36 research outputs found

    Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    Get PDF
    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications

    Low-Power High-Data-Rate Transmitter Design for Biomedical Application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Sampling—50 Years After Shannon

    Get PDF
    This paper presents an account of the current state of sampling, 50 years after Shannon's formulation of the sampling theorem. The emphasis is on regular sampling where the grid is uniform. This topic has benefited from a strong research revival during the past few years, thanks in part to the mathematical connections that were made with wavelet theory. To introduce the reader to the modern, Hilbert-space formulation, we re-interpret Shannon's sampling procedure as an orthogonal projection onto the subspace of bandlimited functions. We then extend the standard sampling paradigm for a representation of functions in the more general class of "shift-invariant" functions spaces, including splines and wavelets. Practically, this allows for simpler—and possibly more realistic—interpolation models, which can be used in conjunction with a much wider class of (anti-aliasing) pre-filters that are not necessarily ideal lowpass. We summarize and discuss the results available for the determination of the approximation error and of the sampling rate when the input of the system is essentially arbitrary; e.g., non-bandlimited. We also review variations of sampling that can be understood from the same unifying perspective. These include wavelets, multi-wavelets, Papoulis generalized sampling, finite elements, and frames. Irregular sampling and radial basis functions are briefly mentioned

    캘리브레이션이 필요없는 위상고정 루프의 설계

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 김재하.A PVT-insensitive-bandwidth PLL and a chirp frequency synthesizer PLL are proposed using a constant-relative-gain digitally-controlled oscillator (DCO), a constant-gain time-to-digital converter (TDC), and a simple digital loop filter (DLF) without an explicit calibration or additional circuit components. A digital LC-PLL that realizes a PVT-insensitive loop bandwidth (BW) by using the constant-relative-gain LC-DCO and constant-gain TDC is proposed. In other words, based on ratiometric circuit designs, the LC-DCO can make a fixed percent change to its frequency for a unit change in its digital input and the TDC can maintain a fixed range and resolution measured in reference unit intervals (UIs) across PVT variations. With such LC-DCO and TDC, the proposed PLL can realize a bandwidth which is a constant fraction of the reference frequency even with a simple proportional-integral digital loop filter without any explicit calibration loops. The prototype digital LC-PLL fabricated in a 28-nm CMOS demonstrates a frequency range of 8.38~9.34 GHz and 652-fs,rms integrated jitter from 10-kHz to 1-GHz at 8.84-GHz while dissipating 15.2-mW and occupying 0.24-mm^2. Also, the PLL across three different die samples and supply voltage ranging from 1.0 to 1.2V demonstrates a nearly constant BW at 822-kHz with the variation of ±4.25-% only. A chirp frequency synthesizer PLL (FS-PLL) that is capable of precise triangular frequency modulation using type-III digital LC-PLL architecture for X-band FMCW imaging radar is proposed. By employing a phase-modulating two-point modulation (TPM), constant-gain TDC, and a simple second-order DLF with polarity-alternating frequency ramp estimator, the PLL achieves a gain self-tracking TPM realizing a frequency chirp with fast chirp slope (=chirp BW/chirp period) without increasing frequency errors around the turn-around points, degrading the effective resolution achievable. A prototype chirp FS-PLL fabricated in a 65nm CMOS demonstrates that the PLL can generate a precise triangular chirp profile centered at 8.9-GHz with 940-MHz bandwidth and 28.8-us period with only 1.9-MHz,rms frequency error including the turn-around points and 14.8-mW power dissipation. The achieved 32.63-MHz/us chirp slope is higher than that of FMCW FS-PLLs previously reported by 2.6x.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 5 CHAPTER 2 CONVENTIONAL PHASE-LOCKED LOOP 7 2.1 CHARGE-PUMP PLL 7 2.1.1 OPERATING PRINCIPLE 7 2.1.2 LOOP DYNAMICS 9 2.2 DIGITAL PLL 10 2.2.1 OPERATING PRINCIPLE 11 2.2.2 LOOP DYNAMICS 12 CHAPTER 3 VARIATIONS ON PHASE-LOCKED LOOP 14 3.1 OSCILLATOR GAIN VARIATION 14 3.1.1 RING VOLTAGE-CONTROLLED OSCILLATOR 15 3.1.2 LC VOLTAGE-CONTROLLED OSCILLATOR 17 3.1.3 LC DIGITALLY-CONTROLLED OSCILLATOR 19 3.2 PHASE DETECTOR GAIN VARIATION 20 3.2.1 LINEAR PHASE DETECTOR 20 3.2.2 LINEAR TIME-TO-DIGITAL CONVERTER 21 CHAPTER 4 PROPOSED DCO AND TDC FOR CALIBRATION-FREE PLL 23 4.1 DIGTALLY-CONTROLLED OSCILLATOR (DCO) 25 4.1.1 OVERVIEW 24 4.1.2 CONSTANT-RELATIVE-GAIN DCO 26 4.2 TIME-TO-DIGITAL CONVERTER (TDC) 28 4.2.1 OVERVIEW 28 4.2.2 CONSTANT-GAIN TDC 30 CHAPTER 5 PVT-INSENSITIVE-BANDWIDTH PLL 35 5.1 OVERVIEW 36 5.2 PRIOR WORKS 37 5.3 PROPOSED PVT-INSENSITIVE-BANDWIDTH PLL 39 5.4 CIRCUIT IMPLEMENTATION 41 5.4.1 CAPACITOR-TUNED LC-DCO 41 5.4.2 TRANSFORMER-TUNED LC-DCO 45 5.4.3 OVERSAMPLING-BASED CONSTANT-GAIN TDC 49 5.4.4 PHASE DIGITAL-TO-ANALOG CONVERTER 52 5.4.5 DIGITAL LOOP FILTER 54 5.4.6 FREQUENCY DIVIDER 55 5.4.7 BANG-BANG PHASE-FREQUENCY DETECTOR 56 5.5 CELL-BASED DESIGN FLOW 57 5.6 MEASUREMENT RESULTS 58 CHAPTER 6 CHIRP FREQUENCY SYNTHESIZER PLL 66 6.1 OVERVIEW 67 6.2 PRIOR WORKS 71 6.3 PROPOSED CHIRP FREQUENCY SYNTHESIZER PLL 75 6.4 CIRCUIT IMPLEMENTATION 83 6.4.1 SECOND-ORDER DIGITAL LOOP FILTER 83 6.4.2 PHASE MODULATOR 84 6.4.3 CONSTANT-GAIN TDC 85 6.4.4 VRACTOR-BASED LC-DCO 87 6.4.5 OVERALL CLOCK CHAIN 90 6.5 MEASUREMENT RESULTS 91 6.6 SIGNAL-TO-NOISE RATIO OF RADAR 98 CHAPTER 7 CONCLUSION 100 BIBLIOGRAPHY 102 초록 109Docto

