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Abstract

The primary goal of a cellular radio system is to provide communication ser­

vices to a large number of mobile users. However, the increasing demand of 

new services in this field is in contrast to the limited resources such as radio 

spectrum and transmitter power available in the current communication sys­

tems. As the number of mobile users grows rapidly, available channels and 

transmitter power must be used efficiently to improve the system capacity. 

The role of Channel Assignment is to allocate channels to cells or mobiles in 

such a way as to minimize call blocking or call dropping probabilities, as well 

as to maximize the quality of service. On the other hand, the role of power 

control is to assign power level to each transmitter so that the signal quality 

is maintained and interference is minimized. Existing papers have focused on 

optimizing the assignment of channels assuming that the allocation of trans­

mitter power is known and fixed and vice versa.

In this thesis, we develop an efficient evolution strategy to address the prob­

lem of integrating Channel Assignment and Power Control. The proposed ap­

proach uses an efficient problem representation, defines an appropriate fitness 

function and mutation operators to optimize both Channel Assignment and 

Power Control. Our experiments and discussions show better system capac­

ity, decrease in the blocking probability while maintaining the desired carrier- 

to-interference (CIR) ratio compared to the experiments done in literature 

employing only Channel Assignment.
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Chapter 1

Introduction

1.1 M obile Communication

Mobile communication is the fastest growing filed in the telecommunication 

industry. Like other technological developments, the development in wireless 

mobile communication has passed through several stages. The pioneering ex­

periments in land mobile communication dates back to 1920’s in Detroit, USA 

when personnel of the Detroit police department’s radio bureau began exper­

imenting on a band near 2 MHz for vehicular mobile service. In 1928 the 

department commenced regular one-way radio communication with its patron 

cars. Further progress was made in 1933 when one police department in New 

Jersey initiated regular two way communications with its patrol cars, a major 

advance over previous one-way systems. This two way radio became standard 

throughout the country as the very high frequency system placed transmit­

ters in patrol cars to enable patrolmen to communicate with headquarters and 

other cars instead of just receiving calls.

The mobile telephony services were extended to the commercial arena to­

wards the end of the Second World War. By late 1940s, Bell Systems embarked 

on a program of supplying ’’public correspondence systems” (communication 

among a variety of users provided by a common carrier. Federal Communi-

1
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cation Commission (FCC) classified these services as Domestic Public Land 

Mobile Radio Service (DPLMRS). In 1946, the first interconnection of mo­

bile users to the public telephone network was made to allow calls from fixed 

stations to mobile users, when FCC granted license to AT&T (American Tele­

phone and Telegraph) company to operate in St. Louis. The system used a 

central high power transmitter to cover a metropolitan area up to 50 miles or 

more from the transmitter. With this concept, it became difficult to reuse the 

same frequency. The inefficient use of spectrum severely limited the system 

capacity. By 1969, ITMS (Improved Mobile Telephone Service) become the 

first standard automatic 450 MHz frequency range service which allowed as­

signment of free channels automatically and the system was full duplex and 

customers could do their own dialing. In spite of the fact that mobile service 

was, indeed, a scarce luxury, by late 1970’s, the demand for service was rising 

rapidly [38].

A solution to this problem emerged in 1974 when researchers at Bell Lab­

oratories in USA developed the concept of wireless cellular telephone system 

and eventually the authorization was granted to Illinois Bell in 1978. The 

cellular concept replaced the use of a large geographical area where a high 

power transmitters is placed at high elevation at the center of the area with 

a large geographic area divided into a number of non-overlapping small geo­

graphic areas, called cells, equipped with low power transmitters. This cellular 

organization allowed frequency reuse among geographically distant cells, thus 

greatly expanding the system capacity [47], [56]. It also allowed cells to be 

sized according to subscribers’ density and traffic demand of a given area.

1.2 Evolution of Cellular System s

The Nordic Mobile Telephone System (NMT) was the first to introduce cel­

lular services for commercial use in Sweden in 1981 using frequencies in the

2
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450 to 900 MHz band. In 1983, cellular systems began in the United States 

in Chicago with the release of the Advanced Mobile Phone Service (AMPS) 

operating in 800 MHz, and other cities followed rapidly. Asia, Latin Amer­

ica and Oceanic Countries later adopted to the AMPS standard and AMPS 

emerged as the largest potential market for cellular communications. Britain 

introduced another technology called Total Access Communications Systems 

(TACS) in 1985, operating at 900 MHz. Many other technologies were devel­

oped, however, AMPS, NMT and TACS were the most successful technologies 

[67]. These are all part of the ’’First Generation” cellular systems and were 

analog systems providing only basic speech services.

Despite of the popularity of the analog systems, they were unable to handle 

the growing capacity needs in a cost efficient manner. Each system followed 

different standard making it impossible for a person to use the same cellu­

lar phone in different countries. As a result, standardization committees for 

’’Second Generation” cellular systems worldwide adopted the digital technol­

ogy, which conformed to three standards; one for Europe and international 

applications known as Global Mobile Systems (GSM), one for North America 

known as IS-54 or TDMA (North American Digital Cellular), and a one for 

Japan known as Japanese Digital Cellular (JDC). The advantages of digital 

systems over analog system included ease of signaling, lower levels of inter­

ference, integration of transmission and switching, higher capacity potentials, 

and new services like data services, encryption of speech and data and Inte­

grated Services Digital Network [71]. Second generation cellular systems are, 

however, still optimized for voice services and are not well suited for data 

communications.

Data communication is an important requirement in the current environ­

ment of Internet, electronic commerce and multimedia communications. Not 

only do subscribers want these services, they want ubiquitous access (i.e. access 

from everywhere and at all times) to these services. The ’’Third Generation”

3
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cellular systems referred to as Personal Communication Systems (PCS), aim at 

providing integrated services such as data, voice, image and video to stationary 

and non-stationary subscribers without temporal and spatial restrictions. The 

need for third generation mobile communications technology was recognized 

as far back as the 1980s. the International Telecommunications Union (ITU) 

was heavily involved and the work within the ITU was originally known as 

Future Public Land Mobile Telecommunications Systems (FPLMTS). Exam­

ples of PCS include Person Handphone System and Digital Enhanced Cordless 

Telecommunications (DECT) [71].

1.3 Cellular Radio System s

The beginning of cellular concept gave a major breakthrough in the develop­

ment of mobile communication systems. Though most people say ’’cell phone” , 

this term is actually short for ’’cellular phone” , which is named after the wire­

less technology that they work on. The cellular principle divides a covered 

geographical area into a set of smaller service areas, called cells. Four possible 

geometric shapes were proposed for the design and layout of the cellular sys­

tem: the circle, the square, the equilateral triangle, and the regular hexagon. 

Among the four, the regular hexagon was found to be the best over the other 

shapes [46]. In practice, the cell sizes are irregular and depend on the terrain 

and propagation condition. Figure 1.1 shows typical cellular system architec­

ture.

Each cell has a base station and a number of mobile terminals i.e. mobile 

phones, palms, laptops, or other mobile devices. The base station is equipped 

with radio transmission and reception equipments. The mobile terminals com­

municate through wireless links with the base station associated with the cell. 

The base station provides the interface between the mobile telephone switch 

office (MTSO) and the mobile units scattered across a cell. The MTSO is the

4
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Loc abori Database

Base Station
Controller
(BSC)

Base Station
Controller
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Mobile
Switching
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Figure 1.1: Cellular Network Architecture

central coordinating element for all cell sites, controls call processing, handles 

billing activities, performs channel assignment, and provides the necessary con­

nection with the public switching telephone network (PSTN) [61]. The base 

station is responsible for the communication between the mobile terminal and 

the rest of the information network. A base station can communicate with mo­

bile terminals as long as they are within its operating range and the operating 

range depends on the transmission power of the base station. Radio energy 

dissipates over distance, so the mobile terminals must be within the operating 

range of the base station.

5
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1.4 Channel Assignm ent

To establish communication with a base station, a mobile terminal must ob­

tain a channel from the base station. A channel comprises of two frequencies; 

one frequency (the forward link or downlink) for transmission from the base 

station to the mobile terminal, the other frequency (the reverse link or up­

link) for transmission from the mobile terminal to the base station. As these 

two channels are assigned simultaneously, however, in many studies they are 

considered as one single link. This ideal link is considered to be a generic 

communication resource depending on the multiple access technique used by 

the cellular network and may be a fixed radio frequency for a frequency divi­

sion multiple access (FDMA), or a particular time slot within a frame for a 

time division multiple access (TDMA), or a specific code for a code division 

multiple access (CDMA) [58].

The capacity of a cellular system can be described in terms of the available 

channels or the users the system can support. The total number of channels 

made available to a system depends on the allocated spectrum and the band­

width of each channel. The available frequency spectrum is limited and since 

the number of mobile users is increasing everyday, the channels must be reused 

as much as possible to increase the system capacity. This requires proper chan­

nel assignment scheme. The role of a channel assignment scheme is to allocate 

channels to cells or mobiles in a way as to minimize the call blocking or call 

dropping probabilities, and also to maximize the quality of service.

1.4.1 Channel A ssignm ent Schem es

Many channel assignment schemes have been studied extensively to maximize 

the frequency reuse. Channel assignment is generally classified into two cate­

gories: Fixed Channel Assignment (FCA) and Dynamic Channel Assignment 

(DCA). In FCA, a set of channels are permanently allocated to each cell based

6
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on a pre-estimated traffic intensity. In DCA, there is no permanent allocation 

of channels to cells as the entire set of available channels is accessible to all 

the cells, and the channels are assigned on a call-by-call basis in a dynamic 

manner [15]. DCA method makes cellular systems more efficient in real-life 

scenarios where the traffic distribution is unknown or changes with time, but 

has the disadvantage of requiring more complex control and is generally time 

consuming [61].

FCA scheme is simple but does not adapt to changing traffic conditions and 

user distribution. Moreover, the frequency planning becomes more difficult in 

a microcellular environment as it is based on the accurate knowledge of traffic 

and interference conditions. These deficiencies are overcome by DCA but FCA 

out performs most known DCA schemes under heavy load conditions [Lai 96 

from GT], Various extensions or combinations of FCA and DCA schemes have 

been discussed in the literature. The most basic are the Hybrid Channel 

Assignment (HCA) [73] and the Borrowing Channel Assignment (BCA) [11]. 

HCA combines the feature of both FCA and DCA and one set of channels 

are allocated as per the FCA scheme and another set is allocated as per the 

DCA scheme. In BCA, the channel assignment is initially fixed. If a cell has 

all the channels occupied, for incoming calls the cell borrows channels from 

its neighboring cells and thus call blocking prevented [61]. A comprehensive 

survey on channel assignment schemes can be found in [39].

1.4.2 Channel A ssignm ent Constrains

In the process of channel assignment, radio transmission in a channel may 

cause interferences in other channels. Such interferences degrade the signal 

quality and the quality of service. Some of the potential sources of radio inter­

ference to a call are Co-channel Interference (caused by allocation of the same 

channel to certain pair of the cells close enough to cause interference), Adja­

cent Channel Interference (caused by allocation of adjacent channels to certain
7
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pairs of cells simultaneously) and Co-site Interference (caused by allocation of 

channels in the same cell that are not separated by some minimum spectral 

distance). These constrains are known as hard constrains or electromagnetic 

compatibility constrains [50]. To overcome the hard constraints like cochannel 

interference constrain, heuristics have been proposed in studies for FCA and 

DCA including simulated annealing [20], tabu search [9], neural networks [41], 

[25] and genetic algorithms [16], [43], [18] and Evolutionary Strategy [61]. The 

process of Channel Assignment must satisfy the hard constrains and the de­

mand of the channels in a cell. Beside these constrains there are some other 

conditions that that may improve the performance of the channel allocation 

technique. These conditions are called soft constrains and are the packing con­

dition, the resonance condition and the limitation of reassignment operations

[58].

With the packing condition, the minimum number of channels is used every 

time a call arrives. This condition allows the use of channels that are already 

in use in other cells without violating the cochannel interference constrain.

The resonance condition allocates the same channels to cells that belong to 

the same reuse scheme. Reuse scheme allows the discrete channels assigned to 

a specific cell to be reused in different cells separated by a distance sufficient 

enough to bring the value of co-channel interference to a tolerable level thereby 

reusing each channel many times. The minimum distance required between 

the centers to two cells using the same channel to maintain the desired signal 

quality is known as the reused distance.

Finally, limiting reassignment tries to assign, where possible, the same 

channels assigned before, thus limiting the reassignment of channels. This is 

due to the fact that excessive rearrangement may lead to undesirable results 

in terms of blocking probability [61].

8
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1.4.3 D ynam ic Channel A ssignm ent

The traditional channel allocation method, the Fixed Channel Allocation (FCA) 

is not very efficient for utilization of available spectrum, and impractical in 

microcell communication systems as large number of cells, irregularities in 

propagation and traffic distribution make pre-allocation of channels almost 

impossible. Dynamic Channel Allocation (DCA) had long been pursued as 

the answer for coping with time and spatial variations of traffic demand in 

communication networks.

In DCA, the entire set of available channels is accessible to all the cells 

and the channels are assigned on a call-by-call basis in a dynamic manner. 

