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and the new member, Ioannis.
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Ithaca
As you set out for Ithaka,

hope the journey is a long one,

full of adventure, full of discovery.

Laistrygonians and Cyclops,

angry Poseidondo not be afraid of them:

youll never find things like that on your way

as long as you keep your thoughts raised high,

as long as a rare excitement stirs your spirit and your body.

Laistrygonians and Cyclops,

wild Poseidonyou wont encounter them

unless you bring them along inside your soul,

unless your soul sets them up in front of you.

Hope the journey is a long one.

May there be many a summer morning when,

with what pleasure, what joy,

you come into harbors seen for the first time;

may you stop at Phoenician trading stations

to buy fine things,

mother of pearl and coral, amber and ebony,

sensual perfume of every kind

as many sensual perfumes as you can;

and may you visit many Egyptian cities

to learn, and learn more, from those who know.

Keep Ithaka always in your mind.

Arriving there is what you are destined for.

But do not hurry the journey at all.

Better if it lasts for years,

so you are old by the time you reach the island,

wealthy with all you have gained on the way,

not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.

Without her you would not have set out.

She has nothing left to give you now.

And if you find her poor, Ithaka wont have fooled you.

Wise as you will have become, so full of experience,

you will have understood by then what these Ithakas mean.

Constantine P. Cavafy (1911)

Ij�khSan bge� ston phgaimì gia thn Ij�kh,na eÔqesai n�nai makrÔ o drìmo,gem�to peripèteie, gem�to gn¸sei.Tou Laistrugìna kai tou KÔklwpa,ton jumwmèno Poseid¸na mh fob�sai,tètoia ston drìmo sou potè sou den ja brèi,an mèn' h skèyi sou uyhl , an eklekt sugk�nhsi to pneÔma kai to s¸ma sou agg�xei.Tou Laistrugìna kai tou KÔkl¸pa,ton �grio Poseid¸na devja sunant sei,an den tou koubane� me sthn yuq  sou,an h yuq  sou den tou st nei emprì sou.Na eÔqesai n�nai makrÔ o drìmo.Poll� ta kalokairin� prwð� na e�naipou me ti euqar�sthsi, me ti qar�ja mpa�nei se limèna prwtoeid¸menou;na stamat sei s' empore�a Foinikik�,kai te kalè pragm�teie n' apokthsei,sentèfia kai kor�llia, keqrimp�ria k' èbenou,kai hdonik� murwdik� k�je log ,ìso mpore� pio �fjona hdonik� murwdik�;se pìlei Aiguptiakè pollè na pa,na m�jei kai na m�jei ap'tou spoudasmènou.P�nta sto nou sou n�qei thn Ij�kh.To fj�simon eke� ein' o proorismì sou.All� mh bi�zei to tax�di diìlou.Kall�tera qrìnia poll� na diarkèsei;kai gèro pia n' ar�xei sto nhs�,ploÔsio me ìsa kèrdise ston drìmo,mh prosdok¸nta ploÔth na se d¸sei h Ij�kh.H Ij�kh s' èdwse to wra�o tax�di.Qwr� aut n den j�bgaine ston drìmo.'Alla den èqei na se d¸sei pia.Ki an ptwqik  thn brei, h Ij�kh den se gèlase.'Etsi sofì pou ègine, me tìsh pe�ra, dh ja to kat�labe h Ij�ke ti shma�noun.Kwnstant�no P. Kab�fh (1911)
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Abstract

New technological advances and the requirements to increasingly abide

by new safety laws in engineering design projects highly affects industrial

products in areas such as automotive, aerospace and railway industries.

The necessity arises to design reduced-cost hi-tech products with minimal

complexity, optimal performance, effective parameter robustness properties,

and high reliability with fault tolerance. In this context the control system

design plays an important role and the impact is crucial relative to the level

of cost efficiency of a product.

Measurement of required information for the operation of the design

control system in any product is a vital issue, and in such cases a number of

sensors can be available to select from in order to achieve the desired system

properties. However, for a complex engineering system a manual procedure

to select the best sensor set subject to the desired system properties can

be very complicated, time consuming or even impossible to achieve. This is

more evident in the case of large number of sensors and the requirement to

comply with optimum performance.

The thesis describes a comprehensive study of sensor selection for control

and fault tolerance with the particular application of an ElectroMagnetic

Levitation system (being an unstable, nonlinear, safety-critical system with

non-trivial control performance requirements). The particular aim of the

presented work is to identify effective sensor selection frameworks subject to

given system properties for controlling (with a level of fault tolerance) the

MagLev suspension system. A particular objective of the work is to identify

ix



the minimum possible sensors that can be used to cover multiple sensor faults,

while maintaining optimum performance with the remaining sensors.

The tools employed combine modern control strategies and multiobjective

constraint optimisation (for tuning purposes) methods. An important part

of the work is the design and construction of a 25kg MagLev suspension

to be used for experimental verification of the proposed sensor selection

frameworks.
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z, ż, z̈ Electromagnets position,velocity,acceleration

Zo Nominal electromagnet position
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Chapter 1

Introduction

In recent years, there is a high demand of technological needs with the

automotive, aerospace as well as transport markets being highly affected.

Due to rapid increment of technological demands the necessity of reducing the

cost, the complexity and improving reliability of industrial products arises.

In recent years there is a lot of research towards that area which aims to

produce affordable, reliable and safe products.

In this context the control system design plays an important role and

the impact is crucial for the final value of a product. Moreover, the

control engineer has to take into account a lot of different parameters and

requirements in order to achieve the best possible control system design

with a number of characteristics that reduce complexity, cost and optimise

performance. Furthermore, safety-critical control systems are highly sensitive

under fault conditions. In fact, for safety-critical control systems either

single or multiple sensor faults may lead to disaster and therefore the fault

tolerance concept is introduced in order to recover the performance under

fault conditions at the expense of higher cost and complexity. Additionally,

for every stable or unstable plant the need to select the best possible sensors

subject to optimum performance, cost, robustness and safety can be very

complicated or even impossible to do, especially if optimum performance is

required under any fault conditions.
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1.1. PROBLEM SETUP

In this thesis, three novel systematic frameworks are proposed by the

author that simplify the sensor set selection subject to design require-

ments. This problem falls into the multiobjective constraint optimisation

area because many objectives are required subject to design constraints.

Metaheuristic approaches combined with modern control strategies (i.e LQG,

H∞) simplify the sensor selection of the control system subject to the

performance requirements and sensor fault tolerance. In this thesis a

MAGnetic LEVitated (MAGLEV) suspension is used as example in order

to create a baseline for more complex problems.

1.1 Problem setup

The overall block diagram to be used for the optimised sensor configurations

for control and sensor fault tolerance setup is shown in Fig. 1.1. Any given

plant has a number of control inputs (nu) and a number of measurement

outputs (ny). The selection of inputs and outputs subject to optimum

performance, robustness, cost and fault tolerance is very important and

complex process. A typical flow chart of Input/Output (IO) optimisation

algorithm is depicted in Fig. 1.2, page 4. The simplified IO optimisation

algorithm optimally tune the closed-loop response of the control system

subject to the aforementioned requirements for each feasible IO set following

the selection of the best IO set at the end of the optimisation process. In

this thesis only the combinations of the outputs are optimised since the

MAGLEV suspension has only one control input. Although only the outputs

are incorporated within the systematic framework (as illustrated in Fig. 1.1)

the proposed systematic frameworks can be extended for plants with more

inputs/outputs. Regardless the MAGLEV suspension has small number

of IO sets the sensor optimisation process is complex because the design

requirements of such system are not trivial.

The number of outputs defines the number of feasible sensor sets that

is possible to use in order to control the plant as desired. For example,

2



1.1. PROBLEM SETUP

AUTONOMOUS
SUPERVISOR

SENSOR
SELECTIONPlant

FDI

Parametric
Variations

K1

K2

Kn

ds

nu

ny

Figure 1.1: Block diagram of optimum sensor selection for control and fault
tolerance.

if there are 3 measurements then 7 feasible sensor sets are available. For

example, [y1], [y1 y2], [y1 y3] and [y1 y2 y3]. From those sensor sets the

best possible should be used subject to optimum performance, disturbance

rejection, robustness, cost and fault tolerance. This problem is often not

trivial and sometimes impossible to do manually if there are many outputs i.e.

10 sensors leads to 210 − 1 = 1024 sensor sets. Metaheuristic approaches can

be used within the systematic framework in order to assist with the optimum

tuning of the controller’s parameters for each sensor set subject to the

aforementioned desired requirements. At the end of the optimisation process

the optimum sensor set that meets the requirements can be selected. To

achieve the fault tolerance to any sensor(s) failure(s) a bank of controllers can

be used. In fact, if there is(are) any sensor failure(s) the Fault Detection and

Isolation (FDI) detects and isolates the faulty sensor(s) and the autonomous

3



1.1. PROBLEM SETUP

supervisor takes remedial actions by controller reconfiguration so that the

performance is either fully recovered or degraded until the fault is repaired.

START

Select an IO set

Optimise closed-loop
response using
Multi-objective

optimisation techniques
subject to requirements

More IO sets?

Select the
best sensor set

STOP

Yes

No

REPORT

Figure 1.2: Generalised flow chart for a sensor optimisation systematic
framework.

1.1.1 MAGLEV suspension

The MAGLEV suspension is used in this thesis as an example to demonstrate

the systematic frameworks and as baseline for large scale complex plants.

The Electromagnetic suspension system is used in MAGLEV trains in order

to support the vehicle and the load (i.e passengers). The diagram of a

single degree of freedom MAGLEV suspension is shown in Fig. 1.3. The

4



1.2. RESEARCH OBJECTIVES

suspension consists of an electromagnet where the vehicle mass is supported

by producing an attractive force onto the rail and, by controlling the

circulated flux, the air gap can be controlled. The Electromagnetic (EMS)

type of suspension that is used in MAGLEV technology is open-loop unstable,

non-linear, safety-critical system with non-trivial requirements and a number

of available measurements. This system can be used as a good example for

the demonstration of the overall idea depicted in Fig. 1.1.

Rail

. .
Air gap

Carriage
Mass

Coil

Electromagnet

Pole
face

Flux
circulation

Figure 1.3: Typical diagram of a MAGLEV suspension.

1.2 Research objectives

This research project objectives are:� to reduce the control system’s complexity� to simplify the sensor set selection process� to optimise the performance for every possible sensor set with respect

to working boundaries (i.e disturbance rejection, robustness etc)� to find the minimum number of sensors that can be used to ensure

optimum performance

5



1.3. THESIS CONTRIBUTIONS� to extend the method so that the performance is recovered when one or

more sensor fails i.e introduce sensor selection for sensor fault tolerance� to apply the proposed systematic frameworks to an electromagnetic

(EMS) MAGLEV suspension system� and to design and construct a 25kg MAGLEV suspension test rig

in order to verify the theoretical sensor optimisation frameworks

mentioned above.

1.3 Thesis contributions

This thesis addresses a number of issues concerning sensor selection for

control and fault tolerance with regards to the MAGLEV suspension

application and makes contributions in the following areas:

1. Incorporation of the recently developed Non-dominated Sorting Ge-

netic Algorithm in the context of tuning and constraint-handling func-

tions within actuator/sensor selection for control and fault tolerance,

in particular to take account of the complexity involved in the selection

of sensor configurations for practical engineering systems;

2. Fundamental study of optimised sensor configurations using classical

control strategies for a MagLev suspension system;

3. The development of practical systematic frameworks for sensor optimi-

sation via modern control strategies using LQG and H∞ robust control

design 1;

4. The extension of the sensor selection framework to the particular

concept of fault tolerance minimising the sensor hardware redundancy.

1The work is in fact proposing one main skeleton for sensor selection in control and
fault tolerance, while extends this skeleton to accommodate the different control design
methods. Thus the term ”frameworks” is used (in this thesis) to distinguish between the
different methodologies.
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5. Experimental verification of controllers generated using the design

framework using an experimental MAGLEV suspension rig.

1.4 Thesis structure

The thesis is laid out as follows:� Chapter 2 : The literature review is done related to sensor selection for

control systems, Fault Tolerant Control and the MAGLEV technology.� Chapter 3 : The Multiobjective constrained optimisation concept

with genetic algorithms is presented. The recently developed Non-

Dominated Sorting Genetic Algorithm II is described along with two

examples for the MATLAB code validation.� Chapter 4 : The MAGLEV suspension modelling is considered in this

chapter. The non-linear model with the linear time invariant state

space linearisation model are presented along with the feasible sensor

sets and the design requirements.� Chapter 5 : Two optimised sensor configurations via classical control

strategies are presented. The controller selection criterion is explained

in this chapter that is used as a metric to select controllers among

many that satisfy the closed-loop design requirements. Studies on noise

suppression and uncertain operating point are undertaken as well as

robustness to load variations.� Chapter 6 : Optimised sensor configurations systematic framework for

control via linear quadratic gaussian control strategy is presented.

The optimisation process combines the LQG strategy, the genetic

algorithms and the MAGLEV suspension to demonstrate the concept.� Chapter 7 : Two optimised sensor configurations systematic frameworks

via H∞ robust control design methods are presented. In this chapter,

the H∞-multiobjective robust control and the loop-shaping design

strategies are considered for the sensor optimisation. A comparison
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of the sensor optimisation via LQG, and the two approaches presented

in this chapter is carried out.� Chapter 8 : The Fault Tolerant Control (FTC) for sensor failures is

considered where two approaches are studied. One considers single

sensor failure via classical control and the second multiple sensor faults

using the optimised sensor configurations via LQG control that was

presented in Chapter 6. The concept is extended to sensor selection for

Fault Tolerant Control covering multiple sensor failures in an attempt

to minimise the sensor hardware redundancy. Appropriate simulations

demonstrate the efficacy of this approach.� Chapter 9 : The design and construction of a 25kg MAGLEV suspen-

sion rig is described. The experimental rig has been designed and

constructed from scratch and all necessary details including mechanical,

electrical and electronics implementations are described. The purpose

of the MAGLEV rig is to demonstrate the theoretical frameworks

developed into the practical application.� Chapter 10 : In this chapter, conclusions as well as suggestions for

future work are given.� The following information is included in the Appendix:(A) Matlab code

and Simulink diagrams for the theoretical frameworks are given, (B)

Matlab code and Simulink diagrams for the 25kg MAGLEV suspension

experiments are given, (C) Mechanical diagrams of the 25kg MAGLEV

suspension, (D) Electronics circuits for the custom made circuit boards,

(E)Published papers and other publications.
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Chapter 2

Literature review

2.1 Introduction

Control system design involves Input/Output (IO) selection, that is, decision

on the number, the place, and the type of actuators and sensors to be used

subject to performance, robustness, stability etc. For plants with many

inputs and outputs the selection of the IO with respect to a number of

performance requirements can be complicated and time consuming (Mushini

and Simon [2005]). In this thesis the focus is upon sensor set selection,

for which it is very difficult to meet optimum performance, minimum cost,

robustness and sensor fault tolerant requirements via manual procedures.

However, the frameworks are equally applicable to actuator (input) set

optimisation. For this reason systematic frameworks are developed that can

actually simplify the sensor set selection with respect to multiple objectives.

In this chapter, an overview is given with respect to sensor selection, fault

tolerant control and magnetic levitated vehicles technology.

2.2 Sensor selection in control systems

The number of sensor elements and location affect the robustness, perfor-

mance, complexity and cost of the control system. In the literature many

papers are found with respect to sensor selection depending on the objective/s
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required. Sensor selection is a procedure that in most cases is done via off-

line methods like in this research work. Real-time sensor selection is done

usually in continuous manufacturing industries (Fraleigh et al. [2003]).

Based on nominal performance, the closed-loop H∞ norm of a nonlinear

compressor system is minimised using different IO sets (Wal et al. [2002]).

The results show that fewer sensors can be used resulting to the same or

slightly degraded nominal performance. For an active vibration attenuation

controller applied on the NASA Langley Mini-Mast experimental structure,

H2 optimal control is used with different IO sets to study the nominal

performance of the system (Balas and Young [1999]). Results show that

the system’s performance can be satisfied using a specific IO set but it

cannot be improved using a larger number of IO sets. This gives a control

system with the minimum complexity and cost. The robust performance is

considered in some cases, like the active vehicle suspension system by Wal

et al. [1998] where the µ − synthesis controller is used for different IO sets

and it was found that fewer sensors can be used, to achieve the same robust

performance as with the full IO set. In these problems where the number

of sensors is large, leading to large number of IO sets, long computational

time is required to check all IO candidates. A method based on a feasibility

test combined with a search strategy is proposed by Jager et al. [1998] to

reduce the computational time for large-scale problems. The same approach

used by Jager and Wal [1999] where a method is proposed to optimally select

controller IO that assure desired level of robust performance. Another two

IO selection methods are presented by Wal and Jager [1998] to achieve robust

performance applied to an active suspension control problem for a tractor-

semitrailer. Wal and Jager [1996] aimed at robust performance (RP) and

robust stability (RS) for different IO sets where the minimum number of

IO set was found to achieve RP and RS. Moreover, the sensor selection is

considered in fault diagnosis (Debouk et al. [2002]) and supervisory control

(Rohloff et al. [2006]).

There are a number of methods used for IO set selection in control system
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design. A very detailed literature survey on IO selection is done by Wal and

Jager [2001]. These methods are briefly summarised as follows:

IO selection methods for control systems

1. Accessibility : This is a qualitative technique for IO selection based

on cause-and-effect graphs. The ideal is that a causal path must

exist between the manipulated (ui) and the controlled variables (zi)

as illustrated in Fig. 2.1 and the measured (yi) and controlled variables

(zi).

Figure 2.1: Simple cause-and-effect graph for IO selection.

2. State controllability and state observability can be used in two senses for

a dynamic model described by a linear time invariant state space form

with state space matrices given as: A - state matrix, B - Input matrix

and C - output matrix. The binary sense where the candidate IO set

causing uncontrollable (A,B) system and/or unobservable (C,A) system

is rejected. When the system is controllable and observable, then the

corresponding sensor set is kept and the procedure is repeated until

the minimum number of sensors is recovered. The second approach

is the qualitative sense where the controllability grammian Wc(t) and

the observability grammianWo(t) (den berg et al. [1999]) are evaluated
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using the Lyapunov equations

ALc + LcA
T +BBT = 0

ATLo + LoA+ CTC = 0

Where : Lc = lim
t→∞

Wc(t) and

Lo = lim
t→∞

Wo(t)

Using these grammians actuator and sensor selection can be done

because they show in quantified manner the states’ controllability/ob-

servability.

3. Right half-plane zeros pose performance limitations to a control system

(Skogestad and Postlethwaite [2005]). In this case the IO sets that

introduce RHP zeros with magnitudes below a desired bandwidth are

rejected.

4. The Input-output controllability is a selection method based on singular

value (σ) decomposition. Different groups of controllability measures

are considered.� The minimum singular value (σ) can be used where the IO set

that result to a large σ is the selected sensor/actuator set.� The maximum singular value (σ) can be used but depending on

the objective this may either required to be small or large.� The condition number in general should be small because it

results to a good robustness against full-block (unstructured)

multiplicative uncertainty. Therefore, the IO set that gives small

condition number is used (Skogestad and Postlethwaite [2005]).� The left and right singular vectors from the singular value

decomposition can be used for IO controllability measure. The

idea is to find the best compromise between measurements yi that

are mutually independent and measurements that are sensitive to

changes of the input ui.
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2.2. SENSOR SELECTION IN CONTROL SYSTEMS� The relative gain array is also used as IO selection method. That

is, IO sets causing large RGA elements should be rejected since

the corresponding plants difficult to be controlled.

5. Efficiency of manipulation and estimation: The objective of actuators

is to manipulate the system as desired with the lowest possible energy

consumption. From this point of view, the actuator selection can be

based on the minimisation of an input-set-depend cost function (Ju) in

terms of the input energy. Sensors are used to obtain the best-possible

information on the system’s behaviour. Therefore sensor selection can

be based on the minimisation of an output-set-depended cost function

(Jy) while depends on the estimation errors of variables, for example

the system states. Both cost function can be combined as one (Juy)

input-output-set-depend functions and used to select the optimum IO

set. That is minimise Juy so that the minimum number of IO set is

used to control the system with minimum energy consumption and

minimum estimation error.

6. Robust Stability (RS) and Nominal Performance (NP): RS guarantees

stability in the presence of uncertainties, whereas NP guarantees

stability and performance in absence of uncertainties. SISO and MIMO

systems are treated separately. For a MIMO system, the infinity norm

of the closed-loop system is taken as a metric for this RS and NP

criterion.

7. Robust performance (RP): IO set which results to an acceptable robust

performance metric and low cost control system is selected for feedback.

The structured singular value can be used as metric for the robust

performance. This metric is used to verify that the performance of the

control system, will be maintained in the presence of uncertainties.

8. Search methods. As it has been seen from previous criteria, all IO sets

has to be checked in order to find the optimum IO set. This is done

by checking one by one candidates and it requires a big computational
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effort. The computational effort can be reduced rabidly by rejecting

the nonviable IO sets using a search method.

Desirable properties of IO selection methods

An IO selection method has to be: Well-founded, Efficient, Effective,

Generally applicable, Rigorous, Quantitative, Controller independent and

Direct (see Wal and Jager [2001]). In the next paragraphs each property is

briefly summarised.

1. Well-founded: The theory behind an IO selection method must

be sound and complete. The method should be easy to use and

transparent, i.e bearing the basic idea of the method in mind, the way

in which the outcome is affected by changes in the control goals must

be understandable. At least one convincing application should prove

the method’s practical relevance.

2. Efficient: An IO selection method should make it possible to quickly

evaluate a large number of candidate IO sets. Algorithms are commonly

called efficient if they solve problems in time polynomial in a measure

of the problem size; if not, they are called inefficient.

3. Effectiveness: Implies that those candidate IO sets are eliminated for

which the considered selection criterion cannot be achieved (”nonviable

IO sets”), while those candidates are kept for which it can be achieved

(”viable IO sets”). Necessary or sufficient condition may lead to

the faulty rejection of viable IO sets. Hence, effectiveness calls for

conditions which are necessary and sufficient.

4. Generally applicable: An IO selection method should deal with a wide

variety of control problems. For instance, a method is preferably

suitable or easy generalized to handle classes of nonlinear systems.

General applicability requires a set-up which can describe a wide variety

of control problems.
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5. Rigorous: Viability should be addressed rigorously to cover a wide

variety of issues that are important for control system design. For

example an IO selection criterion based on robust stability is more

rigorous that a criterion base on nominal stability. In general, a more

rigorous criterion selects a smaller number of viable IO sets which may

be manageable for more detailed further analysis.

6. Quantitative: An IO selection method preferably employs quantita-

tive criterion for IO set viability to clearly distinguish between the

prospectus of candidate IO sets. For instance, a qualitative criterion

like state controllability only provides a ’yes’ or ’no’ answer to input

set viability, while a quantitative controllability measure provides

additional information on ’how strongly’ an input set affects the state.

7. Controller independent: An IO selection method should eliminate IO

sets for which there does not exist any controller meeting the intended

control goal. Usually, it is undesirable to impose restrictions on the

controller design method, because this yields biased conclusions on IO

set viability. On the other hand, if restrictions on the controller design

method or the maximum controller order do play a role, a controller-

dependent IO selection method may be advantageous. For efficiency

reasons, IO selection should not involve complete controller design.

8. Direct: For the purpose of efficiency or if the list of candidates is

infinite (as is often the case for flexible structures), it is desired that an

IO selection method directly characterises the viable IO sets, instead

of performing a candidate-by-candidate test for a particular criterion.

the latter, brute-force approach is indirect and not solvable in time

polynomial in Nu and Ny.

2.3 Fault Tolerant Control systems

Fault-tolerant and fail-safe control system design is very important for safety-

critical systems (i.e aircraft, MAGLEV trains, shuttles, satellites etc). In fact,
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fail-safe systems are able to withstand any single point failure without any

change in the functionality or performance, whereas FTC systems may have

degraded performance in case of a fault, but are designed to prevent this fault

from being developed into system instability. The aim of moving towards

FTC systems is the cost reduction. In Table 2.1 the main characteristics for

both control systems design approaches are tabulated. Generally it can be

seen that the fault tolerant control systems can cost less because they do

not require hardware redundancy (Blanke et al. [1997]). Nevertheless, FTC

system may be complex and therefore reliability and robustness issues arise

as mentioned by Wu [2001a,b] and Patton [1993] respectively. Performance

analysis on FTC system for an aircraft vehicle is considered by Shin and

Belcastro [2006].

Fault tolerance can be achieved using either active or passive methods.

The first approach is based on controller reconfiguration but the second on

the robustness of the controller design (i.e the controller can be designed to

tolerate faults). Detailed description of Fault Tolerant Control concept is

given by Blanke et al. [2001a].

Some applications are found in the literature based on Fault-Tolerance

design such as the ship propulsion (Izadi-Zamanabadi and Blanke [1999]; Wu

et al. [2006]), the Ørsted Satellite (Blanke et al. [1997]), three-tanks system

and chemical process (Blanke et al. [2003]), a DC motor control (Campos-

Delgado et al. [2005]), double inverted pendulum (Niemann and Stoustrup

[2005]) and automotive vehicle longitudinal control (Seron et al. [2008]).
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Table 2.1: Fault-tolerant and Fail-safe systems characteristics (Blanke et al. [1997]).

Fail-Safe System
The system continues to perform normally for any single point failure.

The hardware redundancy is triple, in case that a unit fails, another one will keep the system working.
The system uses voting scheme (eg. 2 out of 3) for sensor signals.

Use triple signal processing computers.
Use double or more actuators.

Fail safe systems are very expensive since they require hardware redundancy.
Fault tolerant System

Any single fault does not develop into system instability but degraded performance.
Use information redundancy to detect faults.

Use reconfiguration in programmable system components to accommodate faults.
Accept degraded performance due to a fault but keep plant availability.

Low cost because they do not required redundancy hardware.

19



2.3. FAULT TOLERANT CONTROL SYSTEMS

2.3.1 A Fault Tolerant Control architecture

The design of a fault tolerant control system requires to consider many

parameters and deep control system analysis. Some issues are taken into

consideration like the fault propagation in the system and the end-effect of

the fault. How serious a fault is as well as remedial actions to be taken for

the specific fault are also taken into account.

A three layer architecture for Fault Tolerant Control system design

is shown in Fig. 2.2 (Blanke et al. [2001b]). The lower layer is the

control loop, the second layer is the detector functions and effectors to

effect reconfiguration, and the third represents autonomous supervisor

functionality. Each layer is summarised as follows:

Figure 2.2: A Fault-tolerant control system architecture (Blanke et al.
[2001b]).

1. The lowest layer represents the control loop with sensor and actuator

interfaces, signal conditioning and filtering and the controller. For FTC

design, the sensor interface should include detectability and validity

checking. Three objectives have to be satisfied, i.e check the range,

check for abrupt faults and check the RMS values for incipient faults.
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2. The second level includes as many detectors as faults to be detected

as well as link to the autonomous supervisor for fault alerts. The

effectors are able to re-configure or apply remedial actions initiated

from the autonomous supervisor. The functions of the modules are:

Fault detection based on hardware or analytical redundancy using

fault detection and isolation methods, detection of faults in control

algorithms and application software and effector modules used for fault

handling (i.e remedial actions).

3. The third level, the supervisor, is composed of state-event logic to

describe the logical state of the controlled object. Transitions between

states are driven by events. The autonomous supervisor system is able

to interface to detectors for change detection, interface to upper level

for mode change signals, demand re-configuration or other remedial

actions to accommodate a fault and signal to plant-wide co-ordination

or operator about current state.

2.3.2 Fault Tolerant Control methods

Diagram in Fig. 2.3 shows the taxonomy of the fault tolerance approaches.

The passive approaches take into account the robustness of the system against

faults. In fact, the robust controller is designed is such a way that the possible

faults are taken into account. The closed-loop control system is designed to

remain stable in case of a fault without any further controller action. In

contrast, the active approaches are using reconfiguration of the controller in

case of a fault. That is why this approach requires fault detection mechanism.

Generally, there are two types of faults taken into account in FTC design

(Frank [1990]):� Abrupt faults : These faults play a role in safety-relevant systems where

hard-failures have to be detected early enough so that catastrophic

consequences can be avoided by early system reconfiguration.� Incipient faults : Incipient faults are of major relevance in connection

with maintenance problems where early detection of worn equipment is
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required. In this case the faults are typically small and not as easy to

detect, but the detection time is of minor importance and may therefore

be large.

A good Fault-Tolerant control overview is given Patton [1997a].

Figure 2.3: Decomposition of Fault Tolerant Control (Patton [1997a]).

2.3.3 Active Fault Tolerance

In active fault tolerance the control system is redesigned once a fault has

occurred based on the performance and robustness of the original control

system but with degraded capabilities. In order to achieve control system

reconfiguration, the control system requires knowledge of the expected fault

beforehand or a detection and isolation mechanism for fault detection.

Diagram in Fig. 2.3 shows that active fault tolerance approach is divided

into two categories: the first is the projection-based method where a new pre-

computed control law is selected depending on the type of the fault, and the

second uses on-line automatic controller redesign methods (reconfiguration)

where calculation of new controller parameters in response to a control
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impairment (fault). A simple way to apply active fault tolerant is through

control law rescheduling where the gain parameters are stored beforehand

and, if a fault occurs, the gain is redesigned depending on the fault. An

important part of the fault tolerance controller is the Fault Detection and

Isolation (FDI) mechanism, particularly the aim is to detect, isolate and

identify a fault before the controller reconfiguration.

Fault Detection and Isolation

The key problem for active fault tolerant control is on-line reconfiguration

of the controller. For this to be possible detailed information about changes

in the system parameters (or changes in the system operating point) due

to either normal process changes or component failures is required. The

major task of FDI is to acquire this information, whilst it is the task of a

supervision system to manage the controller reconfiguration (for example, by

model-selection based upon FDI unit information).

Often referred to as Diagnosis, Fault Detection and Isolation (FDI) is

a method which Detects and Isolates a fault in an active FTC system. In

detection part of FDI special emphasis is given in incipient, or developing,

faults rather than large step faults, because incipient faults are harder to

detect. The Fault isolation is the part of FDI which determines not only

the faults’ origin but also the fault type, size and time. When using direct

redundancy, extra hardware channels or components provide additional

signals, that can be used from FDI unit to generate residual signals by direct

comparison and using voting techniques is able to identify and isolate a faulty

component.

In case that analytical redundancy is used to produce additional (or back-

up) signals, as well as the residual signals, the system is fault-free, and all

of the residuals should are close to zero (for a healthy system). After a fault

occurs, the FDI module that is used or residual generation and decision-

making is responsible for finding out the location of the fault. The system
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can then be reconfigured or restructured so that any non-impaired or healthy

channel (or component), or signals will be chosen to take a role in system

operation.

According to Patton [1997a] there are three FDI approaches. The

Quantitative model-based approaches (Venkatasubramanian et al. [2003c]),

the qualitative (Venkatasubramanian et al. [2003a]) and the knowledge based

(Venkatasubramanian et al. [2003b]) approaches.

1. Knowledge based FDI: In knowledge or history based approaches

there is no need to be supported by analytical functions. The knowledge

can be gathered by the engineers working with the process. This

approach is divided into two techniques. The shallow diagnostic

reasoning techniques and the Deep diagnostic reasoning techniques

(Frisk [1996]). No emphasis is given for this approach since model-

based approaches are more important in this thesis.

2. Qualitative based FDI: These methods are based on Qualitative

Reasoning (QR) which consists of relating to a non-numerical descrip-

tion of the system, preserving all its important behavioral properties

and distinctions. Qualitative model aim to capture the fundamental

aspects of a system or mechanism, while suppressing much of the detail.

Methods such as abstraction and approximation are often used to build

models based on qualitative rather than numerical aspects of a system.

The values in Qualitative Reasoning divide the corresponding quan-

titative space into a finite number of regions and each interval is

assigned a name. A simple example by Calderon-Espinoza [2003] shows

the philosophy behind QR. Qualitative values for a quantity space

representing temperature might be ”cold”, ”warm” and ”hot” with

these three values mapped to quantitative intervals. In diagnosis very

often qualitative signals take up three values: +,- and 0 for positive,

negative and zero respectively. The example is illustrated in Table 2.2
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Table 2.2: FDI using qualitative Reasoning about temperature (Calderon-
Espinoza [2003]).

