892 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Design and Real-World Evaluation of Dependable Wireless Cyber-Physical Systems

    Get PDF
    The ongoing effort for an efficient, sustainable, and automated interaction between humans, machines, and our environment will make cyber-physical systems (CPS) an integral part of the industry and our daily lives. At their core, CPS integrate computing elements, communication networks, and physical processes that are monitored and controlled through sensors and actuators. New and innovative applications become possible by extending or replacing static and expensive cable-based communication infrastructures with wireless technology. The flexibility of wireless CPS is a key enabler for many envisioned scenarios, such as intelligent factories, smart farming, personalized healthcare systems, autonomous search and rescue, and smart cities. High dependability, efficiency, and adaptivity requirements complement the demand for wireless and low-cost solutions in such applications. For instance, industrial and medical systems should work reliably and predictably with performance guarantees, even if parts of the system fail. Because emerging CPS will feature mobile and battery-driven devices that can execute various tasks, the systems must also quickly adapt to frequently changing conditions. Moreover, as applications become ever more sophisticated, featuring compact embedded devices that are deployed densely and at scale, efficient designs are indispensable to achieve desired operational lifetimes and satisfy high bandwidth demands. Meeting these partly conflicting requirements, however, is challenging due to imperfections of wireless communication and resource constraints along several dimensions, for example, computing, memory, and power constraints of the devices. More precisely, frequent and correlated message losses paired with very limited bandwidth and varying delays for the message exchange significantly complicate the control design. In addition, since communication ranges are limited, messages must be relayed over multiple hops to cover larger distances, such as an entire factory. Although the resulting mesh networks are more robust against interference, efficient communication is a major challenge as wireless imperfections get amplified, and significant coordination effort is needed, especially if the networks are dynamic. CPS combine various research disciplines, which are often investigated in isolation, ignoring their complex interaction. However, to address this interaction and build trust in the proposed solutions, evaluating CPS using real physical systems and wireless networks paired with formal guarantees of a system’s end-to-end behavior is necessary. Existing works that take this step can only satisfy a few of the abovementioned requirements. Most notably, multi-hop communication has only been used to control slow physical processes while providing no guarantees. One of the reasons is that the current communication protocols are not suited for dynamic multi-hop networks. This thesis closes the gap between existing works and the diverse needs of emerging wireless CPS. The contributions address different research directions and are split into two parts. In the first part, we specifically address the shortcomings of existing communication protocols and make the following contributions to provide a solid networking foundation: • We present Mixer, a communication primitive for the reliable many-to-all message exchange in dynamic wireless multi-hop networks. Mixer runs on resource-constrained low-power embedded devices and combines synchronous transmissions and network coding for a highly scalable and topology-agnostic message exchange. As a result, it supports mobile nodes and can serve any possible traffic patterns, for example, to efficiently realize distributed control, as required by emerging CPS applications. • We present Butler, a lightweight and distributed synchronization mechanism with formally guaranteed correctness properties to improve the dependability of synchronous transmissions-based protocols. These protocols require precise time synchronization provided by a specific node. Upon failure of this node, the entire network cannot communicate. Butler removes this single point of failure by quickly synchronizing all nodes in the network without affecting the protocols’ performance. In the second part, we focus on the challenges of integrating communication and various control concepts using classical time-triggered and modern event-based approaches. Based on the design, implementation, and evaluation of the proposed solutions using real systems and networks, we make the following contributions, which in many ways push the boundaries of previous approaches: • We are the first to demonstrate and evaluate fast feedback control over low-power wireless multi-hop networks. Essential for this achievement is a novel co-design and integration of communication and control. Our wireless embedded platform tames the imperfections impairing control, for example, message loss and varying delays, and considers the resulting key properties in the control design. Furthermore, the careful orchestration of control and communication tasks enables real-time operation and makes our system amenable to an end-to-end analysis. Due to this, we can provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. • We propose control-guided communication, a novel co-design for distributed self-triggered control over wireless multi-hop networks. Self-triggered control can save energy by transmitting data only when needed. However, there are no solutions that bring those savings to multi-hop networks and that can reallocate freed-up resources, for example, to other agents. Our control system informs the communication system of its transmission demands ahead of time so that communication resources can be allocated accordingly. Thus, we can transfer the energy savings from the control to the communication side and achieve an end-to-end benefit. • We present a novel co-design of distributed control and wireless communication that resolves overload situations in which the communication demand exceeds the available bandwidth. As systems scale up, featuring more agents and higher bandwidth demands, the available bandwidth will be quickly exceeded, resulting in overload. While event-triggered control and self-triggered control approaches reduce the communication demand on average, they cannot prevent that potentially all agents want to communicate simultaneously. We address this limitation by dynamically allocating the available bandwidth to the agents with the highest need. Thus, we can formally prove that our co-design guarantees closed-loop stability for physical systems with stochastic linear time-invariant dynamics.:Abstract Acknowledgements List of Abbreviations List of Figures List of Tables 1 Introduction 1.1 Motivation 1.2 Application Requirements 1.3 Challenges 1.4 State of the Art 1.5 Contributions and Road Map 2 Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks 2.1 Introduction 2.2 Overview 2.3 Design 2.4 Implementation 2.5 Evaluation 2.6 Discussion 2.7 Related Work 3 Butler: Increasing the Availability of Low-Power Wireless Communication Protocols 3.1 Introduction 3.2 Motivation and Background 3.3 Design 3.4 Analysis 3.5 Implementation 3.6 Evaluation 3.7 Related Work 4 Feedback Control Goes Wireless: Guaranteed Stability over Low-Power Multi-Hop Networks 4.1 Introduction 4.2 Related Work 4.3 Problem Setting and Approach 4.4 Wireless Embedded System Design 4.5 Control Design and Analysis 4.6 Experimental Evaluation 4.A Control Details 5 Control-Guided Communication: Efficient Resource Arbitration and Allocation in Multi-Hop Wireless Control Systems 5.1 Introduction 5.2 Problem Setting 5.3 Co-Design Approach 5.4 Wireless Communication System Design 5.5 Self-Triggered Control Design 5.6 Experimental Evaluation 6 Scaling Beyond Bandwidth Limitations: Wireless Control With Stability Guarantees Under Overload 6.1 Introduction 6.2 Problem and Related Work 6.3 Overview of Co-Design Approach 6.4 Predictive Triggering and Control System 6.5 Adaptive Communication System 6.6 Integration and Stability Analysis 6.7 Testbed Experiments 6.A Proof of Theorem 4 6.B Usage of the Network Bandwidth for Control 7 Conclusion and Outlook 7.1 Contributions 7.2 Future Directions Bibliography List of Publication

