211 research outputs found

    Research on the Filtering Algorithm in Speed and Position Detection of Maglev Trains

    Get PDF
    This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS) train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train’s structure, the permanent magnet electrodynamic suspension (EDS) train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD) and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally

    A Hybrid Controller for Stability Robustness, Performance Robustness, and Disturbance Attenuation of a Maglev System

    Get PDF
    Devices using magnetic levitation (maglev) offer the potential for friction-free, high-speed, and high-precision operation. Applications include frictionless bearings, high-speed ground transportation systems, wafer distribution systems, high-precision positioning stages, and vibration isolation tables. Maglev systems rely on feedback controllers to maintain stable levitation. Designing such feedback controllers is challenging since mathematically the electromagnetic force is nonlinear and there is no local minimum point on the levitating force function. As a result, maglev systems are open-loop unstable. Additionally, maglev systems experience disturbances and system parameter variations (uncertainties) during operation. A successful controller design for maglev system guarantees stability during levitating despite system nonlinearity, and desirable system performance despite disturbances and system uncertainties. This research investigates five controllers that can achieve stable levitation: PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration feedback controller (AFC) design that attenuates disturbance on a maglev system with a PD controller. This research proposes three robust controllers, QFT, Hinf , and QFT/Hinf , followed by a novel AFC-enhanced QFT/Hinf (AQH) controller. The AQH controller allows system robustness and disturbance attenuation to be achieved in one controller design. The controller designs are validated through simulations and experiments. In this research, the disturbances are represented by force disturbances on the levitated object, and the system uncertainties are represented by parameter variations. The experiments are conducted on a 1 DOF maglev testbed, with system performance including stability, disturbance rejection, and robustness being evaluated. Experiments show that the tested controllers can maintain stable levitation. Disturbance attenuation is achieved with the AFC. The robust controllers, QFT, Hinf , QFT/ Hinf, and AQH successfully guarantee system robustness. In addition, AQH controller provides the maglev system with a disturbance attenuation feature. The contributions of this research are the design and implementation of the acceleration feedback controller, the QFT/ Hinf , and the AQH controller. Disturbance attenuation and system robustness are achieved with these controllers. The controllers developed in this research are applicable to similar maglev systems

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Optimised configuration of sensing elements for control and fault tolerance applied to an electro-magnetic suspension system

    Get PDF
    New technological advances and the requirements to increasingly abide by new safety laws in engineering design projects highly affects industrial products in areas such as automotive, aerospace and railway industries. The necessity arises to design reduced-cost hi-tech products with minimal complexity, optimal performance, effective parameter robustness properties, and high reliability with fault tolerance. In this context the control system design plays an important role and the impact is crucial relative to the level of cost efficiency of a product. Measurement of required information for the operation of the design control system in any product is a vital issue, and in such cases a number of sensors can be available to select from in order to achieve the desired system properties. However, for a complex engineering system a manual procedure to select the best sensor set subject to the desired system properties can be very complicated, time consuming or even impossible to achieve. This is more evident in the case of large number of sensors and the requirement to comply with optimum performance. The thesis describes a comprehensive study of sensor selection for control and fault tolerance with the particular application of an ElectroMagnetic Levitation system (being an unstable, nonlinear, safety-critical system with non-trivial control performance requirements). The particular aim of the presented work is to identify effective sensor selection frameworks subject to given system properties for controlling (with a level of fault tolerance) the MagLev suspension system. A particular objective of the work is to identify the minimum possible sensors that can be used to cover multiple sensor faults, while maintaining optimum performance with the remaining sensors. The tools employed combine modern control strategies and multiobjective constraint optimisation (for tuning purposes) methods. An important part of the work is the design and construction of a 25kg MagLev suspension to be used for experimental verification of the proposed sensor selection frameworks