Quantitative intervals Qualitative values
[17, 20] cold - negative
[21, 25] warm 0 zero
[26, 30] hot + positive

3. Quantitative model-based FDI: Controller design requires, precise

knowledge about the plant dynamic model. The same information

is required for reconfiguration of the control system. On considering

these requirements, more emphasis has been traditionally placed upon

quantitative model-based FDI approaches as these rely on detailed

knowledge of system’s dynamic model and may finally provide more

details about the changes in system dynamics, in keeping with the

requirements for reconfiguration and closed-loop adaption. The major

emphasis therefore in the field of quantitative model-based FDI has

been placed upon methods of detecting and isolating faults fast and

accurately.

The block diagram in Fig. 2.4 shows the general concept of the

structure of model-based fault diagnosis system comprising two main

stages of residual generation and decision making and the use of a

knowledge-base for improving the decision-making and assisting in

residual generation

FDI using analytical redundancy

The fault diagnosis using the analytical redundancy is a quantitative

model-based method to detect and isolate faults. Consider the dynamic

system in Fig. 2.5 (Frank [1990]) with input vector u and output vector

y. The actual dynamic system consists of the actuators, the plant

dynamics (components), and the sensors. For Fault detection and
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Figure 2.4: Block diagram of Quantitative model-based fault diagnosis
(Patton [1993]).

Figure 2.5: Realistic dynamic system block diagram with faults and
uncertainties (Frank [1990]).
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isolation considerations, it is important to model all effects that can

lead to alarms or false alarms. Such effects are:� Faults in the actuators, in plant components (dynamic system

fault), or in the sensors.� Modelling errors between the actual system and its mathematical

model.� Noise considerations i.e dynamic system noise and measurement

noise.

All faults are considered in vector ff and all unknown inputs (eg noise,

modelling errors) are placed in vector d.

The realistic system may be given in continues time by the state space

dynamic equations:

ẋ = Ax(t) +Bu(t) + Edd(t) +Hfff (t) (2.1)

y(t) = Cx(t) + Fdd(t) +Gfff (t) (2.2)

where x is the n×1 state vector, u the p×1 known input vector, y the

q×1 vector of measured outputs and An×n, Bp×1, Cm×n known matrices

describing the plant dynamics. A is the state matrix, B the input

matrix and C the output matrix. The term Edd(t) models the unknown

inputs to the actuators and the dynamic process, Hfff(t) actuator

and component faults, Fdd(t) the unknown inputs to the sensors, and

Gfff (t) sensor faults. Notice that A, B, C are the nominal matrices

of the dynamic system since the faults that are principally reflected in

changes of A, B, C as well as modelling errors, are considered by ff

and d associated with proper choices of Ed, Fd, Gf , Hf . Whilst these

matrices are usually given, the modes (i.e the evolutions) of ff and d

must generally be considered unknown.
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The schematic structure of the FDI procedure using analytical redun-

dancy (applied to a plant of a feedback control system) is illustrated in

Fig. 2.6. The procedure of evaluation of the redundancy given by the

mathematical model of the system, in (2.1) and (2.2), can be roughly

divided into the following two steps:� Generation of so-called residuals, i.e functions that are accentu-

ated by the fault vector ff .� Decision and isolation of the faults (time, location, sometimes also

type, size and source).

Figure 2.6: Structure of FDI using analytical redundancy (Frank [1990]).

The analytical redundancy approach requires that the residual gener-

ator performs some kind of validation of the nominal relationships of

the system, using the actual input, u, and measured output, y. If a

fault occurs, the redundancy relations are no longer satisfied and a

residual, r 6= 0, occurs. The residual is then used to form appropriate

decision functions. They are evaluated in the fault decision logic in

order to monitor both the time of occurrence and location of the fault.

For the residual generation three kinds of models are required: the

nominal, actual (observed) and that of the faulty system. In order to
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achieve a high performance of fault detection with low false alarm rate

the nominal model should be tracked and updated by the observation

model.

Different ways of producing residual signals are described by Frank

[1990] as follows:

(a) The parity space approach,

(b) The dedicated observer approach and innovation-based approach,

(c) The fault detection filter approach and

(d) The parameter identification approach.

2.3.4 Passive Fault Tolerance

Passive approaches, use the robust control (Gu et al. [2005]) design methods,

to achieve fault tolerance. That is, the closed-loop system remains insensitive

to certain faults using constant controller parameters without any need for

fault information (i.e time, location) like in the case of the active fault

tolerance.

In any control system design robustness issues must be taken into

consideration because the performance has to be maintained in case of

unknown disturbance, uncertainties or modelling errors (mathematical model

is never precise). Faults can be also taken into account for the controller

design in such a way that the closed-loop response becomes insensitive to

specific faults (i.e robustness against faults). Two types of faults are taken

into account, the multiplicative faults that affect the system’s dynamic

parameters and the additive faults that affect the inputs and/or outputs.

The 4-parameter controller structure depicted in Fig. 2.7 is an example

of a passive fault tolerant control system (Patton [1997a]). The notation

explanation is tabulated in Table 2.3.

The estimated control signal u(s) given by the robust controller is shown
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G(s)

∆

na(s) ns(s)

us

y(s)

ed wc

K22 K21

K12 K11

u

Figure 2.7: Passive FTC system with the 4-parameter controller structure
(Patton [1997a]).

in (2.3) and the estimated fault signal ed(s) is given by (2.4).

u(s) =
[

K21 K22

]

[

wc(s)

y(s)

]

(2.3)

ed(s) =
[

K11 K12

]

[

wc(s)

y(s)

]

(2.4)

Robustness can be achieved for example, using H∞ robust control design

(Zhou et al. [1996]). The objectives are:

1. The control system output is able to track the reference signal and not

been affected by the actuators faults.

2. The ed(s) diagnostic output signal tracks actuator faults (abrupt and

incipient faults).

3. The above two properties have to considered in the design so they
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Table 2.3: Notations for the passive fault tolerant 4-parameter controller

Variable Meaning
G(s) Transfer function matrix of the plant
∆ Additive uncertainty
wc Exogenous inputs
ed Diagnostic signal

na = fa + ηa Model actuator noise ηa and fault fa
ns = fs + ηs Model sensor noise ηs and fault fs

u(s) Control signal
y(s) Output signal
Kij Control parameters

persist even in the presence of uncertainties (∆).

When Passive fault tolerance is applied, there are three main disadvan-

tages:� No use of diagnostic information.� No knowledge of fault occurrence.� Lack of severity information about the fault.

Those disadvantages, limit, the ability of the controller to achieve a reliable

fault tolerance against faults. Therefore, the passive approaches are not very

practical.

2.4 MAGLEV train technology

MAGnetic LEVitated (MAGLEV) trains are being developed in practice

since they offer a number of advantages over the conventional trains. This is a

developing area that is being attractive to transport industry the last years.

MAGLEV trains in contrast with the conventional wheel-on-rail trains do

not have mechanical contact with the rails and therefore friction, mechanical

losses, vibration and acoustic noise are reduced significantly. The MAGnetic
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LEVitated train can be reasonably dated from 1934 when Hermann Kemper

from Germany patented it. After this, development of the Maglev train went

through the quicken period of the 1960s, the maturity of the 1970s and 1980s,

and the test period of the 1990s. The first MAGLEV train to serve the public

was operating from 1984 in Birmingham, UK (Pollard [1984]). A photo of

the Birmingham MAGLEV train is shown in Fig. 2.8

Figure 2.8: Birmingham MAGLEV train photo (Pollard [1984]).

Although it was operating at low speed the Birmingham MAGLEV was

operating for more than 10 years until 1996. High speed MAGLEV train,

accomplished practical public service in 2003 in Shanghai, China. Different

systems exist in practice for low speed MAGLEV trains (i.e HSST-High

Speed Surface Transport) as well as for high speed MAGLEV trains (i.e

Transrapid). Details are not given in this thesis about MAGLEV systems

but a good review is done by Lee et al. [2006].

There are two main types of suspensions used in MAGLEV trains:

The Electromagnetic suspension (EMS) where the vehicle is levitated by
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producing an attractive force to the rail, and the Electro-Dynamic suspension

(EDS) which is levitated via a repulsive force to the rail. A third type is

the Hybrid Electro-Magnetic Suspension (HEMS) where permanent magnets

are used in conjunction with the electromagnets in order to lift the vehicle

(see Wai et al. [2005]). Using this type of suspension a power-saving

electromagnetic suspension can be achieved (Morishita et al. [1989]). In this

thesis the EMS suspension is considered. A picture of the German Transrapid

MAGLEV suspension (Yan [2004]) used in Shanghai, China is illustrated in

Fig. 2.9. In this picture the EMS suspension with air gap (point A) of around

10mm can perform up to a maximum speed of 500km/h.

Figure 2.9: EMS system for the transrapid (Yan [2004]).

Because the MAGLEV train is not using wheels to run on the rails but

attractive or repulsive forces it offers a number of advantages against the

conventional wheel-on-rail trains. The advantages are listed in Table 2.4. It

is clear that the MAGLEV train is less noisy, requires very low maintenance

and it cannot derailed since it is supported on the guideway.
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Table 2.4: MAGLEV Train advantages against Wheel-On-Rail systems (Yan [2004]).

MAGLEV Train Iron Wheel-On-Rail system
Vibration and Noise No mechanical contact, 60-65dB Contact between Wheels and Rails, 75-80dB

Safety No possibility of derailment Derails from a minor rail’s defect
Guideway Light vehicle and distributed load Heavy and concentrated load

Maintenance Very little Periodic replacement of wheels, gear, rails, etc.
Grade About 80-100/1000 About 30-50/1000
Curve In 30[m] in radius In 150 [m] in radius
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The Electromagnetic suspension design is discussed in details by Goodall

[1985, 2008]. This is a non-linear open loop unstable system with some non-

linear control methods described by Zhao and Thornton [1992] and Sinha

and Pechev [2004]. Since non-linear controllers are not favourite in practice

many linear controller approaches have been found in the literature including

Zhao and Thornton [1992]; Sinha and Pechev [2004]; Mohamed et al. [1997];

Morishita [1996]; Lane et al. [1997]; MacLeod and Goodall [1996]; Paddison

[1995] and Goodall [2000]. The MAGLEV suspension has three requirements

enumerated as follows:� support the large weight of the vehicle and the load (i.e passengers)� follow the intended variations in the position of the track� provide isolation from the unintentional irregularities in the track

position

These requirements cannot be fully met simultaneously because there is a

trade-off between them. The MAGLEV suspension has to satisfy a number

of requirements in order to perform satisfactorily with respect to the ride

quality experienced by the passengers, fault tolerance, input power and the

international transport rules. The performance requirements have to take

into account the disturbances coming for the rails (i.e both deterministic

and stochastic). The requirements and working limitations are described by

Goodall [1994, 2004]. Because the system is open loop unstable the closed

loop control system is very sensitive to sensor faults. In fact, if there is an

air gap sensor failure, it is possible that the MAGLEV suspension will go

unstable and therefore it will either fall-off or stick to the rail and probably

result in catastrophic failure. Some active fault tolerant design approaches

for sensor failures are discussed by Huixing et al. [2006]; Long et al. [2007]

and Sung et al. [2005].

Since the EMS system is non-linear, open-loop unstable, safety-critical

system with non-trivial performance requirements it can serve as a good

example for the sensor optimisation frameworks aim to find the minimum
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number of sensors for controlling the MAGLEV suspension with extension

to sensor fault tolerance.

2.5 Summary

In this chapter, a literature survey based on the tools that can help in

order to implement the optimised sensor configurations for control and fault

tolerance theoretical frameworks is done. An overview of the sensor selections

methods that exist is presented and the Fault Tolerant Control concept is

described. In fact, FTC system design proves to be useful when hardware

redundancy is to be minimised with consequent reduction of the overall cost

although complexity may increase. Moreover, the MAGLEV suspension is

to be used as example within the systematic frameworks. The MAGLEV

suspension is a non-linear, open loop unstable, safety-critical system with

non-trivial requirements. This practical problem can serve as a baseline for

the systematic frameworks to be developed for more complicated plants.

Finally, the originality of this thesis is to combine the three concepts

together within one framework in order to select the best sensor set with

which the optimum performance is achieved while maintaining sensor fault

tolerance according to design requirements. Evolutionary algorithms are

merged within the systematic frameworks for the purpose of the performance

optimisation for each sensor set. The next chapter describes the evolutionary

algorithms along with detailed description of the Non-dominated Sorting

Genetic Algorithm II (NSGA-II) to be used throughout this thesis.
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Chapter 3

Multiobjective constraint

optimisation

3.1 Introduction

Meta-heuristic approaches have become very popular in recent years since

the optimisation field becomes more and more favoured within industry

as well as science. In fact, Meta-heuristic approaches are divided into

different optimisation methods including tabu search, simulated annealing,

ant colony algorithms and evolutionary algorithms. A detailed description

of the different Meta-heuristic approaches is given by Dreo et al. [2006].

Varieties of the aforementioned methods include particle swarm optimisation

(PSO) and GRASP.

Survey and descriptions of existing evolutionary-based multiobjective

optimisation techniques is found by Fonseca and Fleming [1995] followed by

Coello [1999a] and Coello [1999c]. Another survey is presented by Kicinger

et al. [2005]. Evolutionary algorithms have been used extensively compared

to the other meta-heuristic approaches and the reason is as Jones et al. [2002]

indicates: ’....the fact that genetic algorithms can naturally produce multiple

solutions and therefore provide an ideal tool for generating a representation

of the many solutions that comprise the efficient set.’
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Genetic algorithms (GAs) were inspired by Drawin’s based on survival

of biological reproduction, as described by Goldberg [1989]. Since the first

version of GA a number of different versions of genetic algorithms invented

and all summarised by Konak et al. [2006]. The first genetic algorithm for

multiple objectives is the Vector Evaluated Genetic Algorithm (VEGA)

that was presented by Schaffer [1985], followed by the multi-objective GA

(MOGA) by Fonseca and Fleming [1993] which is a simple extension of

VEGA but with slow population convergence due to problems related to

niche size parameter. A new genetic algorithm is recently developed by Zou

et al. [2008] but not encountered in this research work.

Based on the comparison of different multiobjective evolutionary algo-

rithms by Zitzler et al. [2000] theNon-dominated Sorting GeneticAlgorithm

developed by Srinivas and Deb [1994] seams to converge fast but there are

three disadvantages of the NSGA algorithm briefly summarised as (see Deb

et al. [2002]):� High computational complexity of non-dominated sorting.� Lack of elitism� Need to specify the sharing parameter.

An improved version of NSGA is developed by Deb et al. [2002] and is

called NSGA-II. The latter genetic algorithm is able to deal with more

complex and real-world multiobjective optimisation problems. The NSGA-

II is used throughout this thesis and it proves to be very powerful tool

for one more reason. Both, MOGA and NSGA are niche size parameter

dependants. The niche parameter has to be set by the user and effectively

affects the spread of the solutions onto the optimum Pareto front. In fact,

if the algorithm has to optimally tune the controllers with different sensor

sets this may need to be dynamically changed in order to incorporate with

different dynamical systems. This problem is avoided using the recently

developed Non-dominated Sorting Genetic Algorithm II where the niche
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size parameter is avoided because the crowding distance mechanism (that is

explained in details in Section 3.5.1) is used to spread the solutions evenly

onto the optimum Pareto front.

3.2 Genetic algorithms

Genetic algorithms functionality is based on the principles of natural eval-

uation and population genetics. The differences between genetic algorithms

and other traditional optimisation techniques such as the gradient method

are briefly summarised as follows:� the parameters to be optimised are encoded instead of using the real

parameters� genetic algorithms search for the potential solution based on the the

number of trials (maximum generation) in a search space.� each trial solution is guided through based on objective assessment

using fitness functions to identify the best solution in each population.

Genetic algorithms search for the best solution based on the fitness

value assigned to each population. The fitness value indicates how good

the solution to solve the problem is by giving a higher value of fitness

within all the solution. The population that consists of individuals known

as chromosomes are paired and genetic algorithm operators are applied to

them. For each chromosome in the population, the fitness value is assigned

based on the evaluation of the fitness function.

In general the operations applied to the individual during evolution are

mainly three:

1. selection,

2. crossover,

3. and mutation
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For selection, a string of chromosomes is chosen randomly based on the

magnitude of their normalised fitness value. Fitness is normalised with an

average value, so the strings with above fitness will have more potential than

those with below average fitness. This process will result in one or more

copies of higher fitness values in order to reproduce in a new generation.

The function of crossover is to produce a new trial solution by exchanging a

part of the structure between two selected strings. By doing this, the weaker

individuals in the population can be replaced with the best population. The

mutation operator can be viewed as a secondary operator to ensure against

loss of information in any chromosome and as a way of getting the algorithm

out of stuck state (i.e local minimum). This operator makes a small random

change in the chromosome with one or more chromosome changed at one

time.

Initially, genetic algorithms start without any knowledge of the correct

solutions (due to randomly generated chromosomes in the population), and

implement an interacting environment and evolution operators through the

process of searching for a better solution as shown in Fig. 3.1. The evolution

process is completed when the population has converged or the maximum

number of generations have been reached.

3.3 Genetic algorithms in control engineering

Genetic Algorithms (GA), introduced by Holland and further explained in

detail by Goldberg [1989], have successfully been used in many control

systems design areas such as controller design and/or parameter optimisation,

stability analysis, fault diagnosis, robotic design and system reliability.

Particularly, using genetic algorithms for controller parameter optimisation,

it is possible to select values for a large number of controller parameters

when attempting to obtain a number of control objectives with respect to

satisfactory control performance.

Evolutionary algorithms have been widely used in control engineering as
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Figure 3.1: Basic genetic algorithm representation (Zamzuri [2008]).

mentioned by Fleming and Purshouse [2002], Fleming and Fonseca [1993]

and Wang et al. [2003]. A number of applications have been found in control

systems for classical control strategies optimisation (see Zhenyu and Pedersen

[2006], Obika and Yamamoto [2005], Lin et al. [2003], Krohling et al. [1997],

Kwok et al. [1993]) as well as for modern controller optimisation (Pereira and

Araujo [2004], Sun et al. [2003], Neumann and Araujo [2004], Chellaboina

and Ranga [2005]).

The structure and/or the controller parameters are included into the

chromosome of the evolution procedure. The desired performance is assigned

to the objective functions via different quantities (i.e. output settling time,

overshoot, H∞ robustness margins etc.). In fact, such problems are posed as
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the minimisation of the objective functions with respect to optimal tuning

of the controller’s parameters.

Obviously, the controller parameters are real values but early genetic

algorithms like NSGA-II convert them into binary forms. This method

increases computational memory usage and a loss of precision occurs due

to conversion from real to binary forms. When using real parameters the

controller parameters are directly used to form the chromosomes without the

need for transformation. Moreover, the feasibility of genetic algorithms can

be seen when a case of mixed decision variables (binary and real parameters)

needs to be used, and extra care should be taken to ensure the genetic

operators use a function correctly over the decision variables.

A manually designed controller can achieve a certain desirable perfor-

mance but is not the optimum. Moreover, the problem becomes more

complex when there is a number of performance metrics within specific

working boundaries to achieve. Further more its almost impossible to

optimise the controller/s parameters for every sensor set that is available

especially for systems with many outputs.

The applications of genetic algorithms in the control area can be

categorised into two main areas:� On-line tuning and adaptation: In this case, the genetic algorithm

is used as adaptive control tuning for a known and unknown plant.

However, this method is not widely applied due to time constraint since

large computational effort is required until the maximum generation is

reached.� Off-line design: In this case the evolutionary process is applied to

a particular control optimisation problem in order to achieve an

optimum performance within given limits. Off-line optimisation is

widely used since the time constraint is relaxed but not ignored. Some

problems require huge computational effort and therefore time limit is
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an important issue. In this thesis the Off-line design is implemented

due to large computational effort.

3.4 Multiobjective constraint optimisation

In most practical applications, designing the controller requires considera-

tions of multiple conflicting performance criteria. GAs performance criteria

can be considered as objective functions to be achieved towards a better

result (usually minimise). A trade-off often occurs between the objectives

where a better result in one objective will cause a deterioration in other.

The problem is posed as follows:

Find X which minimises the objective functions:

φ1(X), φ2(X), φ3(X)......φk(X) (3.1)

subject to:

gi ≤ 0, i = 1, ....., n (3.2)

hj = 0, j = 1, ...., p (3.3)

where X is the vector of solutions (X = x1, x2, .....xr), k is the number

of objective functions, n is the number of inequality constraints and p is

the number of equality constraints (note that constraints can be linear or

non-linear). Generally, constraints are separated into two categories: The

inequalities that are called soft constraints and equalities are called hard

constraints. Both types are widely used in the thesis since the closed-loop

response of the MAGLEV suspension problem involves a lot of different

constraints.

In Fig. 3.2 an example of two objective functions is given. Assume that F

is the feasible region and S is the whole search space, then of course F ⊆ S.
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The problem here is to minimise φ1 and φ2 subject to g1 ≤ φ1(X1) and

g2 ≤ φ2(X2) respectively. The feasible region is defined from the constraints

which in this example depends on the objective function values φ1(X1) and

φ2(X2) with solution vectors X1 and X2 respectively. The optimum Pareto

front with non-dominated solutions within the feasible region is shown with

dark dots. Particularly, the best solution of φ1(X) is the worst for φ2(X)

and viceversa (note that the functions are constrained by g1 and g2). Within

the feasible region, the dominated solutions are also shown with ∗. The ×
mark shows solutions that although they are on the optimum Pareto front are

lying on the infeasible solution area, while x1 solutions are constrained from

φ2(X2) and x3 from φ1(X1). Solutions x2 are penalised from both assigned

constraints.

There exist many constraint handling techniques throughout the litera-

ture and they are all summarised by Coello [1999b]. In the next section a

brief description is given along with the techniques used in this thesis.
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Figure 3.2: Mimisation of φ1 and φ2 subject to two constraints.
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3.4.1 Constraint handling via penalty functions

In order to design the controller via genetic algorithms in such a way that

the overall control system operates within desired boundaries, one or more

combinations of the constraint-handling technique are required. A survey on

constraint handling techniques is done by Coello [1999b] and a recent one is

also found in Coello [2002].

The most popular efficient and simple technique is the penalty function

approach. There are a number of penalty function methods used to avoid the

infeasible regions within the search space and ’guide’ the objective functions

within the boundaries decided from the specifications (Coello [1999b]):� Static penalties� Dynamic penalties� Annealing penalties� Adaptive penalties� Self-adaptive penalties� Segregated genetic algorithm� Penalty function based on feasibility� Death penalty

In this thesis a combination of the static, dynamic and the death penalty

methods are implemented depending on the current needs. Using the death

penalty function is the easiest way but this is not suitable for all problems. It

was found that the combination of static or dynamic with the death penalty

is required.
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3.4.2 Death penalty method

Rejection of infeasible individuals (also called ’death penalty’) is the easiest

and most efficient way to handle constraints because when a certain solution

is not within the required limits it is assigned a fitness of zero. This solution

will be rejected for the next generation. As the generations evolve the

penalised individuals are rejected and the optimum individuals remain. This

method is mainly used for the rejection of individuals that cause instability to

the closed-loop response during simulations. It is not possible to quantify the

objective functions since an unstable system behaves outside the modelled

properties.

3.4.3 Static penalty method

The static penalty method mentioned by Coello [2002] is very well described

by Deb [2001] and is summarised as follows:

The soft constraint violation for each constraint, ki, is given as

ωi(k
i) = {|gi(ki)|, if gi(ki)<0

0 otherwise (3.4)

Each soft constraint is normalised as in (3.5) gjlow and gjhigh for values less

than the predefined level and values higher than the predefined respectively.

gilow = − ki

kides
+ 1 ≥ 0 gihigh = ki

kides
− 1 ≥ 0 (3.5)

Where, kides is the predefined constraint value and ki is the measured value.

The hard constraint violation, ψj , is given as

ψj(f
j) = {|hj(fj)| if hj(fj)6=0

0, otherwise (3.6)

This is transformed into a soft constraint, allowing a small tolerance value ξ
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(see Coello [2002]). The hard constraint violation function is then given as

hj =| f j | −ξ < 0 (3.7)

Where f j is the desired constraint to be equal to zero.

The overall constraint violation function is then constructed and given in

(3.8). This function is to be used as a metric for the controllers’ performance

towards the given constraints in the real control system design problem.

Ω(k(i), f (j)) =

i
∑

i=1

ωi(k
(i)) +

j
∑

j=1

ψj(f
(j)) (3.8)

The overall constraint violation is then added to each of the objective

functions values forming the following equation

Φk = φk +RkΩ(k
(i), f (j)) (3.9)

Where φk is the objective function, Φk is the penalised objective function

and Rk is the penalty parameter. It can be seen that if all constraints are

satisfied the overall constraint violation function in (3.8) is zero therefore

Φk = φk while if Ω(ki, f j) is not zero, there is some constraint violation and

this is added to the objective functions reducing the possibilities to survive

the next generations.

The penalty parameter is defined by the user and is used to define the

weight of the overall constraint violation on the objective function. The

penalty parameter affects the end result (Optimum Pareto front) and the

value of it depends on the problem nature. For more details on the effect of

the penalty parameter to the final result see Deb [2001]. In some cases, while

the constraints violations are getting smaller the effect of the Ω is getting

less ending with solutions within the infeasible space. For this reason the

dynamically updated penalty function is used and is described next.
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3.4.4 Dynamically updated penalty function

In the case where the constraints violations are very small the dynamical

updated penalty parameter is necessary. Particularly, while the constraint

violations are getting smaller, the overall constraint violation function

increases. This is useful in order to avoid infeasible solutions as described

by Joines and Houck [1994]. The objective function in (3.9) is modified as

follows:

Φk = φk + (ζ × tg)
α × Ω(β, k(i), f (j)) (3.10)

where ζ is defined here as the penalty parameter (ζ = Rk), α,β are constants

defined by the user and tg is the current generation number. The overall

constraint violation is then given as

Ω(β, k(i), f (j)) =

i
∑

i=1

ωβ
i (k

(i)) +

j
∑

j=1

ψj(f
(j)) (3.11)

The overall constraint violation function proves to be very useful for the

sensor optimisation frameworks because it can be used as an indicator of

whether a closed-loop configuration with the corresponding controller violates

the preset constraints or not. Particularly, where we have a population of

50 individuals that represent the optimised parameters of 50 controllers, the

overall constraint violation can easily be used as tool to select the controllers

that do not violate any of the constraints. This concept is presented in

Chapter 5.

3.5 Non-dominated Sorting Genetic Algorithm

II

3.5.1 NSGA-II principle

In this section a description of theNon-dominated SortingGeneticAlgorithm

II introduced by Deb et al. [2002] is presented. The first step in the overall

evolutionary procedure is to create an initial parent population (Pt0) of
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size 2Np. The population is sorted according to the non-domination of the

individuals. Each individual is assigned a fitness (or rank) equal to its non-

domination level (1 is the best level, 2 is the next-best level and so on). In

fact the solutions with rank one are spread on the first front with rank 2

to the second front and the rest accordingly. After non-domination sorting,

the crowding distance is assigned to each individual. The next step is to

create the offspring population Qt0 of size Np from the parent population Pt0

using genetic operators including crossover, mutation and binary tournament

selection. After the initialisation the algorithm continues to produce the next

generation in an iterative way that is described next.

The NSGA-II procedure is illustrated in Fig. 3.3. First the combined

population Rt with size 2Np is created from Pt and Qt (Rt = Pt

⋃

Qt). The

population Rt is sorted according to non-domination. Elitism is ensured

since all previous and current individuals are included in Rt. Once the

non-domination sorting is done, and the crowding distance is assigned the

new population Pt+1 of size Np start filling via binary tournament selection.

The selection is done using the rank and the crowding distance. The

Rejected

Non-dominated
sorting

Crowding
distance
sorting

Pt

Qt

F1

F2

F3F3

Rt

Pt+1

Figure 3.3: Diagram of NSGA-II optimisation procedure (Deb et al. [2002]).

best individuals that belongs to the fronts closer to the Pareto optimum

(F1, F2, ....Fn) starts filling the new parent population (Rt+1). From the

49



3.5. NON-DOMINATED SORTING GENETIC ALGORITHM II

figure it can be seen that the fronts F1 and F2 are fitted into the new parent

population Pt+1 but the solution within F3 front cannot fit all of them. In

this case the individuals with the largest crowding distance are selected to

complete the new parent population. After the creation of the new parent,

the genetic operators crossover and mutation are implemented to create

the next one. This procedure is repeated until the maximum generation

is reached. If all the parameters assigned are correctly selected by the user

then the Pareto optimality is ensure as well as uniform distribution of the

solutions on the optimum Pareto front.

The overall procedure of the NSGA-II given by Deb et al. [2002] is

summarised as follows:

1. Combine parent and offspring population to create Rt = Pt

⋃

Qt

2. Set new population Pt+1 = ∅. Set a counter i = 1. Until |Pt+1|+ |Fi| <
Np, perform Pt+1

⋃

Fi and i=i+1

3. Perform Crowding-sort (Fi <c) procedure and include most widely

spread (Np−|Pt+1|) solutions by using crowding distance values sorted

Fi to PP+1.

4. Create offspring population Qt+1 from Pt+1 by using binary tournament

selection, crossover and mutation operators

Crowding distance

Once the non-dominated sorting is done, the crowding distance is assigned

to each individual. Crowding distance is used by Deb et al. [2002] and the

purpose is to uniformly distribute the solutions on the best Pareto front. The

advantage of this method is that the user defined niches sharing method is

not necessary anymore.

The basic idea is to find the Euclidian distance between each individual

on a front based on their kth objective in the kth dimensional hyperspace. The
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individuals within the boundary are always selected since they have infinity

distance assignment. The technique is summarised as follows:

1. For each front Fi, initialise the distance (di) to be zero.

2. For each objective function φk, sort the individuals in front Fi based

on objective k in ascending order. i.e sort(Fi, k)

3. for k=1,2,3,....,K assign a large distance to the boundary solutions

(dIki = dIki = ∞) and all other solution j = 2 to (l − 1) assign:

dIkj = dIkj +
φ
(Ikj +1)

k − φ
(Ikj −1)

k

φmax
k − φmin

k

(3.12)

where Ij is the solution of the jth member of the sorting list while φmax
k

and φmin
k are the maximum and minimum population values in the k

objective function.

3.5.2 NSGA-II code validation

In this section, two examples are given to test the selected evolutionary

algorithm. Particularly, the evolutionary algorithm, is tested under a disjoint

Pareto Optimum (KUR test function) and under constraints assignment

(CONSTR test function). In the later problem, the static penalty approach

is used as explained in Section 3.4.3.

The first problem is a non-convex problem named KUR with two objective

functions to be minimised as follows:

φ1(x) =

n−1
∑

i=1

(−10e−0.2
√

x2
i+x2

i+1) (3.13)

φ2(x) =
n
∑

i=1

(|xi|0.8 + 5sinx3i ) (3.14)

There are three variables (x1, x2, x3) varying randomly in a search space

between -5 and +5. The parameters assigned to the genetic algorithms are
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listed in Table 3.1. Generally, to have a good mixing of genetic material the

crossover probability has to be high (pc = 0.9) and the mutation probability

is pm = 1/nr where nr is the number of variables. For real-coded NSGA-

II the distribution indexes for crossover and mutation operators as 20 and

20 respectively. The aforementioned parameters are used throughout this

thesis for the simulations. For the KUR problem, the overall evolutionary

Table 3.1: NSGA-II parameters for KUR and CONSTR test functions

KUR CONSTR
Maximum generation 500 500

Population size 300 50
Crossover probability 0.9 0.9
Mutation probability 1/3 1/2

SBX parameter 20 20
Mutation parameter 20 20

procedure is depicted in Fig. 3.4. The maximum generation limit is set to

500 and the population to 300. Clearly, it can be seen that from the first 5

generations (Fig. 3.4(a)), the solutions are spread in the whole Pareto while

on the 50th (Fig. 3.4(b)) generation the optimum Pareto front is almost fully

recovered showing that the convergence of the population is fast. Until the

100th generation (Fig. 3.4(c)) the Pareto optimum is recovered and maintains

its shape until the maximum generation is reached (Fig. 3.4(f)). This non-

convex problem, has a disjoint Pareto optimum which is fully recovered

from the selected algorithm. Running the code for a few trials, the results

may slightly differ from each other but generally this is the final shape that

appears.