This makes the scheme adaptable to the changing traffic conditions. DCA can 

be depicted as follows: let us consider a mobile communication system with 

C cells and F channels. Let k denote a cell involved in call arrival, P ( k , t ) 

denotes the set of channels of the ongoing calls in k at time t. then the set of 

eligible channels in k at time t is given by I ( k , t ) =  F  — P(k, t). The problem 

of DCA is to choose channels from the set I (k, t )  as carefully as not to select 

any interfering channels in the eligible channel poll.

1.5 Power Control

Power must be given to a transmitter to support communication. Transmitter 

or receiver power is a scarce resource. Excessive use of power for transmis­

sion causes faster drainage of power resulting in short battery life, and also 

causes interference to other uses. In cellular network, the signal quality is 

usually determined by the Signal-to-Interference Ratio (SIR) or the Carrier- 

to-Interference Ratio (CIR). CIR is defined as the ratio between the desired 

averaged received signal power from the transmitter of the cell where it is lo­

cated and the overall averaged received signal power from transmitters using 

the same channel including the background noise [60]. The signal quality and

9
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the level of interference in the network depend upon the transmitter power. 

Power control is a resource management process that is used to adjust adjust 

transmission power in each base-mobile link such that the interference in other 

receiver locations is minimized, the signal quality is maintained.

Power control can suppress the adjacent channel interference, the cochan­

nel interference, and minimize power consumption to extend terminal batter 

life. Undoubtedly power control can raise the network capacity. It consists of 

techniques and algorithms used to manage and adjust the transmitter power 

of base stations and mobile terminals. This is required for the forward link as 

well as the reverse link.

1.5.1 R elated  Studies

In the design of large high capacity cellular radio systems, cochannel inter­

ference caused by frequency reuse is the single most limiting factor on the 

system capacity. Many transmitter power control schemes have been proposed 

to control this interference for a given channel allocation. Most of the early 

work in power control schemes has focused on algorithms that aim at keep­

ing the received power of the desired signal at some constant level. This has 

the favorable effect that the requirements on the receiver dynamic range are 

smaller, which results in better adjacent channel protection [79]. Results indi­

cate an increase of capacity by roughly a factor of two compared to systems 

with fixed transmitter power. However, detailed investigations show that the 

constant-received power control has only limited ability to reduce cochannel 

interference.

In [1], Aein took an analytical approach towards frequency reuse interfer­

ence in satellite systems and introduced the concept of CIR balancing. The 

balancing concept was successfully used in [3] in the context of cellular radio 

in general and spread-spectrum systems in particular which was further in­

vestigated to construct power control procedures to minimize the interference
10
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probability in [77] and [78]. These power control procedures along with some 

other centralized approaches, however, depend on full knowledge of the gain 

in all propagation paths, both intended base-mobile paths and unwanted, in­

terference paths. Therefore, these optimum algorithms serves mainly as a tool 

to derive upper bounds on the performance of interference control schemes, 

rather than being suited for actual implementation [79].

Many distributed power control approaches have been proposed and in­

vestigated which are suitable for practical implementation and require far less 

measurements and allow distributed operations. In [2], author proposed a sim­

ple proportional control algorithm which increases the transmitter power when 

the CIR level is too low and decreases the power when the CIR level is more 

than adequate. Combination of power control with other resource allocation 

has been an active area of research. A combination of power control with 

dynamic channel allocation has been studied in [49], [73], [36], a combination 

with base station assignment has been studied in [34], [75]. In [55], the au­

thors have proposed a joint resource allocation algorithm that tries to allocate 

as many mobile users as possible to every available channel in the system with 

simultaneous assignment of base stations and power levels.

The power control algorithms proposed in literature can be broadly clas­

sified as centralized or decentralized (distributed). Centralized power control 

schemes have been proposed in [1],[28], [77], [78] while many decentralized 

power control schemes have been proposed and can be found in [23], [29], [74], 

[79]. A centralized power control has a central controller that maintains infor­

mation about all the radio links in the system and it decides control actions 

for all users. A detailed study on the power control problem can be found in

[60]. On the other hand, a distributed controller only controls the power of 

one single transmitter based on local information. In this thesis, we propose a 

distributed power control strategy coupled with hybrid channel assignment to 

result in a stable, distributed algorithm.

11
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Different approaches towards the optimization of integrated channel assign­

ment (DCA) and power control have been proposed in [14], [24], [31], [45], [49], 

[63]. In this thesis, we propose a distributed power control strategy coupled 

with hybrid channel assignment to optimize channel allocation in such a way 

that the CIR requirements are meet to maintain desired signal quality and 

minimum power is consumed.

1.6 Fundamentals of Evolution Strategy

In this section, we briefly describe a heuristic approach called Evolution Strat­

egy (ES) which is the main optimization tool used in our optimization problem. 

Rechenberg [59] pioneered ES. This method belongs to the general category of 

heuristic optimization methods called Evolutionary Algorithms (EA). EA was 

proposed in 1990 to describe a class of direct, probabilistic search techniques 

based on the selection mechanism adopted by natural systems [5]. Genetic 

Algorithms (GA), Genetic Programming (GP), Evolution Strategy (ES) and 

Evolutionary Programming (EP) are some of the representatives of EA. A 

survey on GA, EP, and ES can be found in [22].

ES was initially applied on optimization problems with discrete variables. 

In ES, the pool of candidate solution is known as the population and the to­

tal number of individuals in a population is known as the population size. 

Each individual solution is associated with an objective value. The objective 

value represents the individual solution’s performance in relation to the pa­

rameter being optimized. It also reflects an individual solution’s performance 

in relation to other potential solutions in the search space. In ES, a candi­

date solution (offspring) is produced from a given existing solution (parent) 

by applying various reproduction operators like mutation and recombination. 

Mutation adds vectors of Gaussian random variables with zero mean and spec­

ified standard deviation to each individual which also has the form of a vector

12
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[61]. W ith recombination operator, mixing of different solutions is achieved. 

The best solution generated in one generation becomes the parent for the next 

generation. It is an iterative method, therefore, the process of selection and 

application of reproduction is repeated until a terminating criterion is met. At 

the end, the solution of the problem is represented by the best individual so 

far in all generations. Following the basic steps involved in an ES algorithm:

1. Generate A individual as the initial population

2. Evaluate individuals according to fitness f

3. Select /z best individuals as the parent population and discard the rest

4. Apply reproduction operator i.e. mutation to create A offspring from /z 

parents

5. Continue from Step 2 until the termination criteria is met or the prede­

termined number of generations have been produced and evaluated.

Schwefel [68] introduced two common variations of ES; (/z +  A)-ES and 

(/z, A)-ES. Both the approaches use /z parents to produce A offsprings. However, 

they differ in the selection of individuals for the next generation. In (/z +  A)- 

ES, n  best individuals from all the (/z +  A) individuals are selected to form 

the next generation, but in (/z, A)-ES, /z best individuals from the set of A are 

selected to form the next generation. In this thesis, we take the model used by 

Nissen in [51], and [52] to adapt to the ES heuristics to our specific problem. 

Following Nissen, ES is a (1,A)-ES, where one parent generates A offsprings and 

individuals are vectors of integers that are generated from parents by randomly 

swapping values. Figure 1.2 depicts a typical representation of a solution in ES 

and Figure 1.3 and 1.4 depicts the concept of ES and the swapping operator. 

We also employ (/z+A)-ES with /z =  1 and compare both (1, A)-ES and (1+A)- 

ES. (/z +  A)-ES has been adopted from [54],

13
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from [61]
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Figure 1.4: Swapping Operator Reproduced from [61]
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1.7 Problem  Statem ent

In this thesis, we integrated hybrid channel assignment and distributed power 

control (HCA-DPC) using Evolution Strategy to address the problem of finding 

an optimal assignment of channels given the transmitter power and co-channel 

interference is minimized. The HCA strategy used is adopted from [73]. We 

have modified the energy function employed in [73] for ES to include the CIR 

requirements. The minimization of the energy function gives the optimal chan­

nel allocation with the best link gain matrix to meet the CIR requirements and 

to optimize power.

Our proposed scheme uses the hard and soft conditions in [73]. Our ES 

method optimizes the channel assignment as well as the power consumption 

and minimizes interference. An efficient problem representation and an ap­

propriate fitness function is used to search for a (near) optimal allocation of 

channels with efficient CIR objectives for a given cell that receives an incoming 

call. The performance of our method yields better results than that of [73].

1.8 Contributions

Our contributions are as follows:

1. An original, novel and efficient Evolution Strategy approach integrating 

Hybrid Channel Assignment (HCA) with Distributed Power Control (DPC) 

for better and robust optimization.

2. An objective function using channel allocation and power control scheme 

for channel allocation optimization with cochannel free assignment.

3. An efficient way to incorporate power control into channel assignment 

in way to that selection of channels always meet the CIR requirements and 

optimal power is achieved.

4. ES to integrate both channel and power resource management which 

yields less call blocking probability.
15
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5. A novel way to handle the dropping of ongoing calls using the distributed 

power control algorithm.

6. Employ both (//, A)-ES and (p +  A)-ES algorithm and compare their 

performances to our specific problem.

1.9 Organization of the Report

Chapter 2 introduces the contribution of evolutionary algorithms in wireless 

mobile communication area and gives a brief survey on the existing methods 

that are relevant to our problem. In Chapter 3 we describe the HCA scheme, 

the ES algorithm, the DPC scheme and our method of combining the problem 

of finding an optimal channel assignment with power control. Chapter 4 deals 

with basic assumptions of the cellular model used in the simulation, imple­

mentation details and results. Finally Chapter 5 concludes the dissertation 

and discusses future research directions and open problems.

16
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Chapter 2

Literature Review and Survey

This chapter details the contribution of Evolutionary Algorithm in the field 

of Wireless Mobile Communication, compares different approaches as well as 

also surveys the existing methods that are used for both channel and power 

resource management schemes relevant to our problem.

2.1 EA in Base Station Placem ent

The infrastructure cost and planning complexity of a cellular network is closely 

related to the number of base stations required to achieve the desired level of 

coverage (locations covered by the selected number of base stations) and ca­

pacity [71]. Therefore, one of the most challenging design problems in cellular 

network is deciding on the locations of the base stations and the minimum 

number of base stations required to serve a given area while providing an ac­

ceptable quality of service to the mobile users. In the literature many practical 

approaches have been proposed to solve this problem. This includes the use 

of GA in [8], [32], Simulated Annealing in [4], [35] and Tabu Search in [44].

For finding precise base station location, numerous factors such as traffic 

density, channel condition, interference scenario, the number of base stations, 

and other network planning parameters must be taken into account [32]. De-

17
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termining the location of base stations is known to be NP-hard. Given a list 

of potential sites in a service area where base station may be located, the goal 

is to use the knowledge of the radio propagation characteristics of the area 

to select sites in such a way as to minimize their number while maximizing 

coverage in the area [71]. The radio propagation characteristics can be deter­

mined using ray-tracing software or by using empirical propagation models for 

path loss. There exists a trade off between coverage and the number of base 

stations. The higher is the number of base stations, the greater is the cover­

age, but there is also correspondingly greater radio interference and network 

cost. Some of the papers that describe the application of EA in base station 

placement problem are briefly described below:

• In [8], Genetic Algorithm approach has been presented to address this 

problem. The paper assumes that a list of N possible locations that guaran­

tees 100% radio coverage is known before hand. The candidate solutions are 

represented using a N bit binary string, with a 1 at each bit position if there 

is a base station at the location corresponding to that bit, and zero otherwise. 

The chromosomes are evaluated by the fitness function chosen as shown in 

Equation 2.1.

fitn e ss  (individual) = Cover̂ lte° (2.1)

Where Cover Rate01 is the radio coverage (the percentage of locations cov­

ered by the selected base stations, and o: is a parameter that is tuned to favor 

coverage with respect to the number of transmitters and is assigned a value 

of 2 in this paper. Finally, N B  is the number of selected Base Stations. This 

fitness function maximizes the coverage and minimizes the number of trans­

mitters. Selection based on fitness value, one-point crossover and mutation 

operators (flipping of the value of a randomly chosen bit of the string with a 

probability of 0.9) are employed.
18
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2.2 EA in Call Adm ission Control

In mobile communication system, it is generally preferred to block a new call 

than to drop an ongoing call. Hence, allocation of radio resources to every user 

whenever they are available may not be the optimal strategy in terms of system 

performance as this may result in an inability to serve a handoff call. Thus, 

one of the important design issues is the finding of a call admission policy that 

provides optimal system performance. Call Admission Control (CAC) policy 

determines under what conditions a new call to a mobile in a particular cell 

should be admitted or blocked.

In [76], authors have considered the evolution of a state-based call ad­

mission policies using GA. According to them, a call admission policy is a 

collection of admit/reject decisions corresponding to the services requested at 

each state of the system. In each cell, the states refer to the number of oc­

cupied channels. The assumptions made by the paper are as follows: a linear 

cellular system, two types of service request; new call set request and handoff 

request, three binary decisions; admit a new call, admit a handoff call from 

the left cell and admit a handoff call from the right cell.