    21st century manufacturing machines: Design, fabrication and controls

    Get PDF
    Advances in nanotechnology, microfabrication and new manufacturing processes, the revolution of open electronics, and the emerging internet of things will influence the design, manufacture, and control of manufacturing machines in the future. For instance, miniaturization will change manufacturing processes; additive and rapid prototyping will change the production of machine components; and open electronics offer a platform for new control architectures for manufacturing systems that are open, modular, and easy to reconfigure. Combined with the latest trends in cyber-physical systems and the internet of things, open architecture controllers for CNC systems can become platforms, oriented for numerical control as a service (NCaaS) and manufacturing as a service, tailored to the creation of cyber-manufacturing networks of shared resources and web applications. With this potential in mind, this research presents new design-for-fabrication methodologies and control strategies to facilitate the creation of next generation machine tools. It provides a discussion and examples of the opportunities that the present moment offers. The first portion of this dissertation focuses on the design of complex 3D MEMS machines realized from conventional 2.5D microfabrication processes. It presents an analysis of an example XYZ-MEMS parallel kinematics stage as well as of designs of the individual components of the manipulator, integrated into a design approach for PK-XYZ-MEMS stages. It seems likely that this design-for-fabrication methodology will enable higher functionality in MEMS micromachines and result in new devices that interact, in three full dimensions, with their surroundings. Novel and innovative research exemplifies the opportunities new and economical manufacturing technologies offer for the design and fabrication of modern machine tools. The second portion of this dissertation describes the demonstration of a new flexural joint designed with both traditional and additive manufacturing processes. It extrapolates principles based on the design of this joint that alleviate the effects of low accuracy and poor surface finishing, anisotropy, reductions in material properties of components, and small holding forces. Based on these results, the next section presents case examples of the construction of mesoscale devices and machine components using multilayered composites and hybrid flexures for precision engineering, medical training, and machine tools for reduced life applications and tests design-for-fabrication strategies. The results suggest the strategies effectively address existing problems, providing a repertory of creative solutions applicable to the design of devices with hybrid flexures. The implications for medical industry, micro robotics, soft robotics, flexible electronics, and metrology systems are positive. Chapter number five examines to positive impact of open architectures of control for CNC systems, given the current availability of micro-processing power and open-source electronics. It presents a new modular architecture controller based on open-source electronics. This component-based approach offers the possibility of adding micro-processing units and an axis of motion without modification of the control programs. This kind of software and hardware modularity is important for the reconfiguration of new manufacturing units. The flexibility of this architecture makes it a convenient testbed for the implementation of new control algorithms on different electromechanical systems. This research provides general purpose, open architecture for the design of a CNC system based on open electronics and detailed information to experiment with these platforms. This dissertation’s final chapter describes how applying the latest trends to the classical concepts of modular and open architecture controllers for CNC systems results in a control platform, oriented for numerical control as a service (NCaaS) and manufacturing as a service (MaaS), tailored to the creation of cyber-manufacturing networks of shared resources and web applications. Based on this technology, this chapter introduces new manufacturing network for numerical control (NC) infrastructure, provisioned and managed over the internet. The proposed network architecture has a hardware, a virtualization, an operating system, and a network layer. With a new operating system necessary to service and virtualize manufacturing resources, and a micro service architecture of manufacturing nodes and assets, this network is a new paradigm in cloud manufacturing

    Implementation and Tuning of Batched Cholesky Factorization and Solve for NVIDIA GPUs

    Full text link

    Hermite Snakes With Control of Tangents

    Full text link
    corecore