The second case is the CONSTR problem, where two objective functions

are to be minimised subject to the soft constraints g1(x) ≥ 6 and g2(x) ≥ 1.
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The problem is formulated as follows

φ1(x) = x1 (3.15)

φ2(x) = (1 + x2)/x1 (3.16)

subject to

g1(x) = x2 + 9x1 ≥ 6 (3.17)

g2(x) = −x2 + 9x1 ≥ 1 (3.18)

where, two variables are considered with a search space taken as x1 ∈ [0.1, 1]

and x2 ∈ [0, 5] while the two constraints define the feasible and the infeasible

areas. The static penalty approach is taken into account with penalty

parameter values equal to Rf1 = 1 and Rf2 = 10 for the φ1 and φ2

respectively. The evolution is done within 500 generations and the population

consists of 50 individuals (Table 3.1). The overall results are illustrated in

Fig. 3.5. Clearly, the fast convergence algorithm, spread the solutions on

the Pareto front the first 5 generations (Fig. 3.5(a)) while the optimum

Pareto front is almost recovered in 20th generation Fig. 3.5(b). Until the

50th generation (Fig. 3.5(c)) the optimum Pareto front is fully recovered and

retains the same shape until the maximum generation is reached (Fig. 3.5(f)).

Clearly, the static penalty approach is simple and straight forward to use

and it proves to be very successful if the penalty parameter is adjusted

appropriately. In real applications (i.e control system optimisation) where

the optimum Pareto front is not known a few trials may needed in order to

assign the penalty parameters.
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Figure 3.4: KUR problem generations evolution for 500 generations.
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Figure 3.5: CONSTR problem generations evolution for 500 generations.
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3.6 Summary

In this chapter, a survey on the different possible meta-heuristic approaches

that are used within this thesis is given. Evolutionary algorithms are

widely used in control system design and as Fleming and Purshouse [2002]

says ”The evolutionary algorithm (EA) is a robust search and optimisation

methodology that is able to cope with ill-behaved problem domains, exhibiting

attributes such as multimodality, discontinuity, time-variance, randomness,

and noise. It permits a remarkable level of flexibility with regard to

performance assessment and design specification.” In this thesis, the recently

developed genetic algorithm NSGA-II that is a class of the Evolutionary

Algorithms is used and proves to be very powerful optimisation tool for

control systems design where multiple of objectives and constraints have to

be considered.

The performance of the selected GA is illustrated in two examples where

the elitism of the best population is retailed in both KUR and CONSTR

examples during the evolution of the generations. In the KUR problem

the disjoint optimum Pareto front between the two objective functions is

successfully recovered. The second problem involves constraint-handling

techniques. The minimisation of two objective functions subject to two

constraints is considered. The optimum Pareto front is fully recovered using

the static Penalty function approach that is used to reject the infeasible

solutions and it proves to work effectively with the proposed NSGA-II. The

proposed genetic algorithm performs well however, the efficacy of NSGA-II

is shown in next chapter where two classical control strategies are used to

present the baseline of the optimised sensor configurations concept.
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Chapter 4

MAGnetic LEVitated

(MAGLEV) suspension model

4.1 Introduction

The 1DOF (degree-of-freedom) model represents the quarter of a typical

MAGLEV vehicle. In this chapter the single degree of freedom model of an

Electromagnetic (EMS) suspension system is analysed. Track fundamentals

as well as closed-loop response objectives and constraints are given. The

model is non-linear therefore in order to design linear controllers, linearisation

of the suspension model is required. The state space form of the linear model

includes both control inputs and disturbance matrices.

4.2 Single degree of freedom model (quarter

car model)

The basic quarter car model of the MAGLEV vehicle is shown in Fig. 4.1.

As it can be seen from the front view in Fig. 4.1(a) the MAGLEV suspension

consists of an electromagnet with a ferromagnetic core and a coil of Nc turns

which is attracted to the rail that is made out of ferromagnetic material.

The carriage mass (Ms) is attached on the electromagnet, with zt the rail’s

position and z the electromagnet’s position.
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4.2. SINGLE DEGREE OF FREEDOM MODEL (QUARTER CAR MODEL)

(a) Front view

(b) Side View

Figure 4.1: Quarter car suspension diagram.
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The air gap (zt − z) is to be maintained close to the operating condition

required. Note that this is a single-stage electro-magnetic suspension that

has been shown to be suitable for low speed vehicle (Goodall [2004]), where

other MAGLEV systems, particularly those for high speed, have a separate

conventional secondary suspension, for example using air spring to give

good ride quality. The Tansrapid is the a high speed train that uses such

technology as described in Abuzeid et al. [2006]. In the motion diagram

vertically downwards is taken as positive. Four important variables in an

electromagnet are force F, flux density B, air gap G and the coil current I.

Their relationships are given by Goodall [2008] and Goodall [1985] and

they are presented in Fig. 4.2. As it can be seen from the graphs, the

relationships between the variables show that the system is non-linear but

the nonlinearities are considered as ’soft’ because:

1. There are no hard nonlinearities present such as discontinuities.

2. The variations of the variables around the operating point of the air

gap are relative small.

current air gap flux density

flu
x 

de
ns

ity

flu
x 

de
ns

ity

fo
rc

e

B ∝ I B ∝ I
G F ∝ B2

Bo

Bo

Bo

Io Go

Fo

Figure 4.2: Relationship between the key variables describing the magnet.
The straight lines show the theoretical relationships and the broken lines
indicate the effects of magnetic saturation in the magnet core.

The assessment of the ’softness’ of the nonlinearities is subjective, but the
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experience of most magnetic suspension designers is that the system is soft

enough to linearise and this allows the successful application of linear analysis

and linear control strategies as it is implemented in this thesis. Nevertheless,

to optimise the performance, the controllers are tuned for the non-linear

model.

The flux density is given by

B = Kb
I

G
(4.1)

and the Force is

F = KfB
2 ⇒ F = Kf

(

I

G

)2

(4.2)

The equation of motion from Newton’s second law is

Ms
d2Z

dt2
=Msg − F (4.3)

and the electrical circuit involved from the electromagnet’s coil is

Vcoil = IRc + Lc
dI

dt
+NcAp

dB

dt
(4.4)

From (4.3) and (4.4) the Simulink model is builded in Fig. 4.3. The

non-linear model of the MAGLEV suspension includes the derivative term

s which causes numerical errors resulting to false results. The derivative

term s is removed and the modified non-linear model is discussed in the next

section.

4.3 Modified non-linear model for the MA-

GLEV suspension

First substitute force equation (4.2) into motion equation (4.3)

d2Z

dt
= g − Kf

Ms

I2

G2
(4.5)
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Figure 4.3: Non-linear model of the MAGLEV suspension.
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Then, substitute the flux equation (4.1) into the input voltage equation (4.4)

and rearrange as follows

Lc
dI

dt
= Vcoil − IRc −NcApKb

d( I
G
)

dt
(4.6)

following the quotient rule

Lc
dI

dt
= Vcoil − IRc −NcApKb

(

GdI
dt
− I dG

dt

G2

)

(4.7)

⇒

Lc
dI

dt
= Vcoil − IRc −

NcApKb

G

dI

dt
+
NcApKbI

G2

dG

dt
(4.8)

⇒

NcApKb

G

dI

dt
+ Lc

dI

dt
= Vcoil − IRc +

NcApKbI

G2

dG

dt
(4.9)

⇒

dI

dt
=
Vcoil − IRc +

NcApKbI
G2

dG
dt

NcApKb

G
+ Lc

(4.10)

We also consider that

dG

dt
=
dzt
dt

− dZ

dt
(4.11)

from (4.1),(4.5), (4.10), and (4.11) the modified non-linear model of the

MAGLEV suspension is illustrated in Fig. 4.4.

4.4 MAGLEV suspension linearisation

The linearisation of the MAGLEV suspension is based on the small perturba-

tions of the variables around the operating points. The following definitions

are used in which the lower case letters defines a small variation around the
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4.4. MAGLEV SUSPENSION LINEARISATION

operating point and the subscript ’o’ the refers the operating condition.

B = Bo + b (4.12)

F = Fo + f (4.13)

I = Io + i (4.14)

G = Go + (zt − z) (4.15)

Vcoil = Vo + ucoil (4.16)

We also consider the variation around nominal value of the mass position Z

Z = Zo + z (4.17)

First substitute (4.2) into (4.3)

Ms
d2Z

dt2
=Msg −Kf

I2

G2
(4.18)

and (4.14), (4.15) and (4.17) into (4.18)

Ms
d2Z

dt2
=Msg −Kf

I2

G2
⇒ Ms

d2(Zo + z)

dt2
=Msg −Kf

(Io + i)2

(Go + (zt − z))2

(4.19)

at the steady state (operating point) d2Zo

dt2
= 0 hence,

Ms
d2z

dt2
=Msg −Kf

(Io + i)2

(Go + (zt − z))2
(4.20)

⇒

Ms
d2z

dt2
=Msg −Kf

I2o
G2

o

(

1 + i
Io

)2

(

1 + (zt−z)
Go

)2 (4.21)

Note:
(

1 +
i

Io

)2

=

(

1 + 2
i

Io
+
i2

I2o

)

≈
(

1 + 2
i

Io

)
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and therefore, (4.21) is simplified to

Ms
d2z

dt2
=Msg −Kf

I2o
G2

o

(

1 + 2 i
Io

)

(

1 + 2 (zt−z)
Go

) (4.22)

the next step is to make denominator equal to 1

Ms
d2z

dt2
=Msg −Kf

I2o
G2

o

(

1 + 2 i
Io

)(

1− 2 (zt−z)
Go

)

(

1 + 2 (zt−z)
Go

)(

1− 2 (zt−z)
Go

) (4.23)

Note:

(

1 + 2
(zt − z)

Go

)(

1− 2
(zt − z)

Go

)

= 1−2
(zt − z)

Go
+2

(zt − z)

Go
−4

(zt − z)2

G2
o

≈ 1

hence (4.23) is simplified

Ms
d2z

dt2
=Msg −Kf

I2o
G2

o

(

1 + 2
i

Io
− 2

(zt − z)

Go
− 4

i(zt − z)

IoGo

)

(4.24)

⇒
Ms

d2z

dt2
=Msg −Kf

I2o
G2

o

− 2Kf
Io
G2

o

i+ 2Kf
I2o
G3

o

(zt − z) (4.25)

we also know that at operating point,d
2Z
dt2

= 0 and therefore from (4.3) the

operating force is Fo =Msg.

Substitute, (4.2) into (4.25)

Ms
d2z

dt2
= −2Kf

Io
G2

o

i+ 2Kf
I2o
G3

o

(zt − z) (4.26)

Next, the input voltage equation (4.4) is linearised. First the flux density

term dB
dt

is linearised. Substitute (4.12), (4.14) and (4.15) into the flux density

equation (4.1):

Bo + b = Kb
Io + i

Go + (zt − z)
(4.27)
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⇒

Bo + b = Kb
Io
Go

(

1 + i
Io

)

(

1 + (zt−z)
Go

) (4.28)

Bo + b = Kb
Io
Go

(

1 + i
Io

)(

1− (zt−z)
Go

)

(

1 + (zt−z)
Go

)(

1− (zt−z)
Go

) (4.29)

Note:
(

1 +
(zt − z)

Go

)(

1− (zt − z)

Go

)

≈ 1 (4.30)

and the equation for the small variations around the nominal flux density is

given as

b ≈ Kb

Go

i− KbIo
G2

o

(zt − z) (4.31)

And the derivative term becomes

db

dt
=
Kb

Go

di

dt
− KbIo

G2
o

d(zt − z)

dt
(4.32)

Now, substitute (4.32) into (4.4) and the linearised voltage equation is

Vo + ucoil = IoRc +Rci+

(

Lc +
KbNcAp

Go

)

di

dt
− KbNcApIo

G2
o

d(zt − z)

dt
(4.33)

⇒
ucoil = Rci+

(

L+
KbNcAp

Go

)

di

dt
− KbNcApIo

G2
o

d(zt − z)

dt
(4.34)

⇒

ucoil = Rci+

(

Lc +
KbNcAp

Go

)

di

dt
− KbNcApIo

G2
o

dzt
dt

+
KbNcApIo

G2
o

dz

dt
(4.35)

⇒

di

dt
= − Rci

Lc +
KbNcAp

Go

+
KbNcApIo

G2
o

(

Lc +
KbNcAp

Go

)

dzt
dt

−

KbNcApIo

G2
o(Lc +

KbNcAp

Go
)

dz

dt
+

ucoil

Lc +
KbNcAp

Go

(4.36)
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The derivative of the air gap is also given as

d(zt − z)

dt
=
dzt
dt

− dz

dt
(4.37)

from the linearised equations (4.36), (4.37) and (4.26) the states are defined

as x = [i ż (zt − z)] and the state space form of the linearised MAGLEV

suspension is given as







di
dt
d2z
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− KbNcApIo

G2
o

(

Lc+
KbNcAp

Go

) 0

−2Kf
Io
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0 2Kf
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(4.38)

and the output equation is given as
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Where the output matrix C corresponds to the following 5 measurements
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4.5. TOTAL NUMBER OF FEASIBLE SENSOR SETS

4.5 Total number of feasible sensor sets

The sensor combinations available depends on the number of the output

matrix C in (4.39). The total number of sensor combinations (or rows of

sensor sets) is easily calculated from Ns = 2ns − 1 where, Ns is the total

number of all feasible sensor sets and ns the number of the total sensors that

can be used. Table 4.1 tabulates the available sensor sets with 1,2,3,4 and 5

sensors that results to a total of 31 sensor sets.

Table 4.1: Total number of feasible sensor sets for the 1DOF MAGLEV
suspension.

Number of Number of feasible
measurements available sensor sets

With 1 Sensor 5
With 2 Sensors 10
With 3 Sensors 10
With 4 Sensors 5
With 5 Sensors 1

Total 31

4.6 Track fundamentals and disturbances to

the suspension

The intended variations in the position of the track have to be followed by

the MAGLEV suspension while the unintentional irregularities in the track

position have to be rejected. The first are taken as deterministic disturbance

while the latter are considered as stochastic disturbance to the suspension.

The weight of the vehicle is considered in the modelling while the load can

be simulated as a force disturbance in the vertical direction.
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4.6. TRACK FUNDAMENTALS AND DISTURBANCES TO THE SUSPENSION

4.6.1 Deterministic disturbances

The main deterministic inputs to a suspension for the vertical direction are

the transitions onto track gradients. In this work, the deterministic input

components utilised are shown in Fig. 4.5 and represent a gradient of 5% at

a vehicle speed of 15m/s and an allowed acceleration of 0.5m/s2 while the

jerk level is 1m/s3.
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Figure 4.5: Deterministic input to the suspension with a vehicle speed of
15ms−1 and 5% gradient.

4.6.2 Stochastic disturbances

The random input to the MAGLEV suspension represents the inaccuracies

of the laying track, the lack of straightness of the steel rail and the effects

of fixtures. These effects are considered as stochastic disturbances to the

MAGLEV suspension. Two stochastic models of the track behaviour are

presented by Paddison [1995]. Considering the vertical direction, the velocity

variations are quantified by a double-sided power spectrum density (PSD)
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4.6. TRACK FUNDAMENTALS AND DISTURBANCES TO THE SUSPENSION

which in the frequency domain is expressed by

Sżt = πArVv (4.40)

where, Vv is the vehicle speed that in this work is taken as 15m/s and Ar

represents the track roughness that for a typical high quality track is taken as

1× 10−7m. The corresponding (one-sided) autocorrelation function is given

by

R(τ) = 2π2ArVvδ(τ) (4.41)

Stochastic closed-loop response calculations

Closed-loop response from the stochastic inputs are generally quantified by

the Root Mean Square. The ride quality is generally quantified by the

Root Mean Square (RMS) of the vertical acceleration experienced by the

passengers when the vehicle is excited by the rail’s random behaviour due

to roughness and misalignments. For the ride quality assessment or the root

mean square values of the MAGLEV outputs three methods are encountered:� Frequency response analysis� Covariance analysis� Time history

All approaches can be used for linearised systems but only the last one can

be used for non-linear systems. Since the simulations take into account the

non-linear model only the time history method is presented here. The three

methods are described by Zolotas [2002] but the time history method that is

used in thesis is described next.

Calculating the RMS values of the desired outputs (vertical acceleration

z̈rms, driving signal (ucoilrms), air gap (zt − z)rms, etc.) via time history data

requires an extra simulation for each evaluation. This increases the time for

the objective functions to be evaluated and consequently the overall evolution

procedure computational time is increased. This cannot be avoided because
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4.6. TRACK FUNDAMENTALS AND DISTURBANCES TO THE SUSPENSION

neither the frequency response nor covariance analysis can be used (that

are much faster) since they work with the linear time invariant state space

models only.

The stochastic track profile can be produced since the velocity variation

of the track is known and simulate the stochastic closed-loop response of the

MAGLEV suspension in MATLAB. The data from the outputs that can be

saved represent the time history results. The results can be used to calculate

the R.M.S values directly or a ’Fast Fourier Transform’ can be performed to

extract the frequency information of the signals (system resonances).

The root mean square value for a desired output is defined as

yrms =
√

E[y2(t)] =

√

ȳ2 =

√

lim
T−→∞

1

T

∫ T

0

y2dt (4.42)

or it can be approximated as

yrms ≈

√

√

√

√

1

n

n
∑

i=1

y2i (4.43)

where yi is the time history data of the signal, yrms is the rms value

of the signal and n is the number of samples in the data collected. The

accuracy of the result depends on the number of samples taken from the

simulation. Theoretically to have the same result as in the continues time

case, the number of samples should be infinite within the same execution

time. The results are more precise as the time goes to infinity (T −→ ∞).

Therefore, for accurate results a sufficiently long track should be selected

together with an adequate number of sample points should be used to recover

precise information of the signal frequency content (i.e improve resolution).
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4.7. MAGLEV SUSPENSION DESIGN REQUIREMENTS

4.6.3 Force Inputs

The forces that can possibly act as disturbance on the suspension are the

mass variation of the load and external disturbances such as braking and

aerodynamic effects. For low speed vehicle the mass of a small vehicle can

vary up to 40% from fully laden to unladen. Another factor is the speed of

the mass variation. The load may change more rapidly as the passengers

can disembark much faster than expected. The suspension should be robust

enough to accommodate rapid mass variations. Throughout this thesis the

mass is expected to change by 25% of the total mass of the vehicle within

10s

4.7 MAGLEV suspension design requirements

The design requirements for an electromagnetic suspension (EMS) suspension

depend on the type of the train and the speed. The dynamic characteristics of

a MAGLEV suspension are described by Goodall [2004] as well as in Goodall

[1994] that is focused upon the low speed Birmingham Airport Maglev vehicle

EMS suspension requirements which operated successfully in the UK for more

than 10 years.

The ride quality requirements for a transport system are quantified in

terms of the RMS acceleration experienced by the passengers. For low speed

systems with relative short journeys the acceptable level of RMS vertical

acceleration can be taken as 5%′g′ which means 0.5m/s2.

For a MAGLEV vehicle in which the air gap size is around 15mm the

RMS variations in air gap should be restricted to 4 or 5mm. The air gap

changes which occur at deterministic features must be restricted in either way

and a practical limit is 7.5mm (half the air gap) such that there is clearance

to accommodate random changes in the air gap.

Fundamentally there is a trade off between the deterministic response and

72



4.7. MAGLEV SUSPENSION DESIGN REQUIREMENTS

the stochastic response (ride quality) of the MAGLEV suspension. In this

case, the deterministic characteristics are limited to the maximum standard

values while stochastic characteristics have been set as objectives to be

minimised i.e minimise the vertical acceleration (improve ride) quality and

the RMS current variations. These objectives can the be formally written as

φs1 = irms, φs2 = z̈rms (4.44)

Table 4.2 tabulates the design limitations for the deterministic as well

as for the stochastic features. Note that the stochastic and deterministic

inputs to the suspension are treated separately in the optimisation framework

throughout this thesis. The steady state error for the deterministic response

should return to zero within 3s and the input voltage to the magnet’s coil

is restricted to 300V (3 × Rc × Io) for both deterministic and stochastic

responses.

Table 4.2: Constraints for the Electro-magnetic suspension performance.

EMS limitations Value
Stochastic response

RMS acceleration(≃ 5%′g′),(z̈rms) ≤ 0.5ms−2

RMS air gap variation, ((zt − z)rms) ≤ 5mm
RMS control effort, (ucoilrms) ≤ 300V

Deterministic response
Maximum air gap deviation,((zt − z)p) ≤ 7.5mm

Control effort,(ucoilp) ≤ 300V (3I0Rc)
Settling time, (ts) ≤ 3s

Air gap Steady state error, ((zt − z)ess) = 0

The typical quarter car vehicle of 1000kg is considered and it requires a

nominal force of Fo = Ms × g where Ms is the Mass of the vehicle and g is

the gravity acceleration constant which is 9.81m/s2. The nominal air gap

(Go) is at 15mm to accommodate the track roughness while the operating

flux density (Bo) in the air gap is 1T. The electromagnet design of MAGLEV

vehicles is explained in more details by Goodall [1985]. Moreover, the coil
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4.8. SUMMARY

is of Ns = 2000 turns with coil resistance Rc = 10Ω and coil’s inductance

Lc = 0.1H . Furthermore, the nominal current (Io) is at 10A and the pole

face area (Ap) is 0.01m
2. The parameters of the electromagnetic suspension

are listed on Table 4.3

Table 4.3: Parameters of the Electro-magnetic suspension

Parameter Value Unit
Ms 1000 kg
Go 0.015 m
Bo 1 T
Io 10 A
Fo 9810 N
Rc 10 Ω
Lc 0.1 H
Nc 2000 turns
Ap 0.01 m2

4.8 Summary

In this chapter the MAGLEV suspension non-linear model is presented.

The MAGLEV suspension is a well known practical problem. In fact, the

suspension is non-linear, unstable, safety-critical system with non-trivial

requirements. There are 31 feasible sensor sets and therefore can serve as a

good example for the optimised sensor configuration frameworks. The model

is linearised and therefore linear controllers can be designed and optimally

tuned via genetic algorithms in order to optimise the closed-loop performance

with the non-linear model. Note that throughout this thesis the closed-loop

time response results which are depicted on the graphs refer to the operating

point of the suspension. i.e. for the air gap measurement, zero represents

the operating air gap which is 15mm .
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Chapter 5

Optimised sensor configurations

via classical control approaches

5.1 Introduction

Classical control strategies are used to achieve desired closed-loop optimum

performance via the non-dominated sorting genetic algorithm (NSGA-II)

presented in Chapter 3. The benefit of using inner loop control with classical

control strategies is advantageous in controlling a MAGLEV suspension as

indicated by Goodall [2000]. The problem is posed in a multi-objective

constrained optimisation framework where the performance of the MAGLEV

suspension is optimised subject to a number of constraints defined from

maximum allowed working boundaries. Two cases are compared: (i) with

the flux measurement for the inner loop and the air gap in the outer loop,

(ii) current for inner loop and air gap for outer.

Although classical control structures for maglev suspensions have been

studied previously, the purpose of this chapter is twofold. First is to

illustrate the efficacy of using GA technique (namely NSGA-II) for tuning

the controllers in a multiobjective framework for the aforementioned classical

structures and secondly to use these as a baseline for further investigation

via modern control and fault tolerant techniques.
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5.2. CLASSICAL CONTROLLER OPTIMISATION

5.2 Classical controller optimisation

The control strategies that are compared are illustrated in Fig. 5.2 and

in Fig. 5.3. One is the air gap(outer)/flux(inner) and the other is air

gap/current with the latter having poor robustness properties as it will

be proved in the next sections. The configuration in Fig. 5.2 consists of

an outer feedback loop with the air gap measurement and the inner loop

with the flux density measurement. The same approach applies for the air

gap(outer)/current(inner) case by replacing flux with current measurement as

depicted in Fig. 5.3. The controller design is based upon the linearised model

of the suspension while to achieve the required closed-loop time response

from deterministic and stochastic disturbances the non-linear model of the

MAGLEV suspension is used. The block diagram in Fig. 5.1 illustrates the

concept of controlling a non-linear model via linearly designed controller

based on the linearisation of the non-linear model around a operating point.

The small perturbations δy around the operating point are derived from the

nominal values and fed to the controller which gives the driving signal δu. In

this way the linerised controller is able to control the non-linear MAGLEV

suspension having in mind that the non-linearities have to be ’soft’. More

details about controlling non-linear systems via linearised controllers are

given by Friedland [1996].

Non-linear
MAGLEV

model
+

Nominal
Values

-+

+

K(s)

δu δy

Figure 5.1: Control of the non-linear MAGLEV suspension using linear
controller.
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żt

(z
t
−
z)

Figure 5.2: Classical controller implementation with flux inner loop feedback

PIPA -
+

Non-linear
MAGLEV

-
+

+
-

++

current

air gap

Go

G

ucoil
Vcoil

Vo

żt
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5.2. CLASSICAL CONTROLLER OPTIMISATION

To achieve sufficient robustness properties the inner loop bandwidth is

required to be more than 50Hz (Goodall [2000]) and in this case its been

set within 50Hz− 100Hz. This may be achieved via a Proportional-Integral

(PI) controller with a gain Gi and a time constant τi as given by (5.1).

PI = Gi
τis+ 1

τis
(5.1)

The outer loop with the air gap measurement is set to be less than

20Hz. In fact, a lower outer loop bandwidth can be achieved with the

flux measurement at the inner loop but this will be tuned from the genetic

algorithm if necessary. The outer loop bandwidth is adjusted by tuning the

Phase Advance (PA) controller in (5.2) with a gain of Go, phase advance

ratio k and time constant τo. The phase advance controller in (5.2) is used

to provide adequate phase margin in the range of 35o − 45o.

PA = Go
kτos+ 1

τos+ 1
(5.2)

Considering the performance requirements described in Section 4.7 as

well as the robustness properties discussed here, clearly pose a multiobjective

problem that aims to improve performance by minimising both objectives in

(5.3) subject to the constraints listed in Table 5.1. The constraints combine

design requirements from frequency method design and closed-loop time

responses from both deterministic and stochastic track profiles.

φs1 = irms, φs2 = z̈rms (5.3)

Firstly, the parameters tuning for the air gap-flux control configuration

is performed. To achieve the required performance, the static penalty

function approach is used here as described in Section 3.4.1. Figure 5.4

illustrates the overall evolution which is done within 500 generations with

70 chromosomes in the population. Note that each star (∗) on the graph
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5.2. CLASSICAL CONTROLLER OPTIMISATION

Table 5.1: Suspension system constraints for the optimisation of the classical
strategies.

Constrains Value
g1 RMS acceleration(≃ 5%′g′),(z̈rms) ≤ 0.5ms−2

g2 RMS air-gap variation, ((zt − z)rms) ≤ 5mm
g3 RMS input voltage,(urms), ≤ 300V (3IoRo)
g4 Max air-gap deviation (det),((zt − z)p) ≤ 7.5mm
g5 Max input voltage (det),(up) ≤ 300V (3IoRo)
g6 Settling time, (ts) ≤ 3s
g7 Phase margin, (PM) ≤ 45o

g8 Phase margin, (PM) ≥ 35o

g9 Inner bandwidth (fbin) ≤ 100Hz
g10 Inner bandwidth (fbin) ≥ 50Hz
g11 Outer bandwidth (fbout) ≤ 20Hz
h1 Steady state, (ess) = 0

represents a controller with the corresponding optimum parameters for the

current generation. As it can be seen from Fig. 5.4(a), the first generations

have scattered solutions within the search space but the convergence of the

population to the solution area is obvious. As the generations evolve solutions

start creating a Pareto front (Fig. 5.4(b)) from the 20th generation while

until the maximum generation (500th) the optimum Pareto front is recovered

(Fig. 5.4(f)). As it can be seen from Fig. 5.4(f) the final generation represents

the optimum Pareto front of controllers that is evenly spread. The vertical

acceleration (ride quality) (z̈) is limited to 0.5m/s2 while the current for

the stochastic track profile remains at around 1Arms. Figure 5.5 shows the

air-gap(outer)/current(inner) evolution process that is tuned using the same

NSGA-II parameters. The evolution process is similar but as it can be seen

from the 500th generation, vertical acceleration constraint is violated.
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Figure 5.4: Evolution process for the air-gap(outer)/flux(inner) strategy via
NSGA-II.
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Figure 5.5: Evolution process for the air-gap(outer)/current(inner) strategy
via NSGA-II.
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Comparing the two configurations the optimum Pareto front of the

controllers for each configuration is depicted in Fig. 5.6 where the the

Pareto-optimality is illustrated between the ride quality (z̈rms) and the

RMS coil current (irms) for the two controller configurations, i.e the air-

gap(outer)/flux(inner) ((zt − z)/b) and the air-gap(outer)/current(inner)

((zz − z)/i) case. The dark dots correspond to the optimum Pareto front

of controllers for air-gap(outer)/current(inner) ((zt − z)/i) configuration

while the white dots the air-gap(outer)/flux(inner) ((zt−z)/b) configuration.
Clearly, in both cases there is a trade-off between the ride quality and the

input current which is successfully recovered from the NSGA-II. It can be
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Figure 5.6: Optimum Pareto front of controllers for the two classical control
strategies.

seen that a set of controllers can be selected that satisfy all constraints

for the former case but not for the latter (more complex controllers are

necessary for this case). Furthermore, the comparisons between the two

sensor configurations is detailed on Table 5.2. As the results indicate for the
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5.2. CLASSICAL CONTROLLER OPTIMISATION

(zt − z)/i configuration the vertical acceleration limit is violated as well as

the phase margin limitation. Clearly, with the air-gap/flux configuration an

optimised performance has been achieved satisfying all closed-loop response

requirements.

The resulted air-gap deflections and the input voltage for the determin-

istic profile response are depicted in Fig. 5.7. i.e from Fig. 5.7(a) the air

gap deflection is limited to a maximum value of 7.5mm, the settling time is

below 3s and the steady state error is zero. Moreover, Fig. 5.7(b) shows the

corresponding input voltage deflection which is constrained to a maximum

value of about 55V .

Table 5.2: Classical control - constraints values for each design.

Constraints Assigned (zt − z)/b (zt − z)/i Units
values

RMS acceleration, (z̈rms) ≤ 0.5 0.26-0.47 0.58-0.65 ms−2

RMS Air Gap,((zt − z)rms) ≤ 5 1.26-1.53 1.4-1.7 mm
RMS input voltage, (ucoilrms) ≤ 300 32-108 63-80 V
Air gap peak,(zt − z)p ≤ 7.5 5-7.5 2.5-2.6 mm
Input voltage, (ucoilp) ≤ 300V 37-53 ≈ 20 V
Settling time, (ts) ≤ 3

√ √
s

Steady state error,(ess) = 0
√ √

mm
Phase margin, (PM) 35o − 45o 35o − 45o 3.3-5.5
Outer bandwidth, (fbout) ≤ 10 2.9-3.2 ≈ 4 Hz
Inner bandwidth, (fbin) 50− 100 70-100 ≈ 100 Hz

83



5.2. CLASSICAL CONTROLLER OPTIMISATION

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

8
x 10

−3

Time − s

A
ir 

ga
p 

−
 m

(a) Air gap deviation

0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

60

Time − s

In
pu

t v
ol

ta
ge

 −
 V

(b) Input voltage deviation

Figure 5.7: Air gap and input voltage deviations of the 70 controllers for air
gap/flux measurements.
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5.3 Controller selection criterion

The process of selecting a controller with desired closed-loop characteristics

is rather simplified in this case where we have only two sensor configurations.

From Table 5.2 it can be seen that the (zt − z)/i configuration violates two

constraints therefore (zt − z)/b sensor configuration is better to use. The

problem becomes more complex when a large number of sensor sets have to

be optimised using a specific modern control strategy. Particularly, if the

feasible sensor sets number is large then a large number of controllers to

choose from appears at the end of the sensor optimisation framework. In

fact, this is a function of the number of chromosomes in the population and

is given as

Nc = Popnum ×Ns (5.4)

where Nc is the total number of controllers for all sensor sets, Ns is the

number of available sensor sets and Popnum is the number of individuals in

the population. For a system with a large number of sensors the number

of controllers can be equally large and therefore the selection procedure is

not trivial to perform manually (time consuming). The overall constraint

violation function can be used to reject controllers that do not satisfy the

preset constraints as described next.