The paper assumes that all cells can access the F  channels available in 

the system. For a linear cellular system with C  cells, the total number of 

global states for the three decisions is 3(F + 1)°. The paper considered a local 

policy where each cell uses state information from its k  left and k right nearest 

neighbors as well as its own state information. The state space is thus reduced 

to 3(F  +  l ) 2fc+1l. The value of k is either 0 or 1. The policy is represented 

as binary string with a bit 1 for accepting the service and 0 for denying the 

service. An example with 16 channels and 9 cells need 30 bits for the policy 

with k =  0 and 3000 bits with k = 1. The performance of the system is defined 

as weighted measure of new call and handoff call and is defined as [76].

f  = Pn + wPh (2.2)
19
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Where, Pn is the new call blocking probability, Ph is the handoff blocking 

probability and the value of w determines the extent to which dropped calls are 

considered less desirable than blocked calls. This represents the cost function 

to be minimized.

2.3 Channel Assignm ent

The channel assignment problem has been shown to be NP-hard [33]. In liter­

ature, many techniques have been proposed to solve FCA and DCA problem 

based on fixed reuse distance concept. This include the use of neural networks 

[19], [25], [41], the use of simulated annealing [20], the use of genetic algorithm 

[7], [10], [?], [43], [50], [66], and the use of graph theoretic approach [27], [64] 

in FCA. The goal of all these approaches is to provide an optimal assignment 

of the available radio spectrum.

The neural network approach of Hopfield and Tank [19], [41] was shown to 

be an inappropriate technique as it had greater tendency to get stuck in local 

optima [42]. Some of the disadvantages of graph theoretic approach [20] are 

the following:

• Graph theoretic approach is based on hard interference decisions indicat­

ing whether the same channel can be simultaneously used in two radio cells. 

Such a decision is questionable because interference depends upon several un­

certain factors such as special distribution of traffic.

• Graph theoretic approach only aims at minimizing the used spectrum. It 

does not exploit the optimum use of available channels.

Simulated annealing approach [20], [48], achieves the global optimum asymp­

totically but its rate of convergence is very slow and requires a carefully de­

signed cooling schedule [50]. Tabu search is good at exploring the search space 

by avoiding the inefficient paths. This way it requires less computational time 

as compared to simulated annealing. However, it requires large memory ca-
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pacity as well as good method for avoiding oscillation of solutions which makes 

it unsuitable for large scale problems [71].

2.3.1 EA  in Fixed Channel A ssignm ent

For every incoming call, a channel is selected with the restraints of electromag­

netic constraints (EMC). EMC can be represented by minimum channel sepa­

ration between any pairs of channels assigned to a pair of cells or cell itself [70]. 

If there are F  channels to serve C  cells in the system, the minimum channel 

separation is described by a symmetric compatibility matrix X[C, C] and each 

element of X  is a non-negetive integer. Each element Ay(i, j  =  1 • • • C) repre­

sents the minimum channel separation required between channels assigned to 

cells i and j .

• Each diagonal element Xu  represents the minimum separation distance 

required between any two channels at cell i to satisfy co-cell interference con­

straint.

• Each non-diagonal element Ay represents the minimum separation dis­

tance in channel between any two channels assigned to cells i and j  respectively.

For example, if Ay =  0, then no frequency separation is needed between 

the channels used in cell i and cell j  and the channels used in cell i can be 

reused in cell j .

If the compatibility matrix is binary, then Ay =  1 indicates the same 

channels cannot be reused by cells i and j ,  and if it can be reused then Ay =  0.

Another basic requirement of channel assignment is the traffic requirement 

of each cell. A vector T  of length C  can model the traffic demand of which 

an element T* denotes the number of channels used in the ith cell. This vector 

can be obtained by analyzing the traffic at each cell. In reality, the value of T  

should be a function of time due to arrival of new calls, termination of ongoing 

calls, and handovers.

The channel assignment problem is to find the allocation matrix A[C, F]
21
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which satisfies all the constraints mentioned above. The allocation matrix

A[C, F] is such that the element A y  of A  is 1 if channel % is assigned to cell j

and a 0 otherwise.

In general the cost due to violation of interference constraints can be given 

in Equation 2.3 [40].

/  =  f  cosite T fadjacentchannel T  fcochannel (2-3)

where,
O F F

fcosite = Z E E  AikAn<t>{i, I) (2.4)
i=1 fc=1 Ijtk

here I) =  0 if \k — l\ > X y  and i = j  and 1 otherwise.

f  c  c
fadjacentchannel E E E  A ikAjk5{i,j) (2.5)

fc=l i—l j^i

where S(i, j )  =  0 if X y  < 1 and 1 otherwise.

C F F

fcochannel — E E E  AikA jk<f)(i, j )  (2.6)
i=l k=1 j^k

where 4>(i, j )  — 0 if X y  — 0 and 1 otherwise.

In Equation 2.3, fcosite takes care of the co-cite interference, f adjacentchannei

takes care of the adjacent channel interference and fcochannel takes care of the

co-channel interference. The cost due to the violation of interference / '  is 

minimized if f cosite, fadjacentchannel and fcochannel are minimized. The cost due 

to the violation of traffic demand requirements i.e. assigning a different rather 

than required number of channels at each cell can be modeled as an error term 

ftraffic as [40].

f m l / i e  = E(r< “ E A i t ^  <2'7)
t=1 k=1
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The cost to be minimized can be expressed as shown in Equation 2.8 [40].

f  — f  +  f t r a f f i c  (2 .8 )

In Equation 2.8, /  will be minimized if / '  and ftraffic are minimized. Some of 

the papers that describe the use of Evolutionary Algorithms to fixed channel 

assignment problem is described below:

• In [43], authors have used GA to find an optimal channel assignment ma­

trix. The constraints considered in the paper are the interference constraints 

(co-site and co-channel) and traffic demand. In the encoding chosen for GA, a 

chromosome represents a cell in the cellular system and the length of the chro­

mosome is sum of the number of channels required in the cell. Thus, a typical 

chromosome is a linear arrangement of channels for each cell. Each chromo­

some is evaluated by an objective function that encompasses traffic demand 

and interference constraints. The paper uses standard mutation operator and 

slightly modified partially matched crossover (PMX).

• In [66], GA is used as well. The objective function treats the non­

interference constraints (co-channel, co-site and adjacent channel) as soft con­

straints and traffic demand satisfaction as a hard constraint. W ith this ap­

proach, a solution that minimizes the severity of any interference is always 

found. This is useful in situations where demand and interference constraints 

are such that no interference free solutions are available for the network. Thus, 

the formulation attempts to minimize the severity of any interference. The 

genetic representation of the solution is binary channel assignment matrix 

A[C,F]. The fitness of the choromosome is measured by Equation 2.9 [66].

C F F

F(A)=X E A »  X c  X <2-9>
j -1 k= i j=i i=i

subject to demand satisfaction.
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Here P  is a factor that assigns a penalty to each assignment according to 

the recursive relations: Pj,%,m+1 =  m ax(0,P j^m-i) , Pj,i, 1 =  Xji and Pj^\ — 0, 

for m  =  1, • • • m —1. The paper has designed a crossover and mutation operator 

in such a way that the feasibility of the solution is guaranteed. The paper also 

provides an insight into the roles of crossover and mutation operator; crossover 

operator improves co-channel and adjacent channel interference while mutation 

operator eliminates co-site interference.

• Paper [50], has also used GA to find an optimal channel assignment 

matrix. The constraints considered in the paper are interference constraint 

(co-channel, adjacent channel and co-site), and traffic demand constraints with 

non-uniform traffic distribution among the cells. In the paper, the authors 

have described a modified genetic-fix-algorithm that creates and manipulates 

chromosomes with fixed size (i.e. in binary representation, the number of 

ones is fixed) and utilize an encoding scheme called the minimum-separation 

encoding. In the encoding chosen for GA, a chromosome is a binary string 

that represents the channel assignment matrix through concatenation of rows.

The chromosome structure incorporates both the traffic demand and co­

site constraint. If dmin is the minimum number of frequency bands by which 

channels assigned to x th cell must differ to prevent co-site constraint, then, the 

minimum separation encoding scheme works by eliminating (dmin — 1) zeros 

following each 1 in each row of the channel assignment matrix. This com­

pression reduces the search space. A chromosome is evaluated by an objective 

function that includes only the co-channel and adjacent channel constraints. 

The genetic-fix algorithm defines its own mutation and crossover operator is 

such a way that the fixed number of ones is always preserved.

• In [10], authors have used GA to find the minimum required bandwidth 

that satisfy a given channel demand without violating interference constrains. 

In the encoding chosen for GA, a chromosome is a frequency assignment matrix 

A[F, C] with elements A^{i =  1 ■ ■ ■ M  and j  =  1 • • • N ) which is either 0 or 1
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or -1 or 9.

Aij = 0 : ilj channel is not used in the j th cell and the use of ith channel in

the j th cell will not result in any interference.

— 1 : channel is used in the j th cell.

A ^  =  — 1 : ilj channel is not used in the j th cell and the i th channel cannot

used in the j th cell.

The paper considered the value of F to be sufficiently large, so that some 

channel are left unused even after adequate channels have been allocated to all 

cells. A ^  = 9 indicates that the ith channel is unused in the j th cell. The fitness 

of the chromosome is measured by the frequency bandwidth a chromosome uses 

i.e. by its F value. In case of chromosomes with same value of F, one with 

higher number of 0’s i.e. solution, which allows more channels to be added 

without violating interference is considered the fittest. The paper presents an 

algorithm to generate the initial population and also defines a genetic mutation 

operator on those valid chromosomes such that the resulting chromosome is 

also a valid solution.

2.3.2 D ynam ic Channel A llocation

In [37], the problem of dynamic channel assignment was formulated as a gen­

eralization of traditional mutual exclusion problem. They have proposed an 

algorithm called ” Relaxed Mutual Exclusive” algorithm which prevents certain 

pair of cells from simultaneously using the same channel. In [69], authors have 

studied the application of reinforcement learning to dynamic channel alloca­

tion. They formulated the DCA as a dynamic programming problem. Besides 

these approaches, a number of DCA algorithms have been proposed [12], [13], 

[15], [58], [17], [64], [61], [62], [80], [81]. These algorithms can be classified 

into two classes of DCA schemes based on the type of information used in 

allocating a channel [71].

1. In the interference adaptive scheme, the decision regarding the allocation
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of a channel is based on the measurement of carrier-to-interference ratio. In 

[26] and [53], the propagation measurement is made from each base station 

to mobile and vice-versa. A channel I is allocated to a new call if it does not 

cause any interference to the calls already in progress on I and at the same 

time does not receive any interference from the existing calls in the system.

2. In traffic adaptive scheme, the channel allocation decision is based on 

the traffic conditions in neighboring cells of a cell involved in a call arrival.

Various traffic adaptive schemes have been proposed. The traffic adaptive 

schemes can be classified into various groups. One such category is exhaustive 

searching DCA [15],[17], [58], [62], [65], [80], [81]. Exhaustive searching D-ring 

HCA has also been proposed in [73]. In exhaustive searching each channel 

is associated with a cost. The cost of a channel reflects the impact of allo­

cating this channel on the on going calls in the system. When a call arrives, 

the system tries to allocate the channel with the minimum cost. Our pro­

posed HCA strategy employs an exhaustive searching DCA while it adheres 

to interference adaptive scheme as it allocates a channel also based on the 

carrier-to-interference ratio.

2.3.3 EA in D ynam ic Channel A llocation

Neural network based DCA [58], genetic algorithm based DCA [62], evolution­

ary strategy based DCA [61] and evolutionary strategy based HCA [73] have 

been proposed which are described below as they are relevant to our approach. 

All the approaches use an energy function for the cell involved in the arrival 

of a call.

• In [58], the energy function includes factors such as co-channel inter­

ference, traffic requirement, packing condition, limiting rearrangement, and 

resonance condition. A Hopfield neural network was designed with respect to 

this energy function. The equilibrium point of the network is found by solving

the corresponding energy function iteratively. The stable states, i.e. 0 or 1 of
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the neurons gives the desired solution. The performance of the algorithm was 

measured in terms of probability of blocking of new calls. The neural network 

approach easily converges to local optima [50].

• In [62], the energy function includes all those terms proposed in [58]. A 

binary chromosome represents a cell from the cellular system where a call is 

referred. A gene represents a channel where a free channel is assigned a 0 while 

an occupied channel is assigned a 1. The length of the chromosome is always 

equal to the total number of channels available to the system. The fitness 

of the chromosome is measured by the energy function. The chromosome 

with the minimum energy gives the desired solution. The call is blocked if 

the desired solution causes co-channel interference and does not satisfy the 

traffic requirement of the cell at that time. Otherwise, the call is successful 

and the channel usage information of the cell is updated according to the 

desired solution. The performance of the algorithm was measured in terms of 

probability of blocking of new calls.

• In [61], the energy function includes all those terms proposed in [58] 

except the traffic requirement term. The traffic requirement is incorporated 

in the problem representation, therefore, the fitness function is simplified. It 

uses the same problem representation as in [62]. The number of ones in the 

chromosome is equal to the traffic requirement of the cell at that instant. 

The energy function determines the fitness of the chromosome. The fittest 

chromosome is the desired solution. If the desired solution causes interference 

the call is blocked. Otherwise, the call is successful, and the channel usage 

information of the cell is update according to the fittest chromosome. The 

proposed algorithm performed better than those proposed in [58] and [62],

• In [73], authors proposed a new HCA strategy called D-ring strategy 

using distributed dynamic channel assignment based on fixed reuse distance 

concept. The fixed reuse distance is labeled as D which states that D rings 

of cell around a given cell would form the interference region. Channels are
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allocated to a host cell from the channels which are not in the D ring zone of 

the host, therefore, cochannel interference is always satisfied. The length of 

the chromosome is equal to d where d represents the current traffic demand in 

the cell involved in a call arrival. The size of solution vector is smaller than 

[61] and yields a faster running time. Also, it takes care of the traffic demand 

constraint as the number of channels in the solution vector equals the demand 

of channels in the cell.

