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Abstract

The ongoing effort for an efficient, sustainable, and automated interaction between
humans, machines, and our environment will make cyber-physical systems (CPS) an
integral part of the industry and our daily lives. At their core, CPS integrate computing
elements, communication networks, and physical processes that are monitored and
controlled through sensors and actuators. New and innovative applications become
possible by extending or replacing static and expensive cable-based communication
infrastructures with wireless technology. The flexibility of wireless CPS is a key
enabler for many envisioned scenarios, such as intelligent factories, smart farming,
personalized healthcare systems, autonomous search and rescue, and smart cities.

High dependability, efficiency, and adaptivity requirements complement the demand
for wireless and low-cost solutions in such applications. For instance, industrial and
medical systems should work reliably and predictably with performance guarantees,
even if parts of the system fail. Because emerging CPS will feature mobile and battery-
driven devices that can execute various tasks, the systems must also quickly adapt to
frequently changing conditions. Moreover, as applications become ever more sophis-
ticated, featuring compact embedded devices that are deployed densely and at scale,
efficient designs are indispensable to achieve desired operational lifetimes and satisfy

high bandwidth demands.

Meeting these partly conflicting requirements, however, is challenging due to imper-
fections of wireless communication and resource constraints along several dimensions,
for example, computing, memory, and power constraints of the devices. More precisely,
frequent and correlated message losses paired with very limited bandwidth and varying
delays for the message exchange significantly complicate the control design. In addi-
tion, since communication ranges are limited, messages must be relayed over multiple
hops to cover larger distances, such as an entire factory. Although the resulting mesh
networks are more robust against interference, efficient communication is a major
challenge as wireless imperfections get amplified, and significant coordination effort
is needed, especially if the networks are dynamic.

CPS combine various research disciplines, which are often investigated in isolation,
ignoring their complex interaction. However, to address this interaction and build trust
in the proposed solutions, evaluating CPS using real physical systems and wireless
networks paired with formal guarantees of a system’s end-to-end behavior is necessary.
Existing works that take this step can only satisfy a few of the abovementioned
requirements. Most notably, multi-hop communication has only been used to control
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slow physical processes while providing no guarantees. One of the reasons is that the
current communication protocols are not suited for dynamic multi-hop networks.

This thesis closes the gap between existing works and the diverse needs of emerging
wireless CPS. The contributions address different research directions and are split
into two parts. In the first part, we specifically address the shortcomings of existing
communication protocols and make the following contributions to provide a solid
networking foundation:

+ We present MIXER, a communication primitive for the reliable many-to-all mes-
sage exchange in dynamic wireless multi-hop networks. MIXER runs on resource-
constrained low-power embedded devices and combines synchronous transmissions
and network coding for a highly scalable and topology-agnostic message exchange.
As a result, it supports mobile nodes and can serve any possible traffic patterns,
for example, to efficiently realize distributed control, as required by emerging CPS
applications.

+ We present BUTLER, a lightweight and distributed synchronization mechanism with
formally guaranteed correctness properties to improve the dependability of syn-
chronous transmissions-based protocols. These protocols require precise time syn-
chronization provided by a specific node. Upon failure of this node, the entire net-
work cannot communicate. BUTLER removes this single point of failure by quickly
synchronizing all nodes in the network without affecting the protocols’ performance.

In the second part, we focus on the challenges of integrating communication and vari-
ous control concepts using classical time-triggered and modern event-based approaches.
Based on the design, implementation, and evaluation of the proposed solutions using
real systems and networks, we make the following contributions, which in many ways
push the boundaries of previous approaches:

+ We are the first to demonstrate and evaluate fast feedback control over low-power
wireless multi-hop networks. Essential for this achievement is a novel co-design
and integration of communication and control. Our wireless embedded platform
tames the imperfections impairing control, for example, message loss and varying
delays, and considers the resulting key properties in the control design. Furthermore,
the careful orchestration of control and communication tasks enables real-time
operation and makes our system amenable to an end-to-end analysis. Due to this,
we can provably guarantee closed-loop stability for physical processes with linear
time-invariant dynamics.

« We propose control-guided communication, a novel co-design for distributed self-
triggered control over wireless multi-hop networks. Self-triggered control can save
energy by transmitting data only when needed. However, there are no solutions that
bring those savings to multi-hop networks and that can reallocate freed-up resources,
for example, to other agents. Our control system informs the communication system
of its transmission demands ahead of time so that communication resources can be
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allocated accordingly. Thus, we can transfer the energy savings from the control to
the communication side and achieve an end-to-end benefit.

We present a novel co-design of distributed control and wireless communication
that resolves overload situations in which the communication demand exceeds
the available bandwidth. As systems scale up, featuring more agents and higher
bandwidth demands, the available bandwidth will be quickly exceeded, resulting
in overload. While event-triggered control and self-triggered control approaches
reduce the communication demand on average, they cannot prevent that potentially
all agents want to communicate simultaneously. We address this limitation by
dynamically allocating the available bandwidth to the agents with the highest need.
Thus, we can formally prove that our co-design guarantees closed-loop stability for
physical systems with stochastic linear time-invariant dynamics.
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Introduction

1.1 Motivation

Technological advances lead to an increasing digitalization of our world. The accompa-
nying interconnection between humans, machines, and our environment transforms
industries, businesses, and our daily lives. Cyber-physical systems (CPS) play an essen-
tial role in this transformation, as the integration of processes in our physical world
with the computing and communication capabilities of the cyber world is at the core
of these systems [39]. Figure 1.1 shows the main components of CPS. Sensors monitor
relevant parameters of the physical process, while actuators can directly interact with
the process and influence its state. Based on the sensed process state and a fundamental
understanding of the physical process, appropriate commands for the actuators are
computed by a controller. The interdependencies between the computations and the
process state lead to a feedback loop whose characteristics and requirements depend
mainly on the dynamics of the physical process and the specific control task. Because
sensors, actuators, and controllers are often not co-located due to the dimensions of
the physical process (e.g., in a refinery), information must be exchanged via a commu-
nication network (wired or wireless). In general, CPS are complex systems, and their
design requires interdisciplinary knowledge and engineering principles from different
fields, such as control, communication, and embedded systems [39, 144].

There are many different research fields and applications in which CPS play an impor-
tant role. For example, nurtured by growing demands for individualized, high-quality
products, and to maximize profit margins, smart factories will use CPS to realize
highly automated and adaptive manufacturing flows [17, 66, 184]. Moreover, consider-
able challenges in the agricultural sector are caused by, for example, environmental
damages, climate change, and an ever-increasing world population, demanding more
efficient and sustainable farming methods [176]. In this context, CPS will monitor
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Controller

Feedback loop

Sensor Actuator

D] Physica[process D]

F1GURE 1.1: Wireless CPS. Embedded devices are deeply integrated into the physical en-
vironment to monitor its state (sensor). Based on that, control commands are computed
(controller) and applied through actuators, closing the feedback loop. A communication
network interconnects spatially distributed devices and distributes all information over large
distances. Thereby, wireless networks achieve unprecedented flexibility at much lower costs.

the environment and control the precise and efficient use of water, fertilizers, and
pesticides, ultimately reducing the footprint of the agricultural sector while increasing
crop yield. Other examples where CPS serve as an important building block include
personalized healthcare [167], next-generation power grids [46], intelligent transporta-
tion systems [19], autonomous search and rescue [61], and the optimization of various
processes in entire cities [82].

Wireless cyber-physical systems. Closing feedback loops using wireless technology
(see Figure 1.1) has the potential to advance the field of CPS, improving existing and
enabling new applications. Wireless CPS can significantly reduce costs and provide
higher mobility, better scalability, and unparalleled flexibility [4, 190].

In comparison, installation and maintenance of a cable-based infrastructure are costly
and error-prone, especially due to a large number of connections [26, 122]. Once
installed, the communication infrastructure is static and scales poorly toward larger
deployments in general. The high costs often require a trade-off between the number
of sensors and actuators best suited for the specific physical process and an economi-
cally viable solution. In contrast, embedded devices that communicate wirelessly are
inexpensive and flexible, can be deployed densely and at scale, easily extend existing
systems, and can reach into tiny spaces. Truly untethered devices become possible
using batteries, energy harvesting [139], or wireless power transfer techniques [21] and
provide the highest flexibility. This flexibility opens up new possibilities as previously
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unreachable information can now be unlocked, for example, at moving and rotating
parts, over impassable terrain, or in challenging environmental conditions such as heat
and abrasive substances [45, 88, 147].

1.2 Application Requirements

In addition to the need for low-cost and embedded devices, CPS applications also
require high dependability, efficiency, and adaptivity, particularly in medical and
industrial settings [17]. We will discuss these requirements in more detail in the
following.