The overall constraint violation function in (3.8), page 47 and (3.11),

page 48 for the static and dynamic penalty functions respectively is very

useful for controller selection because it reflects the amount or degree of the

constraint violation/s. Particularly, using the last generation of each sensor

set (which represents the Pareto-optimality) a vector can be produced (for

the corresponding sensor set) that contains the overall constraint violation

(Ω) for each sensor set. In fact, for the closed-loop response using a randomly

produced controller Ω is zero if no constraint is violated or is up to a certain

value if there is any constraint(s) violation(s). This can be illustrated with

an example, as follows

Using the (zt − z)/b and (zt − z)/i configurations with the corresponding
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closed-loop response with the optimum Pareto fronts of controllers as

illustrated in Fig. 5.6, the controller that result to the best ride quality (i.e

minimum vertical acceleration), can be selected for each sensor configuration.

The parameters that form the controllers in (5.1) and (5.2) are then taken

as:

Table 5.3: Selected controllers’ parameters from (zt − z)/i and (zt − z)/b.

Gi τi Go τo k
(zt − z)/b 11949V/T 0.0181s 3.547T/m 0.038s 3.92
(zt − z)/i 233V/A 0.023s 790.5A/m 0.0039s 2.781

The resulting constraint values for the suspension closed-loop response

are shown on Table 5.4. For the (zt − z)/b configuration the penalty values

are zero since all constraints are satisfied in contrast to (zt−z)/i that violates
the ride quality as well as the phase margin (PM). Consequently, the overall

constraint violation function (Ω) is zero for (zt−z)/b but 1.152 for (zt−z)/i.
Note that (3.5) and (3.7) in page 47 were used to obtain the penalty values.

The overall constraint violation function (Ω) can clearly serve as a

controller selection criterion in case there is a large number of controllers

exist to choose from.

5.4 The noisy measurements effect and filter-

ing

In any real application sensors add noise to the measured quantities. It is also

possible to increase the noise level on the measured quantity when there is

interference from the surrounding components and therefore good shielding

might be required. Since there is no exact information about the sensor

noise elements, the noise covariance is taken as 1% of the maximum value

of the deterministic response for the corresponding measured quantity. For

the MAGLEV suspension, the noise coming from sensors can be amplified
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Table 5.4: Constraint violations for the selected controllers that result to the
best ride quality.

(zt − z)/b (zt − z)/i
Quantity Actual value Penalty value Actual value Penalty value
z̈rms 0.26ms−2 0 0.65ms−2 0.312

(zt − z)rms 1.5mm 0 1.4mm 0
ucoilrms 32.4V 0 80.1V 0
(zt − z)p 7.48mm 0 2.5mm 0
ucoilp 53.6V 0 19.9V 0
ts 2.37s 0 2.2s 0
ess 10× 10−6m 0 1× 10−6m 0
PM 35o 0 5.57o 0.84
fbout 3.06Hz 0 3.91Hz 0
fbin 98Hz 0 98Hz 0

Ω 0 1.152

by the controllers and appear on the input voltage (at the driving signal

of the suspension). Particularly, if the controllers have high gains then the

amplitude of the noise can be large but the effect on the overall performance

is rather limited if it is kept at a reasonable level. For example, the controller

parameters in Table 5.3 for the (zt − z)/b configuration result to the input

voltage and air gap signals in Fig. 5.8(a) and Fig. 5.8(b) respectively (for the

deterministic response). Due to the fact that the controller is very fast noise

components are shown amplified. However, because of the limited system

bandwidth the effect on the air gap is very small (almost negligible). Note

that the air gap measurement is shown prior to the injected sensor noise for

better resolution.

The effect of the measured noise at the input voltage and the input current

can be seen from Fig. 5.10 (page 90) where the frequency response from the

control input (Vcoil) to the air gap (G) and current (I) is depicted. As

it can be seen the illustrated frequency response is similar to a low pass

filter behaviour with very low cut-off frequency and therefore the noise is
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Figure 5.8: Air gap and input voltage deviations with and without LP filter.

filtered having very limited effect at the outputs (air gap and current) if the

noise level is kept within reasonable amplitude. Nevertheless, in practical

implementations the noise effect has to be taken into account (see Chapter 9).

The solution to limit the noise amplitude at the input voltage for the classical

control design is to insert a low pass filter at the output of the phase advance

controller with a cut-off frequency of 30Hz as illustrated in Fig. 5.9. In

Chapter 9 the LP filter inserted in the loop shows the filtering properties

of the proposed method from the practical point of view although the

optimisation procedure is different from this chapter (different performance

requirements).
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For the sensor optimisation frameworks via modern control techniques as

studied in Chapter 6 and 7 there is no need to use a LP filter because the rms

value of the noise is reduced by taking it into account either as a constraint

i.e.(ucoilnoise
≤ α) or as an extra objective function into the optimisation

frameworks. Note that throughout this thesis and where ucoilnoise
is used an

extra simulation is necessary to take the rms value of the noise on the input

voltage with idle track profile. The input voltage depicted in Fig. 5.8(d)
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Figure 5.9: Flux inner loop feedback implementation with low pass filter.

shows that the noise amplitude is reduced significantly. The new dynamic

system introduced in the closed-loop has affect the performance of the

suspension with minor effects on the overall performance of the suspension

system. There is no constraint violation and this can be verified from the

overall constraint violation function (Ω) which has a very small value of

0.497× 10−3.

Testing for all controllers, the ride quality and the input current are also

affected and the optimum Pareto front of controllers is given in Fig. 5.11 with

white dots. The ride quality of the suspension is limited to 0.4m/s2 while

the required current is increased. All performance constraints are satisfied

with some of them having very small violation that can be neglected.
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5.5 Robustness to load variations

In this section the load variation of the MAGLEV suspension is considered.

The maglev suspension has to support the large mass of the vehicle as well as

the passengers’ weight (load) which can vary up to 40% of the total mass of

vehicle. This is a significant variation of the total mass and the robustness of

the closed-loop response has to be taken into account to ensure performance

and stability for a fully laden or unladen vehicle. For this test assume that

the load variation is up to 25% of the total vehicle mass which means that

the load can varied from 1000kg to 1250kg for a fully unladen and laden

vehicle respectively.

The load variation can be simulated as input disturbance force (Fd) onto

the MAGLEV suspension at the vertical direction and therefore the Newton’s

motion of equation is modified as follows

Ms
d2Z

dt2
=Msg − F + Fd (5.5)

where Fd = msg and ms is the passengers’ mass. In this way, the closed-

loop response is tested for robustness to a mass variation of 250kg. The

assumption is that ms varies from 0− 250kg (0− 2452N) within 10sec with

a ramp form. This simulates the passengers that could move into the vehicle

during the stop in a typical train station as depicted in Fig. 5.12. Initially the

force disturbance is zero and gradually reaches the maximum load of 250kg

at 10sec. After the passengers boarding the MAGLEV suspension is tested

for both deterministic and stochastic responses. Note that the inputs to the

track are injected after 10sec when the load is at maximum and the total

mass is 1250kg.

The closed-loop response of the MAGLEV suspension for the load

variation profile from zero to ten seconds is depicted in Fig. 5.13. Clearly,

the response of the air gap is unacceptable because there is large constraint

violation for the air gap maximum deflection, steady state error as well as

for the settling time.
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Figure 5.12: Load disturbance profile to the MAGLEV suspension.
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Figure 5.13: Closed-loop response of the MAGLEV suspension for 25% load
variation of the total mass of the vehicle without the self-zero integrator.
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Taking into account the low frequency of the load variation a self-zero

integrator can be used on the flux measurement as illustrated in Fig. 5.14 in

order to accommodate the load variations.
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Figure 5.14: Air gap/flux configuration with self-zero integrator.

The self zero integrator (GI) is a second order butterworth filter as

described by Goodall [2000] and is given as follows

GI =
2.209s

2.284s2 + 4.7s+ 4.7
(5.6)

The Bode plot of the self-zero integrator is depicted in Fig. 5.15. The

cut-off frequency is at 1.2rad/s with 0o phase shift. A comparison of the

frequency response from the the air gap (zt − z) to the force input (Fd) is

depicted in Fig. 5.16. As it can be seen the frequency response without

the self-zero integrator (with dotted line) is flat at low frequencies while it

starts dropping at around 10rad/s which explains the closed-loop response

in Fig. 5.13. The straight line is the frequency response using the self-zero

integrator. Although there is amplification at 10rad/s the low frequencies

magnitude becomes very low. This means that the low frequency load

variation should be rejected and this is verified from the closed-loop responses

in Fig. 5.17 and Fig. 5.18.
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In Fig5.17(a) and 5.17(b) the closed-loop responses with deterministic

input are depicted for the air gap (zt − z) and the control voltage ucoil

respectively. As it can be seen from Fig. 5.17(a) the load variation from

1000kg to 1250kg is successfully rejected within about 2sec while the

deterministic response is acceptable as well. The same test is done for the

stochastic response and is illustrated in Fig. 5.18(a) and Fig. 5.18(b). Again

the response is within limits but there is some increment to the current and

the vertical acceleration (irms = 2.27A, z̈rms = 0.41m/s2). Finally it can be

said that the self-zero integrator can be used in order to accommodate the low

frequency changes of the load therefore ensure robustness to low frequency

load variations.

95



5.5. ROBUSTNESS TO LOAD VARIATIONS

0 2 4 6 8 10 12 14 16 18
−8

−6

−4

−2

0

2

4
x 10

−3

A
ir 

ga
p 

−
m

Time −s

(a) Air gap (zt − z) response with deterministic input.
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(b) Input voltage ucoil response with deterministic track profile.

Figure 5.17: Closed-loop response of the MAGLEV suspension using the
self-zero integrator (Deterministic track profile).
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(a) Air gap (zt − z) response with with stochastic input.

0 2 4 6 8 10 12 14 16 18
−80

−60

−40

−20

0

20

40

60

80

100

C
on

tr
ol

 e
ffo

rt
 −

V

Time −s

(b) Coil’s voltage ucoil response with stochastic input.

Figure 5.18: Closed-loop response of the MAGLEV suspension using the
self-zero integrator (Stochastic track profile).
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5.6 Robustness to operating point perturba-

tions

In this section the parametric variations are taken into account for the

MAGLEV suspension. According to the model description in Chapter 4 a

typical MAGLEV suspension has parameter values as listed in Table 5.5. The

electromagnets are designed based on the operating point of the suspension.

Details for design and construction of electromagnets is found in Mansfield

[2007]. Equations (5.7) and (5.8) assist to define the parameters of the

electromagnets according to the nominal mass to be supported. Assuming

that the electromagnet characteristics do not change (i.e Rc, Lc, Nc and Ap)

the perturbation of the operating air gap is considered.

Table 5.5: Perturbed and nominal parameters for the EMS system

Parameter Value Perturbed value Unit
Ms 1000 0 kg
Go 0.015 ±25% m
Bo 1 0 T
Io 10 ±25% A
Fo 9810 0 N
Rc 10 0 Ω
Lc 0.1 0 H
Nc 2000 0 turns
Ap 0.01 0 m2

Although for a safety-critical system the control system design has to be

accurate such that perturbations of the operating point do not happens but

the stability and performance can be tested under such conditions. Assuming

that the mass of the vehicle (Ms) remains the same, nominal flux (Bo)

has to remain the same as well according to (5.7). Therefore, in order to

balance (5.8) the nominal current Io varies as well in a linear way. In this

section ±25% perturbation of the operating air gap is tested under closed-
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loop response to disturbances.

Fo =
B2

oAptotal

2µo
(N) (5.7)

Go =
NcIoµo

2Bo
(5.8)

The air gap variation is assumed to be varied by ±25% around the operating

point which means from 0.0113m to 0.0187m that will cause the operating

current to change from 7.5A to 12.5A. The response of the suspension

to the operating air gap variations are shown in Fig. 5.19 and Fig. 5.20

for the deterministic and stochastic responses respectively. The stability

is maintained for both disturbance inputs while robust performance is

maintained.
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(b) Input voltage responses (ucoil).

Figure 5.19: Deterministic response of the suspension for ±25% perturbation
of operating air gap.
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Figure 5.20: Stochastic response of the suspension for ±25% perturbation of
operating air gap.
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5.7 Summary

Two classical control strategies were studied from a localised sensor optimi-

sation point of view using the non-linear model of the MAGLEV suspension.

The two control configurations are based on inner loop strategies that

take into account not only performance requirements but robustness and

optimisation of the two strategies. Both approaches require that the air

gap measurement is used for the outer loop and for the inner loop either

the flux density (b) or the current (i) is used. The Non-dominated Genetic

Algorithm II successfully recover the optimum Pareto fronts of controllers

for both cases and the results show that using the (zt − z)/b configuration

all the requirements can be satisfied something which is reflected onto the

overall constraint violation. In fact, the penalty function approaches are used

in the NSGA-II in order to achieve the best possible performance subject to

a number of constraints but they can also be used as controller selection

criterion. In the next chapters modern control strategies are implemented

within a systematic frameworks for optimising all possible sensor sets for the

MAGLEV suspension which means that the need to select controllers that

satisfy specific requirements among large number of controller arises. This is

where the overall constraint violation function is useful as well.

The sensor measurements are noisy and this noise appears on the input

voltage of the suspension. In order to reduce the noise level a low pass filter

is used at the output of the phase advance controller. In the next chapters

it will be taken into account within the optimisation process.

The air gap/flux configuration is tested under large load variations.

As the closed-loop response is very sensitive to load variations a self-

zero integrator is used to accommodate the load changes. The particular

sensor configuration has been tested under closed-loop system uncertainties.

Particularly, the optimised controller was tested under ±25% operating air

gap variation and it proves to be robust as both stability and performance

are maintained.
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Chapter 6

Optimised sensor

configurations via LQG control

6.1 Introduction

In this chapter, the optimised sensor configurations systematic framework

using modern control strategies is presented. The systematic framework

combines the Linear Quadratic Gaussian (LQG) control strategies and the

genetic algorithm in order to optimally tune the closed-loop performance for

each feasible sensor set of the MAGLEV suspension. The overall optimisation

process is done in two steps: (i) the state feedback regulator is tuned

to recover the optimum Pareto front of controllers between the multiple

objectives from where the controller which results to the desired closed-loop

response is selected as the ’ideal’ or reference response for the second part.

(ii) The Kalman estimator is optimally tuned for every feasible sensor set

in order to achieve the ’ideal’ closed-loop response from the selected state

feedback gains. At the end of the second part a table with optimised sensor

configurations is given where the selection of the best sensor set is done.
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6.2 Liner Quadratic Gaussian control prelim-

inaries

In this chapter the optimised sensor configurations via the very well

documented LQG method is considered. In fact, such controller design is

based upon the combination of a Linear Quadratic Regulator (LQR) and a

Kalman state estimator. The LQG controller design is performed according

to the separation principle, as described in Skogestad and Postlethwaite

[2005], and depicted in Fig. 6.1. u is the plant control inputs, y is the

plant outputs, w is the process noise and η is the measurement noise. The

state feedback gains (LQR design), −Kr, are appropriately selected in order

to achieve the desirable control properties while the Kalman state estimator

is merged into the loop at the second stage, to provide appropriate state

estimation.

Plant

Kalman
filter

LQG Controller

u y

w η

x̂−Kr

Figure 6.1: LQG design based on the separation theorem (Skogestad and
Postlethwaite [2005]).

The LQG control problem is to find the optimal control u(t) which

minimises the following performance index
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J = E

{

lim
T→∞

∫ T

0

[xTQx+ uTRu]dt

}

(6.1)

6.2.1 Liner Quadratic Regulator basics

Linear Optimal Control is a type of optimal control, using quadratic

performance index, in terms of the control, regulation and/or tracking error

variables.

The majority of the plants that exist are non-linear but they can be

linearised around operating point conditions. Provided that non-linearities

are ’soft’ linear controllers can be used to achieve the desired performance.

LQR control is well documented in the available literature i.e Maciejowski

[1990], Anderson and Moore [1990] and Friedland [1986] but in this thesis a

brief summary is given for completeness.

The standard description of a Linear Time Invariant (LTI) plant is given

by the state space equations (external disturbances or references inputs are

not included)

ẋ = Ax+Bu (6.2)

y = Cx+Du (6.3)

where x is (n× 1), u is (m× 1) and y is (q× 1). The aim is to find a control

law

u = −Krx (6.4)

where Kr is a gain vector, which minimises the following general form

quadratic index

J =

∫ T

0

[xTQx+ uTRu]dτ (6.5)

The weighting matrices Q (state weighting matrix) and R (control input

105



6.2. LINER QUADRATIC GAUSSIAN CONTROL PRELIMINARIES

weighting matrix) must be symmetric (because J is scalar), i.e QT = Q

and RT = R. There is no specific restriction about the form which Q and R

should appear, but in most cases are presented in diagonal form. In case that

the output y is to be regulated (Output regulation which is very popular in

practical engineering applications) then the quadratic performance index is

rearranged as

J =

∫ T

0

[yTQoy + uTRu]dτ (6.6)

where Qo is the output weighting matrix. It is straightforward show that

Q = CTQoC by setting y = Cx for a strictly proper system.

The gain matrix Kr is the solution of the following general form matrix

Riccati differential equation

ATPc + PcA+ Ṗc +Q = PcBR
−1BTPc (6.7)

subject to given A,B,C,Q and R. Restricting ourselves to the time-invariant

case, Pc is constant i.e Ṗc = 0. The Riccati equation is then simplified to the

following algebraic equation

ATPc + PcA+Q− PcBR
−1BTPc = 0 (6.8)

and the solution of the gain matrix is then given by

Kr = R−1BTPc (6.9)

subject to (A,B) being stabilisable, R > 0 (positive definite, for finite control

energy), Q ≥ 0 (positive semi-definite), and that (Q,A) has no unobservable

modes on the imaginary axis.
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6.2.2 P+I control with output regulation for the EMS

system

This section extends the conventional LQR to that of including extra integral

states for disturbance rejection/reference following. This is important for

appropriate air gap regulation in the EMS system application.

The linearised model of the vehicle is described by the state-space

expressions in (6.2) and (6.3) assuming that D = 0. The state vector x

consists of the vehicle states [i (zt − z) (żt − ż)]T and u = [ucoil]. The

plant is subject to constant and known external disturbances at the input

(deterministic and stochastic track behaviour) and also the constant reference

input r which is zero in this case (r = 0).

For disturbance rejection and reference tracking (r = 0), a new state is

introduced that is the integral of the air gap (
∫

(zt − z)). Note that the

air gap is critical to regulate. This approach will produce an optimal P+I

controller (Anderson and Moore [1990]) rather than a proportional state

feedback controller. Therefore, the system is augmented to include
∫

(zt − z)

as a state.
(

ẋ

ẋ′

)

=

(

A 0

C ′ 0

)(

x

x′

)

+

(

B

0

)

u (6.10)

where x′ =
∫

(zt − z) and C ′ is the selection matrix for integral action and

is found from (zt − z) = C ′x. The control law is of the form

u = (Kp Ki)

(

x

x′

)

(6.11)

and including output regulation the quadratic performance index is given as

J =

∫ T

0

[yTQoy + uTRu]dt (6.12)

where y = [z̈ (zt − z)
∫

(zt − z)]T and u = [ucoil]. Qo(3, 3) regulates the
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speed of response
∫

(zt − z) while Qo(1, 1) and Qo(2, 2) regulates the vertical

acceleration and the air gap respectively. The block diagram is depicted in

Fig. 6.2.

The optimal gain is Kr = R−1BTPc with Kr = [Kp Ki], where Pc is the

solution of the following algebraic Riccati equation

ATPc + PcA+ CTQoC − PcBR
−1BTPc = 0 (6.13)

and C matrix is the regulated outputs [z̈ (zt − z)
∫

(zt − z)]T .

+

+ +

Bw

B

w

r = 0

−Kp

−Ki

A

∫

1
s

C

C ′x (zt − z)u

y

ẋ

Figure 6.2: Optimal P+I with output regulation.

6.2.3 Kalman State Estimator basics

A typical linearised process of state space form is given by

ẋ = Ax+Bu+Bww (6.14)

with input and outputs measurements given as

y = Cx+ η (6.15)
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where the process noise (w) and the measurement noise (η) are assumed to

be uncorrelated white noise processes with known constant spectral density

W and V respectively. Their covariances are given by

E{w(t)w(τ)T} = Wδ(t− τ)

E{η(t)η(τ)T} = V δ(t− τ)

E{w(t)η(τ)T} = 0

E{η(t)w(τ)T} = 0 (6.16)

where E defines the expectation operator and δ(t− τ) is the delta function.

The state space form of the linear Kalman estimator is expressed as

˙̂x = Ax̂+Bu+KLQG(y − ŷ)
(ŷ=Cx̂)
= Ax̂+Bu+KLQG(y − Cx̂)(6.17)

ŷ = Cx̂ (6.18)

where KLQG is the optimally chosen observer gain matrix, minimising E{[x−
x̂]T [x− x̂]} and is given by

KLQG = PfC
TV −1 (6.19)

Pf is a unique positive semi-definite matrix, Pf = P T
f ≥ 0 of the algebraic

Riccati equation

PfA
T + APf − PfC

TV −1CPf +BwWBT
w = 0 (6.20)

subject to (C,A) being detectable, V > 0, W ≥ 0 and (A,BwWBT
w) has no

uncontrollable modes on the imaginary axis. Thus the V and W matrices

tune the Kalman filter so that E{[x− x̂]T [x− x̂]} is minimised.
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6.3 Sensor optimisation systematic frame-

work via LQG control

The theoretical framework developed for the sensor optimisation via LQG

is shown in Fig. 6.3. The flowchart illustrates the sensor optimisation

framework for the MAGLEV suspension. Note that in the LQG framework,

the sensor selection relates to the sensor information fed to the Kalman filter

part. The LQR part relates to the control objectives (’ideal’ closed-loop

response).

The initialisation of the algorithm starts with the GA parameter as-

signment, where in this case are listed on Table 6.1 for the LQR and

Kalman estimator tuning respectively. The objective functions as well as

the constraints are assigned along with the user’s controller selection criteria

that defines the desired closed-loop response of the MAGLEV suspension.

Table 6.1: NSGA-II parameters for the LQG sensor optimisation framework

Parameter LQR LQG
Maximum generation 500 50

Population size 50 20
Crossover probability 0.9 0.9
Mutation probability 1/nr 1/nr

Next, the state feedback controller is optimally tuned in order to recover

the optimum Pareto front of controllers between the objective functions as

given in (4.44), page 73. Moreover, the desired LQR gains are selected for the

required MAGLEV performance that will be used as the ’ideal’ closed-loop

response for the Kalman estimator tuning. The controller selection is based

on the user’s controller selection criteria fci , fu. After that, the first sensor

set is selected for the optimisation and check the system’s observability. If

the system is not observable the algorithm proceeds to the next sensor set

ignoring the current one. When observability of states is achieved, the NSGA-

II tunes the Kalman state estimator with the aim of estimating the states in
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Initialise
Algorithm

Select a
sensor set

is system
observable?

Tune the Kalman estimator
to estimate the states

more 
sensor sets?

REPORT

Select and save the 
best controller

STOP

Tune LQR

Select controller using
user's controller 
selection criteria

YES

NO

NO

YES

Select the best
sensor set

fci, fu

Figure 6.3: Flowchart of the sensor optimisation systematic framework via
LQG control.
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the best possible way and select and save the best controller. The process is

repeated for all feasible sensor sets and at the end of the optimisation process

the best sensor set can be selected. As it can be seen the optimisation process

is done in two parts. One is the LQR tuning and the second where the sensor

information becomes critical is the Kalman estimator tuning. This work is

published by Michail et al. [2008a] and Michail et al. [2008c] but the controller

tuning is done with the linearised model of the MAGLEV suspension rather

than the non-linear model like in this Chapter. More details for the overall

systematic framework are given in the next sections and the MATLAB code

is given in AppendixA.

6.3.1 LQR tuning

Tuning via Q (or Qo) and R, for the LQR controller, is not a trivial task to

perform. Manual tuning is usually time-consuming especially in the case

of more complex engineering problems (as in the case of the MAGLEV

suspension). Note that one seeks to pose the problem of control tuning

and sensor selection in a multiobjective optimisation framework as shown on

Fig. 6.4.

The output weighting regulation matrix is in diagonal form as shown in

(6.21) while the input weighting matrix (single control input) is given as

R = 1/r2.

Qo = diag

(

1

Q2
z̈

,
1

Q2
(zt−z)

,
1

Q2
∫

(zt−z)

)

(6.21)

The objective functions and the suspension’s constrains mentioned in

Section 4.7 are included for completeness. The objective functions are

formally written as

φs1 = irms, φs2 = z̈rms (6.22)

Note that, the level of the noise on the input voltage has to be taken into
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Figure 6.4: Tuning LQR weights for the MAGLEV nonlinear model.

account and thus limited. In particular, to comply with practical limitations

and to avoid large amplification by the Kalman filter, extra constraint of

50V rms RMS is added in the framework (ucoilnoise
≤ 50V rms). Refereing

to Section 5.4, it is worth noting that the MAGLEV suspension has Low

Pass Filter characteristics and thus a large amount of noise is expected to

be reduced at the output. The constraints are summarised in Table 6.2.

The constraint handling in this framework is done using the static penalty

method as described in Section 3.4.1, page 45.

The selection of parameters Qo is to minimise the system responses on

straight track irregularities while enhancing the performance onto gradient

track move. In this content, NSGA-II is implemented in an attempt to find

the best possible parameters in the case of state feedback. Five variables

(nr = 5) with real-coded values were used to represent the output weight

factors. The rest of the parameters are listed in Table 6.1.
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Table 6.2: Constraints of the magnetic suspension for LQR tuning.

EMS limitations Value
Stochastic track profile

RMS acceleration(≃ 5%′g′),(z̈rms) ≤ 0.5ms−2

RMS air gap variation, ((zt − z)rms) ≤ 5mm
RMS control effort, (ucoilrms) ≤ 300V
Deterministic track profile

Maximum airgap deviation,((zt − z)p) ≤ 7.5mm
Input voltage,(ucoilp) ≤ 300V (3I0Rc)
Settling time, (ts) ≤ 3s

Air gap Steady state error, ((zt − z)ess) = 0
Idle track profile

RMS of the noise on ucoil (ucoilnoise
) ≤ 50Vrms

Figure 6.5 illustrate the overall evolution for the LQR state feedback (note

this step does not consider any sensor selection i.e. Kalman filter tuning)

tuning is depicted (including screenshots of generations). Until the first 20

generations the solutions are concentrated to around 0.5m/s2 (Fig. 6.5(a))

while in the 200th generation NSGA-II starts spreading the solutions onto

the optimum Pareto front until the 500th generation. Figure 6.5(f) clearly

shows that NSGA-II successfully spread the optimally tuned controllers onto

the optimum Pareto front.

Moreover, the selection of the solutions should be compromised between

the deterministic and stochastic performance. Figure 6.6 shows the air gap

(zt − z) deviations for the deterministic response and input voltage (ucoil)

for the 50 controllers at the 500th generation. At it can be seen from the

figure the deterministic responses are restricted to the limitations as listed

on Table 6.2. The maximum air gap deviation is less than 7.5mm, the steady

state error is zero within less than 3s while the maximum input voltage is

restricted to around 50V . Note that for good resolution the input voltage

does not contains the measurements noise amplification. At this point, the
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Figure 6.5: Generations evolution process for the state feedback tuning via
NSGA-II.
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Figure 6.6: Deterministic closed-loop responses for the LQR optimisation for
50 controllers at 500th generation.
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controller that results to a desired performance has to be selected which will

represent the ’ideal’ performance response. The choice of the desired closed-

loop response is based on the user’s controller selection criteria (fci, fu) that

are given as follows

1. Guarantee that the selected controller results to the closed-loop

response with vertical acceleration of less than 0.5m/s2.(fc1 ≡ z̈rms <

0.5m/s2).

2. Ensure that the excitation coil’s current from the closed-loop response

of less than 2A (fc2 ≡ irms < 2A).

3. Ensure that the closed-loop response results to the best ride quality

(fu ≡ min(z̈rms).

The controller selection criteria are summarised as follows

fc1 ≡ z̈rms < 0.5m/s2, fc2 ≡ irms < 2A, fu ≡ min(z̈rms) (6.23)

The closed-loop response with the best ride quality results to the vertical

acceleration of 0.31m/s2. The corresponding state gains are given as

Kr = [Ki Kż K(zt−z) K
∫

(zt−z)]

= [−246.85, −3.366× 103, 2.145× 105, 2.417× 105] (6.24)

The resulting performance with these gains is depicted in Fig. 6.7 and it will

be used as the ’ideal’ response for the sensor optimisation via LQG control

i.e. in the next step the Kalman filter has to be tuned aiming to achieve

performance close to the ’ideal’ response for every feasible sensor set.

117



6.3. SENSOR OPTIMISATION SYSTEMATIC FRAMEWORK VIA LQG CONTROL

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

8
x 10

−3

A
ir

g
a
p

-m

time -s

(a) Air gap response for deterministic
behaviour of the track.

0 1 2 3 4 5 6 7
−6

−4

−2

0

2

4

6
x 10

−3

A
ir

g
a
p

-m

time -s

(b) Air gap response for stochastic
behaviour of the track.

0 1 2 3 4 5 6 7
−80

−60

−40

−20

0

20

40

60

80

100

120

time -s

c
o
n
tr
o
l
e
ff
o
rt

-V

(c) Input voltage for deterministic
behaviour of the track.

0 1 2 3 4 5 6 7
−150

−100

−50

0

50

100

150

time -s

c
o
n
tr
o
l
e
ff
o
rt

-V

(d) Input voltage for stochastic be-
haviour of the track.

Figure 6.7: MAGLEV suspension closed-loop response using the selected
state feedback gain matrix.
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6.3.2 Kalman estimator tuning

The next stage is to tune the Kalman estimator for every possible sensor

set, with the overall diagram of the concept illustrated on Fig. 6.8. In

this step, i.e Kalman filter introduction in the loop, the sensor information

becomes critical. In particular, in order to achieve the same response as

in the state feedback response the Kalman filter should provide the best

possible set of estimated states (close to the actual state information). This

can be achieved by appropriately select the matrix V and W in order

to minimise E{[x − x̂]T [x − x̂]} as explained in Section 6.2.3, page 108.

The measurement noise weighting (V ) is constant and given in (6.25) for

all available measurements. In a practical situation, this can be found

from sensor equipment data sheets or prior simulation of baseline controller

designs (note that in practical systems sensors are very sensitive to external

interference and therefore shielding them is a very important issue and

sometimes difficult in case that no shielding can be used i.e the air gap

measurement). For the simulations, it is assumed that the noise covariance

for each corresponding measurement is equal to 1% of the peak value for

each variable from the deterministic track profile response of the closed-loop

MAGLEV suspension control system (this is something usual in the area of

railway).

V = diag(Vi, Vb, V(zt−z), Vż, Vz̈) (6.25)

In this design the process noise matrix Bw = Bżt and the process noise

covariance refers to the track velocity input and is tuned for each sensor set

(this is a realistic process noise input to the system).

In order to achieve the best possible performance onto track gradient and

with the straight track stochastic behaviour with the Kalman-bucy filter in

the loop, the minimised objective functions are the comparison between the

LQR response (which is the desired performance) and the response with the

Kalman-bucy filter in the loop.
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For this purpose, three time domain metrics can be used described by the

following generic equation (Ingimundarson et al. [2003] and Panagopoulos

et al. [2002])

Ia =

∫ ∞

0

tn|e(t)m|dt (6.26)

where, t is the time, e(t) is the error between the desired and the actual

elements and Ia determines the area under e(t) that can take the following

specific forms:� if n = 0 and m = 1 is the Integral Absolute Error (IAE) of e(t),� if n = 0 and m = 2 is the Integral Square Error (ISE) of e(t), and� if n = 1 and m = 2 is the Integral Time-Square Error (ITSE) of e(t)

The IAE approach is used in order to achieve the same performance for the

response onto gradient track and the objective functions to be minimised

are expressed in (6.27). For the stochastic response onto straight track of

the MAGLEV suspension the RMS is used, see (6.28). An extra objective

function is considered (6.29) which is the root mean square value of the

noise that appears on the input voltage (ucoil) from noisy measurements of

the MAGLEV suspension without any track input. This limits the gains of

the Kalman filter so that are limited without amplifying the measured noise

from the sensors. The final objective functions to be minimised are formally

written as

φd1,2,3 =

∫ t

0

|xo − xa|dt (6.27)

φs4,5,6 = RMS(xo − xa) (6.28)

φ7 = unoiserms (6.29)

where, xo is the vector of the monitored states of interest of the closed-

loop with the LQR state feedback (e.g. ’ideal’ closed-loop response) and

xa the monitored states of interest of the closed-loop with the overall LQG

controller, e.g. actual closed-loop (prior to adding sensor noise). Note that

the MAGLEV system is open-loop unstable and this assessment in tuning is
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quite attractive i.e taking directly in account the domain differences. This

makes a total of 7 individual objective functions. Note that the sensor

information entering the Kalman filter are affected by sensor noise.

