. The clique problem is
an optimization problem of finding a clique of maximum size in a graph. Recasting

this optimization as a decision problem, we can describe the CLIQUE problem as
INSTANCE: A graph G = (V, ') and a positive integer J < |V|

QUESTION: Does G contain a clique of size J or more such that a subset V' € V,

[V'| > J and every two vertices in V'’ are jointed by an edge in E?

. @ vertice in the clique

O vertice not in the clique

Figure 2.1 An example of a clique

Fig. 2.1 is an example of a clique in which the maximum clique has size 4.
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Theorem 2.2 The CLIQUE problem is NP-complele.

Proof:

L.

o

Show that CLIQUE € NP

For a given graph G = (V, F), we use the set V' C V of vertices in the clique
as a certificate for G. Verifying whether V’ is a clique can proceced by checking
whether, for every pair u,v € V', the edge (u,v) € E. The computation is

limited up to the following number of checking operations

(n—D+n—=-2)+..+2+1=n(n-1)/2

The computional complexity of checking whether the set V! C V is a clique is
O(n?), thus the verification can be accomplished in polynomial time, therefore

CLIQUE &NP.

Transformation from 3SAT to CLIQUE

Here, we show that the known NP-complete problem 3SAT can be transformed
to CLIQUE. i.e., 3SAT xCLIQUE, where a o b stands for the transformation

from a to b.

Given a 3SAT instance with boolean variable set u = (wy, uy, uz, -« -, ug)
and clauses C' = {Cy,Cy,---,Cp} (|Ci| = 3 Vi), a boolcan formula is {ormed
by ® = CyACy; A --- A C,p, each clause C; has exactly three distinct literals
li,l, and 5. We can construct a graph G = (V, E) as follows. For ecach
clause C;=({ v I3 v I) in C, we place a triple of vertex vi,v} and vi in V.
An edge between two vertices vi, and v; is added (1< &,y < 3; 4,7 < m) il
i # jand [} # E To illustrate the graph construction, Iig. 2.2 shows a
graph G derived from the 3SAT boolean formula ¢ = C; A Cy A C3, where
Cy = (41 VU Vug),Cy = (u1 VU VU3) and Cy = (1 Vuy Vug). The maximum

size of a clique is 3.
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Ci={u,. uy, uy }

Co= (). Ty, G ) Cs= tur v, ug}

Figure 2.2 The derived graph from ®. The clique with size 3 is I’ = {1,2,3}

We show that, if a graph G is constructed in this way, a boolean formula

¢ is satisfiable if and only il G has a clique of size m.

Assume that the boolean formula ¢ is satisfied by a truth assignment.
Then, each clause C; should have at least one literal l{(z = 1,2,3,: =
1,2,---,m) that is assigned 1, and each such literal corresponds to a vertices
vi. A set of V' of m vertices can be formed if one “true” literal from each clause
is picked up. For any two vertices v;,v;' € V', wherei # j, both corresponding

literals [£, li are mapped to 1 by the given satisfying assignment, and thus the
literals cannot be complementary. Thus, by the construction of G, the edge
(vi, v{)) € I/ . Therefore, if the formula ® has a satislying assignment, then the
constructed graph G has a clique V' of size m. On the other hand, suppose that
G has a clique V' of size m. Since there are no edges in the same triple (clause)
and V' contains exactly one vertex per clause, there is no edge connecting two
vertices v;,vi based on the rule for a graph if I} = E Thus, a literal and its
complement will not be assigned 1 simultaneously. Therelore, cach clause C;

is satisfied, which results in a satisfied ®. Thus, if the constructed graph

has a clique of size m , then the boolean formula ® is satisfied.
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In the example of Fig. 2.2, a satisfying assignment of ® is «; = 1,uy =
l,bug = 1. A corresponding clique of size £ = 3 consists of the vertices
{wy,uz,u3}. Based on the above observation, we can see that the 3SAT problem

can be transformed to the CLIQUE problem, i.e., 3SAT o«CLIQUE.

. Polynomial Transformation

The transformation from 3SAT to CLIQUE can be completed in polynomial
time. For a given formula @ = C; A Cy A -+ A Cp, and Ci=(lL, 13, I3) Vi,
cach clause has three literals, therefore, each clause forms triple vertices. The
number of vertices in the triple graph equals to 3m. The maximum number
of added edges is 3|V| = 9m(m — 1). Therefore the complexity transformation

from 3SAT to CLIQUE is O(m?), a polynomial time transformation.

Since we have shown CLIQUE € NP and the transformation 3SATx CLIQUE

is of polynomial time. We have proved that CLIQUE is NP-complete.



CHAPTER 3

MEAN FIELD ANNEALING THEORY

3.1 Combinatorial Optimization Problems
In a combinatorial optimization problem, cost is defined as a function of discrete
variables representing configurations. A combinatorial optimization problem is
described by I1 = (f,S), where § = {s} is a finite set of configurations and f is
the cost function, s € Z" and [ : s — R*. The objective is to find an optimal

configuration s,, which provides the minimum cost, i.e.,

fopt = .f(SOPl) = ':gg J(s). (3.1)

3.2 Statistical Mechanics
Since there exists a significant analogy between statistical mechanics and the
procedure of solving complicated combinatorial optimization problems, we first,
review the annealing process in statistical mechanics.

Statistical mechanics is concerned with the properties of a large number of
particles in samples of liquid or solid matter. Since the number of particles is quite
large per cubic centimeter, only the behavior of the system in thermal equilibrium
al a given temperature is observable. Different position placements of particles in a
liquid or solid matter will yield different energies. At cach temperature all particles
randomly move around until thermal equilibrium is reached. If a state is defined
by the set of particle positions, then, at thermal equilibrium, the probability of the

system being in state ¢ is represented by the Gibbs distribution [1][43]:

o (-89)

ky T

mi= Pris =i} = ——z20, (3.

18
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where Z = Y cqexp (—%’Tl) is called the parlition funclion, ky is the Boltzmann
constant, T is the temperature and [7(7) is the energy of state ¢, S is the state space,

and ky,, T, I2(2) € RT. It is easy to find that [1],

o (— EG)
lim m; = lim emp( ka’:’?ﬁil = L, (3.3)
T—o0 T—oo ZjeS exp (_. ka) ISI
implying that, at a very high temperature, all states are equally probable.
On the other hand, we have
Elg .Z—Enun
limm; = lim il (—- T )
p—y t - AN . E{j “Emm
T—0 T=0 Y s exp (__(llkl_T___>
. (i)~ Emin
= lim °rp (—— & T )
- - E( '!—Emm E(j)—Ewmin
T=0 €S €TP (_ ]k,;r ) + 2 igSmin €EP (_ ]k,,'l‘ )
= lir .
— E _Emln
— IS"‘..-nI if' 2 € Smin (3.4)
0 otherwise, ’

where Spin = {i : E£(i) = Enin} and Epin = minjes E(7).

[rom this equation, we can see that, as the temperature approaches zero, the
system will concentrate on the states with the minimum energy, i.e., the states with
the minimum energy are more probable.

In statistical mechanics, the crystalline lattice structure in a solid usually yields
lower energy. A physical process called annealing is often performed in order to form
a crystal. In the annealing process, a solid in a heat bath is heated up by increasing
the temperature of the heat bath until it is melted into liquid, then the temperature
is slowly lowered. At each temperature, all particles randomly arranges themselves
until thermal equilibrium is reached. If the cooling is slow enough to allow the solid
Lo reach thermal equilibrium at each temperature, the low energy crystalline solid
would be formed when the system is frozen (7' — 0). If the annealing is too fast,
the solid may become glass-like with non-crystalline structure or consist of defective

crystals with meta-stable amorphous structures.



The entropy at the equilibrium is defined [1]:

{(T) Zm In m;,

€S

[rom ligs. (3.3) and (3.4), we obtain:

Jim H(T) = In|S],
—-EE"
lim H(T) = ! ! = In |Spin|
(1) == 3 15 qinig 7 = nISmal,
and also,
OH(T) om;
57 = —g[lnw,—f—l]
om;
= — - —l Z 41—,
%[ BT * } T
Il we define the average energy
Ly =Y "= E@)
i€s
and the variance
2
O‘%ZZ(E(Z)—EH) = ’27 — E’i
i€S
then, we have
am; T —
o T —Tr
T~ kT2 [540) - B}
OH(T) E(7) S,
— = InZ — 9(1) = Iy
T %[A 7 TnZ-1 L7‘2 7 [26) ~ Tr]

(InZ

_ —1) -
= UWZE Omi[E(:) — Er] + WZ”‘[’

€S t€S

2
— ) o
= k2T3 [Z E2 T — E'I'Z E@)- 7r,-J = W

€S €S

Since T > 0 and 0% > 0, we have 8_1;%‘1) 2> 0. Combining the Eqgs. (3.3) and (3
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(3.5)

(3.6)

(3.7)

(3.9)

(3.10)

(3.11)

A4), we

can see that the entropy is monotonically decreased as the temperature is lowered

(Sec Fig. 3.1). In statistical mechanics, entropy is used to measure the order
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ENTROPY (H)

Y TEMPERATURE (T) T—=

Isal

Figure 3.1 The entropy H(T') changes with the temperature 7

of a physical system: the larger the entropy, the more chaotic the system. In the
anncaling process, the entropy monotonically decreases, so it will lead the system
Lo the ordered (crystalline) if the temperature is lowered slowly enough so that the

system is allowed to relax to the equilibrium at each temperature.

3.3 Simulated Annealing
Based on the annealing process in statistical mechanics, Kirkpatrick et al. [25]
proposed an algorithm, namely simulated annealing (SA) for solving complicated
combinatorial optimization problems. In the SA algorithm, a simulation of the
annealing process is performed. The cost function and configuration in optimization
correspond to the energy function and state of statistical physics, respectively. The
temperature is introduced as a control parameter.

Suppose that a cost function f:s — R*, s € S, to be minimized is defined on
some finite set &. For each configuration s € S, there is a neighboring set A(s) C
S, which is generated by a small perturbation of s.

In SA, given the current state s(k), a neighboring state s'(k) is randomly

selected from N(s), where k is the k-th trial. The transition probability from state
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s(k) to s'(k) is given by the Metropolis criterion [29]:

_ (k) = (RN

Pls(k), s'(k)] = Pr{s(k) — §'(k)} = exp (3.13)

’I" 4
where
[z]* = max{0,z}. (3.14)
Eq. (3.13) can be written in another form:
, 1 il f(s'(k)) < f(s(R)) -
[)1‘{3(/\ + 1) =8 (A)} = { exp (_Mﬂ)%ﬂi&)).) otherwise. (J]O)

From Eq. (3.15), it can be seen that the Metropolis criterion while performing
the local search for the minimum cost at a fixed temperature T allows occasional
transition from a lower cost configuration to a higher cost configuration with certain
probability, thus preventing the system from getting stuck in local minima. The
random process Y = (s(k) : & > 0) produced in SA can be characterized by a
discrete time homogeneous Markov chain [1]. The one-step transition matrix is
Pla,y) = Pristk+1) = yls(k) = ]

0 il y €N(z) and y # x,

= G(z,y) min{l,e:cp(—u’i)—,#fﬂ)} ily € M{z) and y # x,
1~ 3 pze G2, 2") min {l,emp(—[ﬂil,;-u@l)} ify =z

where G(2,y) is the probability of generating configuration y from .

If the generation probability of any configuration x is uniformly distributed in
its neighboring configuration set A'(z) and the configuration transition is based on
Eq. (3.16), the corresponding Markov chains are irreducible, aperiodic, and recurrent,
[1]. Under these conditions, the stationary equilibrium distribution m; for configu-

ration 7 exists after infinite number of transitions,

mi(T) = kll.r?o Pr{s(k) =T}

= lim Pr{s(k) = i[s(0) = 0,7’}
(3.'1:])(—-m)

T

2jes CTp (—Lﬁﬂ)

(3.16)
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From Eq. (3.4), we know that

—— il € Spi
«_ 1 (T — [Soin| 1 min, 3.
i %13(1)#,(1’) { 0 otherwise. (3.17)
Therefore,
i im P(s(k W =1 (T = =1 3.18
tim [Jim P(s(h) € )| = Jim ()= X wr=1 @)

i€S i€Smin

Eq. (3.18) states that the SA algorithm asymptotically converges to the configu-
rations with the minimum cost, i.e., il the temperature is slowly lowered and at
cach temperature the system performs a sufficient number of transitions, the config-
urations (solutions) with the global minimum cost will be found with probability

one,.

