2,414 research outputs found

    Tracking Human Behavioural Consistency by Analysing Periodicity of Household Water Consumption

    Get PDF
    People are living longer than ever due to advances in healthcare, and this has prompted many healthcare providers to look towards remote patient care as a means to meet the needs of the future. It is now a priority to enable people to reside in their own homes rather than in overburdened facilities whenever possible. The increasing maturity of IoT technologies and the falling costs of connected sensors has made the deployment of remote healthcare at scale an increasingly attractive prospect. In this work we demonstrate that we can measure the consistency and regularity of the behaviour of a household using sensor readings generated from interaction with the home environment. We show that we can track changes in this behaviour regularity longitudinally and detect changes that may be related to significant life events or trends that may be medically significant. We achieve this using periodicity analysis on water usage readings sampled from the main household water meter every 15 minutes for over 8 months. We utilise an IoT Application Enablement Platform in conjunction with low cost LoRa-enabled sensors and a Low Power Wide Area Network in order to validate a data collection methodology that could be deployed at large scale in future. We envision the statistical methods described here being applied to data streams from the homes of elderly and at-risk groups, both as a means of early illness detection and for monitoring the well-being of those with known illnesses.Comment: 2019 2nd International Conference on Sensors, Signal and Image Processin

    Non-Invasive Ambient Intelligence in Real Life: Dealing with Noisy Patterns to Help Older People

    Get PDF
    This paper aims to contribute to the field of ambient intelligence from the perspective of real environments, where noise levels in datasets are significant, by showing how machine learning techniques can contribute to the knowledge creation, by promoting software sensors. The created knowledge can be actionable to develop features helping to deal with problems related to minimally labelled datasets. A case study is presented and analysed, looking to infer high-level rules, which can help to anticipate abnormal activities, and potential benefits of the integration of these technologies are discussed in this context. The contribution also aims to analyse the usage of the models for the transfer of knowledge when different sensors with different settings contribute to the noise levels. Finally, based on the authors’ experience, a framework proposal for creating valuable and aggregated knowledge is depicted.This research was partially funded by Fundación Tecnalia Research & Innovation, and J.O.-M. also wants to recognise the support obtained from the EU RFCS program through project number 793505 ‘4.0 Lean system integrating workers and processes (WISEST)’ and from the grant PRX18/00036 given by the Spanish Secretaría de Estado de Universidades, Investigación, Desarrollo e Innovación del Ministerio de Ciencia, Innovación y Universidades

    A Storm in an IoT Cup: The Emergence of Cyber-Physical Social Machines

    Full text link
    The concept of social machines is increasingly being used to characterise various socio-cognitive spaces on the Web. Social machines are human collectives using networked digital technology which initiate real-world processes and activities including human communication, interactions and knowledge creation. As such, they continuously emerge and fade on the Web. The relationship between humans and machines is made more complex by the adoption of Internet of Things (IoT) sensors and devices. The scale, automation, continuous sensing, and actuation capabilities of these devices add an extra dimension to the relationship between humans and machines making it difficult to understand their evolution at either the systemic or the conceptual level. This article describes these new socio-technical systems, which we term Cyber-Physical Social Machines, through different exemplars, and considers the associated challenges of security and privacy.Comment: 14 pages, 4 figure

    Personalized data analytics for internet-of-things-based health monitoring

    Get PDF
    The Internet-of-Things (IoT) has great potential to fundamentally alter the delivery of modern healthcare, enabling healthcare solutions outside the limits of conventional clinical settings. It can offer ubiquitous monitoring to at-risk population groups and allow diagnostic care, preventive care, and early intervention in everyday life. These services can have profound impacts on many aspects of health and well-being. However, this field is still at an infancy stage, and the use of IoT-based systems in real-world healthcare applications introduces new challenges. Healthcare applications necessitate satisfactory quality attributes such as reliability and accuracy due to their mission-critical nature, while at the same time, IoT-based systems mostly operate over constrained shared sensing, communication, and computing resources. There is a need to investigate this synergy between the IoT technologies and healthcare applications from a user-centered perspective. Such a study should examine the role and requirements of IoT-based systems in real-world health monitoring applications. Moreover, conventional computing architecture and data analytic approaches introduced for IoT systems are insufficient when used to target health and well-being purposes, as they are unable to overcome the limitations of IoT systems while fulfilling the needs of healthcare applications. This thesis aims to address these issues by proposing an intelligent use of data and computing resources in IoT-based systems, which can lead to a high-level performance and satisfy the stringent requirements. For this purpose, this thesis first delves into the state-of-the-art IoT-enabled healthcare systems proposed for in-home and in-hospital monitoring. The findings are analyzed and categorized into different domains from a user-centered perspective. The selection of home-based applications is focused on the monitoring of the elderly who require more remote care and support compared to other groups of people. In contrast, the hospital-based applications include the role of existing IoT in patient monitoring and hospital management systems. Then, the objectives and requirements of each domain are investigated and discussed. This thesis proposes personalized data analytic approaches to fulfill the requirements and meet the objectives of IoT-based healthcare systems. In this regard, a new computing architecture is introduced, using computing resources in different layers of IoT to provide a high level of availability and accuracy for healthcare services. This architecture allows the hierarchical partitioning of machine learning algorithms in these systems and enables an adaptive system behavior with respect to the user's condition. In addition, personalized data fusion and modeling techniques are presented, exploiting multivariate and longitudinal data in IoT systems to improve the quality attributes of healthcare applications. First, a real-time missing data resilient decision-making technique is proposed for health monitoring systems. The technique tailors various data resources in IoT systems to accurately estimate health decisions despite missing data in the monitoring. Second, a personalized model is presented, enabling variations and event detection in long-term monitoring systems. The model evaluates the sleep quality of users according to their own historical data. Finally, the performance of the computing architecture and the techniques are evaluated in this thesis using two case studies. The first case study consists of real-time arrhythmia detection in electrocardiography signals collected from patients suffering from cardiovascular diseases. The second case study is continuous maternal health monitoring during pregnancy and postpartum. It includes a real human subject trial carried out with twenty pregnant women for seven months