At the end of the optimisation process, since there is no sensor set that

is unobservable there are 620 tuned Kalman filters according to (5.4), in

Section 5.3, page 85. There is a large number of controllers, hence in order

to avoid manual selection of the controller for each sensor set the overall

penalty parameter Ω in (3.8), is used. Particularly, if Ω is zero this means

that all assigned constraints are satisfied and close to zero if the constraints

are almost satisfied (see (3.5), page 46). The overall penalty function can be

very large if there is large constraint violation. Since for a sensor set there

could be (which is the usual case) more that one controllers that satisfy all

constraints another criterion is needed to select the best controller among

them. This criterion describes the sum of the objective functions in (6.27)

and (6.28) (states for deterministic and stochastic response) as shown below,

Sf =
3
∑

i=1

φdi +
3
∑

j=1

φsj (6.30)

From every optimised sensor set, each final population is checked and

the individual(s) that give(s) the smallest overall penalty function is (are)

selected. If there is more than one, the Kalman filter that gives the

smallest Sf is selected as the best Kalman estimator. When the optimisation

procedure is completed the end result gives a Kalman estimator for each

sensor set, with 24 out of 31 sensor sets found to satisfy the ’ideal’

performance (the performance with the state feedback gains only).

On Table 6.3 the results listed include some of the optimised sensor

configurations randomly selected. The third row corresponds to the state

feedback response while columns 3-9 are the constraint values taken from

the response with the best Kalman filter for each sensor set. The sensor sets

that satisfy all constraints are marked (X). An initial comparison between
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the LQR performance and the rest of the results it can be seen that although,

there is a small variation of the performance using Kalman estimators in the

loop most of sensor sets can be used to control the MAGLEV suspension with

acceptable performance. Secondly, since at this stage appropriate control of

the suspension is the main aim, one may conclude that instead of using 5

measurements (id:13), only one can be used (sensor set id:2 or id:4).

The flux density (id:2) as well as vertical acceleration (id:4) measurements

are good choices ensuring that the MAGLEV suspension is working within

constraints. Another observation is that Kalman estimator gains are different

for each sensor set. With id:4 the Kalman gains are given as KLQGz̈
=

[−108025 2 −170]T and for the id:2 KLQGb
= [−2150737 39 −3388]T .

This issue could serve as an additional criterion in the choice of sensor

selection i.e possible one might choose the sensor sets. Offering reduced

Kalman gains (attenuation of Kalman gains). However, this is something

that could be considered for future work.

At this point, it is worth noting the importance of the results from the

LQG tuning to the issue of sensor fault tolerance. In particular, a longer

set of sensor provides more information to the controller, and monitors more

signals. Thus provides the means of switching to different controllers (with

subsets of sensors), if necessary, subject to fault conditions and controller

banks ready from the off line framework for maintaining performance (or

almost desired performance). However, larger set of sensors imply increased

number of sensor fault possibility. On the contrary, a single sensor provides

simplicity straight forward hardware redundancy (by using duplicates of the

sensor in a voting selection scheme) but limited costs (in the case of hardware

redundancy). Albeit, a single sensor is a good first choice to provide an

insight into performance issues and simplified solutions.
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Table 6.3: Optimised sensor configurations via LQG control.

Sensor set (zt − z)rms ucoilrms z̈rms (zt − z)p ucoilp ts ess
id mm V ms−2 mm V s mm

LQR response → 1.5 21.83 0.31 7.3 52.4 2.16 0.019 X

1 i 1.78 29.16 0.50 2.09 22.93 6.18 0.18 x
2 b 1.46 22.47 0.32 6.74 63.82 2.18 0.019 X

3 (zt − z) 1.49 22.41 0.31 10.69 84.83 2.56 0.77 x
4 z̈ 1.46 22.44 0.32 6.82 63.04 2.19 0.013 X

5 i, ż 1.47 22.48 0.32 7.08 65.21 4.70 0.16 x
6 i, z̈ 1.46 22.18 0.32 6.82 58.91 2.18 0.03 X

7 i, b, (zt − z) 1.46 22.06 0.32 6.79 55.99 2.18 0.02 X

8 i, b, z̈ 1.42 22.11 0.31 6.77 56.59 2.18 0.01 X

9 i, b, ż 1.46 22.21 0.32 6.79 59.55 2.20 0.06 X

10 i, (zt − z), ż 1.48 22.18 0.32 7.69 63.04 2.35 0.10 x
11 i, b, (zt − z), ż 1.46 22.06 0.32 6.84 56.38 2.19 0.05 X

12 i, b, (zt − z), z̈ 1.46 22.03 0.32 6.81 55.72 2.18 0.02 X

13 i, b, (zt − z), ż, z̈ 1.46 22.02 0.32 6.84 55.98 2.19 0.03 X
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In this content, Fig. 6.9 and Fig. 6.10 illustrates the choice of a single

sensor i.e vertical acceleration. This choice provides a rather appropriate set

of state estimates, with a small drift in the care of the velocity estimate. Thus

drift is improved by higher Kalman gains but in the expense of more noise

into the system. However, more sensor information improve the situation

as shown in Fig. 6.11 where sensor set id:8 is used that includes two extra

measurements, the current and the acceleration measurements. As it can

be seen in this case using more sensor information the states estimation

is precise. The corresponding deterministic air gap and input voltage are

depicted in Fig. 6.12(a) and Fig. 6.12(b) respectively.
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Figure 6.9: The estimated and ’ideal’ states using id:4.
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(b) Input voltage (ucoil).

Figure 6.10: MAGLEV suspension response to deterministic track profile
using id:4 (single measurement).
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Figure 6.11: The estimated and ’ideal’ states using id:8.
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(b) Input voltage (ucoil).

Figure 6.12: MAGLEV suspension response to deterministic track profile
using id:8 (three measurements).
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6.3.3 Robustness load variation

In this section the robustness to load variation is assessed for two sensor sets.

The single measurement id:4 is tested as well as the sensor set id:8 with three

measurements. The profile for the load variation is discussed in Section 5.5,

page 91. The operating mass gradually increases from 1000kg to 1250kg

within 10 seconds and after that the MAGLEV suspension is tested under

the deterministic and stochastic responses. The load variation is treated as a

force disturbance (Fd) to the vertical direction of the MAGLEV suspension

as described in Section 5.5 and included in the motion equation as follows:

Ms
d2Z

dt2
=Msg − F + Fd (6.31)

Although the mass variation hasn’t been taken into account in the sensor

optimisation framework the closed-loop response can be sufficient and the

stability is quarantined under these circumstances. The closed-loop response

to the load variation is shown in Fig. 6.13 and Fig. 6.14 for Id:4 and id:8

respectively. The closed-loop response using the acceleration measurement

illustrated in Fig. 6.13 shows both air gap (zt − z) and input voltage ucoil

for deterministic and stochastic inputs. In both Fig. 6.13(a) and 6.13(c) the

effect of the low frequency load increment results to a steady state error of

about 1.5mm the rest of the constraints remains within normal boundaries.

The closed-loop response to the mass variation for the id:8 is depicted in

Fig. 6.14. Note that this disturbance may be included into the sensor

optimisation framework in order to make sure that the disturbance is rejected

for all sensor sets. However, by including the force disturbance rejection into

the proposed systematic framework extra simulations are required resulting

to more computational power.

6.3.4 Robustness to perturbed operation point

Although the operating point characteristics should be designed in order to

remain unchangeable, robustness to perturbed operating point is tested in

this section to make sure that stability and performance are maintained under
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(c) Stochastic air gap response.
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(d) Stochastic input voltage response.

Figure 6.13: Closed-loop response to mass variation with id:4

129



6.3. SENSOR OPTIMISATION SYSTEMATIC FRAMEWORK VIA LQG CONTROL

0 2 4 6 8 10 12 14 16 18
−8

−6

−4

−2

0

2

4
x 10

−3

A
ir 

ga
p 

−
m

Time −s

(a) Deterministic air gap response.

0 2 4 6 8 10 12 14 16 18
−50

−40

−30

−20

−10

0

10

20

30

40

50

C
on

tr
ol

 e
ffo

rt
 −

V

Time −s

(b) Deterministic input voltage re-
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(d) Stochastic input voltage response.

Figure 6.14: Closed-loop response to mass variation with id:8
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certain parametric variations. The closed-loop response is tested under the

same conditions as in Section 5.6, page 98. Assuming that the mass of the

vehicle remains constant at 1000kg the operating air gap changes by ±25%

which cause ±25% changes in the operating current. Note that since the

mass remains constant the operating force remains constant as well.

Figure 6.15 shows the deterministic closed-loop responses under the

perturbed operating point using the id:4 and id:8. It can be seen that for

those sensor sets the nominal performance slightly changes. This ensures

stability and performance under these parametric variations. Tests for

parametric variations with each available sensor set are not described here

but larger parametric variations with many parameters can be tested within

the systematic framework. In fact, the overall constraint violation function Ω

can be used to test the stability and performance for parametric variations.

This concept is briefly described by the author in Michail et al. [2008d].

However, if it is merged in the systematic framework increases the overall

computational effort and time because extra simulations are required to test

the closed-loop response using a set of perturbed operating points.
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(a) Deterministic air gap responses with id:4.
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(b) Deterministic air gap responses with id:8.

Figure 6.15: Closed-loop responses to air gap operating point perturbation
with id:4 and id:8
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6.4 Summary

In this chapter, the optimised sensor configurations systematic frameworks

via LQG control design is presented. From the results it can be seen that

the proposed systematic framework successfully recovers an optimally tuned

controller for each sensor set using the NSGA-II. The two criteria (overall

constraint violation function, Ω and sum of the objective functions, Sf)

assist with the best controller selection within a population of controllers

simplifying the process of selecting the best controller for each sensor set.

At the end of the optimisation process 24/31 sensor sets found to satisfy

the required performance with two single sensor sets among them. From

the control point of view either of them sufficiently satisfy the MAGLEV

performance as well as other sensor sets with 2 or more sensors. Moreover,

two sensor sets id:4 and id:8 were tested under 25% load variations of the

total vehicle mass. Results shows that although the performance is slightly

affected the suspension closed-loop response remains within the predefined

constraints and the stability is maintained. Furthermore, the operating point

perturbation is considered. The operating air gap is perturbed by ±25%

around the nominal air gap but stability and performance are maintained in

both id:4 and id:8. Finally, the systematic framework is extended towards

robust control design strategies as presented in the next chapter.
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Chapter 7

Optimised sensor configurations

via H∞ robust control

7.1 Introduction

This chapter extends the concept of sensor optimisation towards more

robust schemes, related to H∞ robust control. The chapter introduces

preliminary information for H∞ control, basic notation and discusses on

the multiobjective H∞/H2 robust control design. In addition, the selection

approach via Loop Shaping Design Procedure (LSDP) control system design

is also discussed. In particular, this chapter exploits two issues: (i) the

performance of NSGA-II in tuning the general weighting functions for the

H∞ schemes and (ii) the usefulness of the H∞ methodologies within the

framework of sensor selection for the MAGLEV application.

7.2 Overview of H∞ control

The need for theH∞ for robust control arises because of the weakness of LQG

control to deal with good robustness properties as well as its interpretation

of uncertain disturbances based upon white noise (which is often unrealistic).

The H∞ robust control is largely considered by Zames [1981] while a number

of extensive discussions implementations exist in literature (Zhou et al.
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[1996], Skogestad and Postlethwaite [2005], Gu et al. [2005]). Due to the

frequency-domain nature and the systematic incorporation of uncertainty,

H∞ optimisation has become famous robust control design method since the

1990s.

Applications on H∞ optimisation have been considered for both Single

Input Single Output (SISO) and Multiple Input Multiple Output (MIMO)

(Skogestad and Postlethwaite [2005], Gu et al. [2005]). However, the

H∞ optimisation design suffers from complexity of selecting the frequency-

dependent weights. There is no general approach to select the weighting

factors for the H∞ optimisation design because it is application dependant.

A number of authors have attempted to propose ways of selecting the

aforementioned weights. These can be found in Postlethwaite et al. [1990],

Beaven et al. [1996], Ortega and Rubio [2004], Hu et al. [2000] and Yang et al.

[1994] but these do not strictly offer a generalised approach and they mainly

refer to the mixed sensitivity optimisation problem. Particular applications

include control of vertical aircraft by Hu et al. [2000] and DC servo control

by Yang et al. [1994].

The work in this thesis concentrates on studying the sensor selection

problem via (i) M.O. H∞/H2 design approach and (ii) a H∞ loop-shaping

(LSDP) via coprime factorisation by (McFarlane and Glover [1990]). The

particular issue is to investigate and thus drawn conclusions on the way the

aforementioned methodologies deal with the problem studied in hand. Note

that especially in the loop-shaping approach a number of classical control

issues is introduced (by the nature of the design method). However, the

issue of weight selection is very important because is directly related to the

complexity of the controller design. Hence, the work addressed here proposes

the utilisation of NSGA-II or a mean of tuning the weighting filter in an

optimal fashion subject to given performance indices.

Dakev et al. [1997] proposed the main idea of using GAs in tuning

weighting filters for the LSDP method however, different type of genetic

algorithm have been used (Multi-Objective Genetic Algorithm) and the
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sensor optimisation for the MAGLEV suspension system has not been

considered.

Recent developments incorporated the use of Linear Matrix Inequalities

(LMI) in theH∞ optimisation. Work published by Chilali and Gahinet [1996]

is using an LMI approach for the H∞ design with pole placement constraints,

and this relates mainly to the H∞/H2 methodology considered in here.

7.2.1 Basic notations

Before proceeding to the main part of this chapter, some basic notations

necessary for implementing theH∞ controllers is introduced for completeness

(while the interested reader can refer to the references included in this chapter

and information within, for more details on the techniques).

A Linear Time Invariant (LTI) continues time control system in state

space form is given as

ẋ(t) = Ax(t) +Bu(t) (7.1)

y(t) = Cx(t) +Du(t) (7.2)

where A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n and D ∈ ℜp×m. The above

state space system is characterised by the following transfer function with

dimension p×m

G(s) = C(sI −A)−1B +D (7.3)

which can be then rewritten in a packed form as

G(s)
s
=

[

A B

C D

]

(7.4)
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and the complex conjugate of G(s) is given by

G∗(s) = GT (−s) s
=

[

−AT −BT

CT DT

]

(7.5)

7.2.2 Frequency domain spaces and norms

The meaning of frequency domain spaces and norms of real rational, matrix

valued, transfer functions are given. For detailed descriptions refer to Chilali

and Gahinet [1996] and Zhou and Doyle [1998]. Let R denote the space of

all real rational transfer function matrices. The L2/H2 norm of G(s) is given

by

||G||2 ∆
=

√

1

2π

∫ ∞

−∞

tr(G∗(jω)G(jω))dω (7.6)

which is used to define the following spaces

1. RL2 refers to the space of all real rational strictly proper transfer func-

tion matrices with no poles on the imaginary axis and is characterised

by a finite L2 norm.

2. RH2 defines the space of all transfer function matrices in RL2 with no

poles in Re(s) > 0.

The L∞/H∞ norm of G(s) is given by

||G||∞ ∆
= sup

ω∈ℜ
σ[G(jω)] (7.7)

and

1. RL∞ refers to the space of all real rational proper transfer function

matrices with no poles on the imaginary axis (with finite L∞ norm)

2. RH∞ defines the space of all transfer function matrices in RL∞ with

no poles in Re(s) > 0.
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Also, the H∞ norm of a stable transfer function G(s) is its largest

input/output RMS gain of

||G||∞ ∆
= sup

u∈L2
u 6=0

||y||L2

||u||L2

(7.8)

where L2 is the space of signals having finite energy and y is the output of

the system G for a given input u. Thus, for any input u of unit energy, the

output energy in y is bounded by the H∞ norm of G(s).

7.2.3 Linear Fractional Transformations

The basic concept of Linear Fractional Transformations (LFT) is presented

here. LFTs are frequently used in the area of H∞ optimisation. In fact,

the LFTs can be used to take the closed-loop system, include any structural

uncertainties (i.e parametric uncertainties) as well as in other areas of control

theory. In fact they can be used to represent ways of standardising a wide

variety of feedback problems (Zhou and Doyle [1998] or McFarlane and Glover

[1990]).

Let the generalised plant P (s) be given in packed form as

G(s)
s
=







A B1 B2

C1 D11 D12

C2 D21 D22






(7.9)

which is partitioned in the following way

G(s)
s
=

[

P11 P12

P21 P22

]

(7.10)

where Pij(s) = Ci(sI −A)−1Bj +Dij . The block diagram of the generalised

regulator configuration is depicted in Fig. 7.1. Where, u is the control

input (driving signal), w the exogenous inputs (i.e disturbances wd and

commands r), y the measurements and z are the desired regulated variables,
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P(s)

K(s)

y(s)u(s)

w(s) z(s)

Figure 7.1: The Generalised Regulator Configuration.

i.e the signals need to be minimised so that the desired design objectives are

achieved.

The lower linear fractional transformation of the generalised plant P (s)

and the controller K(s) is described by (note that subscript s is omitted for

simplicity)

FL(P,K)
s
= P11 + P12K(I − P22K)−1P21 (7.11)

for det(I − P22K) 6= 0. P (s) represents the generalised plant which

forms the nominal model G(s) combined with all frequency weighting

appropriately chosen to shift the emphasis with frequency between different

design objectives. In fact, from Fig. 7.1, the FL(P,K) represents the transfer

function from w and z given as

z(s) = [P11 + P12K(I − P22K)−1P21]w(s) (7.12)

H∞ and H2 optimal control methods perform minimisation of the H∞-norm

and the H2-norm of FL(P,K) respectively.

7.2.4 Multi-objective H∞/H2 robust control

Recall that the H∞ norm of a system is the worst-case energy transfer

(bounded energy) between regulated outputs and disturbances. As a result

can be conservative when disturbances are naturally modelled as persistent
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or white noise signals. In such cases, provided that the interests falls upon

minimising the RMS value of a regulated output, the H2 norm of the

corresponding closed-loop transfer function is a more appropriate measure

of stochastic performance. Nevertheless, the H2 found not to be necessary

for the given situation but the description of the multi-objective H∞/H2

robust control design follows.

The general multi-objective H∞/H2 optimisation problem, defined in

the generalised-regulator setting is shown in Fig. 7.2. The P (s) is the

generalised plant while K(s) is the designed controller. The vector of

external disturbances are defined as w = [w1, w2, ....wn]
T (for the MAGLEV

suspension only one, the track input) and the corresponding scaling factors

are Wi = [Wi1 ,Wi2, ....Win ] emphasise the relative weight between the

disturbances for the design (In this thesis are considered as one). The Output

vector y is the vector of measured variables and the input vector u is the

control input to the generalised plant. The z∞ defines the regulated outputs

for the H∞ performance index with the corresponding diagonal weights W1

and z2 which is the regulated outputs for the H2 performance index with

the diagonal weights W2. The overall multi-objective optimisation problem

is formulated as

min
K∈S

α‖W1Tz∞w‖2∞ + β‖W2Tz2w‖22 (7.13)

in which S denotes the set of all internally stabilising controllers. Scalars α

and β are positive definite design parameters which may be used to shift the

emphasis of the optimisation problem between the H∞-norm and the H2-

norm. Multi-objective optimisation typically refers to the joint optimisation

of a vector consisting of two or more functions, typically representing

conflicting objectives 1.

Typical examples of multi-objective problems in our context include:

1Note that the term ”multi-objective” in the H∞ robust control design framework is
different from the term used in the evolutionary algorithm (Chapter 3) and in fact here,
it refers to the cost function of the optimisation problem involving two different types of
norms (H∞ and H2).
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P(s)

K(s)

z∞

z2

W1

W2

Wi1

Wi2

w1

w2

u(s) y(s)

Figure 7.2: The Generalised Regulator Configuration for M.O. H∞/H2

control.

1. Constraint minimisation:

Minimise ‖W2Tz2w2‖2 subject to ‖W1Tz∞w1‖∞ < γ

2. Unconstraint minimisation:

Minimise β‖W2Tz2w2‖2 + α‖W1Tz∞w1‖∞,and

3. Feasibility problem: Find a stabilising K(s) (if exist) such that

‖W2Tz2w2‖ ≤ γ1 and ‖W1Tz∞w1‖∞ ≤ γ2

Note that Tz2w2 and Tz∞w1 are the corresponding closed-loop transfer

functions from the corresponding disturbance to the regulated variables. This

is a generally formulated multi-objective optimisation problem but for the

MAGLEV suspension, the H2 performance index wasn’t necessary as the

deterministic and stochastic performances were found to be satisfied using

only the H∞ norm solved via LMI approaches. However, note that the

procedure can be naturally extended in a H2-norm sense by addition of H2-

norm regulated signals. This can be implemented in a straightforward way

by using the MATLAB Robust Control Toolbox (Balas et al. [2005]).
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7.3 Sensor Optimisation Systematic Frame-

work via multiobjective H∞ robust con-

trol

In this section the sensor optimisation systematic framework via H∞ robust

control for the MAGLEV suspension is described. Two regulated variables

are considered (i.e air gap and control input) while the Wp and Wu are the

weighting filters to tune for best performance. The problem set up is depicted

on the diagram of Fig. 7.3. The aim is to tune the weights (Wp,Wu) so that a

Pareto optimum front of controllers K(s) is recovered between the objective

functions that satisfy all of the constraints listed in Section 4.7 for each

feasible sensor set yi. The sensor sets for the MAGLEV suspension are given

in Section 4.5 and repeated in Table 7.1 for completeness. The sensor sets

used for feedback control are selected using the output matrix (Cy). There

are totally 5 measurements available as it has been mentioned in Section 4.5

which result to 31 feasible sensor sets.

Table 7.1: Total number of feasible sensor sets for the 1DOF MAGLEV
suspension used in multiobjective H∞ robust control.

Number of Number of feasible
measurements available sensor sets

with 1 Sensor 5
with 2 Sensors 10
with 3 Sensors 10
with 4 Sensors 5
with 5 Sensors 1

Total 31

The linearised MAGLEV suspension state space in (4.38) is imposed into
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P(s)
to tune

to tune

select sensor set

Wp

Wu

(zt − z)

u

u

w

K(s)

y
Cy

Figure 7.3: Generalised plant configuration for sensor optimisation.

the generalised form of (7.14).

ẋ = Ax+Bww +Buu

z∞ = C∞x+D∞1w +D∞2u

y = Cyx+Dy1w +Dy2u (7.14)

w is exogenous input (track disturbance (żt)), u the controller output and

z∞ is the regulated outputs related to H∞ norm, i.e control effort ucoil and

air gap (zt − z). y is the corresponding sensor set that is selected using Cy.

The H∞ norm of the closed loop transfer function from the exogenous inputs

to the regulated outputs is minimised subject to performance requirements

described in Section 4.7.

‖ Tzw ‖∞< γ (7.15)

The weighting filters Wp and Wu are appropriate low pass and high pass

filters respectively as indicated in (7.16), to adjust the performance of the

controller by varying their parameters. As it was mentioned there is no
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general approach to select the weighting functions as this depends on the

application but some guidelines on selecting the weights for the H∞ design

of a plant are suggested in Skogestad and Postlethwaite [2005].

Wp =

( s

M
1/np
p

+ ωp

s+ ωpA
1/np
w

)np

Wu =

(

τs + A
1/nu
u

τ

M
1/nu
u

s+ 1

)nu

(7.16)

In particular, for the performance weighting (Wp), Mp is the high

frequency gain, Aw the low frequency gain and ωp the crossover frequency.

For the control input weighting filter, (Wu) τ determines the crossover

frequency, Au is the low frequency gain and Mu is the high frequency gain.

Both np and nu control the roll-off rates of the filters taken as 1 in this case

(i.e 20dB/dec). Note, that if higher order weights are necessary np and nu

can be used both as extra variable and extra minimisation objective in order

to find the controllers with the minimum possible order. The weighting filters

structures used for the H∞ optimisation are illustrated in Fig. 7.4. Note that

the controller’s output is fixed, as this is only the applied voltage (ucoil) to

the MAGLEV system, however the controllers’ inputs vary based upon the

sensors utilised i.e. SISO controller for 1 sensor, MISO controller for more

sensor sets. In fact, the order of the controller is fixed to the order of the

plant and the order of the filters (currently 3 + 2 = 5th order in a state

space description - note that further controller reduction could be followed

if necessary) via balanced truncation and for closed-loop reduction (Obinata

and Anderson [2001]).

The proposed systematic framework is presented with the flow chart

shown in Fig. 7.5. The flow chart shows how the NSGA-II is merged

to the sensor optimisation framework efficiently, producing the optimum

Pareto front of controllers for each possible sensor set. Initially, the NSGA-

II parameters, the objective functions (φi), design constraints (ωi, ψj) and

controller selection criteria (fci, fu) are given. Then the first sensor set is

selected and the algorithms tests for detectability of the system and if either
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Figure 7.4: Performance weights structure for multiobjective H∞ controller
design.

of them is not satisfied the next sensor set is selected otherwise the next step

is taken where the evolutionary algorithm tunes the weights to recover the

optimum Pareto front of controllers. Note that the number of controllers

forming the optimum Pareto front is equal to the number of population

(Popnum = 50). Then, the controllers satisfying all constraints are selected

based on the overall constraint violation function in (3.8). Recall that the

overall constraint violation function is zero if no constraint is violated or

it has a certain value if one or more constraints are violated as explained

in Section 5.3. The controllers that do not satisfy the preset constraints

are rejected and thereafter the controller which satisfy the user’s controller

selection criteria (fc, fu) is chosen. In case there is no available controller to

satisfy the design requirements then the selection is performed by selecting

the controller which results in the minimum constraint violation (min(Ω)ki).
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Figure 7.5: Flowchart of the proposed systematic framework proposed via
M.O. H∞ robust control.
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The selected controller is saved and the next sensor set is optimised until the

algorithm optimise all sensor sets. The proposed systematic framework is

presented by Michail et al. [2008b] and reprinted as a journal in Michail et al.

[2009a] but the non-linear model of the MAGLEV suspension wasn’t consider.

The MATLAB code for this systematic framework is given in AppendixA.

For the sensor optimisation framework via H∞ norm, except the mimin-

isation of the current and vertical acceleration from the stochastic response,

the robustness margin (γ) has been also assigned to be minimised as well as

the RMS value of the level of the noise that appears onto the driving signal

(ucoilnoise
) which comes from the noisy measurements with track input. These

objective functions can be can be formally summarised as

φ1 = γ, φs2 = irms,

φs3 = z̈rms, φ4 = ucoilnoise
(7.17)

where, the objective functions are:

1. the H∞ robustness margin (φ1 = γ),

2. the RMS value of the input current to the coil from the stochastic

behaviour on a straight track (φs2 = irms),

3. the RMS value of the vertical acceleration from the stochastic behaviour

on a straight track (φs3 = z̈rms) and

4. the RMS value of the noise that appears at the input of the driving

signal from noisy measurements with idle track profile (φ4 = ucoilnoise
)

Note that φs2, φs3 and φ4 are taken from the time history results via

simulations with the non-linear model of the MAGLEV suspension. The

minimisation of the objective functions mainly refers to the stochastic

response of the MAGLEV suspension and the deterministic response is

constrained within specific working boundaries as described in Section 4.7.

It was found that for the H∞ related controller tuning dynamically updated

penalty functions was necessary to handle the constraints and avoid infeasible
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solution areas.

The controller selection for each sensor set optimisation 1 is simpler in

LQG sensor optimisation framework because the controller that results to a

response closer to the LQR (that represents the ’ideal’ response is selected

as the best controller using one criterion which is precision of the state

estimation via Sf in (6.30). For the H∞ sensor optimisation there is an

optimum Pareto front of controllers for each sensor set therefore some criteria

have to be used in order to select the best controller that will result to

the desired closed-loop response of the MAGLEV suspension. It is possible

to assign such criteria depending on the stochastic and/or deterministic

response of the suspension. There is a variety of measurements available

including the input voltage (ucoil), the input current (i), the robustness

margin (γ) and the ride quality (z̈rms). In this case the controller selection

criteria have been assigned to ensure that the selected controller results to a

closed loop response that has the following properties� ensure that the vertical acceleration (ride quality) is less that 0.5m/s2

(fc1 ≡ z̈rms < 0.5m/s2)� ensure that the robustness margin is less than one (fc2 ≡ γ < 1)� and make sure that the minimum noise on the control effort is selected

(fu ≡ min(ucoilnoise
)).

The first two criteria define the selection criteria for a group of controllers and

the last is the final controller selection criterion. As it has been mentioned

previously, if the aforementioned controller selection criteria cannot be met

the selection of the best controller is performed by using the overall constraint

violation Ω.

The H∞ control of the non-linear MAGLEV suspension model is depicted

in Fig. 7.6. The overall evolution process is done within 200 generations

1Note that at the end of the optimisation for each sensor set there are 50 optimally
tuned controllers
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with a population of 50 individuals that guarantee a definite solution within

the predefined search space. The genetic algorithm parameters are listed in

Table 7.2.

Table 7.2: NSGA-II parameters for the M.O H∞ sensor optimisation
framework.

Parameter Value
Maximum generation 200

Population size 50
Crossover probability 0.9
Mutation probability 1/5

At the end of the evolutionary process, the final result is about 1550

optimally tuned controllers assuming none of them violates the constraints

with all sensor sets. However, the proposed systematic framework is able to

find controllers that satisfy the constraints for 29 out of 31 sensor sets and

about 1440 optimally tuned controllers that satisfy the constraints.

Table 7.3: Sensor optimisation via M.O H∞ robust control design results.

id sensor set n[K(s)]Ωki
=0 n[K(s)]Ωki

=0,fc1 ,fc2

1 i 0 0
2 b 50 13
3 (zt − z) 0 0
4 ż 22 18
5 z̈ 49 0
6 i,z̈ 47 0
7 b,(zt − z) 50 10
8 i,ż,z̈ 50 12
9 i,b,ż 50 24
10 i,b,z̈ 50 18
11 b,(zt − z),z̈ 49 23
12 i,b,(zt − z),ż,z̈ 50 5

In Table 7.3 some randomly selected sensor sets are listed. In the
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Figure 7.6: H∞ control for the non-linear MAGLEV suspension

first column the number of controllers that satisfy the required constraints

(n[K(s)]Ωki
=0) are shown while in the next column the number of controllers

that satisfy the two criteria fc1 and fc2 are listed (n[K(s)]Ωki
=0,fc1 ,fc2

). No

controllers were found to meet some of the constraints ((ts, (zt−z)ess)) for two
single sensor sets id:1 (current) and id:3 (air gap). From the 29 sensor sets

there exist 11 sets that do not satisfy the user’s controller selection criteria fc1

and fc2 . It is interesting to note that there are 2 single measurements (id:2

and id:4) which have controllers that satisfy the user’s controller selection

criteria just like the full sensor set (id:12). Particularly, there exist 13

controllers for the id:2 and 18 for the id:4 while 5 controllers exist for the

id:12 (full sensor set).
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In the cases where the objectives are more than three the parallel cord

graph is used to present the trade off between them. For the id:2 the trade-off

of the objectives is illustrated in Fig. 7.7. The x-axis has the four objectives

while on the y-axis the values of the objectives are normalised around 1.

The same approach is used for the full sensor set (id:12) and the trade off is

depicted in Fig. 7.8.

The corresponding deterministic response of the closed-loop with con-

trollers that satisfy the constraints (n[K(s)]Ωki
=0) for sensor sets with id:2

and id:12 are depicted in Fig. 7.9(a) and Fig. 7.9(b) respectively. It can

be seen that the maximum air gap deviation is less that 7.5mm while the

settling time is less than 3s. Comparing the two figurens, it can be seen that

the responses with id:12 are affected by the noisy control input but in the id:2

the responses are clear. Although the effect is not very serious it shows that

the level of the noise on the control effort should be kept as low as possible

especially when a large number of sensors is used. This emphasises the fact

that there is a possibility that the number and the locations of sensors to be

used is vital for the final closed-loop response.