3.4 Mean Field Annealing Theory

tven though SA is proved to be able to reach the global optima asymptotically, it
is often time-consuming to reach thermal equilibrium at each temperature. Finite
numbers of transitions at each temperature cannot guarantee convergence to the
global optima. In statistical physics, mean field approximation is often used.
Mean ficld annealing (MFA) uses a set of deterministic equations to replace the
stochastic process in SA. It uses saddle point approximation in the calculation of the
stalionary probability distribution al equilibrium, and reaches equilibrium at each
temperature much faster than SA. Even though this approximation method may not
be guaranteed to converge to global minima, it does provide a good approximation
in finding near-optimal solutions with much less computing effort.

As shown in the previous section, the stationary probability distribution at
equilibrium for configuration s’ is given by
exp (—ﬂi’l)

T

m(T) = —— 52,
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zZ= an:p (—[,(;)) .

where s,8' € Z™ are configurations and Z is the integer set. For a large optimization
problem, exact calculation of the partition function Z is prohibitive. The saddle
point approximation [35] is used. Note that the Dirac delta function, é(-), can be

expressed as:

§(x) = —— /1 ey (3.19)

= 27

where the integral is taken along the imaginary axis. Hence,

Z = Sep (_.ff§)>
8 T
= CvZ/R dv‘/lc_‘!‘(ﬁl-l'l RUCE I
8

(v
= C/ dv/c_i’l*l_"v -Zc"""du
R JI -

L) us
— C/R (IV/I(,’ ih uv-HnZSr: du

= C/R (lv/Ic'fc("'v)(lu, (3.20)
where
fe(u,v) = —f—(Y‘T’—)-}-uv—Ian"'s, (3.21)
8

(' is a complex constant, and f. is called the effective energy in statistical mechanics.

At saddle points,

O __Suse™
ou Sy e ’
and
dfe  109f(v)
L=l pu=0 3.22
ov T Ov tu ( )
Therefore
PRI
v = 'S"T — _z:_ss__(l__
Z%C"'S !
1 df(v
u = Lo ), (3.23)

T ov
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where 8 is the thermal average of s at temperature T'.
In statistical physics, h = ——a%(vﬂ is called the mean field. 1f a configuration
s = [s1,82," ", 8,)7 is represented by a sequence of binary values, i.c., s € {0,1}",

then we have v = [vy,vq,-++,v,]T and

1 us u
—g Si-en et 1 u;
v; = "’_10 L = = - [1 + tanh ({—l)] , (3.24)
T e ltew 2 9
Ie Al ')
where u = [uy,uz, -+, u,]" and u; = —% . %'ﬁ

For the binary system, we have the following MFA equations:

1 h‘i SGE
v =g [1 + tanh (QT)] , (3.25)

_af(v)

81),~ )

/L,' =

In 1982, Hopfield [20] defined the following energy function of the Hopfield net for
optimization,

fu(s) = —é ZZ Tijsis; — Zsi]i, (3.27)

i i

where s; € {0,1}. In the Hopfield model, the system is represented by a network
composed of n neurons. Each neuron 7 can be represented by an operational amplifier,
s; is the output of neuron i, and 1j;, which is symmetric (Ti; = 7}; and T = 0),
represents the synaptic connection between neuron ¢ and j. [; is the input current
to amplifier 2. The stable states of the network correspond to the 2" corners of the
hypercube {0,1}", the local minima of the energy function defined in Eq. (3.27).
For the MFA approximation, if the cnergy is formulated as in 13q. (3.27), the mean

field h; and the thermal average v; become

8/‘h(v) Ifs)
—— = U ; 3.2
o Ej Tivi + Iy (3.28)

\ _.—‘_1 1 anl hi 2 9(
v;_s,—g + tanh 71 (3.29)

/L,' =
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In MFA, the iterative procedure to reach thermal equilibrium at each temperature

is called relaxation, in which the mean field is updated by

hi(t + At) = hi(1) + Al [——a—gli—v) - /zi(t)} ,

Taking the limit, we have

dh; hi(t 4+ AL) — hi(t) o
P e V— (3300
or
dh; dfu(v) .
ML ) = oy R 3
7 T hi(t) XJ: Tivi+ I — by (3.31)

The MFA relaxation operation at each temperature should lead the system to stable
equilibrium. The stability and convergence of MFA will be analyzed in the next

scction. The MFA procedure can be summarized in the flow chart shown in Fig. 3.2.

3.5 Convergence of MFA
Before we prove the convergence of MFA, we need to review stability theory [30].
Consider a differential equation:
= = f(a). (3.32)
where z € R®, [ : 2 — R*"
Definition 3.5.1 (Equilibrium Point): «* is called an equilibrium point of Lyq. (3.32

if [(x) = 0. Thatl is, at the equilibrium point, the system will no longer change with

time.

Since such an equilibrium point may be stable or unstable, we need to define

the stability.
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® Formulate Encrgy Function
® Weights
® Anncaling Schedule eeens Problem-dependent

® Critical Temperature
® Termination Criteria

Initialization

vi=0.5 4+ md(5-5)
i=1.2......N

Problem-dependent

Print the Solution

kK== k¢l
T Ty

Itcration
Probl Jependent

h(k)=hjk-1)+ At{ .}l:' Yi (k-l)'l'ij+li-h itk-1))

v; (K)=0.5{1+tanh(h; /T)] (i=1.2....N)

I l<-- 141 l

Figure 3.2 The MFA iteration procedure

Definition 3.5.2 (Slability): Let z*(t) be a solution & = f(x). An cquilibrium point
a* is stable if, for every neighborhood set N of x*, there is a ncighborhood Ny of x*
such that every solution x(t) with initial point x(ty) in Ny is defined in both Ny and
N Jor all t > tg. That is, for any vy = z(to) and any given value ¢ > 0, there caisls
an arbitrarily small value § > 0 so that if ||a(ly) — 2*|| < 8, then||z(l) — a*|| < «,

where ||¢|| is the Euclidean norm, i.e.,

=

”’L, - .'l,‘jH = [Z(’L,A - .’L’jk)'z] . (3.33)
k
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Definition 3.5.3 (Asymplolically Stability): If x* is stable and lim;_.o, x(t) = a*,

then x> is asymptotically stable.

Theorem 3.1 (Liapunov’s Stability Theorem)[30]: Let = be an equilibrium point
Jor Iq. (3.32). Let £ : N— R be a conlinuous and diffeventiable function defined

on a neighborhood N of x* such that if

(a) L(a*) = Euyiy and E(z) > E(z*) if x # 2,

(by <0 VzeN, then a* is stable. Furthermore, if also
(c) £ <0 VaeN,

then a* is asymplotically stable. where

dE _ L da;

flz)= -2 =522 =V ¢ 3.34
(%) di jé).z,'j dl o (3.34)

OE OF or1"
VE(@)=|—, —, -, —] . 3.35
(z) [96“ m} (3.35)

(a) (b)

Figure 3.3 The illustration of stability. (a) stability. (b) asymptotically stable

A function F(xz) satislying (a) and (b) is called a Liapunov function for a*. If

(¢) also holds, we call E(x) a strict Liapunov function.
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For MIFA, if we construct
E(v) = fu + Z/ " hily)dy, (3.36)
=170

then we have

ALE()  3fu(v)

= = — Tiv; — I + hy, 3.37
(91),' 81),‘ + h ; ivi +h ( )

or
VE(v)=-Tv —-1+h, (3.38)

Where T = {T}; : Vi,j} and v,I,h e R"

IFrom Eq. (3.31), we can rewrite
h=T-v+I-h. (3.39)

If we construct

U(v)= E(v)— E(v"), (3.40)
and assume that v* is an equilibrium point and a local minimum. Then we have:

(a) W(v*)=E(v*) = E(v") =0, and
U(v)= E(v)— E(v*) >0, Vv eN(v™)

(b) From Eq.(3.25), we have

U,—2 ann o )

v 1 ' ch./'p
N ———

Therefore

%’. = 1+ e=mh/T ’I‘(] + C—h./'l')Z
: oV dv,-
W= LW

oV Ov; dv;
=~ vy Oh; dt

n Jv; Afn
2. (‘a— ¥ ’) O (‘aT - ’)
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8”1 afh 2

- Z Oh; (81), + b >
hif1 ] 2
_ ______( Jn +;,,)

T(1 4 e~ m/T)2 \ Ov;
= —VET . W.VE <. (3.41)
where W = diag (%1;, —g—;?;, s %}’f:) It is shown that if an equilibrium point v* is

a local minimum, it will be asymptotically stable. W(v), therefore, [2(v), is a strict
Liaponov function. i.e., at cach temperature, the evolution of Eq. (3.31) will lcad

the system {o converging to a local minimum,

3.6 Further Discussion of MFA
As shown in Iiq. (3.27), for a binary neural network s = {(s;) : s; € {0,1}Vi}, the
energy function is described by
fh = ——ZZT,JS,SJ ZS,’],‘.
i
By taking the average of the energy, we have
Tuls) = ——ZZTU_S—J Zs—t i
1
In order to find the mean field based on Eq. (3.26), we have to calculale 573
Since there exist interactions between neurons, any neurons i and j need not be
independent. Therefore the complexity to calculate their expected values will be
O(2V) (taking into account all configurations), where NV is the number of neurons in
a neural network. If we ignore the interactions, the average encrgy can be approx-

imalted by:
fh _"ZZTUS_" ZS 1. (3.42)

Then, the mean field can be obtained by

of
b= ) e, (3.43)
J

o
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1 exp(h; - s:/T) 1 hi
5 = ;P it = i = -1 tanh [ — . 3.44
5; H'Zﬂ).s Pr{s;} ;S T oxplh s/T) 2 + tanh 57 ( )

=

Fas. (3.43) and (3.44) are exactly the same as the MFA equations (3.25) and
(3.26). I'rom the approximation in Eq. (3.42), it can be seen that the complexity of
computing the mean field h; is reduced from O(2V) to O(N) (sce Eq. (3.43)). This
approximation is good, especially for a large system (optimization problem). In SA,
random perturbations based on the Metropolis criterion move the system towards its
thermal equilibrium at each temperature, i.e., f, — he,(T). Instead of the stochastic
process in SA, MIFA adopts a set of deterministic equations as shown in Eqgs. (3.43),
{3.44) by considering the thermal averages of neurons § at equilibrium. Even though
this approximation may no longer guarantee the system convergence to the global
minima, experimental results [8], [9], [31]-[33] have shown that this approximation is
effective in finding near-optimum solutions whereas the computational complexity is

greatly reduced as compared to SA.

3.6.1 The Related Parameters in MFA
Belore performing the MFA iterations, several parameters need to be determined in

order to obtain good solutions:

a. Weights: A combinatorial optimization problem can be described by an energy

function in the form of
E = w; - “cost” + w, - “conslrainls”
Assuming w;,w; € R, we consider the following extreme situations:

1. wy — +4o0, the first term (cost) will dominate and the MFA iterations
will lead the system to invalid solutions.

2. w; = 0, the MFA iterations may stop at a valid solution, however, the

solution could be very far from the global mimimumn.
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Therefore, the proper determination of the relationship between weights will

greatly affect the solution quality.

b. Critical Temperature: Critical temperature is defined as one at which on the
average each ncuron begins to move predominantly towards 1 or 0. Obviously,
at high temperature, the iterations based on Eqgs. (3.43), (3.44) are trivial
and all averages of neurons are disorderly distributed around 0.5. Therelore,
starling iterations at too high a temperature simply introduces computational
cost without any progress towards a solution. On the other hand, il the
initial temperature is too low, the evolution of neuron averages is just like the
quenching process in statistical mechanics and will resull in a poor solution.
Thus, the determination of a critical temperature at which the iterations start

becomes crucial to the efliciency of the MFA approach.

c. Final temperature or stopping criterion: The system must decide when to
stop the iterations, which is equivalent to deciding the final temperature at

which the iterations terminate.

d. Annealing Schedule: Annealing schedule is the way the temperature is
lowered. Fast decrement of temperature might lead the system to poor

solutions, whereas slow decrement will bring about computational inefliciency.

The determination of these parameters is correlated with each other and the choice of
parameters is still an open question. We will investigate these issues in the following

individual sections.