The fitness function is simplified as compared to [61], as one of the ma­

jor hard constraints, the co-channel interference is taken care by the D-ring 

strategy. The soft constraints like packing condition, resonance and limiting 

reassignment are taken care by the energy function which provides simpler 

and faster calculation than [61]. The minimization of the energy function 

gives a near optimal channel allocation. Our proposed dynamic channel al­

location methodology is based on this HCA strategy where we use dynamic 

reuse distance concept rather than D-ring strategy for the cochannel inter­

ference constraint and integrate this approach with an efficient power control 

scheme.

2.4 Power Control Schemes

Various power control algorithms have been proposed in the literature [6], [23], 

[29], [30], [57],[74], [78], [79]. All the power control approach presented can be 

described as centralized or distributed power control. One major constraint 

discussed in most of the papers is the cochannel interference that every user 

generates for all other users when sharing the same channel. Some techniques 

proposed sectorization and beamforming using smart antenna arrays to sup­

press interference, while some other techniques proposed adaptively controlling 

the power levels of all the users in the network. The idea is to keep the power 

level for every user at its minimum required level according to the current
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channel condition. This would eliminate unnecessary interference to other 

users and would also minimize the power consumption for the user.

Aein [1] addressed the problem of balancing the CIRs on all radio links 

to reach a common CIR in satellite systems. The existence and uniqueness 

of a feasible power vector associated with the eigen value of the gain matrix 

are found to be consequences of the Perron-Frobenius theorem. Aein’s work 

was refined further and an iterative procedure was proposed to determine the 

unique set of carrier power levels and demonstrated that maximizing the com­

mon CIR is equivalent to maximizing the minimum CIR over all radio links. In 

[3], authors improved and applied these results to the spread-spectrum system. 

Zander [77], [78] refined the concepts of [1] and [3] and focussed on the dis­

tributed implementation of these algorithms and their relationship to dynamic 

channel allocation.

Below the methods proposed in [6] and [57] are discussed briefly which are 

relevant to our problem.

• In [57], the interference reduction capability of antenna arrays and the 

power control algorithms have been considered as means to increase the ca­

pacity of the wireless communication networks. The beamformer with omni­

directional antennas is used as well as power control algorithms to maximize 

the CIR and noise ratio. An iterative algorithm is proposed to jointly update 

the transmitter powers and the beamformer weights so that it converges to the 

jointly optimal beamforming and transmission power vector.

A set of M  transmitter-receiver pairs which share the same channel is 

considered. The CIR at the Ith receiver is given by Equation 2.10 [57].

r , =  G ii^  (2.io)

The link gain between transmitter i and receiver j  is denoted by Gy, and the 

ith transmitter power by Pi. For an isotropic antenna with unity gain in all
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directions, the signal power received at receiver i from transmitter j  is GjiPj. 

The acceptable link quality is determined by Tj > 70, where 70 is a certain 

threshold, the minimum protection ratio.

A decentralized power control is achieved by the following Equation 2.11

Where P-1 is the ith mobile power at the nth iteration step. /, is the inter­

ference at the ith receiver as well as the link gain between each receiver and 

its transmitter. That is, there is no need to know all the existing path gains 

and transmitter powers to update the powers. At each iteration, transmitters 

update their powers from the interference measured at the receivers and the 

link gain between each transmitter and its own receiver. Starting from an 

arbitrary power vector, this iteration converges to the optimal solution.

• In [6], distributed power-control algorithm with active link protection 

has been studied to maintain the quality of service of operational (active) 

links above given thresholds at all times (link quality protection). Based on the 

concept of active link protection, this approach supports the implementation of 

admission control.The two main ideas of this approach are 1. the gradual power 

up of new links entering the channel and 2. the introduction of a performance 

protection margin cushioning the links already in it. The CIR is defined same 

as in [57]. The CIR requirements is defined by

Transforming the CIR requirements into matrix form, the paper approached 

the problem from eigen-value solution. The paper showed that the distributed 

power control (DCP) algorithm would converge to the optimal power vector in 

order to minimize the power spent. The DPC algorithm is coupled with active 

link protection which updates transmitter powers in steps (time slots). The pa-

[57],

(2 .11)

€ {1,2,3, - - - ,JV}
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per proposed formulas to keep the active links remain active at all times using 

a protection margin and the new links to power up gradually to induce a lim­

ited degradation on active ones. The paper also proposed an approach called 

Time-out-Based Voluntary Drop-Out (VDO) to depict the drop-out horizon of 

new links attempting to gain admission in the network. The simulation studies 

showed that the serious of algorithms achieved superior performance lowering 

the average admission delay.

2.5 Integrated Channel Assignm ent and Power 

Control

While dynamic channel assignment achieve higer levels of capacity by dynam­

ically distributing the traffic accorss the channels, power control techniques 

focus on every channel and try to mitigate the cochannel inteference by dy­

namically adjusting the power levels of the cochannel users at their minimum 

required level. This is the main idea behind the research motivation on inte­

grated distributed dynamic channel and power allocation. Undoubtedly, dy­

namic channel allocation and power control together can improve performance 

and achieve higher capacity. Many integrated dynamic channel and power 

allocation (DCPA) algorithms have been proposed based on different power 

control algorithms [14], [45], [49], [72], [24].

In [14], a pilot based minimum interference DCA scheme is integrated with

a fast fixed-step power control algorithm, while fast fading and user mobility

effects are not considered. In [45], three different types of minimum interference

DCA algorithms are integrated with a slow integrator power control algorithm.

Pedestrian mobility along with a low power update rate is considered, and it

is assumed that the fast fading effects are averaged out. In [72], a simulation

study was performed to investigate the joint effects of some simple signal-to-

interference-plus-noise ratio (SIR) based and signal-level-based power control
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algorithms along with a minimum interference reassignment scheme. Fast 

fading effects are also neglected and low power update rates are assumed. 

Other approaches differ in results for neglecting effects such as dynamics of 

user arrival or departures, user mobility and base station handoffs.

2.5.1 D C A  w ith  Power Control

In [49] and [31], a distributed approach to the optimization of integrated chan­

nel assignment (DCA) and power control has been proposed. Both the papers 

use an interference region and neighboring cells exchange the channel usage 

information periodically. In [49], every cell maintains a list of the priority 

of available (free) channels. The priority of channel is determined by a cost 

function which is based on the use of the channel in a cell’s vicinity. The cost 

function is such that farther a given channel is from the current cell, the lower 

the cost. The lower the cost the higher is the priority of a channel. After a 

channel is selected, the proposed algorithm applies power control to check the 

CIR value. In [31], every cell maintains a channel table. The channel table con­

tains channel usage information in a cell’s neighborhood and the CIR value for 

each channel. Each cell also maintains the record of the number of cochannels 

for each channel. When a call comes to cell, the proposed algorithm searches 

for a free channel with desired CIR and highest number of cochannels from 

the channel table. As compared to these two approaches, our approach uses 

an energy function as part of the ES algorithm and the CIR requirements is 

embedded in the ES algorithm to take care of cochannel interference, therefore, 

there is no need for defining any interference region separately.

In order to incorporate channel-gain variations due to user mobility and

fading, in [63], authors proposed a DCA scheme based on a novel predictive

power control algorithm and showed that how simple Kalman filters (using

a set of available measurements, corrupted with Gaussian noise, a Kalman

filter recursively obtains the minimum mean squared error estimates of a set
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of variables that are varying according to a given dynamic model) may be 

designed and implemented in order to obtain the predicted measurements of 

both the channel gains and the interference powers. They also presented that 

the predictive power control algorithm satisfies the sufficient conditions for 

global stability of the network.

Below are some of the details of the system mode, integrated DCA and 

predictive power control measure used in [63].

• The authors considered cochannel interference among the users and fo­

cused on uplink channel, i.e. the channel from mobiles to base stations. A 

fixed-power pilot (control) channel on the downlink is assumed which facili­

tates DCA and can be used by the mobiles for initial base station assignments 

and base station handoffs. Only SIR is considered as the measure for QoS in 

the system. The received SIR on an assigned uplink channel for user i is shown 

as Equation 2.5.1 [63].

n  =  S ,lP ‘ M  (2.12)
z 2 j = l , j j t i  9 i j P j  + Vi

Where, p, is the transmitter power for user i, gu is the channel gain (or 

attenuation) from user % to its intended base station, gij is the channel gain 

from user j  to the intended base station of user i, and rji is the receiver noise 

intensity at the intended base station of user i. Also, M is the total number 

of users sharing the channel. The optimal power level for the new user can be 

shown in Equation 2.5.1 [63].

P n  = (2-13)
9 n n  1 7m a x

Where, is the SIR threshold that the new user wants to achieve, ^max

is the maximum achievable SIR for the new user and Ino is the local mean

interference-plus-noise level at the intended base station of the new user before

it is admitted to the network. In order to model the interference plus noise

similar to channel gains, a white noise driven first-order Markov variations is
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used. Prom [63] that is

7j(n) =  Ii° + SIi(n) (2.14)

5li(n) =  aSli(n — 1) +  wj(n  — 1) (2-15)

Where Wi is a zero mean white Gaussian noise sequence, 7,;° is a constant bias

which accounts for the antenna gains and the distance loss in the filter. Simple

Kalman filters presented in the paper obtains predicted estimates of the local 

mean channel gains and the local mean interference-plus-noise levels. These 

predicted estimates are then incorporated in a integrator algorithm to update 

the power levels of all the users in the network.
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Chapter 3 

Proposed Methodology

In this thesis, we propose a Hybrid Channel Assignment (HCA) strategy in­

tegrated with Distributed Power Control (DPC) based on Evolution Strategy 

approach. We consider a cellular system with the area under coverage divided 

into cells and each cell has its own base station. All users communicate with 

their assigned base stations through a single hop.

Each base station has a controller (computer) The status of all calls and 

changes in each cell are being sent to all the other cells using a good wired 

network between the computers of all cells. Channel assignment and power 

control is made by the controller of the concerned bases station according to 

the knowledge of other given cells. The thesis investigates an Evolutionary 

Strategy (ES) based approach using an efficient problem representation and 

defines an appropriate fitness function and mutation operators. The HCA with 

ES has been adopted from [73].

The system can be an FDMA/TDMA system where for the hard constraint, 

we only consider the cochannel interference among the users, and no adjacent 

or co-cite channel interference are assumed. We assume that each user will 

experience interference only from the users sharing the exactly same channel 

or link. The soft constraints considered are limiting reassignment and packing 

condition which are taken care by the fitness function. In [73], the fitness
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function incorporates resonance as another soft condition to take care of the 

reuse distance concept. Our approach employs dynamic reuse distance concept 

through the use of CIR, therefore, there is no need to check for resonance 

condition in our energy function. The co-channel interference constraint is 

also taken care by the fitness function. The traffic requirement constrain is 

incorporated in the problem representation. The chosen representation and 

the mutation operator guarantees the feasibility of the solution.

Both Channel Assignment and Power control are integrated using (//, A)- 

ES and (// +  A)-ES. The HCA part provides the optimal allocation of channels 

with best link gain matrix. The goal is to determine if there exists a channel 

to serve a new call in such a way that each mobile’s CIR is acceptable. Finding 

such assignment of channels that minimized the total transmitted power by 

achieving an optimal power vector is the task of the Distributed Power Con­

trol (DPC) scheme. The DPC scheme employs a distributed CIR balancing 

Eigenvalue solution to to achieve the optimal power vector (adopted from [6] 

and [57]. By distributed we refer to per individual link (since the basic object 

of the network model is the link) in the system model.

3.1 HCA Strategy

We adopt to the HCA strategy proposed in [73]. In [73], a D-ring strategy is 

proposed (Figure 3.1) in the problem representation, where the neighboring 

area of a given cell includes all those cells which are located at a distance 

less than the reuse distance. Conceptually, the neighboring area defines an 

interference region marked by grey cells belonging to D rings centered in a 

given cell H as shown in Figure 3.1. In our approach, we incorporate the CIR 

requirements in the energy function to take care of the cochannel interference 

constrain, therefore, there is no need for a fixed D-ring reuse distance concept 

as in [73] since our energy function of ES dynamically uses the reuse distance
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concept.

Neighboring
cells

Host cell

D=(rewse distance -1)=2

Figure 3.1: Neighbors of a Given Cell [73]

The total number of available channels are divided into two sets, Fixed 

and Dynamic. When a new call arrives, if there is no channel available in the 

Fixed Channel Pool, channels are used from the Dynamic Channel pool. The 

channel assignment is made by the central controller of the concerned base 

station as such that the selected channels always satisfy the soft and the hard 

constraints by employing dynamic reuse distance concept. The channel usage 

information in the neighbors of a given cell is obtained from the allocation 

matrix. Let, C be the total number of cells in the system and F be the total 

number of channels available to the system. Then the allocation matrix is a 

C x F  binary matrix. The allocation matrix for each cell is a copy of the 

system channel pool. Each element in the matrix is one or zero such that

The allocation matrix is updated every time a channel is allocated and released

0 otherwise.