The final step is to show the results from the overall sensor optimisation

framework via the multiobjective H∞ robust control. Taking into account the

user’s controller selelction criterion fu ≡ min(ucoilnoise
) one controller for each

sensor set is selected. Some sensor sets selected with the corresponding results

are listed in Table 7.4. Columns 3-6 are measurements from the stochastic

response and the next four are measurements from the deterministic response.

Column 11 is the robustness margin (γ), 12th column is the RMS value of

the noise that appears on the driving signal with idle track profile (ucoilnoise
).

The thirteenth column shows the constraint violation Ω with the last two

columns showing if the two criteria (fc1 , fc2) are satisfied (X) or not (x).
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(a) Air gap deviation of the optimally tuned controllers with id:2
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(b) Air gap deviation of the optimally tuned controllers with id:12

Figure 7.9: Air gap deviation of controllers with id:2 and id:12 at 200th

generation
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Table 7.4: Optimised sensor configurations via multiobjective H∞ robust control.

Stochastic Deterministic
grms ucoilrms z̈rms irms gp ucoilp ts ess γ unoiserms Ω fc1 fc2

id Sensor set mm V ms−2 A mm V s V
1 i 1.7 33.7 0.71 1.50 2.66 18.87 2.69 x 645 0.47 x x x
2 b 1.6 21.4 0.43 1.29 7.25 52.0 2.28 X 0.89 2.07 X X X

3 (zt − z) 1.9 23.7 0.50 1.51 4.36 33.20 2.82 X 219 0.51 X X x
4 z̈ 1.3 77.8 0.44 1.06 5.42 39.5 2.35 X 1.44 16.18 X X x
5 i, ż 1.8 19.9 0.39 1.38 6.98 49.97 2.14 X 1.24 122.5 X X x
6 i, z̈ 1.8 22.6 0.48 1.43 5.41 39.3 2.12 X 2.93 1.4 X X x
7 i, b, (zt − z) 1.8 20.3 0.41 1.39 6.53 47.1 2.14 X 0.66 1.4 X X X

8 i, b, z̈ 1.6 23.6 0.48 1.29 6.93 49.4 2.30 X 0.99 0.90 X X X

9 i, b, ż 1.2 123.2 0.49 1.00 5.77 41.4 2.46 X 0.10 10.67 X X X

10 i, (zt − z), ż 1.8 22.3 0.47 1.41 5.79 42.15 2.11 X 0.95 34.3 X X X

11 i, b, (zt − z), ż 1.3 41.2 0.49 1.07 5.72 41.62 2.40 X 1.82 21.9 X X x
12 i, b, (zt − z), z̈ 1.8 22.0 0.46 1.41 5.69 41.2 2.1 X 0.44 1.4 X X X

13 i, b, (zt − z), ż, z̈ 1.3 37.7 0.47 1.06 7.05 50.7 2.5 X 0.40 19.0 X X X

gp ≡ (zt − z)p,grms ≡ (zt − z)rms
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As it can be seen from the Ω column, only the current measurement (id:1)

violates constraints. In fact, the ride quality is violated while none of fc1 or

fc2 are satisfied. Actually, the γ value of id:1 is much higher than the others

along with id:3. The remaining values are close to one. Moreover, the flux

measurement (id:2) does satisfy all requirements like the id:7, id:8, id:9, id:10

and the full sensor set id:13. Sensor sets id:1, id:3, id:4, id:5, id:6 and id:11

do not satisfy the robustness margin but id:4, id:5, id:6, id:10 and id:11 can

be used because γ is close to the required value (γ < 1).

In Id:9 there are three sensors that result to 123V driving signal for

the stochastic response which means it requires more power with worse ride

quality than the full id:13. Still, the id:4 (single measurement) can be used

in order to achieve a better ride quality but with more input power and a

slightly larger robustness margin (γ = 1.44).

7.3.1 Robustness to load variations and perturbed air

gap

Robustness to load variations has been considered before in Section 5.5, page

91. The profile of the load variation is kept the same. It is considered that

the operating mass of the vehicle increases by 25% of the total mass of the

vehicle within 10s. Two sensor sets are tested under such conditions. One

is the closed-loop response with accelerometer (id:4) and the other includes

more sensors i.e. current, flux density and acceleration (id:8). Figure 7.10

and Fig. 7.11 illustrate the closed-loop response to the deterministic and

stochastic inputs to the suspension with id:4 and id:8 respectively. It can be

seen that stability of the suspension (note that the non-linear model is used

for the tests) is maintained in both cases while the performance is maintained

within the required constraints except from the steady state error where in

both cases is around 1mm but is not a problem for the suspension as it

is working within the critical predefined constraints. Note here that the

sensitivity to load variations with the flux density measurement is high. One

can choose not to include the flux density in the selected sensor set like in this
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section. However, the load variation could be accommodated by taking into

account the disturbance in the design of the controller. Extra simulations

should be included for load variation which may solve or at least limit the

sensitivity to acceptable level while tuning for optimum performance with

the expense of increasing computational complexity and overall time.

Robustness to perturbed operating point is considered next. Again this

concept is described in Section 5.6 (page 98) therefore details are omitted

here. The mass remains constant at 1000kg while the operating air gap

is perturbed by ±25%. As illustrated if Fig. 7.12 the stability as well as

performance of the closed-loop response are maintained for both sensor sets

id:4 and id:8. Stability and performance is maintained with stochastic input

but not shown here.
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(a) Deterministic air gap response.
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(b) Deterministic input voltage response.
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(c) Stochastic air gap response.
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(d) Stochastic input voltage response.

Figure 7.10: Closed-loop response to mass variation with id:4
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(a) Deterministic air gap response.
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(b) Deterministic input voltage response.
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(c) Stochastic air gap response.
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(d) Stochastic input voltage response.

Figure 7.11: Closed-loop response to mass variation with id:8
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(a) Deterministic air gap responses with id:4.
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(b) Deterministic air gap responses with id:8.

Figure 7.12: Closed-loop responses to air gap operating point perturbation
with id:4 and id:8
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7.4 LSDP in the context of sensor optimisa-

tion

In this section, the sensor optimisation incorporates the robust controller

design approach based on coprime-factor plant description introduced by

McFarlane and Glover [1992] (LSDP). This approach also known as H∞

loop-shaping, utilises H∞ methods to provide robust stability in an open

loop shaping design approach and achieve certain specifications for the closed

loop system (in a similar fashion as in classical loop shaping problems). This

section is published by Michail et al. [2008d] but without taking into account

the non-linearities of the MAGLEV suspension during the optimal tuning.

The detail MATLAB code is given in Appendix A.

7.4.1 H∞ Loop shaping robust Control via Coprime

factorisation method

In this section the preliminaries for the controller design via H∞ Loop Shap-

ing Robust-Control Design via Coprime factorisation method is described.

The design of the controller is based on the normalised coprime-factor plant

description developed by McFarlane and Glover [1992]. The nominal plant

is factored as

G =M−1(s)N(s), (7.18)

where M(s) and N(s) are stable transfer functions representing the Left

Coprime Factorisation (LCF) of the nominal plant G(s) (for more details

the reader is suggested to refer to the book of Skogestad and Postlethwaite

[2005]).

Typically, the LCF of the following is given as example.

G(s) =
(s− a1)(s+ a2)

(s− b1)(s+ b2)
(7.19)

Note that a1, a2, b1, b2 > 0. To obtain a coprime factorisation make the
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RHP-poles of G(s) zeros of M and all the RHP-zeros of G(s) zeros of N .

Then allocate the poles of N and M so that are both proper and identify

G =M−1(s)N(s) holds. Thus

N(s) =
s− a1
s+ b2

,M(s) =
s− b1
s+ a2

(7.20)

is a coprime factorisation of G(s).

Coprime factorisations are not unique but it is possible to make the factors

M(s) and N(s) unique (i.e unique up to left multiplication by a unitary

matrix), by forcing them to satisfy the normalisation equation

NN∗ +MM∗ = I (7.21)

In this setting, the uncertain plant is described by the set:

G∆ = {(M +∆M)−1(N +∆N ) : ‖∆M ∆N‖∞ < ǫ} (7.22)

where ǫ quantifies the ’size’ of model uncertainty. The left and right

coprime factorisations for the robust stability concept were first introduced by

Vidyasagar [1985]. The robust-stabilisation problem associated with (7.22)

is given as follows: For a fixed ǫ, does there exist a feedback controller K(s)

which internally stabilises the closed-loop system of Fig. 7.13 for all G ∈ G∆?.

The corresponding maximum robust stabilisation problem is to Find the

largest ǫ = ǫo so that the feedback loop of Fig. 7.13 is internally stable for all

G ∈ G∆, and the corresponding set of optimal controllers K(s).

Actually, when the normalisation condition is imposed on the coprime

factors, the two aforementioned problems have rather simple solutions. In

particular, the maximum stability radius (or stability margin) ǫo and the set

of all optimal controllers can be obtained in closed form, i.e the iterative

procedure (γ-iteration), which is used for the typical H∞ is avoided. For the

sensor optimisation, thousands of simulations may be required and therefore,

for the time consumption point of view is very important that γ− iterations
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is no longer required. In fact, the computational effort is much less than the

sensor optimisation framework via the M.O. H∞ robust control presented in

the previous section.

+
+
+

+N

∆N

M−1

∆M

G∆

K(s)

Figure 7.13: Coprime factor robust stabilisation problem (McFarlane and
Glover [1992]).

The solution to the normalised coprime-factor robust stabilisation prob-

lem as described by McFarlane and Glover [1992] is summarised as follows

Theorem 7.4.1. (McFarlane & Glover [1992]): Let G(s) have a minimal

state-space realisation (A,B,C,D) and let X and Y be the unique stabilising

solutions to the generalised control and filtering algebraic Riccati equations,

(A− BS−1DTC)TX +X(A− BS−1DTC)−XBS−1BTX + CTR−1C = 0

(7.23)

and

(A−BDTR−1C)Y +Y (ABD
TR−1C)T −Y CTR−1CY +BS−1BT = 0 (7.24)

where R = I + DDT and S = I + DTD. Define further the control gain

matrix F = −S−1(DTC +BTX). Then:

1. The maximum robust stability radius is given by ǫo = (1+λmax(Y X))−
1
2 ;
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2. For each ǫ < ǫo the ǫ-suboptimal central controller has a state-space

realisation:

[

Ak Bk

Ck Dk

]

=

[

A+BF + ǫ−2W−T
1 Y CT (C +DF ) ǫ−2W−T

1 Y CT

BTF −DT

]

where, W1 = I + (XY − ǫ−2I)

The LSDP proceeds by shaping the open-loop characteristics of the plant

by means of weight functions W1(s) and W2(s) (also known as pre- and

post- compensators, respectively) as depicted in Fig. 7.14(a). The plant is

temporarily redefined as Gs(s) = W2(s)×G(s)×W1(s) and the controller

K(s) is designed via Theorem 7.4.1. Finally the weighting functions are

absorbed into the finalised controller by defining K̂(s) = W1(s) × K(s) ×
W2(s), as illustrated in Fig. 7.14(b).

7.4.2 Sensor optimisation systematic framework via

LSDP

The loop-shaping design procedure is integrated to the sensor optimisation

process as depicted in Fig. 7.15. In order to shape the open-loop response

weighting filters are used for every input/output. For the MAGLEV

suspension model, one weighting filter is used for the input Wu and a

weighting filter per sensor (up to five in total) for the outputs. In each

randomly produced weights, a controller K(s) is designed. After that, the

weights and the controller are integrated forming the K̂s. This controller is

used in combination with the non-linear model of the MAGLEV suspension to

tune the closed-loop response using time history data from simulations. This

is repeated for every randomly produced weighting filters from the NSGA-II

in an attempt to optimise the performance.

For every feasible sensor set, the weighting filters are optimally tuned to

achieve the optimum Pareto front between the objectives as illustrated in

the flowchart in Fig. 7.5, page146. The sensor optimisation flow chart is the

same as in sensor optimisation via the M.O. H∞ robust control but in this
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W1(s) W2(s)

K(s)

G(s)

Gs(s) =W2(s)×G(s)×W1(s)

(a) Shape plant G(s) using weighting filters.

W1(s) W2(s)K(s)

K̂(s) =W1(s)×K(s)×W2(s)

G(s)

(b) Augment filters into K(s).

Figure 7.14: Loop Shaping Design Procedure.

164



7.4. LSDP IN THE CONTEXT OF SENSOR OPTIMISATION

G

K
S

en
so

r
S

el
ec

tio
n

W1

W2

Wi

Wb

W(zt−z)

Wż
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Figure 7.15: Loop-shaping controller design into sensor optimisation
framework.
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case less sensor sets are feasible because the air gap measurement has to be

a standard measurement. Table 7.5 tabulates all the feasible sensor sets that

can be optimised via LSDP approach.

Table 7.5: Feasible sensor sets for the MAGLEV suspension with the sensor
optimisation via loop-shaping controller design.

Number of Number of feasible
measurements available sensor sets

with 1 Sensor 1
with 2 Sensors 4
with 3 Sensors 6
with 4 Sensors 4
with 5 Sensors 1

Total 16

The post and pre compensators used for the MAGLEV are given as follows

W1 =Wu, W2 = diag(Wi,Wb,W(zt−z),Wż,Wz̈) (7.25)

For the pre-compensator (W1) a fixed unity gain is chosen (for simplicity).

The weighting filters for the post-compensator(W2), Wi,Wb,Wż,Wz̈ are

assigned to variable scalar values as a first choice and in order to avoid weight

complexity. However, for the air-gap (zt− z) a LP type filter is chosen of the

form,

W(zt−z) =

( s

M
1/np
p

+ ωp

s+ ωpA
1/np
w

)np

(7.26)

This is a low pass filter (stable and linear transfer function) with the same

structure and parameters defined in Section 7.3. There is no systematic

approach to select the structure of the weighting functions. In this case, the

problem may become very complicated if the weights are complex especially

during the full sensor set optimum tuning. In this case, assuming a full sensor

set for feedback with these simple structure of weights there are a maximum
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of seven variables (nr = 7). Since the number of variables change during the

sensor optimisation process, some of the NSGA-II parameters change as well.

In fact, the maximum generations are dynamically updated between 150-200

depending on the number of sensors used. With 1, 2 and 3 sensors the

maximum generation is set to 150 (Gennum = 150) while for 4 and 5 sensor

sets, Gennum = 200. Also, the population is set to Popnum = 50 and the rest

of the NSGA-II parameters remains unchanged (see Table 7.2). Although

the LSDP does not require a γ− iterative process, for more complex control

systems this approach can become very complicated and time consuming

depending on the number of feasible sensor sets and the weighting function

structures. In order to improve efficiency of the algorithm dynamical updated

of the maximum generations and population number are used. These depends

on the type and the structure of the weighting functions as well as the number

of feasible sensor sets.

The objective functions to be minimised are described in Section 7.2.4

and summarised as follows

φ1 = γ, φs2 = irms,

φs3 = z̈rms, φ4 = ucoilnoise
(7.27)

The design constraints of the MAGLEV suspension are described in Sec-

tion 4.7 with the only difference that the vertical acceleration (from the

stochastic response) constraint is relaxed to 1m/s2. The stability margin

(ǫ) of 0.25 allows 25% coprime factor uncertainty see Skogestad and

Postlethwaite [2005]. In this case an extra constraint is used which limits the

stability margin to at least 0.15 or 15% coprime factor uncertainty (ǫ > 0.15),

note that γ = 1
ǫ
. These limitations do not affect the final controller selection

for the corresponding sensor set but they can allow controllers to ’survive’

as the generations evolve so that they can be used in a sensor Fault Tolerant

Control scheme. The design constraints are summarised on Table 7.6.

The final controller selection when the optimum Pareto front of controllers
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Table 7.6: Suspension system constraints for the sensor optimisation via
LSDP controller design.

Constrains Value
g1 RMS acceleration, (z̈rms) ≤ 1ms−2

g2 RMS air-gap variation, ((zt − z)rms) ≤ 5mm
g3 RMS input voltage,ucoilrms, ≤ 300V (3IoRo)
g4 Max air-gap deviation (det),((zt − z)p) ≤ 7.5mm
g5 Max Input voltage (det),(up) ≤ 300V (3IoRo)
g6 Settling time, (ts) ≤ 3s
g7 Stability margin, (ǫ) ≥ 0.15
h1 Steady state, (ess) = 0

is recovered is selected via the user’s controller selection criteria given as

follows

1. Guarantee that the selected controller results to the restricted ride

quality (fc1 ≡ z̈rms < 0.5m/s2).

2. In this case, the LSDP shapes the open loop response of the suspension

that results to a low bandwidth therefore the measurement noise is

limited to low level but an extra criterion is introduced to limit the

noise level to 10Vrms (RMS) (fc2 ≡ ucoilnoise
< 10V ).

3. The third criterion is to select the controller that results to the

highest robust stability margin. This allows the highest possible

coprime uncertainties to be accommodated. i.e better robustness

(fu ≡ max(ǫ)).

The controller selection criteria are summarised as follows

fc1 ≡ z̈rms < 0.5m/s2, fc2 ≡ ucoilnoise
< 10V, fu ≡ max(ǫ) (7.28)

The actual deterministic response as well as the stochastic response measure-

ments are taken from time history of simulations using the non-linear model

as explained in the previous chapter and depicted in Fig. 7.6, page 150. Of

course the controller K(s) is replaced by K̂(s) as explained in this section
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(see Fig. 7.15).

When the sensor optimisation framework with LSDP is finished, 800

controllers are optimally tuned which is less than in the previous section since

in this case 16 feasible sensors sets are available instead of 31 (The controller

selection for each sensor set is described in Section 7.3). In this case the air

gap measurement is standard there exist controllers for 11 out of 16 sensor

sets that satisfy the performance requirements of the suspension. There are

no controllers found to satisfy the constraints with single measurements and

from the two measurement cases only one sensor set found to satisfy the

constraints (id:4 on Table 7.7). Table 7.7 presents some randomly selected

sensor sets after the sensor optimisation is completed. In the first column

(n[K(s)]Ωki
=0) the number of controllers that satisfy all design constraint are

given while in the second one (n[K(s)]Ωki
=0,fc1 ,fc2

) the number of controllers

that satisfy the first two controller selection criteria (fc1 , fc2) are given. It can

be seen that id:4 has 49 controllers that satisfy all constraints while for the

id:12 (full sensor set) 50 controllers have been found to satisfy the criteria.

Moreover, 24 and 44 controllers found to satisfy the two aforementioned

criteria for the id:4 and id:12 respectively.

The closed-loop air gap deviations for the deterministic inputs with id:4

and id:12 are presented in Fig. 7.16. All responses in both sensor sets id:4

(Fig. 7.16(a)) and id:12 (Fig. 7.16(b)), are within the required constraints.

Particularly, it can be seen that the maximum air gap deviation is less than

the predefined 7.5mm while the steady state error is zero and the settling

time is less than 3s. In general there is a number of controllers that are

successfully tuned for optimum MAGLEV suspension performance using a

variety of sensor sets.

In Fig. 7.17 the Pareto-optimality for two sensor sets is illustrated. The

two cases where, the minimum number of sensors and the full sensor set is

compared from the control point of view. Figure 7.17(a) shows the trade-off

parallel cord between the objectives for id:4 while Fig. 7.17(b) shows the
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(a) Air gap deviation for id:4
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(b) Air gap deviation for id:12

Figure 7.16: Air gap deviation of controllers with id:4 and id:12
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Table 7.7: Results for the sensor optimisation via LSDP controller design.

id sensor set n[K(s)]Ωki
=0 n[K(s)]Ωki

=0,fc1 ,fc2

1 (zt − z) 0 0
2 i, (zt − z) 0 0
3 b, (zt − z) 0 0
4 (zt − z), z̈ 49 25
5 i, b, (zt − z) 44 24
6 i, (zt − z), ż 0 0
7 i, (zt − z), z̈ 48 17
8 b, (zt − z), z̈ 48 19
9 i, b, (zt − z), ż 50 26
10 i, (zt − z), ż, z̈ 49 17
11 b, (zt − z), ż, z̈ 48 20
12 i,b,(zt − z),ż,z̈ 50 44

trade-off for the id:12. Note that the objective functions are normalised

around 1.

The overall results from the sensor optimisation scheme are listed in Ta-

ble 7.8. The results presents both deterministic and stochastic measurements

for the corresponding desired closed-loop response with each sensor set where

the air gap measurement is obligatory as mentioned before. Note that if for a

sensor set all controllers violate the constraints then the controller that results

to the smallest constraint violation is selected (see the flowchart depicted in

Fig. 7.5), i.e. see sensor sets id:1, id:2, id:3 and id:6. Moreover, for these

sensor sets there are either robustness and ride quality constraint violation or

user’s controller selection criterion is not satisfied. Nevertheless, these sensor

sets can be used within a fault tolerant control scheme for sensor failures

but towards the acceptance of graceful performance degradation rather than

total cost of operation. Also, note that with id:7 the maximum noise level

is 7.25Vrms which is fairly low and does not affect the MAGLEV suspension

performance. The stability margin (ǫ) values shows that the robustness does

not increase with more sensors in a set.
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Figure 7.17: Parallel cord shows the trade-off between the objectives for
sensor set with id:4 and id:12
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Table 7.8: Optimised sensor configurations via LSDP controller design.

Stochastic Deterministic
grms ucoilrms z̈rms irms gp ucoilp ts ess ǫ unoiserms Ω fc1 fc2

id Sensor set mm V ms−2 A mm V s V
1 (zt − z) 1.83 48.6 1.00 1.69 1.32 12.4 2.2 X 0.14 0.26 x x X

2 i, (zt − z) 1.95 61.3 1.19 1.86 0.81 5.2 2.3 X 0.09 0.28 x x X

3 b, (zt − z) 1.82 48.7 1.00 1.69 1.32 12.4 2.2 X 0.14 0.26 x x X

4 (zt − z), z̈ 1.46 24.7 0.34 1.11 7.47 53.4 2.2 X 0.35 1.70 X X X

5 i, b, (zt − z) 1.63 19.7 0.36 1.24 7.50 53.7 2.1 X 0.25 0.66 X X X

6 i, (zt − z), ż 1.90 49.8 1.06 1.90 0.97 6.3 2.3 X 0.08 0.26 x x X

7 i, (zt − z), z̈ 1.36 42.6 0.33 1.04 7.29 52.3 2.2 X 0.34 7.25 X X X

8 b, (zt − z), z̈ 1.49 23.0 0.35 1.14 7.46 53.3 2.1 X 0.33 0.86 X X X

9 i, b, (zt − z), ż 1.63 19.7 0.36 1.24 7.50 53.7 2.1 X 0.25 0.66 X X X

10 i, (zt − z), ż, z̈ 1.38 36.2 0.33 1.05 7.35 52.7 2.2 X 0.33 4.73 X X X

11 b, (zt − z), ż, z̈ 1.47 24.2 0.34 1.12 7.47 53.4 2.2 X 0.34 1.11 X X X

12 i, b, (zt − z), ż, z̈ 1.36 40.9 0.34 1.04 7.22 51.8 2.2 X 0.34 6.28 X X X

gp ≡ (zt − z)p,grms ≡ (zt − z)rms
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In fact, id:4 (2 sensors) results to similar robustness with id:12 (full sensor

set). Also, the level of the noise on the control effort from the measurements

is much less with id:4 while the ride quality as well as the input power is

similar for both sensor id:4 and id:12 sets.

It is worth mentioning that although the weighting filters have very

simple structure there exist many sensor sets that can satisfy all the design

requirements. Using complex weighting structure may improve performance

or recover more sensor sets that satisfy the performance requirements.

However, complicated weight structures may increase computational time.

7.4.3 Robustness to load variations and perturbed

operating point

Robustness to load variations has been considered before in Section 5.5 page

91. The profile of the load variation is kept the same. It is considered that

the operating mass of the vehicle increases by 25% within 10s and then

the suspension it tested under the disturbance track inputs for two sensor

sets. One is the closed-loop response with air gap and acceleration (id:4)

and the other includes more sensors i.e. current, air gap and acceleration

(id:7). Figure 7.18 and Fig. 7.19 illustrate the closed-loop response to the

deterministic and stochastic inputs to the suspension. It can be seen that

stability of the suspension is maintained in both cases. The performance is

maintained as well but in both cases a steady state error occurs. Particularly,

with id:4 the steady state error is around 0.2mm while with id:7 the steady

state error is around 2mm, much higher than with id:4. Although, the load

variation cannot be used as a disturbance to the design of the controller the

concept may included in the sensor optimisation framework in an attempt

to optimise the performance under the fully laden conditions. However,

this increases computational time because extra simulations are necessary

to optimally tune the time domain responses for the load variation conditions.

Robustness to perturbed operating point is considered next. Again this
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concept is described in details in Section 5.6, page 98 therefore are omitted

here. The mass remains constant while the operating air gap is perturbed

by ±25%. As illustrated in Fig. 7.20 the stability as well as performance

of the closed-loop response is maintained for both sensor sets id:4 and id:7.

Stability and performance is maintained with stochastic input but not shown

here.
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(a) Deterministic air gap response.
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(b) Deterministic input voltage response.
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(c) Stochastic air gap response.
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(d) Stochastic input voltage response.

Figure 7.18: Closed-loop response to mass variation with id:4
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(a) Deterministic air gap response.
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(b) Deterministic input voltage response.
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(c) Stochastic air gap response.
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(d) Stochastic input voltage response.

Figure 7.19: Closed-loop response to mass variation with id:7
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(a) Deterministic air gap responses with id:4.
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(b) Deterministic air gap responses with id:7.

Figure 7.20: Closed-loop responses to air gap operating point perturbation
with id:4 and id:7
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7.5 Remarks on the sensor optimisation sys-

tematic framework

The time consumption and computational complexity is an important issue

in multiobjective constraint optimisation using genetic algorithms since a

large number of simulations are required for a sensor optimisation framework

to be completed. For example, if 500 generations and 50 chromosomes

and assuming that 3 simulations have to run for every randomly designed

controller a sensor set may require 75000 simulations to complete the

optimisation. To complete a sensor optimisation framework with 31 sensor

sets about 2,3 million simulations are required. The completion time for a

sensor optimisation framework is a function of a lot of parameters including

the type of the genetic algorithm to be used, the maximum number of

generations, the population number, the number of feasible sensor sets

the control strategy used and the available computational power. For

the simulation in this thesis an ordinary personal computer is used with

MATLAB v7.4 but without the java tool facilities (i.e the task is completed

much faster if neither JAVA or display outputs are used). The computer

characteristics are: 2.13GHz dual intel processor with 4GB DDR memory.

The overall time for each optimisation framework is given in Table 7.9.

The sensor optimisation framework using multiobjective H∞ control requires

175 hours to be completed which is triple the time than the other two

control strategies (LQG,LSDP). The sensor optimisation via LSDP and

LQG requires 42 and 54 hours respectively but in the first case only 16

feasible sensor sets are available. From this point of view it can be said

that for the specific problem, the sensor optimisation via LQG requires less

computational effort than the other two methods. Nevertheless, these results

change for different dynamic models that may require different problem

formulation (i.e different weighting filters, NSGA-II parameters etc).

Moreover, the number of sensor sets that satisfy all performance require-

ments (i.e satisfy the overall constraint violation) using each approach is
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shown in the fourth column. Although using the LQG approach requires

the least computational effort it was found that 24/31 sensor sets satisfy the

constraints while the multiobjective H∞ robust control approach has 29/31

sensor sets that were found to satisfy the constraints. The LSDP approach

requires the air gap measurement as a standard measurement and therefore

16 sensor sets are feasible while among them 11 sensor sets found to satisfy

all the constraints.

Furthermore, if the control of the MAGLEV suspension is done with the

minimum number of sensors then single measurements can be used (in a fault-

free environment). From the sensor optimisation framework using LQG single

measurements are enough. In fact, the flux density or the vertical acceleration

shows that are able to achieve the constraint requirements. Similarly, using

H∞-multiobjective control either flux density or acceleration or air gap are

able to satisfy the design constraints. For the sensor optimisation framework

using the LSDP approach 2 sensors are the minimum that can be used for

control. Actually, the air gap and vertical acceleration measurements can

be used in order to satisfactorily control the MAGLEV suspension within

constraints.

Table 7.9: Remarks on the systematic framework via modern control
strategies.

Sensor Optimisation Number of Feasible Required Sensor sets
approach sensor sets time (hrs) that satisfy Ω
LQG 31 54 24

M.O H∞ 31 175 29
LSDP 16 42 11
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7.6 Summary

The optimised sensor configurations for control systematic frameworks via

H∞ robust control methods have been presented. Two approaches have

been studied. One is the H∞-multiobjective controller deign and the other

is the H∞ loop shaping design. Although two different approaches were

studied the sensor optimisation algorithms have the same flow chart as

depicted in Fig. 7.5 with some modifications in the MATLAB code. Both

approaches found sensor sets satisfying the required performance using

different sensor sets. From the comparison it was found that although the

H∞-multiobjective approach had 29 sensor sets that satisfy the required

performance, computational effort (175 hours) is required. The LSDP

requires 42 hours but less feasible sensor sets are available and only 11

sensor sets were found to satisfy the required performance. Compared with

the LSDP, the LQG approach requires 54 hours but 24 sensor sets have

found to satisfy the performance requirements (out of 31 feasible sensor sets).

Moreover, from the control point of view if the minimum number of sensors is

to be used, the LQG and H∞-multiobjective approaches are acceptable with

single measurements, the flux density and vertical acceleration for LQG and

the flux density for the H∞-multiobjective approach. In the latter case the

vertical acceleration does not satisfy the user’s controller selection criteria

but the overall constraint violation is satisfied and therefore it could be used

for different controller selection criteria or within a FTC scheme. The sensor

optimisation via M.O. H∞ robust control is found to be simpler because

standard regulated variables are to be tuned in contrast with the LSDP

which can become very complex since one weight function is necessary for

each measurement for the open loop shaping. Nevertheless, it was found that

most of feasible sensor sets found to satisfy the required performance even

with simple weighting functions. In the next chapter the optimised sensor

configurations concept is extended towards the fault tolerant control area

aiming to reduce the sensor hardware redundancy while ensuring optimum

performance under all possible sensor fault conditions.
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Chapter 8

Optimised Sensor

Configurations for Fault

Tolerant Control

8.1 Introduction

This chapter introduces sensor selection for fault tolerant control aiming

to minimise the sensor hardware redundancy. Active fault tolerant control

is often used for safety-critical systems. Active FTC involves controller

reconfiguration by detecting and isolating possible faults (see Blanke et al.

[2003]). The methodology mainly concentrates on the utilisation of classical

control, and analytical redundancy (see Patton [1997a]). Particularly, the

measured air gap signal in combination with the estimated and the calculated

air gap signals provide air gap sensor fault tolerance by masking the air

gap sensor fault. This method is for single sensor fault while for multiple

sensor faults the optimised sensor configurations are taken into account.

Particularly, the optimised sensor configurations via LQG are considered

for multiple sensor faults. For safety-critical system a number of sensors is

usually required and assessing the scheme under such failures is important.

In the context of this thesis aims to minimise the number of required sensor

with controller reconfiguration subject to possible sensor faults.
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8.2 Fault Tolerant Control for air gap sensor

failure

In this section a method to recover the performance of the MAGLEV

suspension in case of a faulty air gap measurement (being a critical

measurement) is presented. The technique uses a combination of the

measured, estimated and analytically calculated air gap signals in order to

recover the performance in case of an air gap sensor failure. When the air

gap sensor fails the air gap signal is recovered using the estimated and the

calculated air gap signals. This concept is referred to as sensor fault masking

(see Wu et al. [2006]) and the diagram on Fig. 8.1 illustrates the process.

The main part of this work has been published in Michail et al. [2009c] (see

Appendix E). Three outputs are necessary for the sensor fault tolerance:

the air gap (G), the flux (B) and the current (I). Note that the scheme is

implemented on the nonlinear model, with appropriate variations around the

operating point (i.e i,b,(zt − z)) included for proper simulation (because of

the linear nature of the controller).

In order to detect a fault at the air gap measurement three air gap signals

are compared: the measured air gap (zt − z)mea, the estimated air gap (zt −
z)est and the calculated air gap (zt − z)calc. The latter is calculated from 8.1

(as firstly noted by Goodall [1989]).