Dependability. A dependable system that can be trusted to safely and correctly fulfill
its desired task is essential to most applications. Dependability includes various aspects,
such as reliability, availability, predictability, and fault tolerance.

A prerequisite for the correct operation of CPS is the reliable communication of sensor
data and control commands, as the latter depend on recent information about the state
of the physical process. Missing or delayed information can lead to reduced control
performance or compromise the stability of the feedback system. However, since CPS
are distributed systems and potentially consist of a large number of devices, failures
will be no exception. For example, broken sensors, software bugs, or empty batteries
can render parts of the system non-functional at any time. Therefore, the impact of
such individual failures should affect the rest of the system as little as possible [45]. A
reliable and fault-tolerant operation plays an important role in industry, especially in
safety-critical systems where already a few message losses may lead to severe outages,
substantial financial losses, or even accidents involving humans [4, 190].

In addition to reliability, predictability is another crucial aspect. The physical process
and its characteristics determine how fast a control loop must be closed, imposing
real-time constraints on the CPS. For example, typical update intervals in industrial
applications range from tens or hundreds of milliseconds to a few seconds [4]. Hence,
the timing of communication and computations must be predictable and deterministic
with as little variation as possible [101, 135]. Such properties are the foundation for
formal guarantees on a system’s end-to-end behavior and to build trust in the proposed
solution, for example, by analyzing safety, stability, or control performance [17].

Efficiency. As CPS applications become ever more sophisticated, they will use more
agents, have higher bandwidth demands, and potentially close multiple feedback loops
over the same network [2]. Thus, the efficient use of available resources, particularly
network bandwidth, is indispensable. For instance, it is expected that the traffic volumes
of machine-to-machine communication for monitoring and control will increase by up
to 50 % per year over the next ten years [38].

Efficiency is also a primary concern when using completely untethered devices that
rely only on stored and potentially harvested energy. Replacing batteries or other
maintenance work is costly, especially when there are many devices or the system is
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deployed in remote or hard-to-reach locations. Thus, an energy-efficient operation is
mandatory to achieve desired operational lifetimes and reduce maintenance costs. For
example, industrial sensors, such as vibration, temperature, and pressure sensors, have
lifetime expectations of several years [4].

Adaptivity. The flexibility of wireless CPS is paving the way for new and highly
dynamic applications. Mobile and heterogeneous agents, such as different autonomous
robots in a smart factory [17], can move around freely or where needed, complementing
or replacing the static infrastructure. The networks that emerge due to this flexibility
are continuously changing and potentially need to extend over long distances, for
example, to cover entire factories or large open areas [61, 176]. Therefore, CPS must
adapt quickly at run-time to changing conditions within the system itself or in the

environment.

Furthermore, the systems need to adapt to different and possibly varying communica-
tion demands, including traffic load and communication patterns, depending on the
application and control design. For instance, while distributed control approaches
scale better and are more robust [190], they have different communication require-
ments than centralized control. That is, instead of forwarding all sensor data toward
a distinct central point and then distributing the control commands to the actuators,
information must flow efficiently from and to multiple locations. Examples include
collaborative robots [86] and swarming drones [30, 140], which frequently require
mutual information to coordinate their actions and avoid crashing into each other.
Moreover, some distributed control approaches are only tractable if each agent has
complete information about the system’s state [22].

1.3 Challenges

The development of wireless CPS faces significant challenges in meeting the various
application requirements. We address the main challenges in the following.

Imperfections of wireless communication. Wireless networks transport informa-
tion, for example, via radio waves, without using a continuous, guided, and typically
protected medium such as cables. Thus, the antennas can generally broadcast informa-
tion in all directions, a prerequisite to high flexibility. However, the downside is that
wireless communication is much more susceptible to interference, fading effects, and
environmental changes, decreasing communication reliability. For example, different
signals or multi-path reflections of the same signal can overlap and interfere, leading to
message loss, a common phenomenon in wireless networks. Unfortunately, these losses
often have a significant correlation in space and time [162, 186], interrupting feed-
back loops unpredictably and making theoretical analyses and proofs of the system’s
behavior hard, if not impossible.

In addition, since transmitted signals get attenuated over distance and when passing
through obstacles, the communication range and bandwidth are very limited depending
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on the wireless technology and the frequencies used. The constrained bandwidth affects
how quickly feedback loops can be closed and lowers the number of messages carrying
sensor readings and control signals compared to wired solutions. Furthermore, the
lower throughput and the message losses result in longer and varying delays for the
message exchange, making it difficult to meet real-time requirements. Because of these
wireless imperfections, closing feedback loops over a wireless network comes with
significant challenges [107, 175].

Dynamics of multi-hop networks. The networks of emerging CPS can quickly
exceed the communication range of individual devices, necessitating complex and
dynamic mesh topologies. On the one hand, such topologies are more robust and fault-
tolerant because each device has multiple options for forwarding messages instead of a
single link, which represents a single point of failure [92]. On the other hand, effective
and efficient communication in multi-hop networks requires significant coordination
between the devices.

Other than in single-hop networks, where all devices can directly exchange messages
with each other, exchanging messages over multiple hops introduces various challenges.
Since messages can take different paths toward their destination, there are varying
delays, out-of-order deliveries, and duplicates. Well-known problems such as hidden
or exposed nodes hinder communication when coordination is lacking. In addition,
the theoretical throughput in multi-hop networks is bounded to at most half of the
throughput of single-hop networks [133].

Mobile devices, failures, and a changing environment add another dimension: time-
varying wireless communication links. The required coordination of nodes becomes an
ongoing effort because communication links will continuously appear, disappear, and
change in quality. The latter can also be observed when the devices are static [163].

Overall, the challenges associated with dynamic multi-hop networks add to the wireless
imperfections, making communication less reliable, unpredictable, and elaborate to
coordinate, eventually impairing the control performance [191].

Highly constrained resources of embedded devices. Embedded devices that can
be deeply integrated into the physical environment and are expected to have long
and maintenance-free lifetimes are subject to resource constraints along different
dimensions. For example, reduced computing capabilities, small memories, and power
constraints limit the algorithmic complexity of programs and affect the control and com-
munication performance. However, these constraints conflict with the ever-increasing
demands for higher performance, dependability, and scalability of CPS. The design of
such systems thus becomes a non-trivial balancing act between achievable throughput,
communication range, and energy cost.
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1.4 State of the Art

In this section, we discuss the state of the art in wireless CPS and describe the gaps
with respect to the envisioned application scenarios. We begin with an examination of

the current state of communication technology.

Communication technology. Today’s practically relevant wireless communication
protocols used in industry are, for example, WirelessHART, ISA100.11a, ZigBee, Blue-
tooth, and Wi-Fi [17, 184]. Inspired by communication protocols in wired networks,
these wireless protocols gather information about the quality of wireless links and the
overall network topology to derive routing information and coordinate the interac-
tion between the nodes. The performance and efficiency of these link-based routing
protocols depend on the correctness and actuality of the topology information, which
requires regular maintenance to keep up with changes in the network, for example,
to repair broken routes. However, when the network is dynamic and communication
links frequently change, the maintenance overhead drastically increases and occupies
valuable communication bandwidth. Consequently, routing-based protocols become
overloaded and are unable to support the dynamic infrastructures of emerging CPS.
Unfortunately, this counteracts one of the key selling points of wireless communication:
its flexibility.

Wireless communication protocols typically use techniques such as retransmissions,
multi-path routing, and different medium access strategies to increase the reliability of
the message exchange. However, while effective, these techniques further amplify the
problem of varying and unpredictable communication delays, making it difficult to

provide real-time and control performance guarantees.

In addition, realizing feedback or distributed control, for example, coordinating a swarm
of drones [140], requires that messages are exchanged deterministically between all or
a subset of devices (i.e., many-to-many) - essentially “in all directions” [4]. However,
the traffic patterns of most wireless communication protocols lack support for efficient
many-to-many communication between multiple sensors, controllers, and actuators.
For instance, in WirelessHART and ISA100.11a, the traffic can flow from all devices
toward a gateway or vice versa. The lack of proper communication support results in
poor control performance or the infeasibility of closed-loop stability [187].

Moreover, state-of-the-art wireless protocols often have centralized designs featur-
ing a distinct network manager. This manager coordinates the message exchange
by collecting topology information and distributing communication schedules. Al-
though centralized designs are generally more straightforward and easier to analyze,
the central instance is always a single point of failure and becomes a bottleneck as
systems are scaled up [101, 190]. Hence, due to wireless imperfections and inefficient
communication support, distributed and scalable solutions that can meet the high
demands of CPS are missing today.
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Wireless cyber-physical systems. The strong interconnection between communi-
cation and control nurtured research on control under network-induced constraints,
with relevant works being surveyed in [69] and [191]. These works analyze the impact
of, for example, limited bandwidth, varying delays, and packet loss on the control
system and develop new control designs. However, wireless control has mainly been
analyzed theoretically in the past, and only a few works provide empirical results, for
example, in simulated case studies using WirelessHART [96, 111]. Despite progress
over the years, wireless CPS are rare in industry, except for non-critical tasks with
relaxed requirements [17]. The main reason is the lack of trust in wireless solutions,
particularly concerning dependability. Thus, real-world experiments on realistic CPS
testbeds must complement a rigorous theoretical analysis [32, 101].