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Medium access control design for distributed opportunistic radio networks

    Get PDF
    Existing wireless networks are characterized by a fixed spectrum assignment policy. However, the scarcity of available spectrum and its inefficient usage demands for a new communication paradigm to exploit the existing spectrum opportunistically. Future Cognitive Radio (CR) devices should be able to sense unoccupied spectrum and will allow the deployment of real opportunistic networks. Still, traditional Physical (PHY) and Medium Access Control (MAC) protocols are not suitable for this new type of networks because they are optimized to operate over fixed assigned frequency bands. Therefore, novel PHY-MAC cross-layer protocols should be developed to cope with the specific features of opportunistic networks. This thesis is mainly focused on the design and evaluation of MAC protocols for Decentralized Cognitive Radio Networks (DCRNs). It starts with a characterization of the spectrum sensing framework based on the Energy-Based Sensing (EBS) technique considering multiple scenarios. Then, guided by the sensing results obtained by the aforementioned technique, we present two novel decentralized CR MAC schemes: the first one designed to operate in single-channel scenarios and the second one to be used in multichannel scenarios. Analytical models for the network goodput, packet service time and individual transmission probability are derived and used to compute the performance of both protocols. Simulation results assess the accuracy of the analytical models as well as the benefits of the proposed CR MAC schemes

    Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    Get PDF
    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefore able to continue for a long period. SWNCS also offers multi Service infrastructure solution for both developed and undeveloped countries. The system provides wireless controller lighting, wireless communications network (WI-FI/WIMAX), CCTV surveillance, and wireless sensor for weather measurement which are all powered by solar energy