CHAPTER 4

SEARCHING FOR THE OPTIMAL FRAME PATTERNS IN AN
INTEGRATED TDMA COMMUNICATION NETWORK

The integration of data and voice in an integrated services data network (ISDN)
has received extensive attention in recent years in order to efliciently share the
system resources such as transmission, switching and control facilities. Many research
works have been directed to the time-division multiple access (TDMA) strategy
Bl [t4)18){24}{42].  In an integrated TDMA system, transmission channels are
shared by the circuit-switched type of traffic such as voice and the packet-switched
data. To avoid conflicts in accessing channels, contending users must be assigned to
use the channels at different times. The time axis is divided into frames and cach
frame consists of a certain number of fixed-length time slots. A certain portion of the
time slots in a frame are assigned to voice transmission and the remaining portion
is reserved for data. Many studies in the literature model the voice traffic as a lossy
system and data as a queuing system. Thercfore voice traffic will be blocked with no
transmission if it cannot find an available time slot at the instant of its arrival. Ior
data traflic, on the other hand, arrivals can be buffered and transmitted whenever a
time slot is available. Hence the objective of the system design is to minimize the
blocking probability of voice traffic as well as the time delay of data traflic. Two
approaches, namely fixed-length boundary (I'B) and movable boundary (MB) are
generally used. In the FB scheme, a TDMA frame is partitioned into two regions,
each consisting of a certain number of time slots, one for voice traflic and the other
for data traffic. The idle time slots assigned to voice cannot be used to transmit

data. Obviously, this scheme does not fully utilize system facilities. In contrast, the

33
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MB scheme utilizes any residual voice time slots to transmit data. As a result the

queuing delay is expected to decrease. Fig. 4.1 shows the two schemes.

Subframe 1, Subframe 2>J Subframe 1 Subframe 2

o ~=>]
L /I L [:l Voice Slot

Movable boundary

Data Slot

Fixed boundary
(a) (b

Figure 4.1: Integrated voice and data TDMA frame format: (a) FBB scheme. (b)
MB scheme.

4.1 The Multiaccess Protocol
In this chapter, we are concerned with the single-hop multiaccess/broadcast packet
transmission network. In this type of network, a single wideband channel is shared by
all users. A slotted ALOHA random access protocol is employed for transmission,
i.c., whenever a user is ready to transmit a packet, it simply goes at will. The
only constraint is that users must start to transmit at the beginning of each time
slot. When two or more users attempt to transmit at the same time slot, collision
occurs and all of the collided packets are required to be retransmitted. Although
the maximum achievable channel utilization is low, the slotted ALOHA scheme is
superior to fixed assignment schemes when there is a large population of bursty
users [37]. The ALOHA multiaccess protocol provides a simple control scheme for
the channel access. Typical examples of this type of network are the ALOHA network
(2], SATNET [22], and ETHERNET [28]. Fig. 1.2 shows a packet satellite network
in which a slotted ALOHA protocol can be used. A single satellite in geosynchronous
orbitl is used to provide connectivity among a number of carth stations. A global-

coverage antenna is used on the satellite, allowing each station to communicate with
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Satellite

r WS/Phone/Host I

Earth Stations A Station

Figure 4.2 A packet satellite network

any others in time. A single transponder is used on the satellite to repeal received
uplink packets on the downlink. All earth stations share a single wideband channel

in the uplink transmissions, which is from an earth station to the satellite.

4.2 Frame Pattern and Data Throughput
For the ALOHA-type networks, we assume that each user has two types of traffic -
data and voice. Since voice traflic is very sensitive to time delay, once a user with
voice traflic wins access to the channel at a certain time slot, the same time slot in
the successive frames will be reserved for this user until the voice communication is
completed. If a voice user finds no available time slots, its call will be rejected. A
time {rame consists of NV time slots, some for voice and others for data. The MB
scheme is adopted in our approach. Therelore, data traflic can be transmitted in
both its nominal slots and the silent voice slots at a time. For each data slot, all
data-type users access the channel based on contention. The collided data packets
must be retransmitted after a random number of time slots. Instead of the distinct

boundary as shown in Fig. 4.1 (b), the positions of data slots arc arranged in different
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places within a frame. The frame format is shown in Fig. 4.3. Each frame consists

of N time slots, including Ny slots for data transmission.  We denote:

Slot Number 1 2 kg N

[ Voice Slot

Figure 4.3 A frame format.

Ny 1 The number of time slots that can be used for data packets at a given frame,
which includes the nominal data slots and silent voice slots. The silent voice

slots are the ones which are unused at certain time.
ki: The slot number of the ith available data slot, where 1 < k; < N, 1 <i < N,

sit The interdistance between the ith data slot and its first successor (7 + 1)th data

slot, where

i = ki+l_ki, ifi:ls:z?"'aNd_l’
Tl ki +N—ky, ifi= Ny

s = (81,52, -+, 3n,) is called a frame pattern, which represents the relative positions

of data slots. Obviously,

Sy + 83+ -+ sy, =N, (4.1)

and

si> 1 Vi. (1.2)
Belore we get an insight into the frame pattern, we make the following assumptions:

I. The holding time of the voice call is much longer than the frame time so that

the queuing behavior of data for a given frame pattern can reach steady state.
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2. The slotted ALOHA random access protocol is used for data transmission. The
total data traffic, new and retransmitted, constitutes a Poisson process with a

mean arrival rate of G packets/slot.

3. Packets have a fixed length, and the length of a time slot equals the time

required to transmit a packet.

Based on the above assumptions, the probability that there are { data packets in the
interval [k, k + s;] is given by

(G- s) e G

Py = T

(1.3)

and the probability of no collision in the interval s; is the probability that no Poisson

data traffic is generated during the time interval s; (see Fig. 4.4), i.e.,

Pr(no collision in the time interval s;) = ¢~¢*

and
e G

Pr(packets successfully transmitted in the time interval s;) = G - s;

Therefore the average data throughput is given by

Bl Data Slot
[J Voice Stot

Figure 4.4 lllustration of no-collision interval.

From Eq. (4.4), it can be seen that the relative positions of voice and data

will generate different data throughput. Fig. 4.5 is an example of the throughput,
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G=05 N=10,Nd=4

[TTT] sa11L7n y=0254

s=(2,2,2,4) y=0.344

Figure 4.5 The throughput generated by the two frame patierns.

generated by two frame patterns. For a given N and Ny, there are C',’\}Id frame
patterns. For example, assuming N = 40 and N, = 10, the total number of feasible
(rame patterns is CJ§ = 8.4 x 108. An optimal frame pattern is the one which provides
the maximum data throughput. The computational complexity using exhaustive
scarch for finding the optimal frame pattern among the set of all frame patierns

becomes intractable as the problem size increases.

4.3 Random Search for the Optimal Frame Patterns
The general way to obtain a good frame pattern is to pick up a bunch of feasible
frame patterns that satisfy the constraint Eq. (4.1), then calculate the throughput
for every single frame pattern. The one having the highest throughput among all
the selected frame patterns will be used as the optimal frame pattern. Obviously,
the random search is a local search scheme. Its performance strongly depends on the
initial selection of a frame pattern, the way used to pick up another frame pattern
from the current one and the number of the selected frame patterns. In evaluating the
performance of the random search, we take the average throughput of the randomly

sclected frame patterns.
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4.4 Searching for the Optimal Frame Patterns
by Using Mean Field Annealing
As shown in Section 4.2, maximizing data throughput is equivalent to finding a

. " . opt __ opt _opt opt
specific frame pattern s = {s{",s,", -+, sy } such that

1 Y C,
opt = MAT =mar — > G- -s;-¢ "% 4.5
Ysort SES’)’S e e's Nd; i ) ( )
subject to
Ny
Zs;:N, where | < s; < N~ Ng+1. (4.6)
i=1
and
s> 1 Vs (4.7)

The MFA procedure for solving this constrained optimization problem is summarized

as follows:

1. Form an energy function which reflects both data throughput to be maximized

and the constraints.

2. Select the weights that keep the balance between maximization of data

throughput and satisfaction of the constraints.
3. Determine the annealing schedule.
4. Determine the critical temperature T, to achieve fast convergence.

Define the termination criterion.

[o1

6. Perform the iterative procedure to find optimal solutions:

(a) Initialize the average of neuron ¢j with v;; = 0.5+40.001 X rand[—1,1] Vi, j,
and start annealing from the critical temperature. Neuron ¢ is defined in

the sequel.
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(b) At each temperature T, update v;; Vi,j according to Eq. (3.25) and
Eq. (3.26) through the synchronous or asynchronous method until a
certain criterion is satisfied. One complete updating of all neurons at a

fixed temperature is referred to as a sweep.

(c¢) Decrease the temperature T' according to the annealing schedule, repeat
Step 6(b) until the convergence criterion is satisfied. Each temperature

corresponds to an iteration which consists of a bunch of sweeps.

To map this optimization problem onto the MFA framework, we need to determine

the parameters defined in the Step 1-Step 5 above.

4.4.1 Energy Function

, _w Na
[(s) = —-—- ZG‘ si-e”9m 4 — (Zs, ) +ws Y D7 sii(1 = si)
i=1 j=1
= ’—wl‘E1+U)2 Iy +ws - I3 (4.8)
and
si= 3 82 (4.9)
J=1

where m = [logy(N — Ny 4 1)] + 1 and [z] is the ceiling of x. For example, for
N =40, if Ny = 9, then m = 5, and if Ny = 5, then m = 6. s;; € {0,1}Vi,; are
binary neurons. w; > 0, [ = 1,2,3, are called the weights.

The interdistance between the ith data slot and its first successive data slot is
denoted by s;. Since s; is an integer and 1 < 5; < N — Ny + 1, s; can be expressed
in terms of m binary neurons defined by Eq. (4.9). The first term in Eq. (4.8) is
the negative weighed data throughput, and therefore maximizing data throughput
is equivalent to minimizing the negative throughput. The second term introduces

a penalty for constraint violation. If the constraint in Eq. (4.6) is satisfied, the
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energy introduced by the second term is zero. The third term equals zero only if
all ncurons converge to either 0 or 1. If the weights (wq,w;,w3) are properly chosen,
the annealing procedure will lead the system to a configuration with the minimum

energy corresponding to the optimal frame pattern.

4.4.2 Determination of the Weights

Taking the derivative of E; and setting it equal to yields

ol
38,‘

= (1 -G s;)exp(—G-s;) =0.

Therefore, the frame patiern s = {s; = & Vi} provides the maximum throughput
Ymar = ¢”'. However, this frame pattern may not satisfy the constraint of Eqs. (4.6)
and (4.7). On the other hand, the minimum value of F; is zero when Zf\_l_;‘l s; = N, but
any combinations of s; would not achieve the maximum data throughput. Therefore,
there exists a profound relationship between w; and w,.

The annealing procedure attempts to relax the system into a state with the
minimum energy, and simultaneously with all constraints satisfied. A state (frame
pattern) s’ that violates the constraint should yield higher energy than a state s
which satisfies the constraints. Consider the situation that a stale s satisfies the
constraints Iigs. (4.6) and (4.7), and each neuron has converged to either O or 1. 1l a

neighboring state s’ of s differing from s only in one element violates the constraint

such that

s _ ) sk—1 ili =k, fora certain £,
N { Si Vi  except i = k. (4.10)
then
Ny
Ysi=N-1#N,
=1
and
E(S') w1 % G s ~Gs' n wWo (4 ”)
y - - 1+ 8 € v _“ .
Nd =1 ' 2 ’
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wy ALl -3y ;
E(s):——N—lZG-s;-e . (4.12)
¢ =1

According to the above statement, F(s") > F(s). Therefore from Eq. (4.11)

and (4.12), we have

w, Ne wy Wy
EsY=E(s) = ——=Y G-st-e7@ 4 24 L5 G 50
(s") — £(s) Nd; et +Nd§ i
_ %E"U);VG[S:L o ""‘L—sk~e"G's"]
2 d
wy WG —G(5x~1) Gs
= 5 "N [(sk——l) e k TN *]
d
w wy - G
= 3N e s
wWo ’LU}'G -G,
> 5 N, e [(Sk—l)-e ——(.Sk—l)]
= %%_w—l&"q'c—a(qk_l) (s6 = 1)~ [1 = 7]
z d
Using the fact that
e " <e!,
f) ! -— w—‘z—gl. — -G . )—1
B(s') ~ B(s) > - N (1=e9) e >0
= wy > 2w . (] — c"G) et (4.13)
N,

Here only one specific case is considered, indicating that the selection of w; and 1w,
is related to G and Ny. The adjustment of the weights according to G and Ny is
required to obtain better solutions. The term, ws, is a weak constraint, and wy = |

in this paper.
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4.4.3 Critical Temperature
According to Egs. (3.43) and (3.44), each ncuron is updated as follows

(3
1
2

1 1 li(v,t) o
[ 61) = -t — s Vi, j. 4.14
v;;(t + 61) + 3 anh [ T Bos iy ( )
where
Vi = 8ij. | <2< Ng,1 <7 <m,
V= {'U],Ug,' v 7de}a v = {vilvvﬂ?' © avim}-

The critical temperature is defined as the temperature at. which the sharp state
transition starts. In Eq. (4.14), a very large value of T' leads each v;; to fluctuate

3, and the state transition is very slow. Therefore there must exist a critical

around
temperature at which quick state transitions are expected to start. In this paper, the
critical temperature is obtained by trial-and-crror. That is, temperature is slowly

decreased from a very high value. At each temperature, only one sweep is taken. At

the end of each sweep, compute the average absolute error

1 Ny m

€= Nd_mZZIUU(H&)—UUU)I, (4.15)

D=1 g=1

where { stands for the time a sweep starts and ¢ + é¢ for the time a sweep ends.
When ¢ > 0.1, the above procedure stops, and the corresponding temperature is the

critical one.