Table 1.1 lists selected works evaluated on physical platforms and real wireless net-
works. The various works include: structural control of buildings, bridges, or tun-
nels [109]; adaptive lighting in road tunnels [27]; power management in data cen-
ters [150]; control of water levels in double-tank systems [9, 10]; control of underwater
and ground robots [68, 151, 152], and the well-known academic example of stabilizing
an inverted pendulum [14, 44, 67, 136, 165].

One of the key observations is that there is a considerable gap between the requirements
of emerging CPS and the combination of properties that current approaches can provide,
particularly the support for multi-hop communication makes a difference. So far, multi-
hop communication has only been shown for slow processes with update intervals on
the order of several seconds. In contrast, a stability analysis that considers the entire
system relies on small single-hop networks. Moreover, a distributed implementation,
where nodes can make local decisions based on their own information and information
received from other nodes, does not exist due to the constrained traffic patterns of
existing wireless communication protocols. Also, the possibility of reallocating or
saving unused resources is not self-evident, although it is essential for efficiency and
scalability. Advances in control design, for example, event-triggered control (ETC)
and self-triggered control (STC) methods [63, 124], show that significant savings are
possible without sacrificing control performance. For example, Aratjo et al. [9, 10]
use a STC approach to reduce the generated control traffic. However, they also note
that these savings do not directly carry over to the communication system because
communication resources must be arbitrated and allocated ahead of time. Therefore,
gaining a true end-to-end benefit is an ongoing and non-trivial integration challenge.

1.5 Contributions and Road Map

The contributions of this thesis are split into two parts. In the first part, we focus on the
networking foundation and address the shortcomings of state-of-the-art low-power
wireless communication protocols to satisfy higher application demands. We then
integrate communication and control in the second part and build real wireless CPS
to validate our theoretical findings regarding stability and performance guarantees.
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TaBLE 1.1: Selected works on wireless CPS that have been evaluated on physical platforms and real wireless

networks [17]. There is a large gap between the requirements of emerging CPS applications (regarding

dependability, adaptivity, and efficiency) and the capabilities of state-of-the-art approaches. In particular,
multi-hop communication poses a significant challenge in combination with the other requirements.

Dependability Adaptivity Efficiency
Work mﬁm_um:.% ms.oﬁ update Multi-hop Mode . U»m.ﬁi_uimm Reallocation wmmniom
analysis intervals changes implementation savings
[9, 10] v/ X X X X v v
[44] v/ v X X X X X
[136] 4 v/ X X X X X
[14] v/ 4 X X X X X
[68] v 4 X X X X 4
[151, 152] v v X X X X X
(109, 165] X v/ X X X X X
[67] X v/ X X X X X
[27] X X v X X X X
[150] X X v X X v/ v
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Thereby, we make use of classical time-triggered control designs as well as modern

event-based approaches.

Each chapter features the design, implementation, and evaluation of the proposed
solution based on real hardware and wireless networks, which distinguishes our work
from many prior works. Building real systems requires, in addition to the engineering
effort, dealing with the complex interaction between communication and control.
However, such solutions are necessary to build trust and acceptance, ultimately leading
to a broader application. In the following, we give an overview of our contributions,

providing a road map for the thesis.

Part I: Networking Foundation

Efficient and scalable many-to-all communication (Chapter 2). State-of-the-art
communication protocols have various shortcomings when it comes to supporting
CPS. The communication is typically coordinated based on up-to-date information
about the network state, such as the network topology. However, mobile agents
and environment dynamics frequently change the topology and result in increased
coordination overhead. As systems scale up, using more agents and covering larger
areas, the overhead explodes and eventually affects the control performance. Moreover,
centralized designs and constrained traffic patterns, for example, one-to-all, poorly

support distributed control applications.

To address this problem, we have developed MIXER, a many-to-all communication
primitive for dynamic wireless multi-hop networks consisting of low-cost embedded
devices. Many-to-all communication is universal as it allows the realization of any
possible traffic pattern. MIXeRr’s novel combination of random linear network coding
(RLNC) and synchronous transmissions (ST) enables the efficient and topology-agnostic
distribution of information in dynamic networks. Thereby, it approaches the order-
optimal scaling behavior regarding the distributed information. Our evaluation shows
that MIxeRr improves latency, energy efficiency, and reliability compared with state-of-

the-art communication protocols.
This chapter is based on the following publication:

Carsten Herrmann*, Fabian Mager*, and Marco Zimmerling. “M1xeRr: Efficient Many-
to-All Broadcast in Dynamic Wireless Mesh Networks” In ACM Conference on Em-
bedded Networked Sensor Systems (SenSys), pages 145-158, Shenzhen, China, 2018.

doi:10.1145/3274783.3274849.
* Both authors contributed equally to this work.

Highly available and fault-tolerant wireless communication (Chapter 3). De-
pendability is one of the most critical requirements for CPS and requires, among other
things, the ability to cope with faults. For instance, individual device faults should
have no or only a minor impact on the message exchange between functioning de-
vices. However, M1xER and all other ST-based protocols, despite their exceptional
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performance and several other benefits for wireless CPS, suffer from a single point of
failure. The reason is that a particular node starts the communication, providing a time
reference to the other nodes to meet the strict timing constraints of ST. A failure of this
node leads to a communication outage. This fundamentally impairs the availability of
the communication service in the presence of node failures and in case the network
splits into partitions.

We have addressed this problem with BUTLER, a distributed and lightweight synchro-
nization mechanism. BUTLER is used on demand and reliably synchronizes the nodes
in the network at low overhead. As a result, after executing BUTLER, all nodes can
start communication, which removes the single point of failure. BUTLER dramatically
increases the availability of ST-based protocols without affecting their performance.

This chapter is based on the following publication:

Fabian Mager, Andreas Biri, Lothar Thiele, and Marco Zimmerling. “BUTLER: Increasing
the Availability of Low-Power Wireless Communication Protocols.” In International
Conference on Embedded Wireless Systems and Networks (EWSN), pages 108—119, Linz,
Austria, 2022. https://dl.acm.org/doi/10.5555/3578948.3578958.

Part II: Wireless Cyber-Physical Systems

Feasibility of fast feedback control with stability guarantees (Chapter 4). Ex-
isting solutions that were evaluated in practice (see Table 1.1) are, for the most part,
limited to small single-hop networks. Those that support multi-hop communication
do not achieve the efficiency and dependability to control fast physical processes with
update intervals ranging from tens to a few hundred milliseconds [4]. In addition,
due to the many challenges of multi-hop communication, an analysis of the system’s
properties becomes complicated and prevents any guarantees in existing works.

To close this gap, we have developed a wireless embedded system based on a tight
co-design of communication and control. Our approach mitigates the wireless imper-
fections to the extent possible, considers the resulting communication properties when
designing the control system, and schedules the different run-time tasks to satisfy
real-time constraints. Thus, our solution is the first to provide fast feedback control
and coordination across real low-power wireless multi-hop networks. Moreover, we
analyze the end-to-end properties of our system, provide formal guarantees on its
closed-loop stability, and validate these guarantees on a real CPS testbed.

This chapter is based on the following publication:

Fabian Mager*, Dominik Baumann*, Romain Jacob, Lothar Thiele, Sebastian Trimpe,
and Marco Zimmerling. “Feedback Control Goes Wireless: Guaranteed Stability
over Low-power Multi-hop Networks” In ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS), pages 97-108, Montreal, Quebec, Canada, 2019.
doi:10.1145/3302509.3311046. (Best paper award)

* Both authors contributed equally to this work.
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Efficient arbitration and allocation of communication resources (Chapter 5).
As CPS applications become ever more sophisticated and require, for example, more
agents, shorter update intervals, and higher-volume data streams, the generated traffic
will inevitably exceed the available network bandwidth. ETC and STC approaches
account for this by transmitting data only when needed, improving scalability and
enabling energy savings. However, an end-to-end solution that transfers those benefits
to multi-hop networks and that can reallocate freed-up bandwidth to additional agents
or other data sources is still missing.

Therefore, we have proposed control-guided communication, a novel co-design for
distributed STC over wireless multi-hop networks. Our control system predicts trans-
mission demands and informs the communication system ahead of time so that the
latter can allocate its resources most efficiently.