    Internet of Things Enabled Technologies for Behaviour Analytics in Elderly Person Care: A Survey

    Get PDF
    The advances in sensor technology over recent years has provided new ways for researchers to monitor the elderly in uncontrolled environments. Sensors have become smaller, cheaper and can be worn on the body, potentially creating a network of sensors. Smart phones are also more common in the average household and can also provide some behavioural analysis due to the built in sensors. As a result of this, researchers are able to monitor behaviours in a more natural setting, which can lead to more useful data. This is important for those that may be suffering from mental illness as it allows for continuous, non-invasive monitoring in order to diagnose symptoms from different behaviours. However there are various challenges that need to be addressed ranging from issues with sensors to the involvement of human factors. It is vital that these challenges are taken into consideration along with the major behavioural symptoms that can appear in an Elderly Person. For a person suffering with Dementia, the application of sensor technologies can improve the quality of life of the person and also monitor the progress of the disease through behavioural analysis. This paper will consider the behaviours that can be associated with dementia and how these behaviours can be monitored through sensor technology. We will also provide an insight into some sensors and algorithms gathered through survey in order to provide advantages and disadvantages of these technologies as well as to present any challenges that may face future research

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to “ensure healthy lives and promote well-being for all at all ages”. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution

    Design Fiction Diegetic Prototyping: A Research Framework for Visualizing Service Innovations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose: This paper presents a design fiction diegetic prototyping methodology and research framework for investigating service innovations that reflect future uses of new and emerging technologies. Design/methodology/approach: Drawing on speculative fiction, we propose a methodology that positions service innovations within a six-stage research development framework. We begin by reviewing and critiquing designerly approaches that have traditionally been associated with service innovations and futures literature. In presenting our framework, we provide an example of its application to the Internet of Things (IoT), illustrating the central tenets proposed and key issues identified. Findings: The research framework advances a methodology for visualizing future experiential service innovations, considering how realism may be integrated into a designerly approach. Research limitations/implications: Design fiction diegetic prototyping enables researchers to express a range of ‘what if’ or ‘what can it be’ research questions within service innovation contexts. However, the process encompasses degrees of subjectivity and relies on knowledge, judgment and projection. Practical implications: The paper presents an approach to devising future service scenarios incorporating new and emergent technologies in service contexts. The proposed framework may be used as part of a range of research designs, including qualitative, quantitative and mixed method investigations. Originality: Operationalizing an approach that generates and visualizes service futures from an experiential perspective contributes to the advancement of techniques that enables the exploration of new possibilities for service innovation research

    Ethics of the health-related internet of things: a narrative review

    Get PDF
    The internet of things is increasingly spreading into the domain of medical and social care. Internet-enabled devices for monitoring and managing the health and well-being of users outside of traditional medical institutions have rapidly become common tools to support healthcare. Health-related internet of things (H-IoT) technologies increasingly play a key role in health management, for purposes including disease prevention, real-time tele-monitoring of patient’s functions, testing of treatments, fitness and well-being monitoring, medication dispensation, and health research data collection. H-IoT promises many benefits for health and healthcare. However, it also raises a host of ethical problems stemming from the inherent risks of Internet enabled devices, the sensitivity of health-related data, and their impact on the delivery of healthcare. This paper maps the main ethical problems that have been identified by the relevant literature and identifies key themes in the on-going debate on ethical problems concerning H-IoT