4.4.4 Annealing Schedule

The following annealing schedule is employed.

T,

—_— 4.16
l4+a-n ( ’)

71n+l =

where « is a small positive value, and n is the iteration index.
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4.4.5 Termination of Sweeps

At each temperature, each neuron is updated according to Eq. (4.14). The sweep is
terminated when ¢ < é8;, where §; is a small positive value. On the other hand, at
some temperature, the condition may not be satisfied after a large number of sweeps.
To avoid infinite sweeps, the sweep procedure is forced to end after a fixed number
of sweeps ngweep. Then the temperature is further decreased, and a new iteration

begins.

4.4.6 Convergence Criterion
All v;; should converge to either 0 or 1 alter the last iteration. Therefore, we define

the convergence criterion as

1 Ng m

— ZZ’UU(] - v,'j) < by, - (4]7)

i=1 j=1

where 6, is a small positive value. When the criterion is satisfied, all neurons are

clamped, and the interdistances for the optimal frame pattern are found to be
LI 1
6,:221(](@,]—5) V'l (4l8)
7=1

where U(-) is a step function.

4.5 Numerical Results
Four instances with Ny = 5,8,10,15, and N = 40 are tested by using the MFA
algorithm. To demonstrate the advantage of the MIFA scheme, a comparison with
the random search and the SA approach [10] is made in terms of computational

complexity and throughput optimality.

I. Random Search (RS): In random search, a frame pattern is randomly selected
[rom the frame pattern space, and the one that yields the largest throughput

is kept until termination. There is no fixed rule for terminating the procedure.
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Usually, the procedure terminates after a certain number of iterations. Here an

ileration consists of a frame pattern generation and a throughput comparison.

o

Simulated Annealing: To make the comparison fair, an ileration in [10] consists

of a pattern generation and transition test based on the Metropolis criterion.

3. Mean Field Annealing: In MFA, to exploit the parallelisim of neural networks,
synchronous updating is adopted, i.c., the current value for each neuron is
updated by using the previous neurons’ values. Therefore, neurons in the
neural network operate in parallel, and an ileration implies that the whole

network is updated once, i.e., all neurons are updated once.

The three algorithms are implemented and compared. Each algorithm is executed
1000 times, and the throughput is averaged over the 1000 runs. Each run is defined
as an exccution of an algorithm. Fig. 4.6 shows the first 100 iterations of a run
at the arrival rate G= 0.5. [t can be seen that the MFA approach reaches its
steady throughput within the first 100 iterations. Fig. 4.7 is the results after 500
iterations. Fig. 4.8 shows that, after 1000 iterations, all of the algorithms reach the
steady throughput. Fig. 4.9 shows the average data throughputl over an ensemble
of 1000 runs when the arrival rate G is 0.5. Fig. 4.10 shows the average throughput
achieved by the three algorithms over an ensemble of 1000 runs at different arrival
rates. It can be seen that the average throughput achieved by both MFA and SA are
very close. At some arrival rates, MIFA can achieve even better average throughput
than its counterpart because finite-time implementation (1000 iterations) of SA does
nol guarantee convergence to global optima. The RS algorithm is not effective in
scarching for the optimal pattern. It can be seen from these results that MFA achieves

faster convergence than SA while achieving sub-optimal performance.
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4.6 Summary

Searching for the optimal patterns in an integrated TDMA communication system
is a combinatorial optimization problem. As the problem size gets large, the compu-
tational complexity becomes intractable. SA is a good algorithm in finding global
optimal solutions, but it is usually time-consuming. MFA, which uses saddle point
approximation, is proposed to solve for the optimal patterns. [t is computationally
cfficient, and is able to acquire (sub) optimal solutions comparable to those obtained
by SA. The determination of related parameters are addressed, and comparisons with
the RS and SA approaches are presented. Numerical results have shown that MFA

is 5-6 times faster than SA and at the same time achieves comparable solutions.
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CHAPTER 5

OPTIMAL BROADCAST SCHEDULING IN MULTIHOP PACKET
RADIO NETWORKS

Another type of packet network is the multihop store-and-forward multiaccess/broadcast
network. In this type of network, each station is equipped with a transmitter/receiver
and a control unit. Stations communicate with each other via broadcast radio.
The control unit performs the packet switching functions. Connectivily between
neighboring stations is established, which means that the neighboring stations can
directly receive transmissions from ecach other. All stations employ omni-directional
antennas and share a high speed radio channel. When a station intends to transmit,
it broadcasts through its antenna. FEach neighboring station receives the trans-
mission. If the transmission is destined for it, the neighboring station will absorb the
packets. Otherwise, it will store the packets in its buffer and send them out later.
Therefore, for any two distant stations where direct connectivity does not exist, the
intermediate stations act as repeaters and perform store-and-forward functions. The
typical example of the multihop store-and-forward packet radio is the packet radio
network (PRNET) sponsored by the Advanced Research Projects Agency (ARPA)
[23]. It permits mobile communication over a wide geographic arca, provides efficient
multiaccess for bursty-type traffic, and allows coexistence with different systems in
the same frequency band and antijam protection. Fig. 5.1 shows a packet radio
network in the internet. The communication between geographically separated hosts
are established through the PRNET. Fig. 5.2 illustrates the broadcast transmission

of data packets.
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Figure 5.1 A PRNET in the internet.
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Broadcast Transmission

A Host/SubNet/I'erminal

Figure 5.2 The broadcast transmission in a PRNET,
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5.1 The Spatial TDMA Protocol and the Scheduling Problem
In a multihop PR network, since a single channel (usually broadband) is shared by
all users, the transmission for each station must be scheduled to avoid any collision
or interference. Based on the characteristics of a multihop network, the single radio
channel can be shared by all stations in both time and space domains. A multiaccess
protocol, namely spatial TDMA, can be used to schedule conflict-free transmission
[26]). In the spatial TDMA network, time is divided into frames which consist of
fixed-length time slots. When certain stations transmit simultaneously, collision or
interference will occur. Therelore, any two stations that may result in collision or
interference must be scheduled to transmit at different time slots, while the stations
some distance away may be arranged to transmit al the same time slots without,
causing interference. Since the primary objective of the PR network is to provide
high throughput with low delay, a scheduling scheme must provide a schedule which
can achieve maximum channel utilization as well as lower delay. For a fixed-topology
PR network in which locations of stations are fixed, the problem is to schedule a frame
in which each station transmits at least once. Additional transmissions can be added
into the frame if the addition does not cause any collision. There are two approaches
for the scheduling. The first approach is to schedule the transmissions within a
[rame under the condition that the number of time slots in a frame (frame length)
equals NV, the number of stations in a PR network. The optimal schedule is the one
which can provide the maximum number of collision-free transmissions in a [rame.
The second approach is to find an optimal frame schedule which has the minimum
frame length while keeping a maximum number of transmissions. Such a scheduling
problem is NP-complete (Appendix A), which implies a good algorithm rarely exists.
In this chapter, an approximation algorithm based on mean field anncaling (MI'A)

is presented to solve the scheduling problem.
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5.2 Problem Formulation
A PR network can be represented by a graph G = (V, ) where the vertices in V
are network stations, and E is a set of edges. We assume that the network has a
fixed topology. The total traflic passing through station i consists of packets received
from other stations which will be routed through station 7 and the packets from the
terminals attached to it. The spatial TDMA protocol is adopted in which a single
wideband channel is shared by all stations of the network. Time is divided into
unit-length slots. Each frame consists of a fixed number of time slots. Data can
be transmitted in successive frames. The transmission time of stations in a [rame
is scheduled to avoid any collision. We are concerned with the fixed assignment of
transmission for stations in a frame. Thus, once the optimal transmission patterns
(the arrangement of transmissions) are determined, the frame is repeated in the time
axis. Without loss of generality, we assume that a time slot is equal in length to the
amount of time for a station to transmit one packet over the channel. We also assume
that all stations have the same transmission range R and they are synchronized.
Zero-capture is assumed, i.e., when some stations receive two or more overlapping
packets, regardless of the difference of received signal power between the stations,
collision occurs and all of the packets are destroyed. For any two stations 7,2/ € V, if
the distance between them is less than R, they can receive the packets transmitted
from each other. Therefore, there exists an undirected edge ¢ = (7,7') € E incident
to station 7 and ', and the two stations are one-hop apart. If (,7') € I£ and there
is such an intermediate station j as (z,7) € IV and (¢,7) € F, then station ¢ and ¢/
arc two-hop apart. The topology of a PR network can be described by an (N x N)
symmetric binary matrix C, where N = |V| is the number of stations in the network.
The matrix, C' = (¢i;) (2,7 = 1,--- N), also known as the connectivity matrix, is

defined by
1 if(4,7) € E and i # 3,

Ci; = )
Y 0 otherwise.
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To ensure that a packet is correctly received in a station, the following

constraints must be satisfied:

I. A station cannot have transmission and reception status simultaneously, i.e.,
if (7,7) € I, station 7 and ¢ must be scheduled to transmit in different time

slots.

2. A station is not allowed to receive two or more transmissions simultaneously,
Le.,if (4,7) € E and (j,k) € E, bul (i,k) € F, station ¢ and & must transmit,

in different time slots in order to avoid collision in station j.
If the first constraint is violated, Primary interference (collision-type) occurs.
Secondary interference happens if the second constraint is violated. Fig. 5.3
illustrates the two types of interference. The optimal schedule must guarantee

interference-free transmissions. In short, a station and its one-hop or two-hop

neighboring stations must be scheduled to transmit in different time slots.

Primary Interference Secondary Interference

@ station in transmission

O station in reception

Figure 5.3 lllustration of interferences.

We can form a new (M x N) matrix called the compatibility matrix /' = (f;;)

from matrix C, where

fii = 1 if stations ¢ and j are one-hop or two-hop apart,
1 = 0

otherwise.

Note that fi; =0 V2 and I is symmetric, Le., fi; = [



57

Thercfore, for any two stations ¢ and j, if f;; = 0, both stations can transmit in
the same slot with no collision. We assume that cach frame consists of M time slots.
In a frame, each station must be scheduled to transmit at least once (one time slot).
Additional transmissions can be arranged provided that the addition does not cause
collision. We use an (M x N) binary matrix S = (si;) to express a transmission

schedule, where

I if station j transmits at the 2-th slot in a frame, ..
sij = ; (5.3)
0 otherwise.
Let pi be the channel utilization for station &, then
number of transmission slots assigned to station & M, s,
Pk = : = . (5.4)
frame length M
The channel utilization for the whole network, p, is given by
1 N 1 M N
= — ;= Sij. 5.5

Denote 7 as a set of collision-free schedules where S = {51, .-+, SV}, and cach
feasible schedule $* is an M x N binary matrix defined by Eq. (5.3). Define pgi as
the channel utilization achieved by schedule S*. Therefore, the optimal scheduling
problem is described as follows.

Find the optimal schedule 5°7* € 5’ so that

I. It has the frame length M = N (Approach 1), or

It has the minimum frame length M (Approach 2),

2. It satisfies the constraints

and

N
YD fusisit =0, and (5.7)
k=11i=1 j=1
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3. it yields the maximum channel utilization, i.e.,
Psort = Max Psi. (5.8)

Sie S

2MN schedule configurations. An exhaustive

For a given M and N, there are
scarch for the optimal schedules is prohibitive when M and N are large.