1 if channel j is assigned to cell i;
(3.1)
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in the network. Also, system wide distance matrix and link gain matrix hold 

the distance and the link gains between mobile terminals and base stations.

3.2 Power Control

We integrate both channel assignment and power control (called the HCA- 

DPC algorithm) using Evolution Strategy. The problem of channel allocation 

is to maximize channel utilization and the problem of power control is to main­

tain desired signal to interference ratio which are highly related. Cochannel 

interference is one of the main impairments that limits the spectral efficiency 

and also degrades the performance of a wireless link. Most of the papers have 

solved the problem of channel assignment with the assumption that power is 

pre-assigned or fixed and vice versa. In reality, when a channel I is assigned 

to a new call, it might deteriorate the quality of ongoing calls of all the other 

users of channel I because of interference created among each other. One of 

the widely studied approach to deal with such interference is the Carrier-to- 

interference ratio (CIR). When a channel assignment is done without taking 

into consideration the CIR ratio, for some assignments, the CIR ratio for a 

user in a cell may fall below the desired level for sharing the same link with 

other users. Regulating the transmitter power can reduce this interference seen 

by other users and also minimize the consumption of power. A substantial in­

crease in the network capacity by combining dynamic channel assignment with 

power control has been reported in [14], [24], [45], [49], [63] and [72].

3.2.1 Problem  Statem ent

We consider a cellular radio system with a finite set of F  channels and C cells 

and a set of N  transmitter-receiver pairs which share the same channel (i.e. 

the number of users communication in the same channel). The shared channel 

can be a frequency band in frequency-division multiple access (FDMA), a time
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slot in time-division multiple access (TDMA) or even CDMA spreading codes. 

In FDMA system, the channels are non-overlapping frequency bands and in 

spread-spectrum system, the whole spectrum can be viewed as a single channel 

and interference basically reflects cross-correlation effects between codes in 

CDMA transmission [6].

In the cellular communication network paradigm, links or channels corre­

spond to up-stream and down-stream transmissions between mobiles and base 

stations. Since uplink (mobile-to-base) and downlink (base-to-mobile) chan­

nels are assumed not to interfere with each other, and in principle, there is 

no big difference between downlink and uplink channel allocation, we only 

consider the downlink (base to mobile) situation and all relevant propagation 

effects are modeled by the link gains as in Figure 3.2. All the results in this 

thesis can be applied to uplink by changing the notations.

Mi

Figure 3.2: System Geometry and Link Gains

Gij denotes the link gain or path gains from the base station (transmitter) 

in cell j  to the mobile (receiver) using the same channel in cell i. The gain 

Gu corresponds to the desired communication link, whereas the Gtj , i ^  j  

corresponds to unwanted interference link (radio wave propagation effects). 

Let, Pj be the transmitter power of base j .  The signal power received at 

receiver % from transmitter j  is GijPj. The desired signal at receiver i is equal 

to GuPi, while the interfering signal power from other transmitters to receiver 

* iS Gij P j.
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We assume that the transmission or signal quality to be dependent only 

on the carrier-to-interference ratio (CIR), T, experienced by the receiver. The 

CIR of mobile or receiver i can now be expressed as:

Gr Pl  ^  ,N }  (3.2)
2-q^i ' Vi

Where, iji > 0 is the thermal noise power at its receiver node.

The quality of the link from transmitter j  to receiver i depends solely on 

Tj. The quality is acceptable if R  is above a certain threshold 70, the minimum 

protection ratio. This minimum protection ratio reflects some minimum QoS 

that the link must support throughout the transmission in order to operate 

properly. The 70 is determined based on the signaling scheme and the link 

quality requirements (target bit error rate). Hence, for acceptable link quality,

G“F‘ > 70 (3.3)
S j / i  P j  + Vi

In matrix form, the CIR requirements 3.2, 3.3 can be written as [6]:

( /  -  7oF)P  >  U and P > 0 (3.4)

Where, P  =  (Pi, P2, • • • , Pj, • • • , Pn)1 is the column vector of transmitter pow­

ers, I  is an iV x iV identity matrix, and U is an element-wise positive vector 

with elements m defined as:

ui = m  1 < i < N .  (3.5)

U is the vector of noise powers rescaled by CIR requirements and link gains
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[6]. Finally, F  is the matrix of cross-link power gains with entries:

0 if i = j\

j f c > °  i f i * 3 -

(3.6)

Where, i , j  € {1,2,3, • • • ,N } .

The objective of the power control scheme is to maintain the link quality 

by keep the CIR above 70, therefore, adjust the power vector P  such that 

Equation 3.4 is satisfied.

The matrix F  has non-negative elements, therefore, it is reasonable to 

assume that it is irreducible (From standard matrix theory, if a non-negative 

matrix A  is irreducible iff for any vector x  > 0, Ax > 0 holds true). Now, 

given that F  is irreducible, according to Perron-Frobenius theorem ([6], [57]) 

the maximum value of 70, for which there exists a positive power vector P  such 

that Equation 3.4 is satisfied is l /p (F).  Here, p(F) is the maximum modulus 

eigenvalue of F. Also, according to this theorem, the power vector P  that 

satisfies Equation 3.4 is the eigenvector corresponding to 1 / pF  and is positive.

It has been shown in literature that if the maximum modulus eigenvalue of 

F  is less than I / 70, the matrix I  — 70F  is invertible and positive. In this case 

the power vector

solves the optimization problem in the sense that any other P  satisfying Equa­

tion 3.4 would require as much power from every transmitter i.e. P  > P*. 

Hence, if it is possible to satisfy the CIR requirements for all links simultane­

ously, a good power control strategy is to set the transmitter powers to P* in 

order to minimize the power spent [6].

P* = [ I~ jo F ]~ 1U (3.7)
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3.2.2 D istributed  Power Control (D PC )

Many centralized power control algorithm to solve Equation 3.7 have been 

proposed in literature. They require all link gains in the network and noise 

levels at receivers. A distributed power control (DPC) algorithm is proposed 

in [23] which is the following:

P(k + l) = TP(k) + U, k = 1,2,3,-■■ (3.8)

This equation converges to P* if pF  < 1. The first term refers to the 

cross-link interference and the second term refers to noise both rescaled by 

Gu . The disadvantage of this approach is that it is necessary to make separate 

local measurements of cochannel interference GtjPj, noise power % and 

propagation gain Gu.

We adopt to the DPC algorithm proposed in [6] which is a simplified version 

of Equation 3.8.

Pi(k + 1) = for every link i G {1,2,3, ••• ,  N }  (3.9)
A i\fc)

Following Equation 3.9, each link independently increases its power when 

its current CIR is below the threshold q0 and decreases it otherwise in order to 

meet the required CIR threshold. It may be noted that since all the links do the 

same, the objective is achievable only at the limit k —> oo (if feasible). In our 

distributed power control scheme, each channel’s transmitter and receiver pair 

measures the interference and communicates this information to each other. 

The transmitter then decides how to adjust its power.
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3.3 Proposed Evolution Strategy Approach

The proposed ES belongs to the class of (/x, 7 )-ES and ( j i ,  7 )-ES with f i  —  

1. This section describes the characteristics of our proposed ES approach: 

problem representation, generation of initial population, fitness function and 

mutation operator to generate offspring from a given parent and also describes 

(/x, 7 )-ES and (/x, 7 )-ES algorithm.

3.3.1 Problem  R epresentation

Let us assume that a new call arrives in cell k, which is already serving (d — 1) 

calls and d is the traffic demand at cell k after the new call arrives (this takes 

care of the traffic requirement constraint). Our problem is to assign a channel 

for the new call, also with possible reassignment of channels to the (d — 1) 

ongoing calls in k, so as to maximize the overall channel usage in the entire 

network. The CIR requirements and the optimal power issue are dealt by the 

fitness function and the DPC algorithm respectively. A potential solution, 14, 

is an assignment of channels to all ongoing calls and the new call, at k. We call 

such a solution a chromosome. We represent 14 as an integer vector of length 

d ,where each integer is a channel number being assigned to a call in cell k. For 

example, if k — 1, d = 4, available channel numbers =  [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9], 

then a possible solution is 14 =  [7,2,5,3]. This representation (adopted from 

[73]) is more efficient than [61] as they used a binary representation where the 

size of a solution vector is independent of the traffic and is equal to the total 

number of channels in the system pool. The disadvantage of the representation 

used in [61] is that although we are interested in only d channels, extra memory 

is consumed in storing the information about other channels. This also yields 

slower evaluation and manipulation of candidate solutions due to the size of the 

binary representation. The advantage of our representation is that the size of 

the solution vector is short and it is easier and faster to manipulate the vector.
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Also, our algorithm performs faster than that of [73] as we have removed the 

destabilization part used in [73]. It has been shown in [73] that the inclusion 

of destabilization does not affect the performance of the ES algorithm in terms 

of blocking probability, however, certainly reduces the computational time.

3.3.2 Initial Parent

When a call arrives in a cell k at time t, we determine the set of eligible 

channels I at time t. Here I (k , t)  =  F  \  P(k, t), where, F  is the total set 

of available channels and P(k, t ) is the set of channels of the ongoing calls in 

k at time t. This information is obtained from the allocation matrix. The 

initial parent solution (the very best chromosome) is selected from a set G of 

A solution vectors where A =  \I(k,t)\. Each solution vector in G is evaluation 

according to the fitness function, and the individual with the best fitness is 

selected as initial parent. Each solution in G contains a unique integer selected 

from I(k, t). The remaining (d — 1) integers in all solution vectors are the same 

and are the channels of the ongoing calls in the cell i.e. P(k,t).

For example, a call arrives in cell 2 at time t, where P ( k , t ) =  [2,5,9], 

F  = [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9]. Therefore, I (k , t)  =  [1,3,4,6 ,7 ,8] and A =  6 . Here, 

d =  4, therefore, the size of the solution vector is 4. The 6 solution vectors is 

G are thus: G1 = [2,5,9,1], G2 = [2,5,9,3], G3 -  [2,5,9,4], G4 =  [2,5 ,9 ,6], 

G5 =  [2,5,9,7] and G& — [2,5,9,8]. Out of the six, the fittest solution is 

selected as initial parent. This way of generating initial parent will reduce the 

number of channel reassignments and therefore yields a faster running time. 

The initial parent is also a potentially good solution since channels for ongoing 

were already optimized in the previous call arrival in k.
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3.3.3 M utation

An offspring is generated from a parent by randomly swapping values of the 

parent vector with the corresponding vector of free channels. The number of 

swaps lies between 1 and N  (inclusively). The parameter N  is the maximum 

number of swaps and takes the value of the length of the parent vector or the 

number of free channels, whichever is smaller. Given N,  we generate a random 

number 5  between 1 and N. The parameter 5  represents the actual number 

of swaps. For example, if the total number of available channels |F | =  10, 

k = 1, d, — 4 and the parent vector p =  [7,2,5,3], then the vector of eligible 

channels =  [1,4,6 , 8,9,10]. Here N  =  4, and if the number of swaps, 5  =  2, 

then one possible offspring is 0  = [7,4,5,10]. Since mutation does not affect 

the length of the parent vector and does not result in duplicate copy of any 

position, it always produces feasible solutions.

3.3.4 F itness Function

The CIR requirements of using any channel is taken taken by our fitness func­

tion. Our fitness function integrates power control with channel assignment as 

opposed to the one proposed in [73], thus providing a more robust fitness func­

tion. Our problem representation takes care of the traffic demand constraint. 

The soft constraints (limiting reassignment and packing condition) and the 

CIR requirements can be modeled as an energy function as shown in Equation 

3.10. The minimization of this function gives an optimal channel allocation.

j=1
(3.10)
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k : Cell where a call arrives

dk Number of channels allocated to cell k (traffic demand in cell k)

C  : Total number of cells in the system

14 : Solution Vector for cell k with dimension dk

Vkj j th element of vector 14

AiMkj ■ the element located at the ith row and V k /h column of the allocation matrix A

dist(i, k) : distance (normalized) between cell i and k

i n t e r : Function returns 1 if there is interference between cells i and k,  0 otherwise

cir(Vkj ) : Function returns value of 0 if p(F) of channel j  < — , and 1 otherwise
7o

The first term expresses the CIR requirements in terms of matrix F. The 

energy decreases if channel j  is in use in other cells and the pF  of F  for 

the cells is less than The function interv(Vkj returns 1 if p(F) of any j  

falls below A., 0 otherwise. The second term expresses the packing condition. 

The energy decreases if the if the j th element of vector 14 is also in use in 

cell i and cells i and k  are free from cochannel interference. The decrease in 

energy depends upon the distance between cells i and k  and inter f( i ,  k) — 0 

if p(F) of F  for the cells i and k is less than ^ ) .  The third term expresses the 

limiting reassignment. This term results in a decrease in the energy if the new 

assignment for the ongoing calls in the cell k is same as the previous allocation.

A i , W\ and W2 are positive constants that may vary by the designer and 

determine the significance of the respective terms. In our case A\ = 2.5, 

W\ =  1.5 and W2 =  1. Such energy function represents our fitness function in 

our proposed ES.
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3.4 HCA with DPC

When a new call arrives, the cellular system tries to assign the new call from 

the fixed channel pool. If there is a fixed channel available, the channel is 

assigned to the new call. Otherwise, it applies the ES algorithm to find a 

solution vector with minimum energy from the dynamic channel pool.

