3 research outputs found

    Optimum Image Filters for Various Types of Noise

    Get PDF
    In this paper, the quality performance of several filters in restoration of images corrupted with various types of noise has been examined extensively. In particular, Wiener filter, Gaussian filter, median filter and averaging (mean) filter have been used to reduce Gaussian noise, speckle noise, salt and pepper noise and Poisson noise. Many images have been tested, two of which are shown in this paper. Several percentages of noise corrupting the images have been examined in the simulations. The size of the sliding window is the same in the four filters used, namely 5x5 for all the indicated noise percentages. For image quality measurement, two performance measuring indices are used: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The simulation results show that the performance of some specific filters in reducing some types of noise are much better than others. It has been illustrated that median filter is more appropriate for eliminating salt and pepper noise. Averaging filter still works well for such type of noise, but of less performance quality than the median filter. Gaussian and Wiener filters outperform other filters in restoring mages corrupted with Poisson and speckle noise

    High Density Impulse Noise Detection using Fuzzy C-means Algorithm

    Get PDF
    A new technique for detecting the high density impulse noise from corrupted images using Fuzzy C-means algorithm is proposed. The algorithm is iterative in nature and preserves more image details in high noise environment. Fuzzy C-means is initially used to cluster the image data. The application of Fuzzy C-means algorithm in the detection phase provides an optimum classification of noisy data and uncorrupted image data so that the pictorial information remains well preserved. Experimental results show that the proposed algorithm significantly outperforms existing well-known techniques. Results show that with the increase in percentage of noise density, the performance of the algorithm is not degraded. Furthermore, the varying window size in the two detection stages provides more efficient results in terms of low false alarm rate and miss detection rate. The simple structure of the algorithm to detect impulse noise makes it useful for various applications like satellite imaging, remote sensing, medical imaging diagnosis and military survillance. After the efficient detection of noise, the existing filtering techniques can be used for the removal of noise.

    Sorted Min-Max-Mean Filter for Removal of High Density Impulse Noise

    Get PDF
    This paper presents an improved Sorted-Min-Max-Mean Filter (SM3F) algorithm for detection and removal of impulse noise from highly corrupted image. This method uses a single algorithm for detection and removal of impulse noise. Identification of the corrupted pixels is performed by local extrema intensity in grayscale range and these corrupted pixels are removed from the image by applying SM3F operation. The uncorrupted pixels retain its value while corrupted pixel’s value will be changed by the mean value of noise-free pixels present within the selected window. Different images have been used to test the proposed method and it has been found better outcomes in terms of both quantitative measures and visual perception. For quantitative study of algorithm performance, Mean Square Error (MSE), Peak-Signal-to-Noise Ratio (PSNR) and image enhancement factor (IEF) have been used. Experimental observations show that the presented technique effectively removes high density impulse noise and also keeps the originality of pixel’s value. The performance of proposed filter is tested by varying noise density from 10% to 90% and it is observed that for impulse noise having 90% noise density, the maximum PSNR value of 30.03 dB has been achieved indicating better performance of the SM3F algorithm even at 90% noise level. The proposed filter is simple and can be used for grayscale as well as color images for image restoration
    corecore