For the second approach, the minimum frame length depends on the topology
of the network and is generally unknown for a PR network. However, a tight lower
bound for a frame length can be found analytically, thus allowing one to estimate the

minimum required frame length. By defining the degree of a vertex 7 as the number of

edges incident to it and denoting the degree as deg(z), we have the following lemma:

Lemma 5.1 The frame length M satisfies

M>X(G)+1, (5.9)
where
X(G) = r\?f’é v deg(z). (5.10)

Proof: It is obvious that deg(z) equals the number of one-hop neighbors of station
. Denote B(2) as the set of one-hop neighbors of station ¢. For any two
stations j, j' € B(7), since ¢;; = 1 and ¢;p = 1, station j and j’ are one-hop
neighbors if ¢;; = 1 and two-hop neighbors if ¢;;; = 0. According to the
constraints mentioned above, station ¢ and all its deg(z) one-hop neighbors
must be arranged to transmit in different distinct time slots in order to obtain
collision-free transmissions. Any two stations j, j* € B(Z) cannot transmit in
the same slot. Therefore, the required number of time slots for transmission [or
station ¢ and its one-hop neighbors is deg(i) + 1, and the least required number
of time slots of a frame for the network, A(G), is given by

A(G)=X(G)+ 1 =max  deg(i) + 1. (5.11)
VieV
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Figure 5.4 Two PR networks and their transmission schedules.

5.3 The Optimal Scheduling Algorithm Based on MFA
Iiq. (5.11) only provides a lower bound for the frame length. For a given network,
the frame length for any of the collision-free schedules is always greater than or equal
to A(G), i.e., the inequality M > A(G) holds. The real frame length for an optimal
schedule depends on the topology of a network. For certain networks, a [easible
schedule with exact frame length A(G) may not exist. Therefore, a longer frame
length is required. The example shown in Fig. 5.4 is used to illustrate this point. In
this figure, two networks and the corresponding optimal schedules are given. In Fig.
5.4 (a), X(G) = 2,A(G) =3, M = X(()+1 = 3, and the equality M = A(G) holds.
In I'ig. 5.4 (b), however, X(G) = 2, A(G) = 3, M = 4, and the inequality M > A(G)
holds. Thus, a feasible schedule with the frame length A(() does not exist. From
this example, we can see that the minimum required frame length is dependent on
the connectivity of a network, and cannot. in gereral, be predetermined. The lower
bound for the frame length in Eq. (5.9) provides useful information when collision-

free transmissions are scheduled. We can start, to search for the optimal schedules
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with a frame length equal to the lower bound A(G). If no {easible schedules with
this length can be found, we will increase the frame length, and then search further
lor feasible solutions. In this way, the scheduled frame length would be minimized.
Once the frame length is determined, the optimal scheduling procedure will continue
until a collision-free schedule with maximum channel utilization, defined in Eq. (5.5),
is found. This schedule provides the optimal solution for the scheduling problem.
In the sequel, we will discuss how to use neural networks to solve such an optimal

scheduling problem.

5.3.1 Energy Function

To solve the optimal scheduling problem by using MFA, we first nced to map the
channel utilization to be maximized and the constraints into an energy function.
We assume that the frame length is M and there are N stations in a PR network.
M x N ncurons are required to represent a schedule. Each neuron s;; (i = 1,---, M;

J=1,-+-,N)is defined in Eq. (5.3). The following energy function is derived

wy 1 M N 5 Wy N N M N
= - -]V—M—EZSU + —Z_Z f,-jsk,-skj-l-wgzz.sij(l — sij). (5.12)
~ i=1 j=1 k=11i=1j5=1 i=1 j=1

where weights w; > 0,7 =1,2,3. The first term in Eq. (5.12) is negatively weighted
channel utilization. The second term is a penalty function for constraint violations.
When the constraint is satisfied, it becomes zero. The third term is used to force
ncurons to converge to either 0 or 1 (if all 5;; = 0 or 1, the third term equals zero).

The mean field of neuron 7j is

AF wy N
PMET — 7 = oy —w g Vi — wa(l — 2v;; 5.13
] avij NM ¥} 2 g f]k ik .i( 1]), ( )

where

vi; = 8.
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5.3.2 The MFA Scheduling Algorithm

The updating of the neuron average is given by

1 wy

N
vij (L 4+ At) = % {1 4 tanh [ﬁ (W S — We Z Lok - vie — wa(l — 21)51'))} } .
= - k=1
(5.14)

Then the MFA iteration proceeds until freezing occurs. For the first approach,
the frame length is equal to the number of stations in a PR network. For the second
approach, since the exact frame length is unknown, we can start to schedule the
frame with length A(G), the lower bound of the frame length shown in Eq. (5.11).

The proposed scheduling algorithm includes three steps:
Step 1: Presetting ncurons

Approach 1: The frame length equals the number of stations in a PR
network. Set v;; =1 Vie V

Approach 2: I'ind the station p which has the maximum degree X (), then
set the initial frame length M = A(G) as defined in I5q. (5.11), and assign
station p and its one-hop neighboring stations 7 € B(p) = {k : ¢y = 1}
to the different distinct time slots. For example, set vy, = 1 and v;; = |
Vj € B(p) (¢ = 2,---,A(G)). For the i-th slot, since v;; = 1, The k-th
neuron with fj;x = 1 must be set to vy = 0 Lo resolve collisions (see Eq.
(5.7)). The preassigned neurons no longer need to be updated and their

values will be used to update the other neurons.

Step 2: Performing the MFA iterations based on Eq. (5.14)
The iteration continues until {reezing occurs and the freczing state should

provide the maximum channel utilization within the frame length M.

Step 3: Applying the heuristic algorithm for unassigned stations (only for Approach

2)
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After completing the above two steps, some stations might remain unassigned
for transmission due to the collision-free constraint. The number of unassigned
stations depends on the topology of the network. Usually, after the first two
steps, only a few stations are unassigned. Extra time slots are needed to
arrange the remaining transmissions. We use the following heuristic algorithm
to schedule the transmissions of the unassigned stations. Denote the unassigned

stations as U = {U,--+,U,}

1. Sort the stations in U in a descending order of station degree such that

deg(U;) > deg(Uiy).

2. Add a time slot for the frame, and assign the stations in {/ to transmit
in the slot. The priority of assigning a station’s transmission is based
on the order of Uj i.e., the priority of U; is greater than that of U;,.
The stations arranged in the slot must be conllict-free. Repeat the above
procedure until U 1s empty.

3. The actual frame length M equals A(G) + the number of added time

slots.

4. Check the stations which have been assigned to transmit in the first A(G)
time slots. If any of the stations can transmit in the added time slots
without conflict, assign the transmissions of the stations in the corre-

sponding time slots.

After the three steps are completed, the optimal schedule represented by wv;;
Vi, j is translated into the actual transmission assignment (i.c., v;; = 1 means that
station 7 can transmit in slot 7).

To illustrate the scheduling algorithm, we use the network shown in Fig. 5.2(a)
as an example. Iig. 5.2(b) is the result from the first step. The value in the i-th

row and j-th column is v;;, the value of neuron ¢j. v;; = | means that station j can
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transmit in slot ¢, whereas v;; = 0 implies that it is prohibited from transmitting.
The values for the empty neurons are decided in the successive steps. Fig. 5.5(c) is
the result after the second step is performed. For this example, after the second step

is completed, all stations have been arranged for transmission. Therefore, the third

step is notl executed.

D receiption slot

- transmission slof

slol to be wranged

STATION STATION
HABAMBELNDEEDRR AHACEBUNDNREEEE

(38
)
88
W

SLot SLOT

o] o] s wlio]—|
H —

oC] Jf S\ | ) Wl 1] =

(b) (©)
Figure 5.5: Illustration of the procedure involved in the MFA algorithm. (a) the

15-station network, (b) the result from the first step. (¢) the result after the second
step is executed.

5.3.3 Critical Temperature

FEach neuron is updated according to:

a1 (n— )
Nt N ___l_()L(v(' ) . .
vij =5 + 5 tanh 20 pn-1 Vi, J, (5.15)
1j

where v;; =< s;; >7, and < - > is the averaging operator. v = (v;;) is the neuron
2 J 4 17

matrix of dimension M x N, and n stands for the n-th iteration.



64

From Eq. (5.15), it is seen that iterations starting at too high a temperature
result in trivial solutions. Starting at too low a temperature, on the other hand, might
force the system into a poor or invalid solution. Critical temperature is defined as
the temperature at which fast state transitions begin.

For the scheduling problem,

1 1 9E(v(=1))
W) D _
('l] - 9 + 5 tan h ( —2T ——_avg_l—l)
_ ! + l hnll{ 1 [ W1 =) + w EN Jik v("—l)) + ws(1 ‘)v(n_l))}}
T 2T 9 o\ T MN 2 ik Uik 3(1 — 2v;; )
22 27 MN™V = 7 3

It is secn from Eq. (5.16) that the state of each ncuron remains relatively
unchanged at high temperatures. The iteration procedure in Eq. (5.16) should
start al a temperature (the critical temperature) at which fast transition begins as

illustrated in Fig. 5.6 until stcady state is reached. Thus,

l L i L]
09} / .
Steady State
08} .
07} |
06} / .
0.5
04t a8 .
Fast Transition ; i
03 |- o fod i
» Fast Transition
0.2 .
Steady State b
0.1 H : p
0 L E E L 1
-3 -2 -1 — 0 o | 2 3

Figure 5.6 The illustration of state transition.

1 oF
—_— | =
2T é)v,(?) ’
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where 0.1 < o < 0.2 is chosen, at which state transition becomes rapid. Since all

neurons v;; arc initialized to 0.5+61 (61 is a small random number), we choose

. 1|9k
1 0.0M/l + w. i 0 t—/‘ + W. (l 21}(0))
= 50 Sk S(1 — 207
200 MN 2 Pt J 7k 3 i
1 0.5W, N i
~ oo |- MN1 +W2k};0.5fjk . (5.17)
Thus,
1w N
2 (—"M_]N W i ijk) :
or
1 -W N
T. < — | ——— 4+ W, - max
T. < ia ( N + mjcm ;_[]k)
The lower bound for the temperature is taken as
o 1 W
Ic—_-;lz( Mll\f+w2 m]m Zf],\) (5.18)

The derived critical temperature is suitable only for the synchronous mode,
in which all v}}t) are updated simultaneously using the previous v*~Y. For the
asynchronous mode, each neuron is sequentially updated. The critical temperature
for asynchronous iteration can be estimated by a (rial-and-error method, i.c., the
iteration starts at a very high temperature and the temperature is gradually lowered.
At each temperature, each neuron is sequentially updated once. At the end of each

iteration, the absolute average value

om) _ o (n=1)
cl = MN?ZZ v;; (5.19)

is checked. At high temperatures, el < «a for some constant . When ¢1 > a,
significant state transitions begin. Therefore, when ¢l > a, the trial process ends,

al which point the corresponding temperature is critical.
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5.3.4 Annealing Schedule
The annealing schedule reflects the way the temperature is reduced, and the following
empirical annealing schedule

Toir1 = 0.9 T, (5.20)

is adopted in our simulations.

5.3.5 Stopping Criterion

At a very low temperature, all neurons converge to cither 0 or 1. Let

1 n n ¥
€2 = N Z:Zj:t)fj) (1 - 1)§j)) . (5.21)

Thus, the iterative process may stop either when the error is approaching 0 (in our
case, ¢2 < 0.01) or when the temperature reaches 0. The final values of neurons

represent, the schedule.

5.4 Numerical Examples and Performance Analysis

5.4.1 Channel Utilization and Average Time Delay
The performance of the resulting schedules can be evaluated by two criteria: channel
=4

utilization and average time delay. The channel utilization is defined in Eq. (5.5).

Before we derive the average time delay, the following assumptions are made:

1. Packets have a fixed length, and the length of a time slot equals the time

required to transmit a packet.

o

The interarrival time for each station ¢ is statistically independent from other
stations, and packets arrive according to a Poisson process with a rate of A;
(packets/slot). The total traffic in stations ¢ consists of the traflic incoming
from other stations and the data from terminals attached to it. Packets are

stored in bullers in each station and the buffer size is infinite.
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3. The probability distribution of the service time of station 7 is deterministic
and statistically independent from other stations. The average service rate is

i (packets/slot).
4. Packets can be transmitted only at the beginning of cach time slot.

Under the above assumptions, a network can be modeled as N M/D/1 queues, where
N is the number of stations. According to the Pollaczek-Khinchin formula [7], the
average delay for each queue 7 is given by

R A X2
D;=X; +——2%
2(1 = pi)

where X; = “L is the average service time for station 7,

pi = %L is the utilization factor for station 7, and
1

X2 is the second moment of service time for station 7.