The vector includes all the suggested channels for ongoing calls and the new 

call. Our solution vector is carefully designed so that the best assignment of 

channels meet the p(F) < ^  criteria and imply that power eventually converge 

to the optimal while fulfilling the CIR requirements.

If the CIR of any of the busy allocated channel of the vector is below the 

desired level, it employs the distributed power control algorithm in Equation 

3.9 to adjust the power levels (increase or decrease) of each channel iteratively 

to meet the CIR requirements. The Equation 3.9 gives a step size for each 

channel towards meeting optimal power. We choose the number of iterations 

for power level adjustments as 10 here. If after 10 iterations, all the channels do 

not meet the CIR requirements, then 14 is rejected and a second best solution 

from our ES is taken as T4i and checked for CIR requirement in the same 

way as mentioned above. If any of the busy channels of the new vector I4i 

falls below the threshold, 14 is rejected, the calls that are being served are not 

reassigned and the incoming call is blocked. Unlike the proposed ES in [73], 

where the solution vector 14 is assigned to calls without considering the link 

quality, our solution makes sure the link quality is maintained. Also, in our 

solution free channel pool I  is larger than that of [73], and less number of calls 

are blocked (if first 14 fails, it adopts to the second best I4i) from ES, thus 

thus increasing the system capacity.

We set the initial power value as P(0) =  0.2. The initial power issue will 

be discussed in details in the next chapter.

If a call is in service, we also adopt the step size equation 3.9 to maintain
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its quality. Each base monitors its own served calls at some amount of time 

interval (assuming base stations are synchronized). When a call’s CIR remains 

below the target value for a predefined time, the power control procedure is 

requested. However, if the number of iterations of power level adjustments are 

larger than the allowed value, but the CIR is still below the threshold, the call 

is dropped.

The next section illustrates our ES approach. Staring from a random initial 

population P  of // candidate solutions, we create a set M  of A mutants by 

the process of mutation. The next [i parents are selected from the best in 

P  U M  and M  for our (ji  +  A)-ES and (//, A)-ES respectively. We also keep 

track of the fittest solution Global-best (14) and the second fittest solution 

GlobalJbest2 (I4i) and preserve them across generations. The inner while-loop 

tries to locally optimize the actual best solution in ? U M  and M  depending 

on the ES used in order to escape from a local optimum trap. The Global-best 

solution is update only when its fitness is worse than the fitness of the local 

best solution found in the current population P l l M  and M  respectively. We 

have omitted the destabilization part used in the ES algorithm in [73] since it 

was shown that excluding the destabilization does not affect the performance 

of the algorithm, however, reduces the computational time. In our algorithm, 

the total number of generations created is 1000 and the total number of local 

optimizations in each generation is 10. At the end of the algorithm, the fittest 

individual 14 along with the second fittest individual I4i from the best given 

generation is returned by the algorithm. T4i is chosen from the second best 

generation if the second generation’s fittest individual outperforms the best 

generation’s second fittest individual. The suggested solution vector is used 

for optimizing channels in a way that would maximize the channel allocation, 

meet the desired CIR threshold and the transmitter powers would eventually 

converge to the optimal.

The ES algorithm is given in the next section.
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3.5 ES algorithm

Algorithm 1 (fi, A)-ES 
Given traffic demand dk of cell k 
Generate set G of A individuals
Generate an initial random population P  =  {Pi, P2, • • • , PM} from G 
Evaluate(P)
GlobalJbest <— best in P  
repeat

M  = {M\, M2 , ■■■ , M\} <— Mutate(GlobaLbest)
Evaluate (M)
Local-best <— best in M  
i< - 0
while /  (Local-best) < f  (Global-best) and % < 10 do 

C <— Mutate(LocaLbest)
B <— Mutate(Global-best)
Local-best best in {C, B, Local-best} 
i i + 1 

end while
if f(LocalJbest) > / (Global-best) then  

Global-best <— Local-best 
end if
P  =  {Pi, P2, • • • ,PjX} best in M  U {Local-best, Global-best} 

until Stopping Criteria 
Return Global-best, 14
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Algorithm 2 (n +  A)-ES
Given traffic demand dk of cell k 
Generate set G of A individuals
Generate an initial random population P  = {P\, P2, • • • , P^} from G 
Evaluate(P)
Global .best <— best in P  
repeat

M  = {Mi, M2 , ■ ■ ■ , M\ } <— Mutate(P)
Evaluate (P U M)
Local-best <— best i n P U M  
*«-0
while / (Local-best) < /(Global-best) and i < 10 do 

C <— Mutate(LocalJbest)
B Mutate(GlobalJbest)
Local-best <— best in {C, B, Local-best} 
i <— i +  1 

end while
if f  (Local-best) > /(Global-best) then  

Global-best <— Local-best 
end if
P  =  {Pi,P2, • • • ,P/i} best i n P U M U {Local-best,GlobalJbest} 

until Stopping Criteria 
Return Global-best, 14
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Chapter 4 

Experiments and Discussion

The network simulation was implemented in Java programming language us­

ing Eclipse IDE. In the literature, several criteria are used to evaluate the 

performance of a channel allocation scheme: new call blocking probability, call 

dropping probability, bandwidth utilization, message complexity, and chan­

nel acquisition delay. Bandwidth utilization refers to the percentage of sys­

tem bandwidth capacity used for transmitting useful user packets. Message 

complexity is defined as the number of messages exchanged for each chan­

nel acquisition/ release. The channel acquisition delay refers to the average 

time required for a cell to acquire a channel. In this thesis the performance 

of the proposed channel assignment algorithm at a particular traffic load was 

assessed by measuring the new call blocking probability Pn, and the ongoing 

call dropping probability Pm. The parameter Pn is given by

number of new calls blocked in the system . .
n number of new call arrivals to that system

The parameter Pm is given by

_  number of ongoing calls dropped from the system . .
n number of calls admitted to that system

Blocking probability is the ratio between the new calls blocked and the
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total number of call arrivals in the system and dropping probability is the ratio 

between the ongoing calls dropped and the total number of calls admitted in 

the system. The following sections describe the cellular model assumption, 

traffic model used in the simulation, and discusses the experimental results 

obtained from the simulations.

4.1 Cellular Network M odel Assum ption

In this thesis, ES is applied to the mobile cellular model proposed in [58] and 

also used in [73]. The power control model assumptions were proposed in [6]. 

The basic characteristics of the model and some facts are as follows:

1. The topological model is a group of hexagonal cells that form a parallel­

ogram shape (equal number of cells along x-axis and y-axis) as shown in 

the figure 4.1 ([73]).The wireless network used for simulation consists of 

49 cells.

Figure 4.1: Cellular Model Assumption

2. A total of 70 channels are available to the whole network. Each channel
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may serve only one call (i.e. multiplexing techniques are ignored). In 

FCA, the available channels are distributed among the cells. In DCA, all 

channels are put in central pool. A channel is assigned to an incoming 

call by a central controller that supervises the whole cellular network.

3. Incoming calls at each cell may be served by any of the system channels.

4. The selection of a channel is subject to meeting the CIR requirements 

based on cochannel interference. Other sources of interference are ig­

nored.

5. The basic object of the network model is the link, hence, by ’’distributed” 

power control we refer to per individual link.

6. Each base station’s transmitters update their power to meet the desired 

CIR threshold using the step up power Equation 3.9. At each iteration, 

transmitters update their powers based on the interference measured at 

the receivers and the current transmitter power.

7. When a call arrives in a cell, first the fixed channel pool for that particular 

cell is checked. If there are channels available, the channel is assigned to 

the call with appropriate transmission power. Otherwise, ES is applied in 

the entire cell to find suitable channels for existing calls (reassignment) 

and for the new call (new allocation). If for any busy channel, CIR 

goes below the desired threshold, step size equation 3.9 is used for power 

adjustments to achieve the desired threshold. The number of iterations 

for equation 3.9 is set to 10 in our model. A new call is blocked only if 

after attempting two suggested solutions, the CIR of any busy channel 

is still below the desired level.

8. Existing calls in a cell involved in a new call arrival may be rearranged.
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9. If a call is in service, step size equation 3.9 is used to maintain its quality. 

Each base monitors its own served calls at some amount of time interval 

(assuming base stations are synchronized). When a call’s CIR falls be­

low the target value for a predefined time, the power control procedure 

is requested. However, if the number of iterations of power level adjust­

ments are larger than the allowed value, but the CIR is still below the 

threshold, the call is dropped from the system.

With these model assumptions, we are able to compare our results with those 

obtained by [73].

4.2 Im plem entation Details

The following sections describe how various parameters used in the simulation 

are obtained.

4.2.1 D eterm ination  o f A llocation M atrix A

The allocation matrix A  is dynamic. It is updated every time a call is successful 

and a call is released. As such allocation matrix A  maintains the channel usage 

information in the network and acts as the central pool of all available channels. 

At the start of the simulation, A  is initialized with zero.

4.2.2 D eterm ination  o f the cross-link gain M atrix F

We assume that the link gains due to user mobility stay constant for the du­

ration of the convergence of the algorithm. Therefore, it is implicitly assumed 

that the fading rate of the channel is much slower than the power update date.

We assume that all link gains are affected by shadow fading. The average 

signal power is assumed to decrease with the fourth power of the distance. The 

interference or attenuation factors Gy are given by:
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Where, dy is the distance between the ith mobile and the j th base station. The 

cross-link power gain matrix Fy contains entries 0 if j  = i and ^  > o if j  ^  i. 

The Distance matrix D  contains entries dy.

4.2.3 D eterm ination  o f distance betw een two cells % and

K

Distance =6 cell units

Figure 4.2: Distance between two cells

The distance between two cells is the M anhattan distance. The distance 

between any two cells is the minimum number of steps needed to move from 

the center of one cell to the center of the other. A step is the distance between 

the centers of two adjacent cells, and is also considered the unit distance, that 

is it has value of 1. For example, if i =  0 and k — 12. The minimum number 

of steps required to go from cell i to cell k is 4 as shown in figure 4.2.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3 Traffic M odel
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Figure 4.3: Non Uniform traffic distribution pattern 1 with initial Poisson 
arrival rates (Calls/hour)

In the model, we assume the traffic model to follow the blocked-calls-cleared 

queuing discipline. An incoming call is served immediately if a channel is 

available, otherwise the call is blocked and there is no queuing of blocked calls. 

The most fundamental characteristics of this model include: infinite number 

of users, finite number of available channels, memory-less arrival of requests, 

call arrival follows a Poisson process with mean arrival rate of A (calls /hour), 

and call duration is exponentially distribution with mean x. Inter-arrival time 

follow a negative exponential distribution with mean x. The product of the 

mean arrival rate and the mean call duration gives the traffic load offered to the 

cellular network. The traffic in the cellular network may either follow uniform 

or non uniform distribution. In uniform traffic distribution, every cell has the 

same traffic load. In non uniform traffic distribution, every cell has a different 

call arrival rate. Non uniform traffic distribution is realistic.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.4: Non Uniform traffic distribution pattern 2 with initial Poisson 
arrival rates (Calls/hour)

The assumptions and parameters used in simulation include:

• For non uniform traffic distribution, we consider the traffic patterns pro­

posed in [73] shown in Figures 4.3 and 4.4. The figures inside the cell 

represent the mean call arrival rate per hour.

• call holding time is 180 seconds.

With these simulation hypothesis we were able to compare our results with 

those obtained in [73].

4.4 Initial Power Issue (Link Admission)

The choice of initial vector P0 is not very critical, since many researchers have

shown that P* is the only positive eigenvector of F  and almost any positive

start vector will be reasonably close to P* [79]. In our case we set the value

for P0 as 0.2. One important issue discussed in [6] is that when a new link
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suddenly powers up to P0 it may strongly interfere with already active links to 

cause their CIR go below y0 temporarily. The problem here is the sudden and 

uncoordinated appearance of the new user which is unknown to the existing 

ones. To avoid this scenario, in our case, the active links keep updating their 

power. Further improvements in this area for power protection between new 

links and already active ones is a subject of our future research.

4.5 Simulation

In HCA, the total set of available channels are divided into two sets, fixed and 

dynamic. A call arrives in a randomly selected cell and the cellular system 

makes a attem pt to serve it from the fixed channel set. When all channels in 

the fixed set are busy, ES is applied to find a suitable combination of channels 

and power control procedure is called to maintain the CIR requirements by 

adjusting the power levels of the transmitters. In the simulation, the following 

representative ratios were used (also used in [73]):

• 21 : 49 (21 channels from fixed set and 49 channels from dynamic set)

• 35 : 35 (35 channels from fixed set and 35 channels from dynamic set)

• 49 : 21 (49 channels from fixed set and 21 channels from dynamic set)

Results were obtained by increasing the traffic rates for all the cells by 20%

with respect to the initial rates of the same cell. The performance of the pro­

posed ES based Channel assignment and distributed power control algorithm 

has been derived in terms of blocking probability for new incoming calls and 

dropping probability of ongoing calls. We also evaluated the speed of call 

setup where we simulated how many allocated channels (allocated new calls) 

are from the first suggested solution vector and from the second solution vec­

tor. We call the solution vectors as priority channel list 1 and 2. The values

of positive constants considered are = 2.5, W\ =  1.5, and =  5. The
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initial transmitter power is set to P(0) =  0.2, the desired CIR threshold is 

7o =  10 and noise power r]i = - ^  for all receivers. We tried different values 

for weights and these weights provided the best result. In our simulation, in 

case |/ | =  1, the initial population contains only one parent and this parent is 

directly chosen as the initial parent. When \I\ > 2, the maximum number of 

initial parents // that can be selected from I  is two. Considering the process­

ing time, ii is set to 1, lambda is set to 10 and L  (no of power adjustments) 

is set to 10. We have compared our results (graphs are based on average of 

10 runs with Standard Deviations) with that of [73] in terms of call blocking 

probability for both Pattern 1 and 2 which are given in Figures 4.5, 4.6, 4.7, 

4.8 and 4.9. Our results show better performance with increasing traffic load 

for new call blocking probability compared to [73] for pattern 1 with 21:49, 

35:35 and 49:21 and for pattern 2 with 21:49, 35:35 and 49:21. Results show 

better performance for all the representation ratios for traffic pattern 1.