This chapter is based on the following publication:

Dominik Baumann*, Fabian Mager*, Marco Zimmerling, and Sebastian Trimpe.
“Control-Guided Communication: Efficient Resource Arbitration and Allocation in
Multi-Hop Wireless Control Systems.” IEEE Control Systems Letters, 4(1):127-132, 2020.

doi:10.1109/LCSYS.2019.2922188.
* Both authors contributed equally to this work.

Stability guarantees under network overload (Chapter 6). Existing approaches
using ETC or STC, such as our contribution in Chapter 5, can significantly reduce
the generated control traffic on average. However, they cannot prevent overload
situations where all agents want to communicate simultaneously. These situations lead
to unpredictable message loss and make it impossible to provide stability guarantees
or performance bounds.

To solve this overload problem, we have presented a co-design of communication
and distributed control using a predictive triggering approach. The agents predict
their communication needs, based on the control objective and their states, in terms
of priorities. An efficient distribution of these priorities in the network enables the
dynamic arbitration of the available bandwidth to the agents with the highest need to
communicate their current state. We prove that our co-design guarantees closed-loop
stability for heterogeneous physical systems with stochastic linear time-invariant (LTI)
dynamics.

This chapter is based on the following publication:

Fabian Mager*, Dominik Baumann*, Carsten Herrmann, Sebastian Trimpe, and Marco
Zimmerling. “Scaling Beyond Bandwidth Limitations: Wireless Control With Stability
Guarantees Under Overload” ACM Transactions on Cyber-Physical Systems, 6(3):20:1—

20:30, 2022. d0i:10.1145/3502299
* Both authors contributed equally to this work.
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Author Contribution Statement

This thesis is largely based on the results of the EcoCPS project, which is part of
the Priority Program 1914 on cyber-physical networking of the German Research
Foundation (DFG).

In the first part of this thesis, dealing with the networking foundation, all authors
were actively involved in formulating the research problems, developing the solutions,
evaluating the results, and writing the paper. The order of authors reflects their
contribution, with the first author being the main contributor unless otherwise noted.

Within EcoCPS, we have also worked closely together with Dr. Dominik Baumann and
Prof. Sebastian Trimpe from the Institute for Data Science in Mechanical Engineering
at RWTH Aachen. Their expertise in control systems has complemented our expertise
in wireless communication and embedded hardware/software design. Accordingly,
the contributions in the second part of this thesis, addressing the co-design of control
and communication, are joint efforts. Together we have formulated the research
goals, developed the overarching system design, particularly the interfaces between
communication and control, and built CPS testbeds to validate our approaches on
real physical systems and networks. Concerning the implementation and analysis of
the different CPS components, the author of this thesis primarily contributed to the
communication-related parts and the embedded engineering. By contrast, the equally
contributing author focused on the control-related parts.
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Networking Foundation






MixkeRr: Efficient Many-to-All Broadcast

in Dynamic Wireless Mesh Networks

PREFACE

In the first part of this thesis, we focus on the networking foundation for wireless
CPS. State-of-the-art wireless communication protocols do not satisfy the diverse
needs of emerging CPS applications. There are many reasons for this, including that
the protocols are not designed for dynamic networks, scale poorly toward larger
deployments and higher traffic demands, or fail to meet the timing and reliability

requirements of feedback control applications.

To address these shortcomings, we present MIxeRr in this chapter, a many-to-all broad-
cast primitive for dynamic wireless mesh networks. Many-to-all communication has
the advantage that it is widely applicable and can serve any traffic pattern, an essential
requirement for efficient distributed control and adaptive CPS. To achieve an efficient
operation in real networks, we design MIXER in response to the theory of RLNC and
the characteristics of physical layer (PHY) capture. Thus, MIXER approaches the order-
optimal scaling in the number of messages to be exchanged. Our evaluation shows that
MIxXER outperforms the state of the art across all metrics by up to 3.8x and provides a
reliability greater than 99.99 %, even at a node moving speed of 60 km/h.
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2.1 Introduction

Many-to-all broadcast is the process of disseminating information from one, multiple,
or all nodes to every node in a network. It is a universal communication primitive as it
can serve any possible traffic pattern (point-to-point, one-to-many, all-to-all, ...), and
it is fundamental for a growing number of applications and network services involving
multiple sources and multiple destinations.

For example, closing distributed feedback loops in CPS relies on wireless communi-
cation among sensors (sources), actuators (destinations), and controllers (acting as
sources and destinations). To enable coordination in autonomous systems, such as
collaborative agents [86], robotic materials [33], and swarming drones [140], each node
needs to collect information (e.g., location) from every other node and disseminate its
own information to all others. Indeed, a certain class of closed-loop control problems
is only tractable if each node can make decisions with knowledge of the full system
state [22], requiring many-to-all communication.

The same need arises in support of programming abstractions [130] and fault-tolerance
mechanisms [156], for example, when some application logic is replicated across
multiple distributed devices and nodes need to report every message to all replicas [50].
The initial distribution of messages across sources depends on the application and can
also change dynamically at run-time. For instance, in drone-assisted disaster response,
all nodes need to regularly exchange one message with all others to prevent collisions
or to keep a desired flight formation [30], while sometimes one node may have multiple
messages to disseminate, such as an image taken with an on-board camera informing
a group of human rescuers on the ground [61].

To support these emerging applications, a many-to-all broadcast primitive needs to
meet the following key requirements:

« Fast and reliable: To reduce the impact on application performance and to keep
up with the dynamics of physical processes, many-to-all communication must
be fast (i.e., support end-to-end communication delays and intervals of a few
hundred milliseconds [4] or less) and also highly reliable [160].

« Support for dynamic mesh topologies: Rotating, flying, or otherwise mobile entities
cause significant network dynamics, while multi-hop communication and mesh
topologies are either beneficial or a necessity for the application scenario [18,
65, 108].

« Support for adequate message sizes: Many applications feature payloads that are
tens of bytes in size or larger [61, 108].

 Energy efficient: The employed devices are often battery-powered [4, 132] or
harvest energy from the environment [33]. Moreover, size and weight con-
straints call for small batteries, low-power radios, and resource-limited micro-
controllers [61, 132].
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Existing many-to-all solutions fall short of these requirements. Approaches based
on routing, such as WirelessHART, ISA100.11a, and RPL on top of TSCH (6 TiSCH),
which exchange messages via an explicitly built and maintained structure, target
different scenarios with static nodes and packet intervals of several seconds [43]. Using
them for many-to-all broadcast may require many-to-one upward routing followed by
one-to-all downward routing, which suffers from scalability, efficiency, and reliability
issues [72]. Furthermore, since these solutions rely on a known and stable network
topology, they may fail in distributed or uncoordinated settings [59] and perform
poorly in the presence of mobile devices [49] or other network dynamics [157]. Some
recent proposals based on ST overcome this problem by decoupling the protocol logic
from the time-varying network topology. For example, Chaos works well for all-to-all
exchange of small payloads (e.g., one byte per node) as required for network-wide
consensus [5] and data aggregation [91], but performs inefficiently for payloads larger
than a few bytes [113]. A series of network-wide Glossy floods [48] is then a better
option; however, the required bandwidth and overall latency increase rapidly with the
number of messages to be exchanged.

Contribution and road map. This chapter presents MIXER, a new many-to-all
broadcast primitive for dynamic wireless mesh networks. MIXER supports the full
spectrum from one-to-all to all-to-all communication, and significantly outperforms
prior many-to-all solutions in latency, goodput, and radio-on time while providing
nearly perfect reliability despite significant network dynamics.

The key ideas behind MIXER are as follows: a) Rather than performing M sequential
floods to disseminate M messages, MIXER overlays all M floods by letting nodes mix
packets using RLNC. This way, MIXER disseminates all M messages at once and
approaches the theoretically optimal scaling as M increases. b) MIXEr combines RLNC
with ST. While RLNC aims to maximize the utility of individual packets, ST aim to

maximize spatial reuse.

To exploit the synergy of both concepts for efficient many-to-all communication in real
wireless networks, we must tackle a number of challenges as outlined in Section 2.2.
Our design of MIXER, described in Section 2.3, addresses these challenges and yields
significant improvements compared to a straightforward combination of the two
concepts.

We prototype MIXER on the TelosB [138] (see Section 2.4), which has a IEEE 802.15.4
radio and a 16-bit MSP430 microcontroller, to allow for a fair comparison with the
state of the art on public testbeds. We also port compute-intensive parts of MIXER to
modern 32-bit ARM Cortex-M0+/M4 platforms to project the performance gains with
more processing power and faster PHYs, such as IEEE 802.11.