H

Since the service time is deterministic, the variance equals zero, and thus

<7 o 1
Aril —-— A’iz = ——'—2-, (5_23)
i
and
et Vji .
fri = =5 (packets/slot). (5.24)
The total time delay is given by
D
D= —Z—j‘,— (5.25)
Zi::l /\i

5.4.2 Numerical Results

Three PR networks with 15, 30, and 40 stations are scheduled in our numerical
examples. The networks are shown in IMig. 5.7. The scheduling results for the two
networks are shown in Fig. 5.8 for Approach 1 and in Fig. 5.9 for Approach 2. For
the three networks in Approach 2, A(G) = 9,10,9 and the scheduled frame length

is 9,11,10 respectively, which are close to the lower bound shown in Iiq. (5.9).
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We compare the performance achieved by the MFA scheduling algorithim with
the other two scheduling algorithms [13], {41] in which the objective of scheduling is
to achieve the maximum channel utilization. The time delay and channel utilization
are plotted in Fig. 5.10. From this figure, it is seen that the time delay experienced
by the MFA schedule is much less than that of the other two scheduling algorithm s
which have the same time delay, and the channel utilization achieved by MFA is a

little bit less than the other two.

5.5 Summary
In this chapter, an MIFA-based algorithm is proposed to solve the broadcast
scheduling problem in PR networks. Two approaches are used in the scheduling.
Approach 1 provides the highest channel utilization among all of the approaches,
but the time delay is much larger than Approach 2. Approach 2 has the minimum
time delay at the expense of lower channel utilization. As compared with the F&'T
algorithm [13], the proposed MFA approaches provide superior performance in both

channel utilization and average time delay.
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Figure 5.7: The radio networks used in the simulation. (a) the 15-station network.
(b) the 30-station network. (c¢) the 40-station network.
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Figure 5.8: The MFA broadcast schedules for Approach 1: (a) the 15-station
network. (b) the 30-station network. (c) the 40-station network.
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Figure 5.9: The MFA schedules (Approach 2): (a) the 15-station network. (b) the
30-station network. (c¢) the 40-station network.
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CHAPTER 6

OPTIMAL CHANNEL ASSIGNMENTS IN FDMA MOBILE
COMMUNICATION NETWORKS

In the FDMA protocol, the whole available bandwidth is subdivided into a number of
subbands called channels. Each user in the network is confined to access an allocated
channel only. Although FDMA takes a {raction of the bandwidth to achieve adequate
[requency separation, it is relatively easy to implement and requires no real time
coordination. One of the FDMA examples is cellular communication systems, in
which the frequency band is allocated by the Federal Communications Commission
(FCC) to be on 824-849 MHz for uplink transmissions (from a mobile to a base
station) and on 869-894 MHz for downlink transmissions ({rom a basc station to a
mobile). The frequency band is subdivided into a certain number of narrowband
channels, each capable of supporting one phone circuit that can be accessed by any
uscer. The channels are indexed by a sequence of numbers {1,2,---,N}. Channel ¢
and Channel 141 are called adjacent. The channel spacing is 30 kHz. Therefore this
[requency band can accommodate 832 duplex channels [12][17][27](36]. Furthermore,
the 832 duplex channels are equally divided into Bands A and 3. Voice and control
channels are assigned at each base station from the allocated spectrum, either A or B
band. Therefore, there are 416 channels for each band, including 21 control channels
for call setup. Thus, each band has 395 available traffic channels for voice trans-
missions. Fig. 6.1 shows a cellular communication system in which a geographical
arca is divided into hexagonal cells. The number of cells K, which cannotl use the
same channel, is called the frequency reuse factor. This prevents adjacent cells from
interfering with one another. A frequency pattern, or cluster, is determined by the

equation X =i*+ij+ 5% wherei,j € Z*. The cluster shown in Fig. 6.1 corresponds
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i=1and j =2,0or K = 7. K is related to the distance, D, between two adjacent

cells which use the same frequency, and the radius of a cell r, by

1 7D\?
"’5(7)‘

Figure 6.1 A cellular network with K = 7.

There are currently 395 traffic channels available for a cell at each band. To
account for interference, a cell can only use 395//K channels. Each cell is further
divided into 3 sectors for better reception. Thus, a cell sector can support 395/3 K
traflic channels. For example, for K = 7 as shown in Fig. 6.1, each cell can support
395/7 = 56 traflic channels and each sector in a cell can only support 56/3 = 18
traflic channels (calls).

As the demand for communications increases, hundreds of channels may be
required to serve thousands of concurrent users. To meet this requirement, channels
must be reused in a certain way. In a cellular mobile-telephone system, the whole

geographical communication area is divided into cells. Each cell covers a sub-arca.
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The same channel used in one cell might be reused in another cell provided that the
two cells are separated by a certain distance in space. Interference may occur when
the same cell or different cells use certain pairs of channels. In order to avoid any
interference, three types of interference constraints, namely co-channel, adjacent-
channel and co-site, must be satisfied. We will address the constraints in the next
scction. The channel assignment task, given a group of available channels, is to
find an assignment that satisfies the users’ communication demands and various

constraints.

6.1 The Optimal Channel Assignment Problem
For an n-cell inhomogeneous cellular radio network, the cell system is expressed by
X = {a),22, -, 2,}, where z; Vi is called a cell. The requirement on X is an n-vector
R = (r;) where r; is the number of required channels by cell ;. The interference
constraints can be described by an n x n non-negative matrix C' = (¢;;). C is called

a compatibility matriz on X and it is defined as follows.

1. Co-channel constraint ¢;; = 1 (¢ # j): if [, [ are the channels assigned to cell
x; and x; respectively, then they must satisfy |f — f’| > 1. That is, the pair of

cells 2; and @ cannot use the same channel.

2. Adjacent-channel constraint ¢;; = 2 (1 # j): in this case, il requires | [— [] > 2.
] i J ) 1 J—Jl 2

The use of adjacent channels (i.c.,|f — ['| = 1) in ; and ; is prohibited.

3. Co-site constraint ¢;; = {: here [ is a positive integer. If the channels [ and [
arce allocated to cell @, [/ — f'| > { must hold, i.e., the channels used in the

same cell must be separated by a certain distance in the frequency domain.

We define an n-vector [ = (F;), where F; is a bundle of channels assigned to cell

and [F] is the number of channels assigned to cell ;. A triple g = (X, R, C) is
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called a channel assignment, problem. I’ will be called a feasible channel assignment

for ¢ if the following conditions are satisfied.
L Fy| =7, Vi
2. [ =[] > ¢, for all w,x; € X, [ € F, ' € F.

If m successive channels are assigned to cells in an assignment, then m is called
the span of the assignment. For a given channel assignment problem P, the objective
of the assignment is to find a [easible channel assignment /' that has the minimum
span while satislying all interference constraints. Like the broadcast scheduling
problem, the minimum span cannot be decided in a straightforward way, hence some
lower bound is expected to assist the searching for the optimal assignment.

In the simplest form of the channel assignment problem where only a co-channel
constraint is considered, it is shown to be equivalent to a graph coloring problem, and
therefore an NP-complete optimization problem. The extension of the constraints
will show that the channel assignment is NP-complete. We will prove this NP-

completeness in Appendix B.

6.2 Neural Network Solutions to the Channel Assignment Problem
Since the channel assignment problem is NP-complete, we use the effective MFA

approach once again. To map the problem onto a neural network, we define that

G — I if channel j is assigned to cell ;, (6.1)
Y71 0 otherwise. )

For a channel assignment problem Ilg = (X, R, C), assume that there are n
cells and m channels (to be decided); the energy function can be formulated as
follows.

n on m  9(pte,-~1) n m

E(S) = El + E2 = % ZZ Z Z CijSipSjq + E‘U;z Z ZS,'J' — 1y ) (62)

=izl =1 p=1 g=g(p~c,, +1) = i=1 \y=I1
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where _
I ifz <,

gle)y=< & ift <a<m, (6.3)
m il a>m.

S = (si;) is an n X m matrix representing a neural network, and s;; expresses the
status of neuron ij. The steady state of the neural network S corresponds to an
assignment. The first term £ in Eq. (6.2) is the penalty function for constraint

violations. It consists of

1 a(pter, =1
. w, n m  g{pten—1) wy n n m g{ptey—-1) .
vy = Y Z Z CiiSipSiq + 5 Z Z Z Z CijSipSjq- (().4)
= i=1p=1g=g(p—ci,+1) = i=l j=1j#i p=1 g=g(p—-ci,+1)

The first term in Eq. (6.4) reflects the co-site constraint. The second term represents
the co-channel and adjacent-channel constraints. For an interference-free assignment,,
Iy is equal to zero. The F; term in Eq. (6.2) reflects the requirement constraint.
When an assignment meets the requirement R, F, is zero. Therefore, the minimum
. Y . e b . . . o .« .
energy of the neural network is zero. The optimal assignment will yield the minimum

crergy.

6.3 The Determination of the Frequency Span
For a given compatibility matrix C and the channel requirement vector R, we first
need to determine the minimum frequency span (the number of required successive
channels), which is denoted by m. However, as it is shown in Appendix B, the
determination of the minimum span is polynomially-related to the graph coloring
problem which is an NP-complete problem. Therefore, the problem itself is NP-
complete. In order to apply the MIFA scheme to solve the channel problem, the
following two methods are used to approximately determine the minimum span.
After this, the MFA algorithm is used to search for the feasible channel assignment.
I no satisfiable assignments can be found, the span m is incremented by one or more,
depending on how far the assignments are {rom the channel requirement R. The two

methods are described as follows.
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6.3.1 Method 1 of Determining the Frequency Span m

The output of Method 1 is denoted O,. Usually, ¢;, the minimum frequency
separations for any channels assigned to Cell 7 (V¢), are larger than ¢;;, the frequency
separations for the channels assigned to any two different cells 2, 5. If ¢ii > ¢;j, we

can simply decide m by the formula

O = Cyi-(ri—1)+1

7 = {L 7":(\}};1&){ 1']-} ((5.5)

6.3.2 Method 2 of Determining the Frequency Span m

The output of Method 2 is denoted O,. If ¢;; is close to ¢;; for all 4,5, Method 1
may not work properly. The following heuristic algorithm is used to determine the
minimum span m. It can provide a tighter value close to the minimum required span
only when ¢;; = 2 and ¢;; = 0 or 1. A denotes the set of cells which have been counted

in the calculation of O,, and U denotes the set of the remaining uncounted cells.

I Oy = ¢pplry, = 1)+ 15 A — 2, U — X — 2,, where p satisflies the incquality
Cop(rp — 1) 2 cii(ri = 1) Yai; y «— 0 (if y = 0, Oy remains unchanged in the

next step; if y = 1, O will be incremented ).

8]

. Select ¢ € U such that cyy(ry—1) 2> cii(ri = 1)V, € U
Hep=1Va;€ Aand y =1 then Oy «= Oy 4 ¢po{ry — 1), y « 0.
Hei=1Va€Aandy=0then y « 1.