Figure 4.10, 4.11 and 4.12 show the performance of our algorithm using 

different n and A values for traffic pattern 1 for the representative ratios 21:49, 

35:35 and 49:21. From the results, it is evident that the ES is insensitive to 

the values of ji and A.

Figure 4.13 shows the call dropping probability for our (/i, A)-ES for traffic 

pattern 1 with the representative ratios 21:49, 35:35 and 49:21. Figure 4.14 

and 4.15 show the blocking and dropping probability using different values of 

L (10,20,40) for traffic pattern 1 for FCA 21 and DCA 49.

Figure 4.16 shows the performance of our (/x. A)-ES and (/x+A)-ES in terms 

of call blocking probability for representative ratio 21:49 with nonuniform traf­

fic distribution according to pattern 1. (/x+A)-ES performs slightly better than 

(/x, A)-ES in our simulation.

Figure 4.17 shows the speed of call setup. We simulated how many allocated 

channels are from suggest channel vector V*, (Priority Channel List 1) and from 

the second suggest channel vector V^i (Priority Channel List 2). The figure
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Figure 4.5: Performance of proposed (//, A)-ES (HCA-DPC) in terms of block­
ing probability compared to the HCA proposed in [73] with FCA 21 and DCA 
49, /i =  1, A =  10, L — 10 (Pattern 1)

shows the percentage of the allocated channels in the location of the priority 

channel list with different traffic loads. We can see that more than 94% of 

the allocated channels are from 14- That means more than 94% of allocated 

channels have undergone the set-up probing with the first solution vector after 

those channels are found to satisfy the CIR requirement.

Figure 4.18, 4.19 and 4.20 are the flow charts for the implementation of the 

call arrival, call release and call maintenance (power update to maintain CIR 

requirement of active channels) events for our proposed scheme.
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Figure 4.6: Performance of proposed (p, A)-ES (HCA-DPC) in terms of block­
ing probability compared to the HCA proposed in [73] with FCA 35 and DCA 
35,/r =  1, A =  10, L = 10 (Pattern 1)

Table 4.1: Characteristics of 21:49 HCA-DPC
Maximum number of generations 20
Average number of generations 11
Minimum number of generations 7

Table 4.2: Characteristics of 35:35 HCA-DPC
Maximum number of generations 17
Average number of generations 10
Minimum number of generations 5

Tables 4.1 to 4.4 summarizes the characteristics of the ES based channel 

assignment and distributed power control algorithm.
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Figure 4.7: Performance of proposed (/i, A)-ES (HCA-DPC) in terms of block­
ing probability compared to the HCA proposed in [73] with FCA 49 and DCA 
21, — 1, A =  10, L  =  10 (Pattern 1)

Table 4.3: Characteristics of 49:21 HCA-DPC
Maximum number of generations 16
Average number of generations 11
Minimum number of generations 6

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.25

Percentage Increase in Traffic Load 
Traffic Pattern 1

Figure 4.8: Performance of proposed (n, A)-ES (HCA-DPC) in terms of block­
ing probability compared to the HCA proposed in [73] for the entire cellular 
network with non-uniform traffic distribution according to pattern 1
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Figure 4.9: Performance of proposed (//, A)-ES (HCA-DPC) in terms of block­
ing probability compared to the HCA proposed in [73] for the entire cellular 
network with non-uniform traffic distribution according to pattern 2
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Figure 4.10: Performance of proposed (//, A)-ES (HCA-DPC) in terms of block­
ing probability for different values of fj, and A with nonuniform traffic distri­
bution according to Pattern 1 for FCA 21 and DCA 49
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Figure 4.11: Performance of proposed (ji, A)-ES (HCA-DPC) in terms of block­
ing probability for different values of fj, and A with nonuniform traffic distri­
bution according to Pattern 1 for FCA 35 and DCA 35
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Figure 4.12: Performance of proposed (/x, A)-ES (HCA-DPC) in terms of block­
ing probability for different values of n  and A with nonuniform traffic distri­
bution according to Pattern 1 for FCA 49 and DCA 21
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Figure 4.13: Performance of proposed (//, A)-ES (HCA-DPC) in terms of drop­
ping probability for the entire network with nonuniform traffic distribution 
according to Pattern 1
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Figure 4.14: Performance of proposed (/z, A)-ES (HCA-DPC) in terms of block­
ing probability using different values of L with nonuniform traffic distribution 
according to Pattern 1 for FCA 21 and DCA 49
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Figure 4.15: Performance of proposed (//, A)-ES (HCA-DPC) in terms of block­
ing probability using different values of L with nonuniform traffic distribution 
according to Pattern 1 for FCA 21 and DCA 49
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Figure 4.16: Performance of proposed (//, A)-ES (HCA-DPC) and (/i, A)-ES 
(HCA-DPC) in terms of call blocking probability with nonuniform traffic dis­
tribution according to Pattern 1 for FCA 21 and DCA 49
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Figure 4.17: Performance of proposed (yt, A)-ES (HCA-DPC) and (//, A)-ES 
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Figure 4.18: Simulation of Call Arrival Event
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Figure 4.19: Simulation of Call Release Event
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75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Conclusion and Future 

Direction

Dynamic Channel assignment is an important resource allocation problem in 

wireless mobile communication. It can maximize the assignment of channels 

but assigning a channel to a new call might result in call drop of on-going 

calls or call-block of new calls. The power control can suppress the adjacent 

channel interference (for non-orthogonal channels), the cochannel interference 

(for orthogonal channels), and minimize power consumption to extend terminal 

battery life. Undoubtedly, the power control can raise the network capacity 

and the channel assignment is highly correlative with power control.

We proposed an HCA strategy combined with distributed power control 

DPC using Evolution Strategy which showed significant improvement in call 

blocking probability in compared to [73], provided desired signal quality and 

minimized the power consumption. We used ES based algorithm to perform 

channel allocation which has the advantage of producing reliable solutions in a 

smaller number of generation as compared to other heuristics such as Genetic 

algorithm. This is because at each generation only one parent produces all the 

feasible solutions [61].

The greatest advantage of using heuristics is its capability to handle both
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reassignment of existing calls and allocation of new ones as a unified process

[61]. The proposed algorithm uses an integer representation to represent the 

solution vector. The chosen representation and the mutation operator guar­

antees the feasibility of the solution. Our proposed algorithm also uses an 

efficient step size equation towards the optimal power utilization and main­

taining the desired signal level. Our threshold based implicit admission con­

trol scheme only admits a new call if it can achieve the desired CIR threshold. 

Even though our real time simulations of the mobile communication system 

performed better the computation time was a bit slower than [73].

Further research need to be done on the proposed scheme to consider user 

mobility, provide some protection margin cushioning the already active links. 

Some predictive power control approach can also be considered to provide 

predictive measurements of both channel gains and interference levels to to be 

used to update the power levels. Finally, an admission control mechanism can 

be considered to adjust the tradeoff between blocking new calls and dropping 

active calls.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] J. M. Aien, “Power Balancing In Systems Employing Frequency Reuse” , 

COMSAT Technology Review, vol. 3, no. 2, 1973.

[2] H. Axen, “Uplink C /I as Control Parameter for Mobile Station Power 

Control,” Ericsson Radio Systems, Int. Rep., BT/ST 90:2377, 1990.

[3] R. W. Nettleton and H. Alavi, “Power Control for Spread-Spectrum Cel­

lular Mobile Radio System,"IEEE Veh. Tech. Con}., VTC-83, 1983, pp. 

242-246.

[4] H. R. Anderson and J. P. Mcgeehan, “Optimizing Microcell Base Sta­

tion Locations using Simulated Annealing Techniqes,” IEEE 44th Veh. 

Technol. Con}., Vol.2, pp. 858-862, 1994.

[5] T. Back, Evolutionary Algorithms in Theory and Practice, Oxford, U.K: 

Oxford Univ. Press, 1996.

[6] N. Bambos and G.J. Pottie, “Channel Access Algorithms With Active 

Link Protection for Wireless Communication Networks With Power con­

trol” , IEEE/AC M  Transactions On Networking,vol.8,no.5, pp.583-597, 

October, 2000.

[7] D. Beckmann and U. Killat, “A New Strategy for the Application of 

Genetic Algorithms to the Channel Assignment Problem,” IEEE Trans. 

Veh. Technol., Vol. 48, pp. 1261-1269, 1999.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[8] P. Calegari, H. Guidec, P. Kuonen, and D. Wagner, “Genetic Approach to 

Radio Network Optimization For Mobile Systems,” IEEE Veh. Technol. 

Conf., Vol. 2 , pp. 755-759, 1997.

[9] D. J. Castelino, S. Hurley and N. M. Stephens, “A Tabu Search Algorithm 

for Frequency Assignment,” Ann. Oper. Res., Vol. 63, pp. 301-319, 1996.

[10] G. Chakraborty and B. Chakraborty, “A Genetic Algorithm Approach To 

Solve Channel Assignment Problem In Cellular Radio Networks,” Proc. 

IEEE Workshop on Soft Computing Methods in Industrial Applications, 

FINLAND pp.34-39, 1999.

[11] K. Chang, J. Kim, C. Yim and S. Kim. “An Efficient Borrowing Channel 

Assignment Scheme for Cellular Mobile Systems,” IEEE Trans, on Veh. 

Technology, Vol.47, pp.602-608, 1998.

[12] P.T.H Chen, M. Palaniswami, and D. Everitt, “Neural Network-Based 

Dynamic Channel Assignment For Cellular Mobile Communication Sys­

tems,” IEEE Transaction On Vehicular Technology, vol.43, no.2, pp.279- 

288, 1994.

[13] J.C.-I. Chuang, “Performance Issues And Algorithms For Dynamic Chan­

nel Assignment,” IEEE Journal on Selected Areas in communications, 

vol.ll, no.6, pp.955-963, 1993.

[14] J. C. -I. Chuang and N. R. Sollenberger, “Performance of Autonomous Dy­

namic Channel Assignment and Power Control for TDMA/FDMA Wire­

less Access,” IEEE J. Select. Areas Commun., Vol. 12, pp.1314-1323, Oct.

1994.

[15] D. C. Cox and D. O. Reudink, “Increasing Channel Occupancy In Large 

Scale Mobile Radio Systems: Dynamic Channel Reassignment” , IEEE  

Transanctions on Vehicular Technology, vol.VT-22, pp.218-222, 1973.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[16] M. Cuppini, “A genetic Algorithm for Channel Assignment Problem,” 

European Trans. Teleco. Rel. Techn., Vol. 5, pp. 285-294, 1994.

[17] D.D.D. Dimitrijevic and J. Vucetic, “Design And Performance Analysis 

Of The Algorithms For Channel allocation In Cellular Networks,” IEEE 

Transactions on Vehicular Technology, vol. 42, pp. 526-534, 1993.

[18] R. Dome and J. K. Hao, “Constraint Handling in Evolutionary Search: A 

Case Study of the Frequency Assignment,” Problem Solving from Nature- 

PPSN IV, H. M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, 

Eds. Berlin, Germany: Springer, pp. 801-811, 1996.

[19] M. Duque-Ant on and D. Kunz, “Channel Assignment Based on Neu­

ral Networks Algorithms,” in Proc. DMR IV, Oslo, Norway, June 26-28, 

pp.5.4.1-5.4.9, 1990.

[20] M. Duque-Anton, D. Kunz and B. Ruber, “Channel Assignment for Cel­

lular Radio using Simulated Annealing,” IEEE Trans, on Vehicular Tech­

nol., Vol. 42, pp. 14-21, Feb. 1993.

[21] G. J. Foschini and Z. Miljanic, “Distributed Autonomous Wireless Chan­

nel Assignment with Power Control,” IEEE Trans, on Veh. Technol, 

Vol.44, pp.420-429, Aug. 1995.

[22] L.J. Fogel, “An Introduction To Simulated Evolutionary Optimiza­

tion,” IEEE Transactions On Neural Networks, vol.5, no.l, pp.3-14,1994.

[23] G. J. Foschini and Z. Miljanic, “A Simple Distributed Autonomous Power 

Control Algorithm and its Convergence,” IEEE Trans, on Veh. Technol., 

Vol.42, pp.641-646, Nov. 1993.