We evaluate MIXER in Section 2.5 using experiments on two testbeds with up to 94
nodes, on dynamic networks with failing devices and a mobile node attached to a
car driving 20-60 km/h, and through microbenchmarks on four different platforms.
We find that MIXER is up to 3.8% faster and more efficient than fine-tuned sequential
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Glossy floods and provides a reliability greater than 99.99 % even in the presence of
node mobility. For example, MIXER achieves a goodput of up to 53.7 kbps and needs
less than 300 ms to exchange 27 60 B messages in an all-to-all fashion on FlockLab [99].
Our microbenchmarks indicate that the same scenario would take less than 10 ms
when running Mixer on faster CPUs and PHYs.

In summary, this work contributes the following:

« MIXER, a many-to-all broadcast primitive that approaches the order-optimal

scaling in the number of messages in real dynamic wireless mesh networks.

+ A design that combines RLNC with ST and thereby enables MIXER to perform
efficiently in practice, while being highly reliable and resilient to network dy-
namics.

+ An open-source implementation and experiments demonstrating several-fold

performance gains over the state of the art.

2.2 Overview

This section introduces relevant concepts and provides an overview of MIXER’s oper-
ating principle, scope, and key design challenges.

2.2.1 Basic Operation and Terminology

The principle behind MI1XeR’s operation is best explained by an analogy with flooding,.
Assume a set of M messages is to be exchanged between N nodes. Using sequential
flooding, this takes O(M - T), where T is the time needed to flood a single message.
Although protocols like Glossy [48] achieve the theoretically minimum T in practice,
the scaling with factor T becomes problematic as M grows. MIXER improves the
scaling to O(M + T) by considering all M messages together: Rather than performing
M floods in sequence, MIXER overlays the M floods and simultaneously disseminates
all messages. To this end, nodes mix packets using RLNC and transmit random linear

combinations of previously received packets.

Mathematically speaking, each MIXER node maintains a system of linear equations
given in (2.1).

P1 cit - aMm m
= | (2.1
Pm cM1 -t CMM muy
~—— N——
coded coding matrix messages
payloads
The set of messages my, ..., my forms a generation of size M. MIXER nodes exchange

linear combinations of these messages, that is, the ith packet’s payload equals p; =
Dk Cikmg, with ¢; = (¢j1, . . ., ¢cim) the coding vector of packet i. A sender transmits c;
together with p; in the same packet. A receiver extracts ¢; and p; from the packet and
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FIGURE 2.1: Real trace of MIXER in a 2-hop IEEE 802.15.4 network with 5 nodes exchanging

5 messages in an all-to-all fashion. Numbers indicate when the rank of the coding matrix C

at each node increases and are equal to the current rank. Each node can receive at most one

packet per slot. Symbols in the upper corner mark which node received what packet in case
there are multiple transmitters in the given slot.

maintains the coding matrix C. When C reaches full rank (i.e., a node has collected
M linearly independent packets), then (2.1) has a unique solution and the node can
decode all messages by solving the system of linear equations. Sending nodes build
packets by adding up a random subset of already collected rows (p; and c;) of (2.1),
which is possible irrespective of C’s rank. All computations are performed over the
finite field GF(2). As a consequence, the size of ¢; is M bits (one bit per c;x).

Figure 2.1 shows a trace from a 2-hop IEEE 802.15.4 network as N = 5 nodes exchange
M = 5 messages in an all-to-all fashion using MIXER; that is, initially each node has its
own (one) message, and the goal is that every node acquires the (four) messages from
the other nodes. The operation of MIXER, called round, proceeds in a series of adjacent
slots. Node 1, the initiator, starts the round by transmitting (Tx) its message in slot 1,
which is received (Rx) by nodes 2, 3, and 5. Since the packet contains a message that
they did not know before, the rank of their coding matrix C increases from 1 to 2. As a
result of this, nodes 2, 3, and 5 may now start to mix packets using RLNC and transmit
linear combinations of multiple messages. Note that the use of RLNC allows the nodes
to pick the coefficients of ¢; randomly without any knowledge of the current network

topology.

Every time a node receives an innovative packet—one that is linearly independent from
all previously received packets—the rank of the coding matrix C increases. Once C has
full rank, all messages can be decoded using, for example, Gaussian elimination. In the
example of Figure 2.1, node 2 is the first to reach full rank in slot 9.

We also see in Figure 2.1 that often multiple nodes transmit in the same slot. This
happens for the first time in slot 3; however, both node 1 and node 2 receive despite
the collision. While traditional solutions try to avoid collisions using carrier sensing,
handshaking, or scheduling, M1xeR and several other recent proposals (e.g., [48, 143])
aim to take advantage of collisions to improve spatial reuse. Since nodes in MIXER
typically transmit different packets (as they mix messages randomly), a common
receiver can successfully receive one of the packets only due to the capture effect [94,
102].
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The capture effect occurs if certain signal power and timing conditions are met. For
instance, using IEEE 802.15.4 radios operating in the 2.4 GHz band with OQPSK modu-
lation, the SINR at the receiver must exceed 3 dB and the packet with the strongest
signal must arrive no later than 160 ps after the first packet [91]. Although the exact
SINR and timing conditions are highly dependent on the concrete PHY, the capture
effect has already been exploited in many popular wireless technologies, including
Bluetooth Low Energy (BLE) [149], IEEE 802.11 [93], and IEEE 802.15.4 [102].

Scope. Although this work focuses on low-power embedded systems and IEEE 802.15.4,
in principle Mixer works on any PHY that features the capture effect. Moreover, unlike
analog network coding [81, 131], MIxER does not require any changes to existing PHYs

and hence runs on commodity low-power devices.

Similar to Glossy [48] and other recent works [41, 42, 91], MIXER is a communication
primitive that conceptually sits between the PHY and a higher-layer protocol. This
higher-layer protocol is responsible for informing all N nodes about the (dynamically
changing) initial distribution of M messages to nodes before each MIXer round. Al-
ternatively, MIXER can also be used with a statically configured initial distribution.
Determining such distributions and building generations of messages is beyond the
scope of this work, but existing techniques can be used [64, 98] and coupled with
existing higher-layer protocols (e.g., Low-Power Wireless Bus (LWB) [49] and A? [5])
that readily support the network-wide scheduling of MI1xeRr rounds.

2.2.2 Design Challenges

Theoretical results suggest that RLNC-based gossip protocols like MIXER perform
optimally in static and dynamic networks [36, 60]. Specifically, it has been shown that
the number of slots needed to disseminate all M messages has order-optimal scaling
O(M + T) [60]. This result is based on specific connectivity measures of the (time-
varying) network graph, and the constant factors hidden by the O-notation heavily
depend on these properties. In MIXER, the connectivity of the wireless network is
tightly coupled to the extent to which the capture effect can be exploited and changes
from one slot to the next even if nodes are stationary. Our overarching goal in designing
MIXER is to combine RLNC and ST such that the constants hidden in O(M + T) are as
small as possible. This entails addressing four main challenges:

C1: When should a node send or listen? A capture threshold of 3 dB is quite small,
so there is a good chance to benefit from capture in practice. However, because of
the very same condition, the probability of capture drops rapidly as the number of
synchronous transmitters increases [102]. How can a node locally decide whether it
should send or listen in a slot, maximizing spatial reuse without destroying capture?

C2: What should a node transmit? To achieve low latency (i.e., small number of slots),
we must devise a policy that allows senders to easily build packets that are likely
innovative for their neighbors even if the nodes are mobile (i.e., neighborhood changes

quickly).
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FIGURE 2.2: Average rank increase in a one-to-all scenario on FlockLab with different feature
sets (M = 27 messages).

C3: How to ensure ST in the absence of a global clock? To meet the timing condition of
capture, nodes must communicate in a globally slotted fashion (see Figure 2.1). This is
difficult because nodes spend varying amounts of time on processing in each slot (e.g.,
when building the next transmit packet), which impairs synchronization in the face of

different clock drifts across nodes.

C4: How to achieve an efficient run-time operation? RLNC improves the utilization of
the wireless medium (i.e., helps reduce the number of slots), but requires nodes to store
and process the coding vector and payload bytes of the packets. Limited memory and
compute power may hinder harnessing these benefits (e.g., by blowing up the length
of the slots), so we need to design efficient coding and decoding strategies, which are
preferably running in parallel to radio activities whenever possible. Moreover, nodes
need a way to locally figure out whether they are still helpful for the dissemination

process or can turn off their radio to save energy.

2.2.3 Phases Within a Mixer Round

Before describing the design of MIXER in detail, we illustrate its effectiveness in
addressing challenges C1 and C2—the when and what to transmit—via a comparison
with a naive application of RLNC, where every node sends packets at random with a
fixed transmit probability Prx and builds packets by randomly summing up already
collected rows. Figure 2.2 shows the average rank increase across 27 nodes on the
FlockLab testbed [99] for the random approach (including our mechanisms to address
challenges C3 and C4) and when all design features of MIXER are enabled. Despite
the fact that MIXER reduces the number of slots required to reach full rank (27 in this
scenario) from 320 to 120, we can distinguish four distinct phases, which are most
apparent in the purely random approach.

