4,989 research outputs found

    Transistor-Level Synthesis of Pipeline Analog-to-Digital Converters Using a Design-Space Reduction Algorithm

    Get PDF
    A novel transistor-level synthesis procedure for pipeline ADCs is presented. This procedure is able to directly map high-level converter specifications onto transistor sizes and biasing conditions. It is based on the combination of behavioral models for performance evaluation, optimization routines to minimize the power and area consumption of the circuit solution, and an algorithm to efficiently constraint the converter design space. This algorithm precludes the cost of lengthy bottom-up verifications and speeds up the synthesis task. The approach is herein demonstrated via the design of a 0.13 μm CMOS 10 bits@60 MS/s pipeline ADC with energy consumption per conversion of only 0.54 pJ@1 MHz, making it one of the most energy-efficient 10-bit video-rate pipeline ADCs reported to date. The computational cost of this design is of only 25 min of CPU time, and includes the evaluation of 13 different pipeline architectures potentially feasible for the targeted specifications. The optimum design derived from the synthesis procedure has been fine tuned to support PVT variations, laid out together with other auxiliary blocks, and fabricated. The experimental results show a power consumption of 23 [email protected] V and an effective resolution of 9.47-bit@1 MHz. Bearing in mind that no specific power reduction strategy has been applied; the mentioned results confirm the reliability of the proposed approach.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    A 13-bit, 2.2-MS/s, 55-mW multibit cascade ΣΔ modulator in CMOS 0.7-μm single-poly technology

    Get PDF
    This paper presents a CMOS 0.7-μm ΣΔ modulator IC that achieves 13-bit dynamic range at 2.2 MS/s with an oversampling ratio of 16. It uses fully differential switched-capacitor circuits with a clock frequency of 35.2 MHz, and has a power consumption of 55 mW. Such a low oversampling ratio has been achieved through the combined usage of fourth-order filtering and multibit quantization. To guarantee stable operation for any input signal and/or initial condition, the fourth-order shaping function has been realized using a cascade architecture with three stages; the first stage is a second-order modulator, while the others are first-order modulators - referred to as a 2-1-1mb architecture. The quantizer of the last stage is 3 bits, while the other quantizers are single bit. The modulator architecture and coefficients have been optimized for reduced sensitivity to the errors in the 3-bit quantization process. Specifically, the 3-bit digital-to-analog converter tolerates 2.8% FS nonlinearity without significant degradation of the modulator performance. This makes the use of digital calibration unnecessary, which is a key point for reduced power consumption. We show that, for a given oversampling ratio and in the presence of 0.5% mismatch, the proposed modulator obtains a larger signal-to-noise-plus-distortion ratio than previous multibit cascade architectures. On the other hand, as compared to a 2-1-1single-bit modulator previously designed for a mixed-signal asymmetrical digital subscriber line modem in the same technology, the modulator in this paper obtains one more bit resolution, enhances the operating frequency by a factor of two, and reduces the power consumption by a factor of four.Comisión Interministerial de Ciencia y Tecnología TIC97-0580European Commission ESPRIT 879

    Calibration of pipeline ADC with pruned Volterra kernels

    Get PDF
    A Volterra model is used to calibrate a pipeline ADC simulated in Cadence Virtuoso using the STMicroelectronics CMOS 45 nm process. The ADC was designed to work at 50 MSps, but it is simulated at up to 125 MSps, proving that calibration using a Volterra model can significantly increase sampling frequency. Equivalent number of bits (ENOB) improves by 1-2.5 bits (6-15 dB) with 37101 model parameters. The complexity of the calibration algorithm is reduced using different lengths for each Volterra kernels and performing iterative pruning. System identification is performed by least squares techniques with a set of sinusoids at different frequencies spanning the whole Nyquist band. A comparison with simplified Volterra models proposed in the literature shows better performance for the pruned Volterra model with comparable complexity, improving linearity by as much as 1.5 bits more than the other techniques

    Error modeling, self-calibration and design of pipelined analog to digital converters

    Get PDF
    Typescript (photocopy).As the field of signal processing accelerates toward the use of high performance digital techniques, there is a growing need for increasingly fast and accurate analog to digital converters. Three highly visible examples of this trend originated in the last decade. The advent of the compact disc revolutionized the way high-fidelity audio is stored, reproduced, recorded and processed. Digital communication links, fiber optic cables and in the near future ISDN networks (Integrated Services Digital Network) are steadily replacing major portions of telephone systems. Finally, video-conferencing, multi-media computing and currently emerging high definition television (HDTV) systems rely more and more on real-time digital data compression and image enhancing techniques. All these applications rely on analog to digital conversion. In the field of digital audio, the required conversion accuracy is high, but the conversion speed limited (16 bits, 2 x 20 kHz signal bandwidth). In the field of image processing, the required accuracy is less, but the data conversion speed high (8-10 bits, 5-20MHz bandwidth). New applications keep pushing for increasing conversion rates and simultaneously higher accuracies. This dissertation discusses new analog to digital converter architectures that could accomplish this. As a consequence of the trend towards digital processing, prominent analog designers throughout the world have engaged in very active research on the topic of data conversion. Unfortunately, literature has not always kept up. At the time of this writing, it seemed rather difficult to find detailed fundamental publications about analog to digital converter design. This dissertation represents a modest attempt to remedy this situation. It is hoped that anyone with a back-ground in analog design could go through this work and pick up the fundamentals of converter operation, as well as a number of more advanced design techniques
    corecore