    Contention techniques for opportunistic communication in wireless mesh networks

    Get PDF
    Auf dem Gebiet der drahtlosen Kommunikation und insbesondere auf den tieferen Netzwerkschichten sind gewaltige Fortschritte zu verzeichnen. Innovative Konzepte und Technologien auf der physikalischen Schicht (PHY) gehen dabei zeitnah in zelluläre Netze ein. Drahtlose Maschennetzwerke (WMNs) können mit diesem Innovationstempo nicht mithalten. Die Mehrnutzer-Kommunikation ist ein Grundpfeiler vieler angewandter PHY Technologien, die sich in WMNs nur ungenügend auf die etablierte Schichtenarchitektur abbilden lässt. Insbesondere ist das Problem des Scheduling in WMNs inhärent komplex. Erstaunlicherweise ist der Mehrfachzugriff mit Trägerprüfung (CSMA) in WMNs asymptotisch optimal obwohl das Verfahren eine geringe Durchführungskomplexität aufweist. Daher stellt sich die Frage, in welcher Weise das dem CSMA zugrunde liegende Konzept des konkurrierenden Wettbewerbs (engl. Contention) für die Integration innovativer PHY Technologien verwendet werden kann. Opportunistische Kommunikation ist eine Technik, die die inhärenten Besonderheiten des drahtlosen Kanals ausnutzt. In der vorliegenden Dissertation werden CSMA-basierte Protokolle für die opportunistische Kommunikation in WMNs entwickelt und evaluiert. Es werden dabei opportunistisches Routing (OR) im zustandslosen Kanal und opportunistisches Scheduling (OS) im zustandsbehafteten Kanal betrachtet. Ziel ist es, den Durchsatz von elastischen Paketflüssen gerecht zu maximieren. Es werden Modelle für Überlastkontrolle, Routing und konkurrenzbasierte opportunistische Kommunikation vorgestellt. Am Beispiel von IEEE 802.11 wird illustriert, wie der schichtübergreifende Entwurf in einem Netzwerksimulator prototypisch implementiert werden kann. Auf Grundlage der Evaluationsresultate kann der Schluss gezogen werden, dass die opportunistische Kommunikation konkurrenzbasiert realisierbar ist. Darüber hinaus steigern die vorgestellten Protokolle den Durchsatz im Vergleich zu etablierten Lösungen wie etwa DCF, DSR, ExOR, RBAR und ETT.In the field of wireless communication, a tremendous progress can be observed especially at the lower layers. Innovative physical layer (PHY) concepts and technologies can be rapidly assimilated in cellular networks. Wireless mesh networks (WMNs), on the other hand, cannot keep up with the speed of innovation at the PHY due to their flat and decentralized architecture. Many innovative PHY technologies rely on multi-user communication, so that the established abstraction of the network stack does not work well for WMNs. The scheduling problem in WMNs is inherent complex. Surprisingly, carrier sense multiple access (CSMA) in WMNs is asymptotically utility-optimal even though it has a low computational complexity and does not involve message exchange. Hence, the question arises whether CSMA and the underlying concept of contention allows for the assimilation of advanced PHY technologies into WMNs. In this thesis, we design and evaluate contention protocols based on CSMA for opportunistic communication in WMNs. Opportunistic communication is a technique that relies on multi-user diversity in order to exploit the inherent characteristics of the wireless channel. In particular, we consider opportunistic routing (OR) and opportunistic scheduling (OS) in memoryless and slow fading channels, respectively. We present models for congestion control, routing and contention-based opportunistic communication in WMNs in order to maximize both throughput and fairness of elastic unicast traffic flows. At the instance of IEEE 802.11, we illustrate how the cross-layer algorithms can be implemented within a network simulator prototype. Our evaluation results lead to the conclusion that contention-based opportunistic communication is feasible. Furthermore, the proposed protocols increase both throughput and fairness in comparison to state-of-the-art approaches like DCF, DSR, ExOR, RBAR and ETT

    Dimmer: Self-Adaptive Network-Wide Flooding with Reinforcement Learning

    Full text link
    The last decade saw an emergence of Synchronous Transmissions (ST) as an effective communication paradigm in low-power wireless networks. Numerous ST protocols provide high reliability and energy efficiency in normal wireless conditions, for a large variety of traffic requirements. Recently, with the EWSN dependability competitions, the community pushed ST to harsher and highly-interfered environments, improving upon classical ST protocols through the use of custom rules, hand-tailored parameters, and additional retransmissions. The results are sophisticated protocols, that require prior expert knowledge and extensive testing, often tuned for a specific deployment and envisioned scenario. In this paper, we explore how ST protocols can benefit from self-adaptivity; a self-adaptive ST protocol selects itself its best parameters to (1) tackle external environment dynamics and (2) adapt to its topology over time. We introduce Dimmer as a self-adaptive ST protocol. Dimmer builds on LWB and uses Reinforcement Learning to tune its parameters and match the current properties of the wireless medium. By learning how to behave from an unlabeled dataset, Dimmer adapts to different interference types and patterns, and is able to tackle previously unseen interference. With Dimmer, we explore how to efficiently design AI-based systems for constrained devices, and outline the benefits and downfalls of AI-based low-power networking. We evaluate our protocol on two deployments of resource-constrained nodes achieving 95.8% reliability against strong, unknown WiFi interference. Our results outperform baselines such as non-adaptive ST protocols (27%) and PID controllers, and show a performance close to hand-crafted and more sophisticated solutions, such as Crystal (99%)
    • …
    corecore