In the middle we see a phase with almost linear behavior, emphasized by the dashed
line. We refer to this as the operating phase since the rate of average rank increase is
high and steady. Before comes a startup phase with less but increasing rank growth.
After the operating phase follows a time with decreasing rank improvements. We call
this the completion phase as it eventually leads to all nodes reaching full rank. Last,
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there is a finalization phase where nodes still communicate but no longer depend on

incoming packets.

The poor performance of the random approach, especially during the startup and
completion phases, induces questions on the reasons for the observed behavior and
potential improvements. Consequently, these questions drive the discussion in Sec-
tion 2.3. As visible in Figure 2.2, our design of MIXER improves significantly on the
purely random approach, effectively addressing challenges C1-C4.

2.3 Design

This section describes the architecture of Mixer and discusses all major design ele-
ments. In Section 2.3.1 we introduce the core architecture of MIXER, which consists of a
transport layer and a processing layer. Since the latter contains the most characteristic
features of MIXER, we present it first in Section 2.3.2. It combines two core mecha-
nisms (Section 2.3.2.1 and Section 2.3.2.2) with a number of phase-related features
(Section 2.3.2.3 to Section 2.3.2.5), systematically addressing challenges C1, C2, and
(partially) C4. In Section 2.3.3 we present important mechanisms of the transport
layer targeting challenges C3 and C4. We conclude with a short list of other design
properties facilitating C4 in Section 2.3.4.

2.3.1 Core Architecture

To significantly exploit the capture effect, the design of MIXER incorporates two key in-
gredients: well-synchronized, time-slotted communication to meet the capture window
and a lightweight but effective mechanism to steer the set of active transmitters per
time slot. From a single node’s perspective, these two design elements are responsible
to decide when to transmit (and when to receive). Their counterpart is composed of
a number of mechanisms influencing what to transmit with the particular goal to
improve the efficiency of RLNC in the given scenario. Most of the components interact
with each other; MIXER represents the entirety of all design elements, translated to an
appropriate software architecture.

The timing conditions of capture suggest the encapsulation of the low-level packet trans-
port functionality in a self-contained component that provides reliable synchronous
packet exchange. MIxkR follows this approach with a two-layer architecture composed
of a time-triggered transport layer and an event-triggered processing layer (Figure 2.3a).
The layers are decoupled by receive and transmit queues, allowing a high degree of
parallelized activities on both layers. Figure 2.3b shows the main activities on each
layer within the slots. Each slot has the same fixed length T, which accounts for the
air time T, of one packet and processing time T,,. By default, the transport layer is in
receive mode. Transmit decisions are made by the processing layer and passed to the
transport layer on demand, which executes them in the next slot.
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6 2 1 1 Sy Sp Sv 2
| ...SFD... | SlotNo I SenderID I Flags l CodingVector l Payload l InfoVector I CRC |

FIGURE 2.4: MIXER’s packet format. Parts in gray are defined by IEEE 802.15.4, CRC is
generated by the radio. Sizes in bytes.

Figure 2.4 shows the packet format. Note that the payload field contains a linear
combination of messages, so its size S, is equal to the message size. The packet size,
instead, also accounts for all other fields, such as the size of the coding vector S,.

2.3.2 Processing Layer

In the following subsections we detail the individual design mechanisms of MIXER.
The transport layer is considered in Section 2.3.3; for the moment we assume it to
be working such that we can take slots as the base unit of the communication grid.
We start from the baseline of the purely random approach introduced in Section 2.2.3.
The discussion is driven by the question on how to improve on the observed results,
particularly with respect to the identified phases (Figure 2.2).

2.3.2.1 Semi-Coordinated Transmissions

Since real-world and in particular dynamic networks have varying local node densities,
a fixed transmit probability Prx performs unsatisfactory (Figure 2.2). An adequate
policy should adapt Prx to the local densities, striving for the goal to maximize the
number of received packets per slot within the network. To reach this objective, the
number and selection of transmitters in each slot should be well balanced—high enough
and spatially distributed to reach as many receivers as possible, but still low enough to
allow the capture effect to occur.

For this purpose, each MIXER node maintains a list of received SenderIDs (Figure 2.4)
within the last H slots. Using this sliding-window history information, which is
discarded at the end of a round, nodes monitor their current neighborhood to drive an
adaptive transmit policy as shown in Algorithm 1. This policy updates the transmit
probability Pryx of a node depending on the estimated local node density d. Furthermore
it incorporates a kind of local round-robin scheduling on a selected subset of slots
by assigning an owner to each slot. Owners use their slots to transmit for sure while
neighbors respect this behavior.

The level of determinism induced by this policy increases with node density because a
higher density means that a larger portion out of N consecutive slots is owned by some
node within a neighborhood (in return, the number of shared slots is lower). Hence, in
high-density regions of the network nodes use stronger coordination than in sparsely
populated areas. In this way, we effectively reduce the uncertainty in the expected
number of transmitting nodes per slot and decouple the capture probability from the
node density (see C1). This behavior also implies that MIXEr does not purely depend
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Algorithm 1 Semi-coordinated Transmission (core algorithm)
1: d « 1+ num_neighbors > local density (from history)
2: owner « (slot_no+1) mod N > assign owner to next slot
3: if owner = my_node_id then > if my slot: transmit
4: ‘ Prx 1
5: else if owner is neighbor then > if foreign slot: receive
6: ‘ Pry <0
7: else if Tx in current slot then > do not transmit twice in a row
8: ‘ Pry <0
9: else > if shared slot: transmit with probability

10: L Prx—1/(d+1) > (+1 accounts for an unknown neighbor)

on the capture effect; for example, in a one-hop network, Mixer would tend toward a
fully coordinated operation, where nodes transmit one after another in dedicated slots.

2.3.2.2 Explicit Innovation Forwarding

A sender assembles a packet using RLNC: It adds every row from its matrix to the Tx
packet with probability 0.5. In MixeRr we add several features somewhat restricting
the randomness to improve average performance. The most basic one rests upon the
assumption that an innovative packet is also innovative for a node’s neighborhood.
Thus, a node adds every innovative packet immediately to the prepared Tx packet so
the innovation gets relayed with the next transmission for sure.

To thoroughly justify this behavior, we distinguish two cases: If the innovative packet
arrives from outside the common neighborhood (cluster), the above assumption is
clearly reasonable. Otherwise, if the packet is sent from inside the cluster, there is still
a chance that it is innovative for some neighbor(s). On the other hand, including it has
no disadvantage for the other neighbors: Since the packet is innovative for the current
node, it is linearly independent from its Tx packet (i.e., including it corresponds to
adding an additional matrix row). Note that this behavior influences only the content
of the next Tx packet (what), not the transmit policy (when).

2.3.2.3 Improving Startup: Adapted Coordination

The reasons for a slow startup phase (Figure 2.2) are best understood with a one-to-all
scenario in mind. In this case, all messages reside at the initiator at the beginning
of a round. After it started the round, the awoken neighbors are not able to add any
innovation to the packets they send as they simply do not have any. Innovation can
only be added by the initiator if it decides to transmit and if the (randomly built)
packets include some. Clearly, the situation will improve a) if the initiator ensures
that it sends something innovative, and b) if there is a mechanism that prioritizes the
transmissions of the initiator at the beginning of a round. Again, a) and b) address the

when and what to transmit.
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Improving the number of innovative packets during the startup phase is easy: Since
every message is initially available at exactly one node, its originator, this node knows
that a packet will be innovative for all other nodes if it incorporates the message for the
first time. Hence, if a node initially has x messages, it can easily generate x innovative
packets by simply transmitting each of its x messages once. MIxeRr nodes do exactly
this before starting to build packets at random.

Prioritizing the transmission of innovative packets requires adaptations of the transmit
policy since there is no connection to packet contents so far. Mixer bridges this gap
by assigning the owner role of slot k to the originator of message k during the first M
slots. Thus, in case of a perfect wake-up order of all nodes, every slot k < M is used to
transmit message k by its originator, generating a fast-growing coding potential. As
a side effect, this rule circumvents the question on how the standard transmit policy
performs as long as the history information is very incomplete.