(zt − z)calc = Kb
I

B
−Go (8.1)

Fault detection and isolation is very important where active fault tolerance is

implemented (Patton [1997b]). The Fault Detection and Isolation mechanism

illustrated in Fig. 8.2 assesses the residuals (i.e r(zt−z)mea,est , r(zt−z)mea,cal
and

r(zt−z)est,cal) derived from the comparison between the three measurements

(see Blanke et al. [2003]). The residuals indicate if the actual air gap

measurement is either healthy or faulty by comparison to the corresponding

thresholds.

182



8.2. FAULT TOLERANT CONTROL FOR AIR GAP SENSOR FAILURE

+

+

+

Non-linear
MAGLEV

Model

Nominal
Values

-

-

-
+

+

+

+ +

+

+

+

+

-
PIPA

Kalman
Filter

Measurement 
Noise-

+

+

+
+

+

F
a
u
lt
 D

e
te

c
ti
o
n
 

a
n
d
 I
s
o
la

ti
o
n (zt − z)est

(zt − z)mea

(zt − z)calc Kb
I
B

ucoil Vcoil

Go

Go

Io

Io

Bo

Bo

Vo

żt
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In a healthy situation the air gap signal (zt − z) that is fed to the PA

controller is given by

(zt − z) = [(zt − z)mea + (zt − z)est + (zt − z)calc] /3 (8.2)

When the air gap measurement is faulty, the FDI mechanism detects and

isolates the faulty sensor and the air gap signal (zt − z) is given by

(zt − z) = [(zt − z)calc + (zt − z)est] /2 (8.3)

In this way the faulty air gap measurement is masked. In fact, the method is

partitioned in two stages. The first stage relates to optimising the classical

control strategy via NSGA-II, while the second stage concerns the tuning

of the Kalman filter to estimate the air gap signal using current and flux

information. The MATLAB code is given in AppendixA.

8.2.1 Classical controller with inner loop design

In order to achieve fault-free performance a similar scheme to the one

illustrated in Fig. 8.1 is used. Particularly, only the measured air gap

((zt − z)mea) and flux (b) are fed to the controllers. The classical controller

optimisation approach using the air gap/flux sensors is described in details

in Section 5.2. The optimisation with the given objective functions and

constraints in the same section results to the optimum Pareto front of

controllers depicted in Fig. 8.3.

From the Pareto optimum front of controllers the controller pair which

results to the best ride quality (0.26m/s2) is selected as described in

Chapter 5 and repeated here

PA = 3.920.1519s+1
0.0387s+1

PI = 1.0949e40.018s+1
0.018s

(8.4)

The corresponding closed-loop response for the deterministic and the

stochastic track profiles are illustrated in Fig. 8.4 and Fig. 8.5 respectively.
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Figure 8.3: Pareto front of controllers using NSGA-II.

The actual response measurements for the air gap signal and the input voltage

are successfully working within working boundaries for both deterministic

and stochastic track profiles (Again this has been investigated in Section 5.2).

185



8.2. FAULT TOLERANT CONTROL FOR AIR GAP SENSOR FAILURE

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

8
x 10

−3

time − sec

ai
r 

ga
p 

de
vi

at
io

n 
−

 m

(a) Air gap deviation (zt − z)mea.

0 1 2 3 4 5 6 7
−60

−40

−20

0

20

40

60

80

100

120

time − sec

C
on

tr
ol

 e
ffo

rt
 −

 V

(b) Input voltage (ucoil).

Figure 8.4: Air gap and input voltage responses to deterministic track profile.
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Figure 8.5: Air gap and input voltage responses to stochastic track profile.

187



8.2. FAULT TOLERANT CONTROL FOR AIR GAP SENSOR FAILURE

8.2.2 Kalman estimator tuning

The air gap measurement is merged as a state in the linearised model of the

MAGLEV suspension thus the Kalman estimator may be used to estimate

it. Preliminary information for Kalman filters are described in Section 6.2.3.

The Kalman filter has the structure of an ordinary state-estimator with

the state equation being

˙̂x = Ax̂+Bu+KLQG(y − Cx̂) (8.5)

where the state space matrices are given from (8.6) and (8.7) as described in

Section 4.4 and repeated here for completeness.
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(8.7)

The optimal choice of KLQG via W and V minimises E{[x− x̂]T [x− x̂]}
(Skogestad and Postlethwaite [2005]). The optimum choice of W and V

eventually controls the precision of the state estimation and therefore the

188



8.2. FAULT TOLERANT CONTROL FOR AIR GAP SENSOR FAILURE

evolutionary algorithm is used to tune the Kalman filter in order to give the

same estimated air-gap as the actual measurement for both deterministic and

stochastic responses.

The noise covariance matrix V is selected to be, diagonal 2 × 2 matrix

with values of the noise covariance for the current and flux measurements,

i.e V = diag(Vi, Vb) (Vi and Vb are taken as the square of 1% of the

maximum value for the deterministic response). The W matrix is given as

W = diag(Wi,Wż,W(zt−z)) where W is a 3× 3 process noise matrix directly

affect each state (Bw = 3× 3).

Two objectives are selected for the Kalman tuning i.e to tune the Kalman

filter presented in (8.5) the Integral Absolute Error between the actual and

the estimated ar gaps signals for both deterministic and stochastic responses

is used as shown in (8.8). Although the Kalman filter is stable by default

it was important to take the appropriate time domain signal comparison for

the performance test.

φd =
∫ t

0
|(zt − z)mea − (zt − z)est|dt

φs =
∫ t

0
|(zt − z)mea − (zt − z)est|dt

(8.8)

Recall that φd and φs are the objective functions from deterministic and

stochastic responses respectively. In this case, it is important to have a good

precision for the estimated air-gap therefore two constraints are assigned so

that the precision is better than 5% (≤ 5%). One for the deterministic (gd)

and the one for the stochastic responses (gs).

gd =
∫

|(zt − z)mea − (zt − z)est|dt ≤ 0.05

gs =
∫

|(zt − z)mea − (zt − z)est|dt ≤ 0.05
(8.9)

The parameters for the NSGA-II are listed on Table 8.1. In order

to reduce the computational effort, the chromosome population is set to

Popnum = 50 and the maximum generations to Gennum = 100. Using the

proposed optimisation method, the controllers are successfully tuned and the

next stage is to illustrate that the Kalman filter is also able to estimate the
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air gap signal using only the current (i) and the flux (b) measurement(Both

in the deterministic and stochastic approach).

Table 8.1: NSGA-II parameters for Kalman estimator tuning

NSGA-II Parameter Value
Maximum generation 100

Population size 50
Crossover probability 1/3
Mutation probability 0.2

In Fig. 8.6 the residuals from the deterministic response are illustrated.

Figure 8.6(b) shows the residual between the measured and the estimated

(r(zt−z)mea,est), Fig. 8.6(a) shows the residual from the measured and calcu-

lated (r(zt−z)mea,calc
) and Fig. 8.6(c) shows the residual from the estimated and

calculated air gap signals (r(zt−z)est,calc) under the deterministic response test.

The residuals obtained using stochastic track inputs have low amplitude as

well but they are not illustrated here. In both cases the errors are small and

therefore they can be used for the fault detection and isolation mechanism.

The next step is to inject a fault in the actual air gap measurement and

observe the results. The fault scenario is that the actual air gap measurement

sensor suddenly develops fault at t = 1s and the output varies around zero

in the form of a undesired coloured noise disturbance. The three air gap

signals with the measured air gap signal which fails at t = 1s are depicted in

Fig. 8.7. Figure 8.8 shows the difference between the actual air gap with no

fault and with faulty air gap measurement for the deterministic input to the

MAGLEV suspension. It can be seen, the performance of the suspension is

successfully recovered with the actual air gap been fully recovered. The same

test has been performed with stochastic inputs as illustrated in Fig. 8.9 and

the performance of the suspension has been recovered as seen from Fig. 8.10.

A few remarks on this approach are given next. Although the methodol-
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ogy is rather simple, it has the disadvantage of employing two extra sensors

i.e current and flux (necessary to produce the air gap signal). However,

both the current and flux sensors are cheaper compare to the air gap sensor

and also subject to less hazardous environment. At this stage, the scheme

offers no fault tolerance in the case of current or flux sensor failure (although

hardware redundancy could be used in multiple current and flux sensor via

voting schemes but with increasing financial cost). Moreover, multiple sensor

faults cannot be afforded which is taken into account within the next section.

The next scheme discussed in this thesis, addresses the fact of multiple sensor

faults and an alternative way of fault tolerance in such cases.
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8.3 Sensor selection for sensor fault tolerance

The information from sensor optimisation frameworks can be used in order

to apply FTC for multiple sensor failures, with an attempt to minimise the

sensor hardware redundancy and maintain optimum performance for every

possible sensor set under relevant sensor fault conditions (with the given

Kalman filters tuned for optimum performance via NSGA-II). This section

has been published by Michail et al. [2009b] (see Appendix E).

It is possible to recover the performance of the MAGLEV suspension

when a sensor fails using an active fault tolerant control method. This can

be done via controller reconfiguration as illustrated in Fig. 8.11 (see Blanke

et al. [2003] for general details.). Any sensor information from the three

systematic frameworks can be used but in this chapter the data from the

sensor optimisation via LQG is considered for illustration.

All necessary data from the optimised sensor configurations framework

via LQG approach is listed on Table 8.2 and 8.3. As it can be seen from

the tables there exist a number of sensor sets that can be used to control

the suspension satisfactorily (i.e 24 out of 31 sensor sets found to satisfy the

performance requirements). Ideally, the sensor set that results to the same

performance as in the LQR case is selected. There are a lot of sensor sets that

result to very similar performance. If the minimum number of sensors is to

be selected for control, Id:2 and Id:5 can be used (single measurements). The

problem is that in neither cases there is no sensor fault tolerance, since only

one measurement is used in each sensor set (i.e if the sensor fails instability

of the suspension is unavoidable).

The MAGLEV suspension is a critical safety-critical and open-loop

unstable system. Sensor fault tolerance is thus important issue and should

be carefully considered. In the following, one considers sensor fault scenarios

and discusses on the possibility of using the proposed sensor optimisation

schemes for controller reconfiguration, in the case of multiple sensor failures.
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Table 8.2: Optimised sensor configurations via LQG control - Part A.

Sensor set (zt − z)rms ucoilrms z̈rms (zt − z)p ucoilp ts ess
id mm V ms−2 mm V s mm

LQR response → 1.5 21.83 0.31 7.3 52.4 2.16 0.019 X

1 i 1.78 29.16 0.50 2.09 22.93 6.18 0.18 x
2 b 1.46 22.47 0.32 6.74 63.82 2.18 0.019 X

3 (zt − z) 1.49 22.41 0.31 10.69 84.83 2.56 0.77 x
4 ż 1.57 171 6.83 14.6 709 6.58 8.78 X

5 z̈ 1.46 22.44 0.32 6.82 63.04 2.19 0.013 X

6 i, b 1.42 22.24 0.31 6.73 59.13 2.18 0.024 X

7 i, (zt − z) 1.45 22.25 0.31 10.81 85.21 2.77 0.76 x
8 i, ż 1.47 22.48 0.32 7.08 65.21 4.70 0.16 x
9 i, z̈ 1.46 22.18 0.32 6.82 58.91 2.18 0.03 X

10 b, (zt − z) 1.43 22.17 0.32 6.81 57.41 2.18 0.027 X

11 b, ż 1.43 22.29 0.32 7.73 64.27 6.14 0.14 x
12 b, z̈ 1.43 22.20 0.32 6.78 59.64 2.18 0.011 X

13 (zt − z), ż 1.43 22.29 0.32 7.73 64.27 6.14 0.14 x
14 (zt − z), z̈ 1.43 22.12 0.32 6.91 58.76 2.18 0.028 X

15 ż, z̈ 1.43 22.42 0.32 6.85 63.16 2.99 0.049 X

16 i, b, (zt − z) 1.46 22.06 0.32 6.79 55.99 2.18 0.02 X

17 i, b, ż 1.46 22.21 0.32 6.79 59.55 2.20 0.06 X

18 i, b, z̈ 1.42 22.24 0.31 6.80 59.55 2.20 0.06 X

19 i, (zt − z), ż 1.48 22.18 0.32 7.69 63.04 2.35 0.10 x
20 i, (zt − z), z̈ 1.43 22.06 0.32 6.88 58.31 2.18 0.03 X
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Table 8.3: Optimised sensor configurations via LQG control - Part B.

Sensor set (zt − z)rms ucoilrms z̈rms (zt − z)p ucoilp ts ess
id mm V ms−2 mm V s mm
21 i, ż, z̈ 1.43 22.16 0.32 6.84 58.98 2.18 0.04 X

22 b, (zt − z), ż 1.43 22.17 0.32 6.87 57.85 2.19 0.057 X

23 b, (zt − z), z̈ 1.43 22.08 0.32 6.83 56.56 2.15 0.015 X

24 b, ż, z̈ 1.42 22.19 0.32 6.81 59.67 2.19 0.045 X

25 b, ż, z̈ 1.42 22.19 0.32 6.81 59.67 2.19 0.05 X

26 i, b, (zt − z), ż 1.46 22.06 0.32 6.84 56.38 2.19 0.05 X

27 i, b, (zt − z), z̈ 1.46 22.03 0.32 6.81 55.72 2.18 0.02 X

28 i, b, ż, z̈ 1.42 22.11 0.32 6.81 56.82 2.19 0.03 X

29 i, (zt − z), ż, z̈ 1.43 22.05 0.32 6.90 58.55 2.18 0.03 X

30 b, (zt − z), ż, z̈ 1.43 22.08 0.31 6.86 56.75 2.19 0.03 X

31 i, b, (zt − z), ż, z̈ 1.46 22.02 0.32 6.84 55.98 2.19 0.03 X
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Aiming to cover multiple sensor faults and assuming that control is

achieved with id:31, i.e the full sensor set. Using the information extracted

from Tables 8.2 and 8.3, a bank of Kalman filters can be used in order to

restore performance following one or multiple sensor faults. In fact, the

suspension performance after reconfiguration when a sensor fault happens, is

easily predicted from the data listed. For example when four measurements

fail and the air gap remains it is possible to lead to catastrophic failure since

there is a serious air gap constraint violation (see Id:3). Although it is unlikely

for four sensors to simultaneously fail, this shows that a safety-critical system

might require some form of hardware redundancy for the air gap signal (that

is probably expensive solution). The alternative approach is to avoid using

the air gap measurement. Particularly, assume that the worst sensor fault

case condition is to remain with one measurement (i.e Id:1, Id:2 and Id:5).

According to the given data, if a sensor remains after some sensor failures

the performance is satisfactory. From this point of view, the Id:18 can be

used instead of the full sensor set that includes Id:1, Id:2 and Id:5. Note that

Id:18 and Id:31 have very similar performance, therefore if Id:18 is used, the

worst resulting performance when both b and z̈ fail is the response with Id:1

which has steady state violation but it can be safely used until the vehicle

decelerates and proceeds to maintenance. In order to achieve sensor fault

tolerance, fault detection and isolation and reconfiguration of the controller

is required. When Kalman estimators are used, a common approach for

the fault detection is to use the residual ryi (where yi is the corresponding

measurement). After a sensor fault occurs, the fault is detected, isolated

and the controller is reconfigured in order to recover performance using the

healthy sensors. For this purpose, a bank of Kalman filters is used (one for

each possible remaining sensor set following one or more faults).

An alternative sensor set is Id:16 with current, flux and air gap

measurements. The problem with this sensor set is that four sensor fault

conditions can be covered via controller reconfiguration (i.e Id:1, Id:2, Id:6

and Id:10) the remaining two i.e Id:3 and Id:7, result to critical constraint

violation (air gap) during gradients onto track. Also a drawback is that
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the air gap measurement to be used is generally expensive and vulnerable

to external hazards. An alternative option is Id:17 with current, flux and

velocity measurements. Again the selected sensor set can cover only three

out of six fault conditions with Id:1, Id:2 and Id:6. One can say, selecting a

sensor set with four measurements or the full sensor set but in such case more

sensor fault probabilities are introduced with increasing number of sensors.

With the sensor set Id:18, there are 6 possible fault conditions that could

occur. The first three are individual faults on current, flux and acceleration

and the remaining three are combined current/flux, current/acceleration

and acceleration/flux faults. Note that here simultaneous faults are taken

into account that is the worst fault case for two sensor faults. In order to

accommodate the 6 possible fault conditions via controller reconfiguration a

bank of 6 Kalman estimators can be used as explained previously.

8.3.1 Sensor fault scenarios

In order to test the proposed sensor fault tolerance scheme some fault

scenarios are taken into account. The fault scenario used for the sensors

is that at time=1s the sensor is impaired giving wrong readings with random

low frequency characteristics. This is illustrated in Fig. 8.12 for current,

acceleration and flux density measurements while for the combined sensor

fault combinations, the fault scenarios in Fig. 8.12 are combined accordingly.

For example if current and flux fail simultaneously (for the deterministic

response test), the test signals in Fig. 8.12(c) and Fig. 8.12(e) are selected.

All the tests are performed for both deterministic and stochastic responses.

After the fault(s), illustrated in Fig. 8.12, is(are) injected the proposed

FTC scheme detects and isolates the faulty measurement. After that imme-

diate remedial action via controller reconfiguration is followed by switching

to the controller that works with the remaining healthy measurement(s). The

assumption here is that not all three measurements can fail. In such case the

closed-loop system becomes unstable and there is nothing that can be done

to accommodate such fault condition unless sensor hardware redundancy is
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(a) Faulty acceleration measurement for
deterministic response.
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(b) Faulty acceleration measurement
for stochastic response.

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

Time −sec

C
ur

re
nt

 −
A

(c) Faulty current measurement for
deterministic response.

0 1 2 3 4 5 6 7
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time −sec

C
ur

re
nt

 −
A

(d) Faulty current measurement for
stochastic response.
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(e) Faulty flux measurement for deter-
ministic response.
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(f) Faulty flux measurement for
stochastic response.

Figure 8.12: Faulty measurements scenarios.
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used (i.e use triple measurements for each sensor and reconfigure when three

of them fail).

8.3.2 FDI and reconfiguration

The fault detection is achieved using a binary sense vector that is residual

dependent and indicates which and if a measurement is healthy or faulty (see

Blanke et al. [2003]). Faulty measurements, indicated by ’1’ and healthy by

’0’. For example, if i, b, z̈ results to the binary vector [0 0 0] means that all

measurements are healthy and the corresponding Kalman filter is used (i.e

Ki,b,z̈). If one or more faults are detected the Fault Detection and Isolation

mechanism detects and isolates the faulty sensor(s) while the reconfiguration

mechanism introduces the new Kalman estimator for the remaining healthy

sensor(s). As it was mentioned before, the fault detection is performed using

the residual of the corresponding measurement. For example if the residual

of the current measurement is larger than a predefined threshold (ri > Vthi
)

then the binary vector indicates the fault in a binary sense ([1 0 0]) and

reconfiguration takes place by switching to the relevant Kalman estimator

Kb,z̈. The possible sensor fault conditions with the resulting binary vector

and the corresponding Kalman estimators are listed in Table 8.4.

Table 8.4: Possible sensor fault conditions with Id:18.

Sensor Healthy Faulty Binary Kalman
set Sensors Sensor(s) Vector estimator

[i b z̈]
i, b, z̈ i, b, z̈ - [0 0 0] Ki,b,z̈

i, b z̈ [0 0 1] Ki,b

b, z̈ i [1 0 0] Kb,z̈

i, z̈ b [0 1 0] Ki,z̈

i b, z̈ [0 1 1] Ki

b i, z̈ [1 0 1] Kb

z̈ i, b [0 0 1] Kz̈
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8.3.3 Simulation results

The next step is to test the sensor fault tolerance under different fault

conditions (stability is tested and negligible switching time is assumed). The

results under all possible conditions are illustrated in Fig. 8.13, Fig. 8.14,

Fig. 8.15, Fig. 8.16, Fig. 8.16 for both the deterministic and stochastic

responses. The figures show the error between the air gap with fault-

free conditions (zt − z) and the air gap under the sensor fault conditions

(zt − z)f . The errors in all figures are very small and it is clear that under 5

fault conditions the reconfiguration is successful for both deterministic and

stochastic responses except where simultaneous fault happens at 1 second

for flux and acceleration measurements. In such case, when switching to the

Kalman estimator with current measurement (Ki) the performance recovery

is not possible and instability of the closed-loop response follows for both

deterministic and stochastic responses. In such case, the performance is not

possible to recover under those specific fault conditions but extra hardware

redundancy can be used for b and z̈ in order to avoid having the current,

information on its own (if both b and z̈ fail) (However it is a scenario that

really stretches the limits of the reconfiguration scheme, i.e only the current

measurement remains).
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(a) Error between air gap with fault-free and faulty acceleration
measurement (e(zt−z),(zt−z)f ) during deterministic response.
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(b) Error between air gap with fault-free and faulty acceleration
measurement (e(zt−z),(zt−z)f ) during stochastic response.

Figure 8.13: Error between air gap with fault-free and faulty acceleration
measurement.
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(a) Error between air gap with fault-free and faulty current
measurement (e(zt−z),(zt−z)f ) for deterministic response.
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(b) Error between air gap with fault-free and faulty current
measurement (e(zt−z),(zt−z)f ) during stochastic response.

Figure 8.14: Error between air gap with fault-free and faulty current
measurements.
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(a) Error between air gap with fault-free and faulty flux measurement
(e(zt−z),(zt−z)f ) during deterministic response.
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(b) Error between air gap with fault-free and faulty flux measurement
(e(zt−z),(zt−z)f ) during stochastic response.

Figure 8.15: Error between air gap with fault-free and faulty flux
measurement (e(zt−z),(zt−z)f ).
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(a) Error between air gap with fault-free and faulty current/acceler-
ation measurement (e(zt−z),(zt−z)f ) during deterministic response.
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(b) Error between air gap with fault-free and faulty current/acceler-
ation measurement (e(zt−z),(zt−z)f ) during stochastic response.

Figure 8.16: Error between air gap with fault-free and faulty current/accel-
eration measurement.
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(a) Error between air gap with fault-free and faulty current/flux
measurement (e(zt−z),(zt−z)f ) during deterministic response.
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(b) Error between air gap with fault-free and faulty current/flux
measurement (e(zt−z),(zt−z)f ) during stochastic response.

Figure 8.17: Error between air gap with fault-free and faulty current/flux
measurement.
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8.4 Summary

In this chapter two sensor fault tolerance approaches have been studied. One

is the combination of the classical control strategy with Kalman estimator

and analytical redundancy and the second is using the optimised sensor

configurations via modern control approaches.

In the former case the fault tolerance against air gap failure was

considered. The method is using three air gap signals to achieve sensor

fault tolerance. One is the measured (zt − z)mea, the other is the estimated

(zt − z)est and the calculated (zt − z)calc air gaps. The last two signals are

generated using the current and flux measurements. The proposed method is

verified via simulations using the non-linear model for both deterministic and

stochastic responses. Although the method covers only single sensor failure

(i.e air gap sensor) it avoids having air gap sensor redundancy.

The problem of selecting the number of sensors to be used for control

as well as for sensor fault tolerance is the next issue considered in this

chapter. In particular, the MAGLEV suspension is a safety-critical system

where the performance and stability have to be ensured under any sensor

faults. Depending on the desired MAGLEV suspension performance any of

the three (previously in this thesis) developed systematic frameworks can be

used for the sensor fault tolerance but in this chapter LQG is considered

for illustration. From the analysis of the presented results it seams that the

best sensor set to be used (at least on a first step) is the current, flux and

acceleration (in terms of control and fault tolerance). The air gap sensor

does not appear although this might be desired from a financial point of

view (note that this signal can be estimated).
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Chapter 9

Design and construction of a

MAGLEV rig and experimental

results

9.1 Introduction

The design and construction of a 25kg MAGLEV suspension is described.

Details for the Mechanical construction, electromagnets, power amplifier

design and the measurement sensors are given. The aim of the experimental

MAGLEV rig is to verify the proposed sensor optimisation frameworks via

classical and modern control techniques. As the stochastic and deterministic

track profiles are not possible to test under the available equipment, the

control is taken into account for the operating point of the suspension as well

as the tracking for a reference air gap signal. The model of the suspension

is simple and described in Chapter 4 as it is based on Newton’s motion law

and the sum of the induced voltages across the coil. In this chapter, the

model verification is done and experimental results of the classical as well as

modern control strategies are presented.
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9.2. DESIGN AND CONSTRUCTION OF AN ELECTROMAGNETIC SUSPENSION

9.2 Design and construction of an electro-

magnetic suspension

In this section a detailed description of the 25kg rig is given along with

all necessary information for the mechanical construction as well as the

power amplifier design and the measurements practical implementation. The

control system implementation is done via XPC target that is provided

by MATLAB v7.2 and the 12Bit DAQ card PCI6070E from National

Instruments card with 8 digital input/output channels, 2 analogue outputs

and 16 analogue inputs. For this application, one analogue output is used for

the driving signal and 5 analogue inputs for the measurements (i.e current,

flux density, air gap, vertical velocity and vertical acceleration).

9.2.1 Mechanical construction

The mechanical construction consists of the two electromagnets that are

fitted onto a metal lever made of mild steel. The lever is supported on a pivot

and is freely moving in the vertical direction while the track is fixed above

the electromagnets. This is depicted in Fig. 9.1 where a simple diagram is

given in order to demonstrate the concept. More detailed description on the

design and construction of the mechanical parts of the MAGLEV suspension

can be found in Appendix C while a photo of the side view showing the

electromagnets that are supported onto the lever below the track is depicted

in Fig. 9.2.

9.2.2 Electromagnets and amplifier design

Electromagnets characteristics

The electromagnets have been designed to lift 50kg extra weight at an

operating air gap of 10mm each. Thus they can easily lift their weight and the

metal lever that they are fixed on. The characteristics of the electromagnets

are listed on Table 9.1.
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TRACK

5mm

Pivot

Pole
face

Electromagnet

FluxLever

Freely
Moving

Figure 9.1: Simple diagram of the MAGLEV suspension rig.

Figure 9.2: Photo of the MAGLEV suspension (side view).
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Table 9.1: Parameters for one coil.

Parameter Value Unit
Coil’s resistance (Rcoil) 0.674 @40oC Ω
Pole face area (Ap) 0.005 m2

Pole diameter (Dc) 56 mm
Weight (Mc) 7 kg

Number of turns (Nc) 228 turn

The operating point is calculated according to the nominal air gap and

the total mass to be supported. Assuming that the operating air gap is 5mm

and the total mass is 25kg, the current and flux density operating points

are calculated from the force and flux in (9.1) and (9.2) respectively (see

Mansfield [2007]).

Fo =
B2

oAptotal

2µo
(N) (9.1)

Where, Fo the operating force and Aptotal is the total pole face area.

Bo =
NcIoµo

2Go
(T ) (9.2)

Where, Nc is the number of turns, Io the operating current, Go the operating

air gap and µo is the permeability of air given as 4π × 10−7.

The operation point values can be calculated now very easily. The force

for 25kg is about 245N (Fo = 250N) and therefore the operating flux density

is calculated as Bo = 0.33T and the current Io = 5.7A.

Electro-Magnets power amplifier design

The power amplifier is one of the most critical parts of the MAGLEV rig. The

simple electrical diagram in Fig. 9.3 shows the basic electrical connections

of the MAGLEV Rig. A fast response as well as linear characteristics

power amplifier is required to achieve the high bandwidth flux control of
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the suspension (in the classical control). Most suspensions use a pulse-width

modulated DC-DC converters where the switching devices are switched ON

and OFF at high frequency (20kHz). The power amplifier is able to supply

the electromagnets with a maximum of 10A which is the current limit. A

protection circuit is included under overload situation and therefore a second

current sensor is used (see Appendix D). Note that the power amplifier is

designed in such a way that the final state is totally isolated from the DAQ

card. The reason is to avoid damage from large voltage spikes coming from

the switching power converter during a possible MOSFET or DIODE failure.

Also, it is important to twist the cables in order to miminise electro-magnetic

compatibility problems regarding the transducers.
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C1 C2 C3

Figure 9.3: Electrical diagram for the electromagnet supply.

The power amplifier is designed based on dual forward DC-DC converter

using MOSFET devices and the PWM pulses are produced using the MAXIM

function generator MAX038. A photo of the power amplifier is given in

Fig. 9.4 while a detailed description of the power amplifier electronic circuits

are given in Appendix D.
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Figure 9.4: Photo of the power amplifier.

9.2.3 Transducers and signal conditioning

Air gap position sensor

Non-contacting Sensagap displacement transducers from RDP Electronics

were used on the rig. These are capacitive devices which operate over a

range of 20mm when both the target and the sensor’s packing case are

grounded. For the particular application the SG10 model is used which

is able to measure a distance between 0.5 − 10.5mm with a sensitivity of

300mV/mm.

The sensor is intended to measure the distance between the magnet pole

face and the track. The target is made of aluminium and is fixed on the side

of the metal lever where the electromagnets are supported. As it is illustrated

in Fig. 9.5, the air gap sensor is fitted below the target on a wooden base
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and both the target and air gap sensor are grounded. Note that for complete

isolation from the electromagnetic field a magnetic isolation material is placed

between the target and the metal lever. The accelerometer is placed on the

target next to the front electromagnet (the detailed position on the MAGLEV

rig is shown in Appendix C). More details about the vertical acceleration

and velocity measurements are given in the next section.
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Figure 9.5: Air gap and accelerometer sensors installation (front view).

Accelerometer and velocity measurements

The acceleration measurement which have good linear response down to low

frequencies, is compact and robust. The accelerometer used in this case

is the MXA6500G/M by MEMSIC. The maximum acceleration that can

be measured is ±1g with a sensitivity of 500mV/g at 3V in an ambient

temperature of 25oC. The accelerometer is placed onto the PCB board that

is supported on the air gap’s target (aluminium plate) as shown in Fig. 9.5.

The accelerometer is placed next to the pole face of the electromagnet so

that the electromagnetic interference from the electromagnetic field is strong.

Thus PCB is shielded and the shielding is grounded in order to reduce the

output noise.
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The output of the accelerometer is used to derive the velocity. The

velocity can be derive by integrating the acceleration but a pure integrator

is not practical and therefore a self-zeroing integrator. A second order

Butterworth high-pass filter as proposed by Goodall [2004] is used as self-

zeroing integrator and given as follows

GI =
s

s2 + 1.4ωI + ω2
I

(9.3)

The cut off frequency is ωI = 1.5rad/s and the actual implementation of the

self-zero integrator is depicted in Fig. 9.6 with τi1 = 1.034s, τi2 = 0.454s,

Gz̈ = 3 and ρ = 2.052. The corresponding integrator is implemented in

practice using an operational amplifier configurations (Goodall [2000]). The

corresponding practical and simulated Bode magnitude plot of the integrator

are shown in Fig. 9.7.

+

-

1
sτi1

ρ+ 1
sτi2

z̈ żGz̈

Figure 9.6: Diagram of the self zeroing integrator.

Flux sensor

The flux sensor consists of a search coil and an analogue self-zeroing

integrator. The electromagnets have two circular grooves for each pole face,

the inner and the outer. On the current configuration one inner and an outer

search coils are used with 130 turns each. The diagram of the pole face is

shown in Fig. 9.9(a). The search coils are embedded in the groove in order

to make it robust with the magnet pole face impacting on the track (this

condition happens a lot during tests). A photo of the pole face showing the

two search coils is illustrated in Fig. 9.9(b). As the flux density changes a
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Figure 9.7: Bode magnitude of the velocity integrator.
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Figure 9.8: Bode magnitude of the flux integrator.
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voltage is induced in the search coil. The area of the search coil is known,

so by integrating and scaling the resulting voltage the change in flux density

can be determined. Again to avoid drifting the circuit requires a self zeroing

integrator as described previous section. The resulting Bode magnitude of

the flux integrator with τi1 = 1.034s, τi2 = 0.454s, Gb = 150 and ρ = 2.052

is depicted in Fig. 9.8.

Current sensor

Two current sensors are used in the circuit. One is used for the current limiter

to protect the power amplifier from overload (explained in Section 9.2.2) and

the second current sensor is used to give a measurement for the control

purposes. There are a PCB mounting Hall effect current transformer by

TELCON (HTP25) that can measure to the range of ±25A each.