    IoT-MQTT based denial of service attack modelling and detection

    Get PDF
    Internet of Things (IoT) is poised to transform the quality of life and provide new business opportunities with its wide range of applications. However, the bene_ts of this emerging paradigm are coupled with serious cyber security issues. The lack of strong cyber security measures in protecting IoT systems can result in cyber attacks targeting all the layers of IoT architecture which includes the IoT devices, the IoT communication protocols and the services accessing the IoT data. Various IoT malware such as Mirai, BASHLITE and BrickBot show an already rising IoT device based attacks as well as the usage of infected IoT devices to launch other cyber attacks. However, as sustained IoT deployment and functionality are heavily reliant on the use of e_ective data communication protocols, the attacks on other layers of IoT architecture are anticipated to increase. In the IoT landscape, the publish/- subscribe based Message Queuing Telemetry Transport (MQTT) protocol is widely popular. Hence, cyber security threats against the MQTT protocol are projected to rise at par with its increasing use by IoT manufacturers. In particular, the Internet exposed MQTT brokers are vulnerable to protocolbased Application Layer Denial of Service (DoS) attacks, which have been known to cause wide spread service disruptions in legacy systems. In this thesis, we propose Application Layer based DoS attacks that target the authentication and authorisation mechanism of the the MQTT protocol. In addition, we also propose an MQTT protocol attack detection framework based on machine learning. Through extensive experiments, we demonstrate the impact of authentication and authorisation DoS attacks on three opensource MQTT brokers. Based on the proposed DoS attack scenarios, an IoT-MQTT attack dataset was generated to evaluate the e_ectiveness of the proposed framework to detect these malicious attacks. The DoS attack evaluation results obtained indicate that such attacks can overwhelm the MQTT brokers resources even when legitimate access to it was denied and resources were restricted. The evaluations also indicate that the proposed DoS attack scenarios can signi_cantly increase the MQTT message delay, especially in QoS2 messages causing heavy tail latencies. In addition, the proposed MQTT features showed high attack detection accuracy compared to simply using TCP based features to detect MQTT based attacks. It was also observed that the protocol _eld size and length based features drastically reduced the false positive rates and hence, are suitable for detecting IoT based attacks

    The business opportunities of implementing wearable based products in the health and life insurance industries

    Get PDF
    The ability to collect biometric data continuously was recently enabled by the development and massification of wearable technologies - computers that are incorporated into items of clothing and accessories which can be worn on the body - unlocking huge opportunities for health and life insurers. Although a great deal of research has been done regarding the technical aspects of these devices, very few works explore the business and managerial implications of implementing wearables into insurance products. Through the combination of secondary data and in-depth expert interviews, this work analyses the impact of wearables and wearable data in the insurance value chain, identifying the main opportunities and challenges to leverage such a technology. This research concludes that in spite of the current narrow use of wearable devices as engagement tools in insurance wellness programs designed to drive user loyalty, this technology has the potential to accelerate the underwriting process, support preventive care, expand the customer base, enable dynamic pricing and enhance the customer experience as part of a connected health ecosystem. Customer adoption, data privacy and legislation are some of the main obstacles for insurers to leverage this technology, on top of the necessary IT infrastructure and data management capabilities which insurers are acquiring mainly through partnerships with innovative players. By implementing wearables technologies, health and life insurers may benefit from reductions in operational costs, new revenue streams and ultimately gains in competitive advantage.A recolha contínua de dados biométricos foi recentemente possibilitada pelo desenvolvimento e massificação dos wearables – computadores incorporados na roupa e acessórios que podem ser vestidos – que representam uma grande oportunidade para as seguradoras de vida e saúde. Apesar de já existir bastante pesquisa sobre os aspetos técnicos destes dispositivos, o mesmo não se verifica ao nível do negócio e da gestão, na implementação de wearables na indústria seguradora. Através da combinação de dados secundários e entrevistas a experts da indústria, este trabalho analisa o impacto dos wearables na cadeia de valor das seguradoras, identificando as principais oportunidades e desafios da sua implementação. A pesquisa conclui que apesar da atual aplicação dos wearables ser limitada, visto que são utilizados como pontos de contacto com o consumidor em programas de bem-estar promovidos pelas seguradoras para reforçar a lealdade à marca, esta tecnologia tem o potencial para acelerar a subscrição de seguros, promover ações de cuidado preventivo de saúde, expandir a base de clientes, possibilitar a prática de preços dinâmicos e melhorar a experiência do consumidor integrados num ecossistema conectado de saúde. A adoção, a privacidade de dados e a legislação são alguns dos principais obstáculos aquando da implementação destes dispositivos, a par da infraestrutura de TI e capacidades de gestão de dados que as seguradoras têm adquirido maioritariamente via parcerias com novas empresas. A implementação dos wearables pode assim contribuir para a redução de custos operacionais, criação de novas fontes de receita e ganhos de vantagem competitiva para as seguradoras
    corecore