However, using this strategy, we have to cope with two issues: First, if the originator
of message k is not awake in slot k, the slot is unused. This can lead to corner case
situations in which nothing happens for a long time. M1xER avoids this problem by
including the shared slot rule (cf. Algorithm 1) also during the startup phase, but with
Prx = 1/min(k, 16) which is independent of d and stimulates a fast wake-up of all
nodes. Second, in one-to-all scenarios the initiator would transmit in every of the M
startup slots and hence would have no chance to discover its neighbors. Further, if its
neighbors stay silent the whole time, nodes farther away would not wake up. MIXErR
avoids this problem with the help of a flag (used only during startup): If a node sending
in slot k is also the originator of message k + 1, it marks this in the packet header’s
flags field and stays silent in slot k + 1. Nodes receiving the packet in slot k then know
that the owner of slot k + 1 will not use its slot. Thus, they transmit with Prx = 1 in
slot k + 1 to push packets into their “back country.”

2.3.2.4 Improving Completion: Active Requests

In the completion phase we see a significant slowdown in the average rank increase
with the purely random approach (Figure 2.2) due to the well-known coupon collector’s
problem [35, 47]. It is present here because a node cannot include messages that are
outside the row space of its current matrix. Since there is a high probability that the
missing pieces are also missing at a considerable number of neighbors, it is difficult to
resolve the situation efficiently without any feedback on the missing pieces. MIXER
nodes address this problem by progressively providing such feedback in the form of
active requests and by adapting their transmit policy in response to these requests.

Recall that a node requires rank M to recover all messages, that is, M linearly inde-
pendent rows in the coding matrix C in (2.1). MixeR nodes keep C in row echelon
form. Therefore, rows can be identified with their pivot elements (the main diagonal
of C): If ¢;; is zero, then row i is missing. Below, we describe how MIxXER deals with
missing rows. MIXER also includes mechanisms to deal with missing columns, which
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are conceptually similar, but we do not discuss them here due to space limitations. For
the same reason, we skip minor details and instead focus on the main concepts.

The transition from the operating to the completion phase is floating and encompassed
by a simple rule which provokes an increasing number of active requests when a node’s
rank tends toward full rank. Every request is communicated in the form of a flag and
corresponding markers in the InfoVector field (Figure 2.4) of a packet that is anyway
being sent; thus, requests do not consume extra packets or slots. If a node receives
active requests, it has to decide how to react, which again translates into the questions
of what and when to transmit. Before answering these two questions, we discuss how
a node stores requests. Storing them is wise since it may be possible to help multiple
nodes with one response packet.

In case of a request, InfoVector contains a bit field wherein each set bit marks one
missing row. Nodes could store every received request separately, but this may consume
a considerable amount of memory and slow down processing. Instead, MIXER nodes
maintain an any-mask and an all-mask. If a request arrives, they OR the bit field to
the any-mask and AND it to the all-mask. Thus, the all-mask contains bits that have
been set in all incoming requests, while the any-mask contains bits that have been
set in at least one request. This way, nodes get an idea of which rows might be more
helpful than others. In addition to storing requests, nodes monitor the traffic and try
to discover if pending requests got serviced. If not, they drop the stored requests after
three slots so they do not affect the communication for a long time.

In case of pending requests, a node decides what to transmit as follows: It selects a
requested row index from the all-mask or, if the all-mask is empty, from the any-mask.
Then it tries to build a packet whose coding vector contains no non-zero elements to
the left of the selected index. If this is possible, the packet is definitely innovative for
the requesting node. In this case, a node is a helper. Otherwise, if a node cannot build
such packet, it is a non-helper and it does not matter what it sends. Instead, it should
consider not to send, which brings us to the question on when to transmit.

Extending the transmit policy with rules for request handling is nontrivial. We pursue
three goals: a) Potential helpers should send preferred while non-helpers should
decrease their transmit probability Prx. b) NodeID-based owner roles should be more
and more dissolved toward the end of a round in favor of helper/non-helper roles.
c) Phases without pending requests should be unaffected. With these goals in mind,
choosing Prx breaks down into three tasks:

1) Identify own role: helper or non-helper.

2) Estimate role of all n neighbors respectively the number of helpers n, and
non-helpers n_ =n — n,.

3) Adapt Prx based on ny, n_, and original owner role.

Step 1) is explained above. For step 2) we need some heuristic since it is impossible for
a node to determine the required information precisely. In fact, we do not even know
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TABLE 2.1: Transmit probabilities with requests pending.

Own Slot Foreign Slot Shared Slot
Prx Helper F/lng+(1—F) F/n, 1/ny
Prx Non-Helper Fllens)+(1—7) 7/(en-) 1/(en-)

if all neighbors process the same request masks, though this appears as a reasonable
assumption at least for the majority of neighbors. A simple heuristic could estimate n,
as a fixed percentage of n. To get more precise estimates, we design a more advanced
variant which uses an additional prerequisite: Since the InfoVector field is sent with
every packet anyway, the nodes always utilize it to transmit their current row state.
Receiving nodes store this information in their history such that every node has
a reasonably up-to-date information on the row state of its neighbors. Using this
information, a MIXER node is able to estimate n, (and hence n_) more precisely.

The adaptation of Prx in step 3) is based on the following reasoning. In expectation, one
helper should send a response packet. Thus, the transmit probability for helpers Prx, =
1/n,. The transmit probability for non-helpers Prx_ should match the probability that
no helper sends a packet, that is,

(1 - L)nJr — 00 e_l 1
Prx- = L = = (2.2)
n-—ng n-n, en_

The numerator in (2.2) converges fast, so it is sufficient to use the simplified term as
approximation. Since we do not want to break the original NodeID-based owner roles
abruptly, each node lets Prx slide based on its relative rank 7 = r/M, leading to the
transmit probabilities listed in Table 2.1.

2.3.2.5 Improving Finalization: Smart Shutdown

From a single node’s perspective, the main communication task is accomplished when
reaching full rank. The remaining slots are needless for that node, but may be useful
to support unfinished neighbors. Though, at some point in time all neighbors have
full rank and there is no reason to stay active; the node could turn off to save energy.
However, we need a prudent signaling mechanism to establish an efficient but cautious
shutdown of the nodes.

If a node has full rank, it sets a flag in every packet it sends. Receiving nodes mark
the full rank status in their history. A node can shutdown if all its neighbors reached
full rank. It informs its neighbors by sending a packet with a shutdown flag set before
it turns off. The shutdown flag allows a neighbor to immediately remove that node
from its history, leading to an immediate adaptation of its transmit policy. Without
the flag, the update would be delayed until the vanished node falls out of the history
window H.
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Since the packet with the shutdown flag is sent only once, it could easily get lost at
some neighbors, but it is received with high probability by at least one neighbor. We
address this issue with two mechanisms: First, on receiving a packet with the full-rank
flag set, the history window applied to the sending node gets shortened (we use H/3 in
Section 2.5) based on the expectation that the node may shutdown in the near future.
Second, the full-rank status of all nodes is actively propagated through the network
with the help of full-rank nodes. Since those do not have the need to provide request
information, they use the InfoVector field to mark finished nodes instead. With this
mechanism it is very unlikely that a full-rank hint gets lost. Although this does not
replace lost shutdown flags, it enables finished nodes to shutdown themselves instead,
which eventually leads to the same result.

2.3.3 Transport Layer
2.3.3.1 Establishing the Slot Grid

On the packet transport layer we have to solve the task of establishing a reliable slot
grid as a prerequisite for ST. Since system parameters are known in advance, it is
possible to select a fixed nominal slot length T;. Unfortunately, real-world hardware
suffers from clock frequency offsets, so we need some mechanism that compensates for
such effects and avoids that grid points drift apart among nodes. As a natural solution,
we implement a phase-locked loop.

The reference signal of the phase-locked loop is built from timestamps taken on the
reception of start of frame delimiter (SFD) fields, which is part of the synchronization
header of each packet (see Figure 2.4). This requires that senders start transmissions
with appropriate temporal accuracy, which is typically achieved via meticulous timer
polling. The phase difference between the reference signal and the local slot grid
is low-pass filtered and fed into a proportional-integral controller that computes a
correction term for the next grid point and a start offset for transmissions (the latter
counteracts a potential cumulative drift induced by time-of-flight delays). All filter
coefficients and gain parameters are chosen empirically based on simulations and
results from testbed experiments.

In principle it is possible to consider only SFD timestamps that stem from specific
neighbors (e.g., predefined ones or those with minimum hop distance to the initiator).
Our experiments suggest that taking reference values from arbitrary nodes is sufficient
and works most of the time. If it sporadically fails, a node recognizes this situation
and resynchronizes itself as part of a fallback mechanism.

We want to emphasize that the slot grid is only needed during a round (i.e., when
MIXER is active). MIXER does not require to keep the slot grid between rounds. In fact,
each MixER node except the initiator assumes to be out of sync at the beginning of a
round. To lock onto the slot grid, a node activates its receiver continuously until it
receives the first valid frame. The maximum length of this initial listen phase is only
limited by a timeout for the whole round. This timeout is chosen by the user and can be
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set to a large value (e.g., in the range of seconds or even infinity), effectively decoupling
the timing requirements of MIXER from the rest of the system. At the end of a round,
each node returns a reference time, which can be used (e.g., by a higher-level protocol)
to schedule the next round.