9.2.4 Rig commissioning

The rig as a whole was assembled as initially envisaged. Although the

MAGLEV rig is simple to construct, extra care has to be taken for the

scaling, polarity and the shielding of the sensors have to be considered. The

mechanical assembly proved to be particularly successful with the pole face

being at 5mm from the track on horizontal position. The overall diagram

of the complete control system is depicted in Fig. 9.10. Two computers are

required for the control system. One is the host PC where the MATLAB is

installed with the XPC target that is required to build the necessary control

system using simulink blocks and the second that is used as a target PC

where the compiled code is uploaded and the real controllers are running.

The 5 measurements are fed into the analogue inputs of the 12bit resolution

DAQ card from national instruments while one analogue output is selected

to supply the driving signal at the input of the amplifier.

The current measurement is relatively easy to be obtained with very

limited noise interference as well as the air gap measurement (of course extra

care must be taken during installation to void interference from surrounding
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Figure 9.9: Diagram and the photo of the pole face.
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components). Although the accelerometer is shielded, the noise interference

is relatively high but for the velocity measurement is reduced because of

the filtering properties of the integrator GI . The flux density measurement

consists of two search coils (one on each magnet) that pick up the flux

circulation and a self zero integrator to transform to flux density. A photo

of the experimental setup is depicted in Fig. 9.11 while a demo to show the

different parts of the experimental rig is uploaded on Youtube by Michail

[2008c] (The link is given with the reference).
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Figure 9.10: Diagram of the MAGLEV Rig commissioning.

221



9.2.
D
E
S
IG
N

A
N
D

C
O
N
S
T
R
U
C
T
IO

N
O
F
A
N

E
L
E
C
T
R
O
M
A
G
N
E
T
IC

S
U
S
P
E
N
S
IO

N

Figure 9.11: Photo of the 25kg MAGLEV suspension rig.

222



9.2. DESIGN AND CONSTRUCTION OF AN ELECTROMAGNETIC SUSPENSION

9.2.5 Model verification

In order to have good control over the real plant, the model validation

is necessary in order to ensure that the model’s parameter are correct.

Although the state space model of the MAGLEV suspension is derived

using the fundamental equations from Newton’s and Kirchhoff’s Law the

model validation is necessary in order to verify not only the dynamics but

to ensure that non-linearities in the system are fairly low. The model

verification is done using the Bode plot of the state space model from the

input (ucoil) to the air gap (zt − z) and this is compared with practical

measurements within a frequency range between 0.2Hz to 5Hz. Because the

MAGLEV suspension is open loop unstable, the stabilization using closed-

loop configuration is necessary. The control approach used is the classical

air-gap/flux configuration using a PI controller for the inner loop and a PA for

the outer loop as discussed in Chapter 5. The diagram depicted in Fig. 9.12

illustrates the concept.

PIPA
-

+

Non-linear
MAGLEV
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Figure 9.12: Block diagram for plotting the frequency response of the 25kg
MAGLEV rig.

The controllers’ parameters are tuned via NSGA-II for optimum tracking
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of an input sinusoidal signal of while measurements of the input voltage (ucoil)

and output air gap (zt− z) are taken in order to plot the frequency response

of the suspension. The selected controllers are taken as

PI = 535
0.023s+ 1

0.023s
(9.4)

PA = 24.7
0.0354s+ 1

0.0038s+ 1
(9.5)

Note that according to input frequency the input amplitude is adjusted i.e

the higher the frequency the lower the input amplitude. This maintains the

stability of the closed-loop response. The linear controllers are tuned for the

non-linear model in simulink and implemented onto the real system using

the XPCtarget. The real parameter values of the MAGLEV rig are listed on

Table 9.2. The overall weight is 25kg while the operating air gap is 5mm.

From those two requirements the other parameters are calculated as shown

before (Note that the coils are ready made and therefore Rc,Lc,Ap and Nc

are given).

Table 9.2: MAGLEV Rig parameters.

Parameter Value Unit
Ms 25 kg
Go 0.005 m
Bo 0.33 T
Io 5.5 A
Fo 245.25 N
Rc 0.67 Ω
Lc 10 mH
Nc 456 turns
Ap 0.0062 m2

The Bode plot of the MAGLEV rig is depicted in Fig. 9.13. The

measurements taken show that the linearised state space model is very close

to the actual (non-linear) MAGLEV rig up to around 30rad/s. The state

space model is very close to the real MAGLEV with some difference that is

probably due to some small parametric uncertainties and non-linearities in
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the system.
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Figure 9.13: Theoretical and practical Bode plot for the MAGLEV rig.

9.3 Experimental results

In this section practical results for the real application are presented via

classical and modern control strategies under fault-free conditions. Since a

shaker is not available to inject disturbances to the track the problem will be

formulated as tracking (i.e inject a sinusoidal changes around the operating

point). For further studies on the disturbance rejection can be done as future

work.

9.3.1 Classical control implementation

In this case, the same configuration is taken into account as in the model

validation section (see Fig. 9.12). PA and PI controllers are used for the outer
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and inner loops respectively while a low pass filter is used at the output of

the PA with ωc = 190rad/s in order to reduce the noise level on the driving

signal. Figure 9.12 illustrates the concept while the objective functions used

for the optimisation algorithm are given as

φ1 =

∫ t

0

|(zt − z)ref − (zt − z)act|dt (9.6)

φ2 =

∫ t

0

|ucoil|dt (9.7)

where φ1 is the integral absolute error between the reference and the actual

air gap and φ2 is the integral absolute error of the driving signal (ucoil). The

corresponding design limitations are listed on Table 9.3. Sufficient robustness

is achieved using a phase margin between 35o − 45o and the inner loop

bandwidth is allowed to be within 50− 70Hz. The outer loop bandwidth is

allowed from 5− 15Hz and the maximum air gap deflection is no more than

3mm.

Table 9.3: MAGLEV Suspension rig constraints using the classical control.

Constrains Value
g1 Max air-gap deviation (det),((zt − z)p) ≤ 3mm
g2 Phase margin, (PM) ≤ 45o

g3 Phase margin, (PM) ≥ 35o

g4 Inner bandwidth (fbin) ≤ 70Hz
g5 Inner bandwidth (fbin) ≥ 50Hz
g6 Outer bandwidth (fbout) ≤ 15Hz
g7 Outer bandwidth (fbout) ≥ 5Hz

The controllers parameters are selected with a closed-loop response which

results to the minimum IAE between the reference and the measured air gap,

(i.e min[φ1]). The controllers are shown in (9.4) and (9.5). The injected

sinusoidal signal instructs the electromagnets to vary by ±2mm around the

operating (5mm) air gap. The response to the reference air gap signal is

depicted in Fig. 9.14. Figure 9.14(a) shows the actual (zt − z)act and the

reference (zt−z)ref air gap signals. As it can be seen the actual air gap cannot
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follow the reference signal precisely but it is fairly close. The corresponding

driving signal is depicted in Fig. 9.14(b). The amplitude is limited to a

maximum of about 1.5V while the level of the noise is low without having

any serious effect on the actual air gap. A demo of the current control

strategy is uploaded on Youtube by Michail [2008a] (The link is with the

reference).
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(b) Coil’s driving signal.

Figure 9.14: Closed-loop response using the air gap/flux measurements.

Another important point in this design is the scaling and polarity of the

signals that have to be adjusted in order for the controllers to respond with

proper signal levels to changes. In order to make sure that signal scaling is

correct the practical results are compared with the corresponding simulations

during the execution of this experiment.
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9.3.2 Sensor optimisation via LQG

In this section, the sensor optimisation via LQG control is presented.

Detailed description of this is given in Chapter 6 with the process summarised

below:

(i) During the first part, LQR weights are optimally tuned using the

NSGA-II in order to achieve an optimum Pareto front of controllers which

shows the trade-off between the objective functions. From the optimum

Pareto front of the resulting controllers the one that results to the desired

closed-loop response is selected using the user’s controller selection criteria.

The selected closed-loop response serves as the reference or ’ideal’ response

for the Kalman optimum tuning in the second part described next.

(ii) The second part is the Kalman estimator tuning where the sensor

information becomes critical. Particularly, the Kalman estimator is optimally

tuned to achieve the ’ideal’ closed-loop response for every feasible sensor

set. As described in Chapter 6 the V and W matrices have to be tuned to

precisely estimate the states. In this problem the V is constructed from the

noise covariance of the measurements while W is the tunable process noise

quantity.

State feedback control tuning and implementation

The state feedback control is taken into account in this section under fault

free conditions. The block diagram in Fig. 9.15 illustrates the state feedback

control of the non-linear MAGLEV rig using the current, air gap, velocity

and the integral of the error between the measured and the reference air gap

signals (e(zt−z)ref ,(zt−z)). Note that the velocity signal is derived by integrating

the acceleration measurement as explained in Section 9.2.3. The closed-loop

response should be able to follow the air gap reference signal of sinusoidal

form with ±3mm changes around the operating air gap point. The tuning

process takes into account the state regulation instead of output regulation

as in Chapter 6. The Q and R matrices are given as follows
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Figure 9.15: State feedback control of the 25kg MAGLEV suspension rig.
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Q = diag(qi, qż, q(zt−z), q
∫

e(zt−z)mea,(zt−z)
) R = 1/rucoil

(9.8)

The state feedback tuning is done using three objective functions given

as

φ1 =

∫ t

0

|(zt − z)ref − (zt − z)|dt (9.9)

φ2 =

∫ t

0

|ucoil|dt (9.10)

φ3 = ucoilnoise
(9.11)

where, φ1 is the IAE between the reference and the measured air gap signals,

φ2 is the integral of the input voltage and φ3 is the level of the noise on

the input voltage. The constraints for this problem setup are listed in

Table 9.4. From the optimum Pareto front of the objectives (not shown

Table 9.4: MAGLEV Suspension rig constraints using state feedback control.

Constrains Value
g1 Max air-gap deviation (det),((zt − z)p) ≤ 3mm
g2 Input voltage, (ucoil) ≤ 3V
g3 Closed-loop Bandwidth (fbcl) ≤ 10Hz
g4 Closed-loop Bandwidth (fbcl) ≥ 6Hz

here) the controller that results to the minimum noise level on the driving

signal is selected (min[ucoilnoise
]) with the following state feedback gains:

Ki = −19.17V/A, Kż = −306.91V/ms−2, K(zt−z) = 3.0855 × 104V/m and

Ke(zt−z)ref ,(zt−z)
= 1.3177× 105V/m.

The closed-loop response to the reference signal is illustrated in Fig. 9.16.

As it can be seen from Fig. 9.16(a) the electromagnet varies around the

nominal air gap by ±3mm in sinusoidal motions. However, there is a small

error between the reference and the actual air gap. The driving signal is
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depicted in Fig. 9.16(b) while a demo is uploaded on Youtube by Michail

[2008b] (web link).
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(b) Coil’s driving signal using state feedback control.

Figure 9.16: Closed-loop response of the MAGLEV suspension using the
optimally tuned state feedback control gains.

Linear Quadratic Gaussian control tuning and implementation

During the first part, the LQR weights are optimally tuned using the NSGA-

II in order to achieve an optimum Pareto front of controllers that represents

the trade-off between the objective functions. From the optimum Pareto

front of the resulting controllers the one that results to the desired closed-loop

response is selected. The state feedback gains that results to the minimum

level of the noise on the input voltage are selected (min[ucoilnoise
]) and given

as Ki = −19.17V/A, Kż = −306.91V/ms−2, K(zt−z) = 3.0855× 104V/m and

Ke(zt−z)ref ,(zt−z)
= 1.3177 × 105V/m. This represents the ’ideal’ or reference
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closed-loop response for the Kalman estimator tuning.

The block diagram of the sensor optimisation via LQG for the MAGLEV

suspension is depicted in Fig. 9.17. Two self-zeros integrators are required,

one for the flux and one for the acceleration in order to produce the flux

density and the velocity respectively. The Kalman estimator is optimally

tuned to achieve the ’ideal’ closed-loop response for every feasible sensor

set. As described in Chapter 6 the V and W matrices have to be tuned to

properly estimate the states. V is constructed from the noise covariance of

the measurements, it is not straightforward calculating the sensors’ output

noise covariance in practical situations. Datasheets give information on noise

but not considering external interference and therefore in this case the noise

covariance is calculated from the time history response by stabilising the

MAGLEV suspension using either classical or state feedback. The noise

covariance for each sensor is assumed to be V = diag(Vi, Vb, Vzt−z, Vż, Vz̈)

where Vi = 7.44 × 10−3, Vb = 2.27 × 10−6,V(zt−z) = 2.50 × 10−3,Vż = 7.04 ×
10−5,Vz̈ = 1.00× 10−3. The tuning of the Kalman filter is done by assuming

the process noise affects the states, hence W = diag(Wi,Wż,Wzt−z).

Three objective functions to be minimised ensure proper state estimation,

i.e

φ1 =

∫ t

0

|xoi − xai |dt (9.12)

φ2 =

∫ t

0

|xoż − xaż |dt (9.13)

φ3 =

∫ t

0

|xo(zt−z)
− xazt−z |dt (9.14)

where, as from Chapter 6, xo is the vector of the monitored states of interest

of the closed-loop with the LQR state feedback (e.g. ’ideal’ closed-loop

response) and xa the monitored states of interest of the closed-loop with

the overall LQG controller, e.g. actual closed loop (prior to adding sensor

noise).
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To ensure the estimation is correct, three constraints (one for each state

estimate) have been assigned as follows:

g1 ≡
∫ t

0

|xoi − xai |dt ≤ 5% (9.15)

g2 ≡
∫ t

0

|xoż − xaż |dt ≤ 15% (9.16)

g3 ≡
∫ t

0

|xo(zt−z)
− xa(zt−z)

|dt ≤ 5% (9.17)

g4 ≡ ucoilrms ≤ 10V (9.18)

For the NSGA-II optimisation process the parameters’ values are listed

in Table 9.5.

Table 9.5: NSGA-II parameters for the LQG tuning of the 25kg suspension.

Maximum generation 100
Population size 20

Crossover probability 0.9
Mutation probability 1/nr (nr = 3)

The sensor optimisation algorithm using the LQG for the MAGLEV sus-

pension rig results in 20/31 sensor sets that satisfy the required performance

(based on ideal LQR closed-loop response). Some randomly selected sensor

sets are listed in Table 9.6. As it can be seen, the current and acceleration

measurements are sufficient to controlling the maglev suspension but the flux

measurement fails to control. Note that for the systematic framework, in

Chapter 6, the current measurement had some constraint violation (settling

time) but within this problem setup it can estimate the states in a satisfactory

manner. The flux density measurement was able to satisfy the required

performance while here it is not possible. However, the problem setup and the

performance requirements are slightly different in the systematic framework

presented and in the practical implementation.

The practical implementation of the Kalman estimator is presented next.
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Table 9.6: Sensor optimisation results with LQG for the MAGLEV
suspension rig.

Sensor set Ω
id:1 i X

id:2 b x
id:3 z̈ X

id:4 i, b X

id:5 i, z̈ X

id:6 b, (zt − z) x
id:7 i, b, (zt − z) X

id:8 i, b, z̈ X

id:9 b, (zt − z), ż x
id:10 b, (zt − z), z̈ X

id:11 i, (zt − z), ż, z̈ X

id:12 i, b, (zt − z), ż, z̈ X

To test the estimation of the states the MAGLEV suspension rig is stabilised

by the state feedback control (note that the states can be measured) while

the selected sensors are fed to the Kalman estimator. In this way the

measured and the estimated states can be compared. Introducing three of the

estimated states simultaneously in the closed-loop response cause instability

therefore, the states are introduced one-by-one using software switches as

depicted in Fig. 9.18. As it can be see from the diagram, using switches

the measured states can be replaced by the estimated states via switches.

With this method it was found that the current and velocity states were

successfully used to stabilise the MAGLEV suspension but as soon as the

air gap estimate was introduced stability degraded (driven unstable). For

unknown reasons the estimated air gap signal cause instability. Hence, two of

the states were used along with the air gap measured state to demonstrate the

state estimations using id:1 and id:8 (one or three measurements). The states

estimation is compared with the measured states using single (i.e current)

and triple measurements (current, flux density, acceleration) in Fig. 9.19 and

Fig. 9.20 respectively. In both cases the current state estimation is sufficient.

The estimated velocity state is not precisely the same as the measured one
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Figure 9.18: Switching between measured and estimated states

however, it is sufficiently used to stabilise the suspension. There were some

problems faced in using the air gap estimate in the practical implementation

although further manual tuning of the Kalman filter improved the estimation.

This is an interesting issue for further investigation.
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(b) Estimated and measured velocity state.
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(c) Estimated and measured air gap state.

Figure 9.19: Estimated and measured states using the current measurement
(id:1).
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(b) Estimated and measured velocity state.
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(c) Estimated and measured air gap state.

Figure 9.20: Estimated and measured states using the current, flux and
acceleration measurements (id:8).
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9.4 Summary

A 25kg MAGLEV rig suspension is designed and constructed aiming to

practically test the sensor optimisation frameworks. The design of the

mechanical parts was easier compared to the electronic circuits implemen-

tation. Particularly, the switching mode power amplifier was difficult to

implement and there was a lot of problems related to MOSFET ringing

which appears on the measurements as a form of noise. However, the

problems were accommodated and the power amplifier worked properly.

All five measurements are successfully implemented giving relatively clear

measurements with correct scaling and polarity. The scaling as well as the

polarity of the measurements are very critical and they were carefully verified.

The classical control strategy optimally tuned using the NSGA-II was

successfully implemented with the required performance. The electromagnets

are successfully suspended 5mm below the track while instructed oscillations

around the operating point are followed as expected.

The sensor optimisation framework via LQG is successfully applied on the

25kg EMS system and tuned 20 out of 31 sensor sets that found to satisfy

the required constraints. From the 20 sensor sets two were selected from

practical test on the MAGLEV rig, i.e. Id:1 and Id:8 that include single and

triple sensors were tested. The results show that the state estimation can be

satisfactory and the suspension is stabilised under the estimated current and

velocity states, and the measured air gap state.

Further experiments can include deterministic and stochastic inputs from

the track using a shaker(although this was not possible in the current setup

due to time constraints).
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Chapter 10

Conclusions, discussion and

future work

10.1 Conclusions and discussion

A novel systematic framework is presented (and extended for a series of

control approaches) to produce optimised sensor configurations for control

and fault tolerance applied to a MAGLEV suspension system. The modern

control strategies, evolutionary algorithms, fault tolerant control and the

MAGLEV suspension are combined in order to demonstrate the optimised

sensor configurations for control and fault tolerance. For optimal tuning of

the performance genetic algorithms have been merged with the sensor opti-

misation framework. In Particular, the recently developed Non-Dominated

Sorting Genetic Algorithm-II is found to be a very powerful optimisation tool

and it is incorporated into the sensor optimisation framework successfully.

In fact, the NSGA-II successfully recovers the Pareto-optimality between the

assigned objective functions for every feasible sensor set.

Genetic algorithms have been widely used in control systems. Many

applications have be encountered using MOGA but fewer for the more

recent NSGA-II. GAs are very useful for problems where multiple objectives

have to be minimised especially when they are subject specific constraints.
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Penalty functions are used to avoid the infeasible area of the solution. To

demonstrate the NSGA-II properties and validity of the code two examples

where presented, while the efficacy of NSGA-II is shown where sensor

optimisation is demonstrated.

The non-linear equations of the EMS (Electromagnetic Suspension)

system are derived using Newton’s and Kirchoff’s laws. An LTI state space

model is used for the linear controller design purposes which is derived from

the non-linear equations. Moreover the EMS suspension system has non-

trivial practical requirements due to the multiobjective nature of the problem

that is posed subject to number of design constraints. In particular, such a

system should be able to support a very large load with a small air gap

(in the region of mm), follow the track gradients and reject the unintended

changes of the track due to irregularities. Generally, for the multiobjective

optimisation process of each sensor set the problem is posed as follows:

”minimise the vertical acceleration and coil’s excitation current from the

stochastic inputs to the suspension subject to enhancing the deterministic

inputs to the suspension from gradients onto the track”. Furthermore,

the MAGLEV suspension, being an unstable and safety-critical system, is

sensitive to faults. Particularly, one sensor fault can lead to disaster if not

accommodated on time. Under single or multiple sensor fault conditions the

suspension will either fall off or stick to the track if no remedial actions are

taken. In order to satisfy optimum performance and sensor fault tolerance

five measurements are available, i.e the current, flux density, air gap, vertical

velocity and vertical acceleration. Using combinations of the measurements

31 feasible sensor sets are available to select from by using the proposed

framework.

A 25kg MAGLEV suspension was constructed and the classical control

structures that are optimally tuned using GAs were successfully demon-

strated. An attempt on implementing sensor optimisation framework

via LQG controller design was considered. The optimal tuning for the

performance using the non-linear model was successfully done for 23/31
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sensor sets found to satisfy the constraints. Control of the suspension was

achieved using two estimated states while the air gap signal was measured

instead of feeding the estimated signal (the estimated signal was driving the

system unstable).

Two sensor configurations via classical control strategies were studied,

with inner feedback structure. The proposed genetic algorithm (NSGA-II)

has been proved to be very useful as it recovers optimum Pareto fronts

in both sensor configurations, i.e air gap(outer)/flux density(inner) and

air gap(outer)/current(inner). Both structures were optimally tuned and

compared from the performance point of view. The air gap(outer)/flux

density(inner) configuration proved superior to the air gap/current structure.

In the classical (inner loop) feedback structure the notion of multiple sensor

configurations is rather restricted as two feasible structures are investigated

and also relate to realistic implementations. The major outcome in this

sense was the use of NSGA-II tuning and procedure given an insight for

the furthering of the methodology. In particular employing modern control

strategies for sensor optimisation, increases complexity and computational

effort. To simplify the sensor set selection in the sensor optimisation

frameworks a metric to identify which sensor set is able to satisfy the required

performance is introduced. This refers to the overall constraint violation

function Ω used to indicate if a sensor set satisfies the constraints or not.

This function is efficient not only for constraint handling but also for the

selection of the best controller(s) for a sensor set.

It was found that measurement noise appears on the input voltage.

Although the MAGLEV suspension has low pass filter characteristics and

the amplitude of the noise is largely attenuated, it has to be kept as low as

possible. The proposed sensor optimisation frameworks accommodate this

issue by adding an extra objective function.

At first the proposed systematic framework employs modern control

approaches using Linear Quadratic Gaussian control. The particular sensor
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optimisation algorithm is performed in two parts. The first part is the Linear

Quadratic Regulator tuning where an optimum Pareto front of controllers is

recovered (note here state feedback is used) between the objective functions.

The selected closed-loop response of the LQR is used as the ’ideal’ reference

for the sensor optimisation in the second part. The selection of the controller

is done using the user’s controller selection criteria fci and fu. The state

feedback gain, Kr, that results to the best ride quality from the stochastic

input track profile is selected (The overall constraint violation function (Ω)

has to be zero in order to ensure that no constraint violation occurs).

The next step is where the sensor information becomes important with

the Kalman estimator in the loop (note the importance of sensor selection

directly related to the Kalman filter design). The Kalman estimator is

optimally tuned to achieve a closed-loop response similar to the ’ideal’ for

every feasible sensor set, i.e the desired closed-loop response (with both

closed-loop deterministic and stochastic inputs) using LQR control. On

completion of the sensor optimisation process a number of optimally tuned

controllers are available for each sensor set. In order to select the best

controller, the overall constraint violation function (Ω) and precision of the

states estimation (Sf) are used. It was found that 24/31 sensor sets satisfy

the closed-loop response requirements (same as ’ideal’ response with LQR).

Two single measurements (vertical acceleration or flux density) are found

to satisfy the performance requirements while similar performance can be

achieved using more sensors. From a control point of view one measurement

can be selected under these circumstances, i.e either vertical acceleration or

flux density (but with hardware redundancy if no switching with other sensors

is employed). Robustness tests to load variation and perturbed operating

point using the acceleration measurement (z̈) and current, flux density and

acceleration (i, b, z̈) have been done. The results show that both stability

and performance are maintained for both sensor sets under uncertain and

load variation conditions.

The sensor optimisation framework is extended to accommodate multi-

objective (M.O.) H∞ robust control design methodologies. It was found that
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incorporating the H∞ norm was sufficient but this can be extended in an

H∞/H2 format. M.O. H∞ robust control design is combined with NSGA-

II to recover the optimum Pareto front between the objective functions for

every feasible sensor set of the MAGLEV suspension. The optimum Pareto

front is represented by 50 (population number) optimally tuned controllers.

This means that according to Nc = Popnum × Ns at the completion of

the sensor optimisation framework 1550 optimally tuned controllers are

reported. In order to select the desired closed-loop response for each sensor

set the conditions are taken into account: (i) The overall constraint violation

function (Ω) that is used to chose controllers that don’t violate any constraint

(for each sensor set). Of course, the controller selection using Ω, may

result to a group of closed-loop responses that do not violate any constraint.

Optimally tuned controllers were found to satisfy the closed-loop response

required constraints for 29 out of 31 feasible sensor sets. Single measurements

including flux density, air gap or vertical acceleration were found to satisfy all

constraints. In order to select the best controller for each of the corresponding

sensor sets a second condition is considered. (ii) The best controller selection

is done using the user’s controller selection criteria fci and fu. Using these

two criteria the best controller is chosen that results to a desired closed-loop

response. In fact, the proposed framework gives to the user the flexibility

to select the desired closed-loop response for each sensor set. Finally, 18

out of 31 sensor sets found to satisfy Ω, fci and fu. For control purposes a

single measurement can be used. The closed-loop response to load variation

and operating point perturbations have been tested under deterministic and

stochastic track inputs for the acceleration measurements and sensor set

that includes current, flux and acceleration. Results show that under those

conditions stability is maintained as well as performance.

Next, the proposed framework is extended towards using the H∞ loop

shaping design procedure (LSDP) with similar flowchart but with some code

modifications. LSDP requires the air gap as a standard measurement leading

to 16 sensor sets. In this case, for loop shaping, one weighting filter is required

per sensor, with the number of variables dynamically updated in order to
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increase the framework efficiency. The number of maximum generations

is dynamically updated between 150-200. Particularly, it was found that

for 1,2 and 3 sensors 150 generations are sufficient to recover the optimum

Pareto front while for 4 and 5 sensors a maximum of 200 generations is

enough. Nevertheless, if weighting filters of increased complexity are used the

problem could require higher number of generations with larger population

resulting to much more completion time for the framework. Moreover, if a

model is considered with more sensors (i.e 10 sensors) and subsequently 10

weighting filters are used the completion of the framework may need very

large computational time. There exist 16 feasible sensor sets to optimise

while the optimum Pareto front between the objectives for each sensor set

is created from 50 optimally tuned controllers. After the completion of the

optimisation framework there exist 800 optimally tuned controllers according

to Nc = Popnum×Ns. The best controller selection for each sensor set is done

in the same manner as before. The controller(s) that result to the satisfaction

of the constraints are selected and then the controller that satisfy the user’s

controller selection criteria (fci, fu) is chosen. Eleven out of 16 sensor sets are

found to satisfy the constraints and user’s controller selection criteria. The

proposed framework using LSDP concludes that the minimum number of

sensors that can be used for control is 2 (air gap and vertical acceleration).

In the LSDP approach is the air gap measurement is constantly used and

therefore no air gap sensor failure can be afforded. In such case, triple

redundancy of the air gap sensor overcomes the problem but in the expense

increase cost in the control system. Robustness tests to load variations and

perturbed operating point are performed under stochastic and deterministic

inputs of the suspension concluding that the closed-loop response to such

inputs do not affect stability and performance.

The most important points from the proposed systematic framework

extensions are highlighted in Table 10.1. Using LQG and M.O. H∞

robust control 31 feasible sensor sets exist whereas using the LSDP 16

feasible sensor sets exist. Employing genetic algorithms into the framework

is time consuming but efficient strategy for the multiobjective constraint
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optimisation of each sensor set. Using the M.O.H∞ design 29 out of 31 sensor

sets are found to satisfy the constraints while 24 out of 31 sensor sets for the

LQG and 11 out of 16 for the LSDP. Single measurements are found for the

M.O. H∞ and the LQG control strategies while for the LSDP 2 sensors are

the minimum that can be used to control the suspension. Because each one

of the control strategies has different problem formulation, the completion

time differs for each approach. M.O. H∞ robust control requires the highest

(175 hours) while for LQG and LSDP 54 and 42 hours respectively.

Table 10.1: Systematic frameworks overview.

LQG M.O. H∞ LSDP
Number of feasible sensor sets 31 31 16
Sensor sets found to satisfy Ω 24/31 29/31 11/16
Sensor sets found to satisfy

user’s controller selection criteria 24/31 18/31 11/16
Minimum number of sensors that 1 1 2

can be used for control b or b or z̈ (zt − z)
z̈ or (zt − z) and z̈

Completion time for framework 54 hours 175 hours 42 hours
b-Flux density, z̈- Vertical acceleration, (zt − z)- Air gap

Two sensor fault tolerant approaches were studied in this thesis. One

approach involves a combination of classical control strategy and analytical

redundancy to recover performance for an air gap sensor failure and the

other one using LQG control aims to recover performance with to multiple

sensor faults. In the former case the air gap sensor failure is masked

using the estimated and the calculated air gap signals. This approach

avoids air gap sensor redundancy however is restricted to single sensor

failure (air gap sensor). Considering the optimised sensor configurations

via LQG multiple sensor faults can be accommodated using active fault

tolerance approaches. In fact, the sensor selection is considered with fault

tolerant extensions were the best sensor set is selected that ensures optimum

performance under any possible fault conditions via controller reconfiguration
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Table 10.2: Sensor fault conditions with current, flux density and
acceleration.

Sensor Healthy Faulty Kalman Successful
set Sensors Sensors estimator performance

recovery
i, b, z̈ i, b, z̈ - Ki,b,z̈

i, b z̈ Ki,b X

b, z̈ i Kb,z̈ X

i, z̈ b Ki,z̈ X

i b, z̈ Ki x
b i, z̈ Kb X

z̈ i, b Kz̈ X

(active fault tolerant control design). Investigating the optimised sensor

configurations via LQG control it is possible to locate the best possible

sensor set that could be used for multiple sensor fault tolerance so that

the minimum numbers of sensors are used. As described in Chapter 8, for

the MAGLEV suspension, it was found that the current, the flux density

and the acceleration measurements are good options since they can recover

the optimum performance under multiple sensor faults. Table 10.2 tabulates

the possible sensor fault conditions that can be accommodated. Only two

conditions cannot be accommodated. One is when all sensors fail and when

the current and flux fail. In such case, the stability cannot be maintained

during transition from the state change. Although is not likely for two sensors

to fail at the same moment, sensor redundancy can be used for one of the

two sensors so that the possibility for the current measurement to remain

alone is very low.

Throughout this thesis the linearised model of the MAGLEV suspension

has been used in order to design linear controllers. However the MAGLEV

suspension is non-linear therefore to accommodate non-linearities and ensure

optimum performance and stability the controllers are tuned via simulations

using the non-linear model of the suspension. In this way, stability and

optimum performance of the closed-loop response are both ensured.
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To summarise, the following items have been encountered in this work� optimisation of classical control strategies for controlling a quarter car

of a MAGLEV train via genetic algorithms proves the efficancy of the

NSGA-II and gives an insight of the optimised sensor configurations

concept� the proposed framework via LQG control produce 31 optimised sensor

configurations where 24 satisfy the constraints among them single

measurements that can be used to optimally control the MAGLEV

suspension.� the proposed framework via M.O. H∞ robust control design found

29/31 optimised sensor configurations that satisfy the required perfor-

mance among them single measurements that can be used to optimally

control the suspension.� the proposed framework using LSDP has successfully recover 11 out of

16 sensor sets that satisfy the required performance while the minimum

number of sensors to be used are two (i.e the air gap and acceleration).

However, this method is that the air gap measurements can not be

avoided and hence hardware redundancy for this sensor is unavoidable

if sensor fault tolerance is a requirement.� Robustness to load variations and uncertain model parameters has

been tested for the three aforementioned modern control approaches

maintaining stability and sufficient closed-loop performance with the

corresponding sensor sets even with single measurements.� optimised sensor configurations with LQG were investigated from a

fault tolerant point of view. The results reveal that using the selected

sensor set optimum, performance is maintained under most of sensor

fault conditions using the minimum number of sensors.� optimally tuned classical control strategies were successfully imple-

mented on a 25kg MAGLEV suspension as well as optimally tuned
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state feedback controllers. In addition the Kalman filter proved useful

for a number of sensor combinations, although there were some issues

with the air gap state estimation.
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