309 research outputs found

    Studies on the Impact of Cache Configuration on Multicore Processor

    Get PDF
    The demand for a powerful memory subsystem is increasing with increase in the number of cores in a multicore processor. The technology adapted to meet the above demands are: increasing the cache size, increasing the number of levels of caches and bymeans of a powerful interconnection network. Caches feeds the processing element at a faster rate. They also provide high bandwidth local memory to work with. In this research, an attempt has beenmade to analyze the impact of cache size on performance of multicore processors by varying L1 and L2 cache size on the multicore processor with internal network (MPIN), also referenced from NIAGRA architecture. As the number of cores increases, traditional on-chip interconnect like bus and crossbar proves to be less efficient as well as suffers from poor scalability. In order to overcome the scalability and efficiency issues in these conventional interconnects, ring based design has been proposed. The effect of interconnect on the performance of multicore processors has been analyzed and a novel scalable on-chip interconnection mechanism (INoC) for multicore processors has been proposed. The benchmark results are presented using a full system simulator. Results shows that, using the proposed INoC,execution time can be significantly reduced, compared with MPIN.Cache size and set-associativity are the features on which the cache performance is dependent. If the cache size is doubled, then the cache performance can increase but at the cost of high hardware, larger area and more power consumption. Moreover, considering the small form-factor of themobile processors, increase in cache size affects the device size and battery running time. Re-organization and reanalysis of cache onfiguration ofmobile processors are required for achieving better cache performance, lower power consumption and chip area. With identical cache size, performance gained can be obtained from a novel cache mechanism. For simulation, we used SPLASH2 benchmark suite

    Spacelab system analysis: A study of communications systems for advanced launch systems

    Get PDF
    An analysis of the required performance of internal avionics data bases for future launch vehicles is presented. Suitable local area networks that can service these requirements are determined

    An Efficient NoC-based Framework To Improve Dataflow Thread Management At Runtime

    Get PDF
    This doctoral thesis focuses on how the application threads that are based on dataflow execution model can be managed at Network-on-Chip (NoC) level. The roots of the dataflow execution model date back to the early 1970’s. Applications adhering to such program execution model follow a simple producer-consumer communication scheme for synchronising parallel thread related activities. In dataflow execution environment, a thread can run if and only if all its required inputs are available. Applications running on a large and complex computing environment can significantly benefit from the adoption of dataflow model. In the first part of the thesis, the work is focused on the thread distribution mechanism. It has been shown that how a scalable hash-based thread distribution mechanism can be implemented at the router level with low overheads. To enhance the support further, a tool to monitor the dataflow threads’ status and a simple, functional model is also incorporated into the design. Next, a software defined NoC has been proposed to manage the distribution of dataflow threads by exploiting its reconfigurability. The second part of this work is focused more on NoC microarchitecture level. Traditional 2D-mesh topology is combined with a standard ring, to understand how such hybrid network topology can outperform the traditional topology (such as 2D-mesh). Finally, a mixed-integer linear programming based analytical model has been proposed to verify if the application threads mapped on to the free cores is optimal or not. The proposed mathematical model can be used as a yardstick to verify the solution quality of the newly developed mapping policy. It is not trivial to provide a complete low-level framework for dataflow thread execution for better resource and power management. However, this work could be considered as a primary framework to which improvements could be carried out

    Datacenter Design for Future Cloud Radio Access Network.

    Full text link
    Cloud radio access network (C-RAN), an emerging cloud service that combines the traditional radio access network (RAN) with cloud computing technology, has been proposed as a solution to handle the growing energy consumption and cost of the traditional RAN. Through aggregating baseband units (BBUs) in a centralized cloud datacenter, C-RAN reduces energy and cost, and improves wireless throughput and quality of service. However, designing a datacenter for C-RAN has not yet been studied. In this dissertation, I investigate how a datacenter for C-RAN BBUs should be built on commodity servers. I first design WiBench, an open-source benchmark suite containing the key signal processing kernels of many mainstream wireless protocols, and study its characteristics. The characterization study shows that there is abundant data level parallelism (DLP) and thread level parallelism (TLP). Based on this result, I then develop high performance software implementations of C-RAN BBU kernels in C++ and CUDA for both CPUs and GPUs. In addition, I generalize the GPU parallelization techniques of the Turbo decoder to the trellis algorithms, an important family of algorithms that are widely used in data compression and channel coding. Then I evaluate the performance of commodity CPU servers and GPU servers. The study shows that the datacenter with GPU servers can meet the LTE standard throughput with 4× to 16× fewer machines than with CPU servers. A further energy and cost analysis show that GPU servers can save on average 13× more energy and 6× more cost. Thus, I propose the C-RAN datacenter be built using GPUs as a server platform. Next I study resource management techniques to handle the temporal and spatial traffic imbalance in a C-RAN datacenter. I propose a “hill-climbing” power management that combines powering-off GPUs and DVFS to match the temporal C-RAN traffic pattern. Under a practical traffic model, this technique saves 40% of the BBU energy in a GPU-based C-RAN datacenter. For spatial traffic imbalance, I propose three workload distribution techniques to improve load balance and throughput. Among all three techniques, pipelining packets has the most throughput improvement at 10% and 16% for balanced and unbalanced loads, respectively.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120825/1/qizheng_1.pd