    Laite ilmavälin ja roottorin paikan mittaamiseen lineaarimoottoreissa

    Get PDF
    This thesis studies inductive air gap and rotor position sensing in linear motors. The object is to find a sensing apparatus for an industrial application. Therefore, inductive sensing is studied and requirements for the sensing apparatus are defined. Inductive position sensing is further developed to suit the application, a sensing apparatus is designed and a prototype is manufactured. Also, a test arrangement is designed and built and the prototype is tested. Test results verify that the designed sensing apparatus meets the requirements and a further development could be worthwhile.Tämä diplomityö tutkii induktiivista ilmavälin ja roottoripaikan mittausta lineaarimoottorikäytöissä. Työn tavoite on löytää toteuttamiskelpoinen mittalaite teolliseen sovelluskohteeseen. Sen vuoksi työssä tutkitaan induktiivista mittausta ja määritetään vaatimukset mittalaitteelle. Induktiivista paikanmittausta kehitetään edelleen sopimaan sovelluskohteeseen, mittalaite suunnitellaan ja siitä valmistetaan prototyyppi. Lisäksi suunnitellaan ja rakennetaan testausjärjestely, jolla prototyyppi testataan. Testitulokset todentavat, että mittalaite saavuttaa sille asetetut vaatimukset sekä sen, että mittalaitteen kehittämistä kannattaa jatkaa

    Second International Symposium on Magnetic Suspension Technology, part 2

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices, the 2nd International Symposium on Magnetic Suspension Technology was held at the Westin Hotel in Seattle, WA, on 11-13 Aug. 1993. The symposium included 18 technical sessions in which 44 papers were presented. The technical sessions covered the areas of bearings, bearing modelling, controls, vibration isolation, micromachines, superconductivity, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), rotating machinery and energy storage, and applications. A list of attendees appears at the end of the document

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Control approaches for magnetic levitation systems and recent works on its controllers’ optimization: a review

    Get PDF
    Magnetic levitation (Maglev) system is a stimulating nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in the air. The electromagnetic force is very sensitive to the noise, which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev benefits the industry since 1842, in which the maglev system has reduced power consumption, increased power efficiency, and reduced maintenance cost. The typical applications of Maglev system are in wind turbine for power generation, Maglev trains and medical tools. This paper presents a comparative assessment of controllers for the maglev system and ways for optimally tuning the controllers’ parameters. Several types of controllers for maglev system are also reviewed throughout this paper

    Control of a magnetically levitated ventricular assist device

    Get PDF
    This work presents theoretical and experimental means for achieving impeller stability in a magnetically levitated left ventricular assist device (LVAD). These types of medical devices are designed to boost the native heart`s ability to pump blood by means of mechanical energy transfer using a rotating impeller. Magnetic suspension of the impeller eliminates bearing friction and reduces blood damage, but it requires active controls that monitor the impeller`s position and speed in order to generate the forces and torques required to regulate its dynamic behavior. To accomplish this goal, this work includes: 1) a dynamic system model derived using energy and momentum conservation 2) dynamic analysis including stability, controllability and observability, and 3) development of two control algorithms: proportional integral derivative and sliding mode control. Experimental validation included component behavior, model accuracy, and the characterization of controller performance using a physiological simulator. The system model proved to be an adequate representation of the system while levitating in air, but additional research is needed to model hydrodynamic and gyroscopic effects. After the prototype`s subcomponents were tested, calibrated and/or modified to fit the control requirements, both control strategies were successful in controlling the rotor as it spun at 6000 rpm pumping 6L/min of water at 80mmHg. A maximum speed of 6500 rpm was achieved with speed control within 5% over most of the operating range. The control platform and many of the methods presented here are continually being used and improved towards the implantation of the device in a human subject in the future

    Infrastructure Design, Signalling and Security in Railway

    Get PDF
    Railway transportation has become one of the main technological advances of our society. Since the first railway used to carry coal from a mine in Shropshire (England, 1600), a lot of efforts have been made to improve this transportation concept. One of its milestones was the invention and development of the steam locomotive, but commercial rail travels became practical two hundred years later. From these first attempts, railway infrastructures, signalling and security have evolved and become more complex than those performed in its earlier stages. This book will provide readers a comprehensive technical guide, covering these topics and presenting a brief overview of selected railway systems in the world. The objective of the book is to serve as a valuable reference for students, educators, scientists, faculty members, researchers, and engineers
    • …
    corecore