3. A=A+ q,U « U — q, repeat Step 2 until U is empty.

In our numerical examples, both methods are applied to computing m and they

provide satisfactory results. The determination of the exact required {requency span

is still an open question.
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6.4 Convergence of the MFA Channel Assignment Algorithm

If we define

Zm(a,b) = {l:L,a,b€ Z* a <1< b} (6.6)
and
Zm(a,b) ={l:1€ Z,(1,m) and [ ¢ Z,,(a,b)} (6.7)
Then
n onoom !I(P+Cn]"‘|) m
oo w) w,
L(S) = - Z Z CijSipSjq + Z Zb,p—- ','
“ =1 j=1p=1 q=g(p—ciy+1) =1 p=l
wy I a(pteiy—1) m 2 m
= 5 Z Z }: Z CiiSipSiq + Z Z Sip|] —2 Z Sip T + 1
< i=1j=1p=1 q=g(p—c,,+1) i=1 p=1 p=1

n n m m

= Ez_l ZZ('!J';:V Sy H (1 =dq) | +

=17=1p=1q=1 1=Zm (g(p+eij—1),9(pt+cii—1))
w2 n m - m m
- T g 2
& 2 M IERT) DD PRUTEE) pR
< d=1 | p=1 p=1 r=p+1 p=I
'IU] n n m
= _2‘2 Zcqu Sia | H (L—84,) ] +
=1 j=1p=1¢q=1 1=Zm(g(p+cij—1),9(p+cii—1))
u)z n n m m m
. 2
+5 Z SipS jqbjibep — 2 Z Sip i+ T}
< i=1 {j=1p=1g=I p=1

'HU?Z’_ f: isir)sjq‘sji(l — Opm) ( H (1- 5(11))

lEZm(l,p)

n m ™m

= ZZZZwlww%q I1 (I=08g) ]+

=t y=1p=lg=I 1=Zm{g(p+ey~1)9(ptciy—1))

n n m m

Z Z Z Z { ,p 1,16]16117) + (‘)231])31(]6]1(1 - 6])711) ( H (l - 6(“)) }

i=1 j=1 p=1 g=1 1€Zm(1,p)

(1)
R WIS it

i=1 p=1
n o n o om m nom

= - Z Z Z Z ]‘PU‘I !p ]q Z Z [iPStp 22 “ 1{”2

i=1 j=1p=1q=1 =1 p=1
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where

w
Tipvjq = ——210,‘_7' H (1_6111)

1=Zm{g(p+cij=1)g(p+cij—1))

w
—7261'1"5010 — wabji(1 — bpm) ( H (1 =&, ))

l€Zm(1,p)

Lip = wory

2
Rl = Z’
Since 22||R||* is a constant for a given w, and does not affect the iteration

procedure, this term can be ignored, and the energy function can be written in the

form of

n n m T n m
=222 Topnia $0p859 = 2 2 Lapsyy (6.8)
i=1 j=1p=1g¢=1 i=1 p=1
Note that
Tipsjq - ’quvip (6.9)

In Chapter 3, we have proved that, if the energy function can be written in
a form as Eq. (3.27), the MFA iterations based on Eq. (3.29) will guarantee the
convergence at each temperature. Since Eq. (6.8) is written in the form of the
Hopfield energy function as defined in Eq. (3.27) and the matrix (73, j,) is symmetric,
the MI'A approach to solve the channel assignment problem will lead the iterations
to converge to the local minima at each temperature.

By taking the derivative of the energy, we have

ap n g(pteix—1)

[ ‘) m
— =W Z Z Cik Sk + Wa (Z S — 7'i) . (6.10)

b=1 l=g(p—oy+1) =1
Therefore, the MIA iterations are

( 1 1 1 n  glptcix-1) 0 m :
vij'.’) =3 + 3 tanh —o7 w) Z Z c,-k'vi’;— 4 wy Z ('v,(,"— - 7‘,‘) .

k=1 l=g(p—ci+1) 1=t
(6.11)
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6.5 The Determinations of MFA Parameters
We use approaches similar to those presented in the previous chapters to determine
such parameters as critical temperature, annealing schedule and iteration termination
criteria. Only minor changes are made in the determinations and the details are

skipped in this chapter.

6.6 Numerical Examples and Results
Three instances with 5, 10 and 25 cells have been tested by the proposed MFA channel
assignment algorithm. Fig. 6.2 list the compatibility matrix and the requirement
vectors for all of the instances. Assume that the available channels are numbered
from 1 to m. The assignments are shown in Fig. 6.3. In Fig. 6.3, Cell ¢ represents
r;. In Fig. 6.3 (a), (b), the frequency spans m are estimated by Method 1 described
in Section 6.3.1 and they are 67 and 204, respectively, which are equal to the spans
ol the actual assignments. In Fig. 6.3 (c), the estimation of m by Method 2 is 69
and the actual required span of the assignment is 73, so the estimate is a good one.
Although the determination of m is NP-complete, the methods we proposed provide
satisfactory results in our simulations. The running time for all of the three examples

is only a few seconds on a Sun Sparc 20.

6.7 Summary
The channel assignment problem arises when the scarce and expensive frequency
resource must be fully utilized. It is proved that the assignment problem is NP-
complete. In this chapter, an MFA-based algorithm is proposed to solve the difficult
optimization problem. Three interferences constraints, namely co-cell, adjacent, and
co-site, are considered. The energy function can be written in the form of Hopfield

net, which has been proved to guarantee the MFA iteration convergence. Two
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Figure 6.2: Compatibility matrix and requirement matrix. (a) C

and R2, (¢) C3 and R3

methods are presented to estimate the minimum span and they provide satisfactory

I'he related parameters encountered in the MFA iterations are determined

-

resulis.

T'hree instances are

r

in the similar ways similar to those in the previous chapters.

tested by the algorithm and it provides feasible solutions for all of instances.



cell channel number

1 {31017 27 34 41 51
515 21 29 39 45 53 5965
2 818 24 3242 48 56 62

12 22 30 36 44 54 60 66
1 7131925313743 495561 67

(a)

U fdh W N

cell channel number

o

6673 808794 101 108 115 122 129 138 147 154 161 168 175 183 190 198

76839097 104 111 118 125 144 151 158 165 172 180 187 194 201

141 148 155 162 169 176 197 204

179 186 193 200

4 11 18 25 32

3 10 17 24 31 38 45 52 59

6 13 20 27 34 41 48 55 62 69

291623303744 515865 72798693 100 107 114 121 128 135

O (0] | [~ (W

512 19 26 33 40 47 54 61 7582 8996103 110117
124 131 138 145 152 159 166 173

10 | 1815222936435057 6471788592 99 106 113 120 127
134 141 148 155 162 169 176 183 190 197 204

(b)
cell channel number cell channel number
1 1917253341495764 70 14 | 81624324048 56
2 1210182634425058657173 15 | 3111927354351
3 131119273543515966 16 | 2634425058 66
4 119172533 17 | 2101841
5 | 41220283644 526067 18 | 2025283336
6 | 4122028414957 64 19 146912
7 | 3644 52 6067 20 | 5131721293745
8 | 8162432404856 21 53 55 58 60 62 65
9 26344250 22 | 30687173
10 | 513212937455361 23 311192735
11 | 210184149576470 24 | 384351 59656769 72
12 | 6142230384654 6268 25 146121422
13 | 7152331394755636972
©

Figure 6.3 Channel assignments (a) I'1, (b) 12, (¢) I'3.




CHAPTER 7

CONCLUSIONS

In this dissertation, mean field annealing theory is applied to solve difficult combi-

natorial optimization problems encountered in multiaccess communication systems.

Three problems, namely optimal frame pattern search, broadcast scheduling and

optimal channel assignment, are thoroughly investigated. The main conclusions are

as lollows:

1.

In order to meet the increasing demand for telecommunication services, the
limited frequency spectrum resources must be efliciently utilized. Multiaccess
protocols have been proposed in order to reuse the scarce and expensive
channel resource in frequency, time and space domains. i has been shown
that most optimization problems encountered in the multiaccess systems arce
NP-complete, and so polynomial algorithms for finding solutions are unlikely

to exist.

In solving the combinatorial optimization problems, heuristic algorithms
usually provide fast search procedures for finding solutions. However, as
the problem size increases, there will be many local extrema (maxima or
minima), and heuristic algorithms may get stuck in local optima which
may be far away {rom the global optima. Also, heuristic algorithms are
usually problem-dependant, that is, one eflicient heuristic algorithm that
efficiently solves optimization problem may not be applicable or effective
for another problem. In contrast, the simulated anncaling approach usually
yields good approximate global optima for a wide range of problems. The
anncaling process allows the system search to occasionally jump out from local

minima while keeping the local search behavior at each temperature. As the
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temperature decreases, the probability for the system to stay in the global
optima approaches one. However, the iterations in reaching global optima
in SA are very time-consuming. Usually, the efficiency of an algorithm is
evaluated by the computational complexity and the solutions quality, where
solutions quality measures how close the solutions found are to the global
ones. Mean field annealing, which uses the approximation technique, is a good
trade-ofl between the computational complexity and the solutions quality.
Instead of the stochastic searches in SA, MFA finds the thermal averages at
each temperature by a sequence of deterministic equations, leading to fast
convergence to the thermal equilibrium at each temperature. On the other
hand, the analogous annealing process is applied to MFA to avoid its getting

stuck in local optima.

. The convergence and stability of the MFA approach are discussed in this disser-

tation. It has been shown that MFA uses saddle point approximation to
calculate the partition function, which results in the MIFA iteration equations
updating the thermal averages of neurons. The MFA iteration process is proved
to be able to quickly reach thermal equilibriums at each temperature and finally

to reach steady states near optima.

In this disertation, MFA is applied to the optimal frame pattern design in an
integrated TDMA communication system in order to provide the maximum
data throughput. It is shown that different frame patterns may yield different
data throughputs. The number of frame patterns dramatically increase as the
problem size increases, and the complexity becomes intractable in scarching for
the optimal frame patterns which provide maximum data throughputs in the
frame pattern space. Numerical examples have shown that the proposed MFA-
based scarching algorithm is efficient in both solutions quality and computa-

tional complexity. As compared with the random search algorithm, it provides
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much better solutions with comparable complexity. In comparison with the SA
approach, its computational complexity is one order ol magnitude less and the
solutions are quite close to the SA’s. This implies that the MFA approach can

reach near-optimal solutions with acceptable complexity.

An MFA-based algorithm is proposed to find the broadcast schedules in a
packetl radio network. It has been proved that the problem of searching for the
optimal interference-free transmission schedules is NP-complete, so eflicient
polynomial algorithms rarely exists. Two scheduling approaches are inves-
tigated. The channel utilization and time delay performance are evaluated
and compared with one existing heuristic algorithm. The MFA provides better

performance than the existing algorithm.

Cellular networks offer challenging and attractive research arcas in a variety of
aspects. Channel assignment in the frequency domain is one of the practical
optimization problems. [t has been proved that the channel assignment
problem is NP-complete when three types of interferences, namely co-channel,
adjacent and co-site, are considered. It is also shown that it is NP-complete
even for the simple case in which only a co-channel constraint is considered.
The feasible assignments provide efficient use of the spectrum resource and meet
the increasing service requirement for communications. In this dissertation,

the proposed MFA algorithm succesfully solved the assignment problem.

The convergence speed and the solutions quality strongly depend on the
selection of parameters such as weights, annealing schedule, critical temperature,
and criteria of iteration termination. The determination of the related
parameters is discussed for the different, problems. The selections derived from
the determination criteria provide satisfactory results in all of the numerical

and simulation results presented in this dissertation.
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Our major contributions of this dissertation are pointed out in (3)-(7) above.
Our primitive targets are directing to solve the difficult optimization problems
in multiaccess communication systems. Our motivation to use MFA approaches
comes [rom the its applications [31]-[35]. However, after we recast our optimization
problems into the structures required by MIFA, we have found that there are many
variables that may affect the MFA applicability and efliciency. The determinations
ol the parameters are still open questions. Therefore, we have worked on the open
questions and attempted to find a general way to determine the related parameters.
Our derivations and numerical tests have shown satisfactory results in searching
for the optimal solutions and reducing computational complexity. Hopefully, more

applications by our approach can be found in the near future.



APPENDIX A

NP-COMPLEXNESS OF THE BROADCAST SCHEDULING
PROBLEMS

We denote the two approaches of broadcast scheduling problems described in
Chapter 4 as [1g; and Ilg;. 111 i1s the scheduling problem that, given a packet radio
network, finds an interference-free frame transmission schedule with the maximum
throughput under a fixed [rame length N, where N is the number of stations in the
packet radio network. Ilg, is defined as finding an interference-free transmission
schedule with the minimum frame length. The NP-completeness of the two problems

are proved individually in the following sections.

A.1 NP-completeness of the Broadcast Scheduling Problem Ilg,
INSTANCE: The scheduling problem Ilgy = (G, K], where G = (V, E) represents

a packet radio network and K is a positive integer (K < |V]).

QUESTION: [s there an interference-free schedule which provides the average

number of transmissions v, > K 7

where

I
Yav = NZZSij,

=1 j=I

and

(A.1)

1, if station j transmits at time slot ¢,
Sy = .
H 0 otherwise.

Using graph theory to assist the proof of NP-completeness of the scheduling

problem, we form an augmented graph G, = (V,, I,) in such a way that

Va = Va

89



90

==+= Augumented link

(a) (b)

Figure A.1: The derivation of an augmented graph from a graph G. (a) Graph G,
(b) Graph G,

Ilig.  A.l illustrates the augmented graph G, derived from a graph G. For
problem Ig;, finding an interference-free transmission schedule in any time slot,
within a frame is equivalent to finding a set of vertices V' C V in G, such that,
il any 7,7 € V', then (¢,7) ¢ E,. All stations (vertices) in the set V' can transmit
simultaneously with no interference.