[24] G. J. Foschini and Z. Miljanic, “Distributed Autonomous Wireless Chan­

nel Assignment Algorithm with Power Control,” IEEE Trans, on Veh.

Technology, Vol.44, No.3, Aug. 1995.
80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[25] N. Funabiki and Y. Takefuji, “A neural Network Parallel Algorithm for 

Channel Assignment problems in Cellular Radio Networks,” IEEE Trans, 

on Vehicular Technol, Vol. 41, pp. 430-437, Nov. 1992.

[26] Y. Furuya and Y. Akaiva, “Channel segregation: a distributed adaptive 

channel allocation scheme for mobile communication systems,” DMR II, 

Stockholm, pp. 311-315, 1987.

[27] A. Gamst and W. Rave, “On Frequency Assignment in Mobile Automatic 

Telephone Systems,” in Proc. GLOBCOM, pp.309-315, 1982.

[28] S. Grandhi, R. Vijayan, D. Goodman and J. Zander, “Centralized Power 

Control in Cellular Radio Systems,” IEEE Trans, on Veh. Technology, 

Vol.42, No.4, pp.466-468.

[29] S. A. Grandhi, R. Vijayan and D. J. Goodman, “Distributed Power Con­

trol in Cellular Radio Systems,” IEEE Trans. Commun., Vol.42, pp.226- 

228, Feb./Apr. 1994.

[30] F. Gunnarsson, “Power Control in Cellular Radio Systems: Analysis, De­

sign and Estimation,” Ph.D. Dissertation, Dept. Elect. Eng., Linkoping 

Univ., Linkoping, Sweden, 2000.

[31] A. Hac and C. Mo, “Dynamic Channel Assignment in Wireless Communi­

cation Networks,” International Journal of Network Management, Vol.9, 

pp.44-66, 1999.

[32] J. K. Han, B. S. Park, Y. S. Choi and H. K. Park, “Genetic Approach 

with a new Representation for Base Station Placement in Mobile Com­

munications,” IEEE Veh. Technol. Cenf, VTC, Vol. 4, pp. 2703-2707, 

2001 .

[33] W. K. Hale, “Frequency Assignment: Theory and Practice,” IEE, Vol. 

68, No. 12, pp. 1497-1514, 1980.
81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[34] S.V. Hanly, “An Algorithm For Combined Cell-Site Selection And Power 

Control To Maximize Cellular Spread Spectrum Capacity,” IEEE Journal 

on Selected Areas in Communications, vol. 13, no.7, pp. 1332-1340.

[35] S. Hurley, “Planning Effective Cellular Mobile Radio Networks,” IEEE  

Trans, on Veh. Technol., Vol. 51, No. 2, pp. 254-253, 2002.

[36] K. Ishii and S. Yoshida, “Dynamic Channel Allocation Algorithm with 

Transmitter Power Control,” IEEE JJth Vehicular Technology confer­

ence, vol.2, pp. 838-842, 1994. bibitemJaimes96 F. J. Jaimes-Romero, D. 

Munoz-Rodriguez and S. Tekiney, “Channel Assignment in Cellular Sys­

tems using Genetic Algorithms,” IEEE 46th Veh. Technol. Conf, Vol.2, 

pp. 741-745, 1996.

[37] Jianping Jiang, Ten-Hwang Lai,and N. Soundarajan, “On Distributed Dy­

namic Channel Allocation In Mobile Cellular Networks ,” IEEE Transac­

tions on Parallel and Distributed Systems, vol. 13 , no. 10, pp. 1024-1037, 

Oct. 2002.

[38] R. V. Jones, “History of Mobile Communications,” Retrieved Aug. 06 

from.

[39] I. Katzela and M. Naghshineh, “Channel Assignment Schemes for Cellular 

Mobile Telecommunication Systems: A Comprehensive Survey,” IEEE  

Personal Coomunications Magazine, Vol. 3, No. 3, pp. 10-31, 1996.

[40] B. Krishnamachari and S. B. Wicker, “Global Search Techniques for Prob­

lems in Mobile Communications,” Telecomm. Optimization: Adaptive and 

Heuristic Approaches, Eds. David Corne et al., John Wiley & Sons Pub­

lishers, 2000.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[41] D. Kunz, “Channel Assignment for Cellular Radio using Neural Net­

works,” IEEE Trans, on Vehicular Technol, Vol. 40, pp. 188-193, Feb.

1991.

[42] D. Kunz, “Suboptimum Solutions Obtained By The Hopfield-Tank Neural 

Network Algorithm.” , Biol. Cvbem., vol. 65, pp. 129-133, 1991.

[43] K. Lai and G. G. Coghill, “Channel Assignment through Evolutionary 

Optimization,” IEEE Trans, on Vehicular Technol., Vol. 45, pp. 91-96, 

Feb. 1996.

[44] C. Y. Lee, H. G. Kang, “Cell Planning with Capacity Expansion in Mobile 

Communications: A Tabu Search,” IEEE Trans, on Veh. Technol, Vol. 

49, No. 5, pp. 1678-1691, 2000.

[45] Lozano and D. C. Cox, “Integrated Dynamic Channel Assignment and 

Power Control in TDM A Mobile Wireless Communication Systems,” 

IEEE J. Select. Areas Commun., Vol. 17, pp.2031-2040, Nov. 1999.

[46] V.H. MacDonald, “The cellular concepts,” The Bell System Technical 

Journal, vol.58, pp. 15-42, 1979.

[47] V.H. MacDonald, “The cellular concepts” , The Bell System Technical 

Journal, vol.44, pp.547-588,1965.

[48] R. Mathar and J. Mattfeldt, “Channel Assignment In Cellular Radio Net­

works” , IEEE Transactions on vehicular Technology, vol.42, no.4, pp.647- 

656, 1993.

[49] S. Ni, “Distributed Channel Allocation Algorithm with Power Control,” 

IEEE Int. Symposium on Personal, Indoor and Mobile Radio Communi­

cations, Helsinki, Finland, pp. 406-410, Sept. 1997.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[50] C.Y. Ngo and V.O.K. Li, “Fixed Channel Assignment In Cellular Radio 

Networks Using A Modified Genetic Algorithm” , IEEE Transactions On 

Vehicular Technology, vol.47, no.l, pp.163-172, 1998.

[51] V. A. Nissen, “A new Efficient Evolutionary Algorithm for the Quadratic 

Assignment Problem,” Operations Research Proc. Papers 21st Annual 

Meeting of DGOR in Co-operation with OGOR, pp. 259-267, 1993.

[52] V. A. Nissen, “Solving the Quadratic Assignment Problem with Clues 

from Nature,” IEEE Trans, on Neural Networks, Vol. 5, pp. 66-72, 1994.

[53] R.W. Nettleton and G.R. Schloemer, “A high capacity assignment method 

for cellular mobile telephone systems” , Proc of IEEE 39th Vehicular Tech­

nology conf, pp. 359-367, 1989.

[54] A. Ngom, “Parallel Evolution Strategy on Grids for the Protein Threading 

Problem,” Preprint submitted to aelsevier Science, June, 2006.

[55] S. Papavassiliou and L. Tassiulas, “Improving the capacity in wireless 

networks through integrated channel base station and power Assignment” , 

IEEE Transactions on Vehicular Technology, vol.47, no.2, pp.417-427, 

1998.

[56] T.S. Rappaport, Wireless Communications: Principles and Practices, 

Prentice Hall, Englewood Cliff, NJ, 1996.

[57] F. Rashid-Farrokhi, L. Tassiulas, and K. J. Ray Liu, “Joint Optimal Power 

Control and Beamforming in Wireless Networks Using Antenna Arrays” , 

IEEE Transactions on Communications, vol.46, no. 10, October 1998.

[58] E. D. Re, R. Fantacci, and L. Ronga, “A Dynamic Channel Allocation 

Technique based on Hopfield Neural Networks,” IEEE Trans. Vehicular 

Tech., Vol. 45, pp. 26-32, Feb. 1996.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[59] I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme 

nach Prinzipien der Biologischen Evolution, Stuttgart: Frommann- 

Holzboog Verlag, 1973.

[60] Z. Rosberg and J. Zander, “Toward a Framework for Power Control in 

Cellular Systems,” Wireless Networks 4, PP- 215-222, 1998.

[61] H.G. Sandalidis, P. Stavroulakis, and J. Rodriguez-Tellez, “An Efficient 

Evolutionary Algorithm for Channel Resource Management in Cellu­

lar Mobile Systems” , IEEE Transactions On Evolutionary Computation, 

vol.2, no.4, pp. 125-137, 1998.

[62] H.G. Sandalidis, P. Stavroulakis, and J. Rodriguez-Tellez, “ Application 

Of Genetic Algorithm Approach To A Cellular Dynamic Channel Allo­

cation” , IMACS Symposium On Soft Computing In Engineering Applica­

tions, Athens, 1998.

[63] K. Shoarinejad, J. L. Speyer and G. J. Pottie, “Integrated Predictive 

Power Control and Dynamic Channel Assignment in Mobile Radio Sys­

tems,” IEEE Trans, on Wireless Comm., Vol.2, No.5, Sep. 2003.

[64] K. N. Sivarajan, R. J. Mceliece and J. W. Ketchum, “Channel Assignment 

in Cellular Radio,” IEEE Veh. Technol. Conf., VTC’89, Vol.2, pp. 846- 

850, 1989.

[65] K.N. Sivarajan,R.J. McEliece,and Ketchum, “Dynamic Channel Assign­

ment In Cellular Radio” , IEEE 40th Vehicular Technology Conference, 

pp.631-637, 1990.

[66] K. A. Smith, “A Genetic Algorithm for the Channel Assignment Prob­

lem,” Global Telecomm. Conf, GLOBECOM, Vol.4, pp. 2013-2018, 1998.

[67] C. Smith, 3G Wireless Networks, Mcgraw-Hill Professional, 2001.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[68] H.P. Schwefel, Numerical optimization of computer models. Wiley, 1981.

[69] Satinder Singh and Dimitri Bertsekas, “ Reinforcement Learning for Dy­

namic Channel Allocation in Cellular Telephone Systems” , Advances in 

Neural Information Processing Systems, 1997.

[70] A. Thavarajah and W. H. Lam, “Heuristic Approach for Optimal Channel 

Assignment in Cellular Mobile Systems,” IEE Proc. on Communications, 

Vol. 146, No.3, pp. 196-200, 1999.

[71] G. Vidyarthi, “Integrated Channel Assignment and Power Control in 

Wireless Mobile Networks using Evolutionary Strategy,” MSc. The­

sis,University of Windsor, 2003.

[72] R. Verdone and A. Zanella, “On the optimization of Fully Distributed 

Power Control Techniques in Cellular Radio Systems,” IEEE Trans, on 

Veh. Technol, Vol.49, pp. 1440-1448, Jul. 2000.

[73] G. Vidyarthi, A. Ngom and S. Stojmenovic, “A Hybrid Channel Assign­

ment Approach using an Efficient Evolutionary Strategy in Wireless Mo­

bile Networks,” IEEE Trans, on Vehicular Tech., Vol. 54, pp. 1887-1895, 

Sept. 2005.

[74] R. D. Yates, “A Framework for Uplink Power Control in Cellular Radio 

Systems,” IEEE J. Select. Areas Commun., Vol. 13, pp. 1341-1347, Sep.

1995.

[75] R.D. Yates, and Ching-Yao Huang, “Integrated Power Control And Base 

Station Assignment” , IEEE Transactions on Vehicular Technology, vol.44, 

no.3, pp.638-644, 1995.

[76] A. Yener and A. Rose, “Genetic Algorithm Applied to Cellular Call Ad­

mission: Local Policies,” IEEE Trans, on Veh. Technol, Vol.46, No.l, 

pp. 72-79, 1995.
86

with permission of the copyright owner. Further reproduction prohibited without permission.



[77] J. Zander, “Optimum Global Transmitter Power Control in Cellular Ra­

dio Systems,” IEEE Int. Symp. on Personal, Indoor and Mobile Radio 

Commun., London, U.K., Sept. 1991.

[78] J. Zander, “Performance of Optimum Transmitter Power Control in Cel­

lular Radio Systems,” IEEE Trans. Veh. Technol., Vol 41, pp. 57-62, Feb.

1992.

[79] J. Zander, “Distributed Cochannel Interference Control in Cellular Radio 

Systems,” IEEE Trans. Veh. Technol., Vol. 41, No. 3, Aug. 1992.

[80] M. Zhang, and T. S. Yum, “The Nonuniform Compact Pattern Allocation 

Algorithm For Cellular Mobile Systems” , IEEE Transactions on Vehicular 

Technology, vol.40, no.2, pp.387-391, 1991.

[81] M. Zhang, and T. S. Yum, “Comparisons Of Channel Assignment Strate­

gies In Cellular Mobile Telephone Systems” , IEEE Transactions on Ve­

hicular Technology, vol.38, no.4, pp.211-215, 1989.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

NAME Tahira Farid

COUNTRY OF BIRTH Bangladesh 

YEAR OF BIRTH 1982

EDUCATION BSc. Computer Science(Honours)

University of Windsor, Ontario, Canada 

2001 - 2004

MSc. Computer Science

University of Windsor, Ontario, Canada

2004 - 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Integrated hybrid channel assignment and distributed power control in wireless mobile networks using evolution strategy.
	Recommended Citation

	tmp.1507664919.pdf.TU2g8