    FPGA-Based Multimodal Embedded Sensor System Integrating Low- and Mid-Level Vision

    Get PDF
    Motion estimation is a low-level vision task that is especially relevant due to its wide range of applications in the real world. Many of the best motion estimation algorithms include some of the features that are found in mammalians, which would demand huge computational resources and therefore are not usually available in real-time. In this paper we present a novel bioinspired sensor based on the synergy between optical flow and orthogonal variant moments. The bioinspired sensor has been designed for Very Large Scale Integration (VLSI) using properties of the mammalian cortical motion pathway. This sensor combines low-level primitives (optical flow and image moments) in order to produce a mid-level vision abstraction layer. The results are described trough experiments showing the validity of the proposed system and an analysis of the computational resources and performance of the applied algorithms

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    High-Performance and Wavelength-Reused Optical Network on Chip (ONoC) Architectures and Communication Schemes for Manycore Processor

    Get PDF
    Optical Network on Chip (ONoC) is an emerging chip-scale optical interconnection technology to realize the high-performance and power-efficient inter-core communication for many-core processors. By utilizing the silicon photonic interconnects to transmit data packets with optical signals, it can achieve ultra low communication delay, high bandwidth capacity, and low power dissipation. With the benefits of Wavelength Division Multiplexing (WDM), multiple optical signals can simultaneously be transmitted in the same optical interconnect through different wavelengths. Thus, the WDM-based ONoC is becoming a hot research topic recently. However, the maximal number of available wavelengths is restricted for the reliable and power-efficient optical communication in ONoC. Hence, with a limited number of wavelengths, the design of high-performance and power-efficient ONoC architecture is an important and challenging problem. In this thesis, the design methodology of wavelength-reused ONoC architecture is explored. With the wavelength reuse scheme in optical routing paths, high-performance and power-efficient communication is realized for many-core processors only using a small number of available wavelengths. Three wavelength-reused ONoC architectures and communication schemes are proposed to fulfil different communication requirements, i.e., network scalability, multicast communication, and dark silicon. Firstly, WRH-ONoC, a wavelength-reused hierarchical Optical Network on Chip architecture, is proposed to achieve high network scalability, namely obtaining low communication delay and high throughput capacity for hundreds of thousands of cores by reusing the limited number of available wavelengths with the modest hardware cost and energy overhead. WRH-ONoC combines the advantages of non-blocking communication in each lambda-router and wavelength reuse in all lambda-routers through the hierarchical networking. Both theoretical analysis and simulation results indicate that WRH-ONoC can achieve prominent improvement on the communication performance and scalability (e.g., 46.0% of reduction on the zero-load packet delay and 72.7% of improvement on the network throughput for 400 cores with small hardware cost and energy overhead) in comparison with existing schemes. Secondly, DWRMR, a dynamical wavelength-reused multicast scheme based on the optical multicast ring, is proposed for widely existing multicast communications in many-core processors. In DWRMR, an optical multicast ring is dynamically constructed for each multicast group and the multicast packets are transmitted in a single-send-multi-receive manner requiring only one wavelength. All the cores in the same multicast group can reuse the established multicast ring through an optical token arbitration scheme for the interactive multicast communications, thereby avoiding the frequent construction of multicast routing paths dedicatedly for each core. Simulation results indicate that DWRMR can reduce more than 50% of end-to-end packet delay with slight hardware cost, or require only half number of wavelengths to achieve the same performance compared with existing schemes. Thirdly, Dark-ONoC, a dynamically configurable ONoC architecture, is proposed for the many-core processor with dark silicon. Dark silicon is an inevitable phenomenon that only a small number of cores can be activated simultaneously while the other cores must stay in dark state (power-gated) due to the restricted power budget. Dark-ONoC periodically allocates non-blocking optical routing paths only between the active cores with as less wavelengths as possible. Thus, it can obtain high-performance communication and low power consumption at the same time. Extensive simulations are conducted with the dark silicon patterns from both synthetic distribution and real data traces. The simulation results indicate that the number of wavelengths is reduced by around 15% and the overall power consumption is reduced by 23.4% compared to existing schemes. Finally, this thesis concludes several important principles on the design of wavelength-reused ONoC architecture, and summarizes some perspective issues for the future research

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
    corecore