In graph theory, a subset V! C V is called an independent sel in a graph
G = (V,E)if, foralli,7 C V', theedge (i,7 )¢ E. Vertices arc said to be independent
from each other in the subset V'. Therefore, the problem Iy, is identical to finding
a maximum independent set V! C V in graph G,. We denote an independent set,
problem as [l;yp and use a & b o represent equivalence between @ and b, then we

have I[lg; < l;np
Theorem A.1 llg; is NP-complele.

Proof: 'To prove llg, is NP-complete, we first need to show 1y, € NP, and then give

a polynomial transformation from the known NP-complete CLIQUIE problem.
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1. lIg € NP.
For a given graph G = (V, E), we can arbitrarily guess a schedule and use it
as a certificate of G. Equivalently a subset V' C V ol vertices is used as a
certificate of (&, Here a vertex j € V' if s;; = 1 for the i-th slot in the schedule,
An augmented graph G, is derived from G, which can be lormed in polynomial
time O(N?), where N = |V|. Checking whether V' is an interflerence-free
sel of vertices can be proceed by checking whether, for every i,5 € V/, the
edge (,7) € E,. This check performs up to N(N — 1) operations, which has

polynomial time complexity. Therefore, g, € NP.

2. Polynomial Transformation CLIQUE «,, I;n))

We prove that Ily, is NP-hard by showing that CLIQUE o, H;np. This
transformation is based on the notion of the complement ol a graph. For an
undirected graph G = (V, F), the complement of GG is delined as G = (V, [29),
where Ec={(7,7) : (¢,7) ¢ E}. Fig. A.2 shows a graph and its complement and

the transformation from CLIQUE to l;np.

(a) Clique {1,4,5} (b) Independent set {1,4,5}

Figure A.2 Illustration of the complement of a graph (a) Graph G, (b) Graph (©

The transformation takes an instance of the clique problem [G, K] as

input. It computes the complement ¢, which is easily derived in polynomial



92

time O(N?). The output of the transformation algorithm is the instance [G°, K]
of the problem 11;xyp. To show this transformation is valid, we need to prove
that the graph G has a clique of size K if and only if the graph G° has an

independent, set of size K.

Suppose that G has a clique V' C V with |V'| = K, we claim that V' is
an independent set in G°. Based on the formation of G if any 7,7 € V' and
(i,7) € E, we have (i,7) ¢ E°, which implies that vertices 7, 7 are independent,
in G°. Since (z,j) is chosen arbitrarily from [ and every edge (¢,5) € I is
not in [¢, therefore all vertices K = |V'| in a clique V' are independent in
[, Hence, the set V' of size K forms an independent set in G¢. Conversely,
suppose that GG° has an independent set V' C V of size K = |V'], then, for all
i,j € V', we have (4, 5) € F°, therelore, (7, j) € I in (7, which forms a complete

subgraph of V' € V in . In other words, V' is a clique with size K in G.

From above statement, we conclude that a graph (' has a clique V"’ if and only
if the graph G has an independent set V'. The derivation of G° from G can be
completed in polynomial time, therefore CLIQUE «,, [1;yp. Equivalently, CLIQUI
o, lgy and I, is NP-hard.

Since we have shown that llg; € NP and llg; is NPP-hard, therefore we have

proved that Ilg is NP-complete.

A.2 NP-completeness of the Broadcast Scheduling Problem 11,
The broadcast scheduling problem Il g, can be described as a decision problem:
INSTANCE: The scheduling problem Ilg; = (G, K'), where G = (V, I5) represents

a packet radio network. K is a positive integer (K < |V]).

QUESTION: Is there a schedule which has the frame length A or less and cach

station transmits al least once in such a frame ?
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Theorem A.2 Ilgy is NP-complele.

Proof: In the same way as for g, we first form an augmented graph G, = (V, I,)

1

from graph G described in the preceding section. Thus, scheduling an interference-

frec transmission in any time slot within a frame is equivalent to finding such a set

V! C V of vertices such that, if any 7,7 € V', then (7, )¢ IZ,. To prove Ilg, is NP-

complete, we first need to show [lg, € NP, and then give a polynomial transformation

[rom a known NP-complete problem.

I

ITg; € NP

To prove Ilg, € NP, we first need to guess a frame schedule with an arbitrary
frame length M < N (N is the number of stations in the packet radio network),
then form the augmented graph Gy = (V, £,) from graph (i at each timeslot ¢.
Denote V! = {i : 7 € V,s;; = 1}, where s, is defined as Eq. (A.1). We need to
check whether (7, 5)¢ I2 for any i,j € V. At the same time, we need to check
if the guessed schedule length M < K. It is easy to verify that the checking

process can be completed in polynomial time O(N?). Therefore, 1z, € NP.

M2 o, CLIQUE

Finding an interference-free schedule with the minimum frame length is
equivalent to coloring vertices in G, so that, for any pair of vertices i,7 € V,
il (2,7)€ F,, then ¢ and j must be assigned to different colors. The coloring
problem is to find the minimum number of colors that can cover all vertices in
a graph. Here the color corresponds to a time slot and the frame length to the
total number of colors n.. In order to find the minimum n.., we should assign
a color to as many vertices as possible provided the coloring does not cause

conflict. Therefore, solving the problem Ilg, can be performed as follows:

a) Form an augmented graph G, based on G, [ « 1.
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b) Find the maximum independent set V/ for G, = (V, F,) and assign a color
¢ to the set V.
) VeV-V E <l —{(7):teV (ij)e L VYj}and,
il G, is not empty, then ¢ « ¢ + 1 and repeat Step b), else the coloring

procedure ends, the results are encoded into a frame schedule by

1, ifje Vv,
.9”:{ » IE W (A.2)

0 otherwise.

|

n (g

)

Figure A.3 The decomposition of the scheduling problem

Fig. A.3 illustrates the formulation of the graph G, and the coloring process.
We have V{ = {1,5,9}, VJ = {2,6}, VJ = {3},Vf = {4}, V| = {7}, V§ = {8}. Fig.
A4 is the decoding of the graph coloring result.

We notice that the coloring problem is equivalent to finding the maximum
independent set in Gy,. Therelore, the broadcast scheduling problem Ilg; can be
transformed into the independent set problem Il;np by finding an augmented graph

G/, from (7, which is easily generated in polynomial time. Thus, we have I[l;nyp
. ) IND Xp
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slot

2
3
4
5
6

Figure A.4 The decoding of the coloring graph.

l152. We have proved that CLIQUE , I1;yp, therefore, CLIQUE o, Ilg,. Since
the CLIQUE problem is NP-complete, we can conclude that 11g; is NP-hard.
As we proved [Igs € NP and Ilgy is NP-hard, we can conclude that 1lg, is

NP-conmiplete.



APPENDIX B

NP-COMPLETENESS OF THE CHANNEL ASSIGNMENT
PROBLEM Il¢

As addressed in Chapter 6, the channel assignment problem, I, is to assign channels
to cell sites while satisfying channel constraints described by the compatibility matrix
C' = (¢i;). In the FDMA cellular communication systems, the frequency band is
subdivided into a certain number of narrowband channels, ecach capable of supporting
onc phone circuit that can be accessed by any user. The channels are labeled as a
sequence of numbers {1,2,---, N}. Channel 7 and Channel 7 + | are called adjacent.
The frequency distance between channel 7 and j is | — j|. ¢;; represents the channel
constraint that the frequency distance Aj; between the channels assigned to cell i
and cell 3 must be greater than or equal to ¢;;. Each diagonal element ¢; in €
represents the minimum separation distance between any two channels assigned to
cell 2. We use the vector X = (x,22, --,2,) lo represent the n cell sites for a
given cellular communication system. R = (ry,rq,---,1,) is the requirement vector,
where r; represents that cell x; is requesting lor r; channels. FF = (£, [, F},) is
a feasible channel assignment, where F; = (fi1, fi2, -+, fi), and fix is the channel
number assigned to cell @;. For example, if three channels numbered 2, 5, 7 are
assigned to cell x; and r; = 3, then F; = (2,5,7). Thus, the problem ¢ can be

defined as a decision problem:
INSTANCE: Il = [X, R,C, K], where K is a positive integer.

QUESTION: Is there a feasible channel assignment vector I’ such that the
frequency span is k or less 7 Here the frequency span is defined as the frequency
distance between the largest channel number and the smallest channel number

assigned to cells.

96
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We group I¢ into two sub-categories: cochannel and cosite. Those where only

cochannel constraints occur are called cochannel cases. Those where all channel

constraints - cochannel, adjacent channel and cosite, occur, are called cosite cases.

The channel assignment problems for both cochannel and cosite cases are denoted

as [1ep and g,

Theorem B.1 llg, is NP-complete.

Proof: To prove ll¢; is NP-complete, we first need to show [l € NP, then show that

Hey is NP-hard by finding a polynomial transformation from a known NP-complete

problem,

I

ey e NP

'or a given instance llgy= [X, R, C], we can check whether a given assignment,

is fcasible in polynomial time. The checking procedure is as follows:

For the assignment F', check whether the frequency distance |fie — fi| > «;
for 7’J - 172,"'7"'3 k= 152,"',7'i and [ = 1,2,"',7‘]‘. Then we check if
the frequency span is K or less . Obviously, the checking operations can be

completed in polynomial time. Therefore, 11y € NP.
Let HMepoue denote the CLIQUE problem. We prove Ilgy is NP-hard by

showing that ey & yvp and Hepigue o, vy, where ¢ & b means that

solving problem a is equivalent to solving problem b.

Henique o«p e

In the problem Iy, ouly cochannel constraints are considered. Therefore,
ci = Le; € {0,1} for all 4,5 (i # j). We can use a graph G = (V, [)
to represent llgy. Vertex v € V represents a requirement and a link (u,v)

connects pairs of requirements u, v that cannot be assigned the same channel;



98

e, (u,v) € IDif ¢ = 1 and (u,v) ¢ £ il ¢, = 0. For example, a given
instance of Il is

X = {ay, v, a3, 24,5}

110000 2
1 110 00 1
c=(0 11100 R=11
001111 2
000011 1

] (1)

Figure B.1 The construction of the graph

where i stands for the j-th requirement by cell ;. The derived graph is shown
in Fig. B.1. In the derived graph G, every connected pair of vertices cannnot be
assigned the same channel. The channel assignment problem Il¢ is to find the
minimum number of channels which satisfy the cochannel constraints and the
cells’ requirements. By observation, we find that Il¢ is equivalent to the graph
coloring problem. In a graph coloring problem, inter-connected vertices may
not have the same color. The objective is Lo find the minimum number of colors
required to color all vertices. In Il¢y, the vertices represent requirements and
the colors represent channels. Obviously, if we use one color to cover as many
vertices as possible, the number of required colors will be minimum. Since the
unconnected vertices can use the same color, the graph coloring problem is

transformed into the independent set problem Iy p, i.c., finding the minimum
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number of colors is equivalent to the problem Il np by simply finding the
maximum independent set for the graph. Then the independent set V' and
the links attatched to the vertices in V' are removed. For the reduced graph,
repeal the search procedure for a new maximum indepent sel until the graph is
reduced to emply. We have shown that Hepigue <, inp and Tley & Minp,

therefore we prove that Herigue o, Her.

Since Ilgy € NP and llepigue «p [, we can conclude that Ilg; is NP-

complete.

[S]

(@) (b)

Channel number

[S]
o
£

() @

Figure B.2 The decompostions of graph (a)-(c). (d) the the channel assignment.

In the example shown in Fig. B.1, the graph can be decomposed into a bunch
of subgraphs. In each subgraph, the maximum independent set is found. The decom-
position and coloring procedure are illustrated in Fig. B.2 (a)-(c). The shaded circles
(cells) will be assigned to use the same channel. The feasible channel assignment is

shown is Fig. B.2 (d).

Theorem B.2 ll¢s is NP-complele.
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Proof:

1. llc, € NP.
We can show that Tlgs € NP by performing the same checking procedure as

in the proof of llgy € NP. Therefore, [y, € NP.

N

ey o<y Heg

Once we have proved that Il¢, is NP-complete, the NP-complete proofl of Il
is relatively easy. Since we have shown gy € NP, what we still need to prove
is that there is a transformation Il¢y o, Mes.

All of the constraints in [lge can be described by the compatability matrix
C = (c¢ij) with ¢;; € Z+. Tlgy is just the subset of Ilg with ¢ € {0,1).
Therefore, every instance of Ilg; can be directly mapped to an instance of
Iigy. i.e., every instance I € llgy if and only if f([) € llgy. Where f(I) = 1.

Therefore, we have ¢y o, leo.

Since Il¢y is NP-complete and Ilg, € NP and ¢ «, U, we can conclude

that 1l¢o is NP-complete.
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