2.3.3.2 Updating Packets via On-the-Fly Sideload

Immediately forwarding innovation as described in Section 2.3.2.2 seems to be easy
from a conceptual point of view, but it appears ambitious when looking for an efficient
implementation. The reason is a hard time constraint which becomes clear when
considering the transition from a receive to a transmit slot (Figure 2.3b). To achieve an
optimal performance, the slot length T; should be as small as possible (bounded by T,
plus a minimal overhead for pre- and postprocessing). On the other hand, updating
the transmit packet takes time (process received packet, determine if innovative, if so:
add) and has to take place (theoretically) between end of Rx and start of Tx.

With MIXER, we introduce a feature that allows to solve this problem in an elegant
and efficient way. First, if a node transmits a packet, it always starts the radio before
filling the radio chip’s transmit buffer. This is possible because the transmitter needs
to generate a number of synchronization symbols (despite some device specific tasks,
denoted OSC in Figure 2.3b) before it sends the actual data, which provides some
time for the program. As a result, a processing task can change the packet content
until right before the slot starts (irrespective of the packet size). Second, our low-level
transmit routines allow to add additional data to the packet content while the packet is
moved to the transmit buffer. In other words, they allow to sideload a second payload
into the transmit data stream on-the-fly. This second payload is incorporated into the
transmit data during very short, anyway required waiting periods in the transfer loop
and hence incur no extra CPU load—it literally comes for free.

With the help of the sideload feature, it is easy to solve the immediate update problem:
Every time a packet is received, the Rx routine marks it as the current sideload, so it
gets added to the next Tx packet. If it is innovative, the Tx packet carries the innovation.
If not, it does not hurt the Tx packet (by neutralizing its coding vector to zero) with
high probability. If this happens anyway, the transmission is aborted before it becomes
“visible in the air”

Besides innovation forwarding, the sideload feature also simplifies interlocking critical
activities between the transport layer and the processing layer. Overall, it proves to be
a very useful tool.

2.3.4 Efficient Run-Time Operation

Besides the features described above, we facilitate an efficient run-time operation of
MIXER by:

« computing over finite field GF(2), which enables an efficient implementation on
standard hardware and needs just one bit per message in the coding vectors;
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+ keeping the coding matrix in row echelon form, which limits the amount of
memory needed for storing packets, reveals useful information for free (e.g., the
rank of the matrix), and spreads computational load across multiple slots;

« parallelizing radio and CPU activities, which boosts performance by allowing to
reduce the slot length to the minimum.

2.4 Implementation

We prototype MixER on TelosB [138] devices running at 4 MHz CPU clock rate. Our
implementation is publicly available at https://mixer.nes-1ab.org and comprises
about 7900 lines of C code, where 3500 lines account for the hardware abstraction
layer. The compiled program has a footprint of 21 kB in flash and 300 B in RAM (w/o
stack, Rx/Tx queues, matrix, history, and request masks). With payload size S,, coding
vector size S, = [M/8], and packet size S = 12+ 2 - S, + S, (see Figure 2.4), the amount
of RAM needed for the variable-sized elements can be approximated! as follows:

m[B] = 5-5S + M- (S,+5,+2) + (N+9)-S, +4-N (2.3)
—— ——
queues matrix request masks  history

Using MIXER requires choosing the slot length T; based on the payload size S, and
the generation size M. To achieve good performance, T; should be small. However, as
visible in Figure 2.3b, T; is lower-bounded by the minimum time needed for low-level
packet transport T, and by the time taken by the processing layer T,. We profiled our
code to derive formulas for both bounds that make it easy to find a reasonable value
for the slot length T; > max(T,, T,).

The low-level packet transport time can be expressed as

Talps] = (440 +32-S) - 1.037 (2.4)

which accounts for the packet air time (i.e., 32 ps per byte in IEEE 802.15.4 networks)
and a static overhead for basic buffer handling and RF oscillator calibration. The
multiplier in (2.4) matches internal tolerance settings; the chosen values compensate
for clock drift of up to 1000 ppm. Further, the processing time reads as

T, [ps] = 600 + (26 +0.155 - (Sy +S,)) - M +1.8- S (2.5)

A value determined using (2.5) ensures that the processing layer can handle the stream
of packets on average; temporary overload is compensated by the Rx queue (see
Figure 2.3).2

1Eqn. (2.3) is simplified, in particular it ignores padding bytes introduced for alignment purposes and
some small internal data elements like flags.

2Rearranging (2.5) gives T, = 0.02M? + 27M + 0.165, M + 1.85) + 620, which reveals a quadratic
dependency on the generation size M. However, for realistic values of M the linear term clearly dominates
due to the coeflicients. This is mainly because processing happens in machine words, not bits.
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FIGURE 2.5: Low-level packet transport time T, and processing time T, depending on the
number of messages M (i.e., generation size) for a payload size of 60 B.

Figure 2.5 plots (2.4) and (2.5) against the generation size M for a payload size of 60 B.
We see that the crossover point is for M =75 messages. For smaller M, MIxER effectively
processes packets at line rate, as the slot length is bounded by the packet air time and
therefore by the bitrate of the PHY.

2.5 Evaluation

Our evaluation answers the following questions:

« How does MIXER’s performance compare to the state of the art for different num-

ber of messages, message sizes, and initial message distributions (Section 2.5.1)?

« How robust is MIXER to network dynamics caused by node failures (Section 2.5.2)
and node mobility (Section 2.5.3)?

« To what extent does MIXER benefit from faster CPUs and/or faster PHYs (Sec-
tion 2.5.4)?

2.5.1 Performance

We compare MIXER against the state-of-the-art many-to-all solution based on sequential
flooding, called S-Grossy. To implement S-GLossy, we use the original Glossy code?,
which achieves the minimum latency for flooding a single message in IEEE 802.15.4
networks [48]. Note that S-GLossY is equivalent to a data-only round in LWB [49]. It has
already been shown [49] that LWB greatly outperforms routing-based many-to-many
solutions [130], rendering a comparison against such schemes obsolete. Similarly,
results from our work-in-progress reports show that an earlier version of MIXER
outperforms Chaos for messages larger than a few bytes [113, 114]. Other RLNC-
based many-to-all approaches like [36, 51] provide only theoretical or simulation
results and are not applicable to practical wireless mesh networks because the assumed
communication models do not fit. See our discussion in Section 2.7 for more details.

3The source code of the original Glossy implementation for the TelosB platform is available at
https://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/.
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Testbeds. We run experiments on two testbeds. On FlockLab, we use 27 TelosB [138]
nodes sparsely deployed across one floor in an office building [99]. Indriya features 94
devices densely deployed across three floors [40]. Nodes transmit at maximum power
(0 dBm) on channel 26, yielding a network diameter of 4 and 8 hops on FlockLab and
Indriya, respectively. Both testbeds experience interference from devices affecting the
2.4 GHz band, such as microwaves ovens and Wi-Fi, Bluetooth, and BLE devices. Each
run lasts 30-60 min.

Metrics. Reliability is the percentage of delivered messages (i.e., received and decoded
in case of MIXER). Latency is the time from the beginning of a round until all messages
are delivered (i.e., including the time needed for decoding in M1XER). Goodput is the
number of delivered message bits per unit of time. Radio-on time, typically used as
a proxy for energy efliciency, denotes the accumulated time the radio is on during a
round. We report averages over all nodes and rounds during a run as well as 25th/75th
percentiles.

Parameters. We fine-tune S-GLossY based on several test runs so it achieves the
shortest possible latency at a reliability above 99.9 %. We set the slot length in MIXER
as detailed in Section 2.4, and set the round length conservatively. The size of the
history window is 3 - N. Since we always measured a reliability of 100 % with MIXER
in the following experiments, we do not report this metric.

2.5.1.1 Impact of Message Size

To evaluate the impact of the message size, we run tests in which each node initially
has exactly one message (all-to-all). We consider message sizes of 10, 35, 60, 85, and
95/110 bytes. Note that 95 and 110 bytes are very close to the largest message sizes
that fit into an IEEE 802.15.4 packet given the overhead of Mixer’s header information
for 27 and 94 messages on FlockLab and Indriya, respectively. *

Results. Figure 2.6 plots performance of MIXER and S-GLOssY against message size.
We see that MIxER outperforms S-GLOssY across all metrics and settings, by 2.3-
2.8x on FlockLab and by 1.4-3.8% on Indriya. The main reason is that MIXER needs
significantly fewer slots than S-GLossy (e.g., 95 vs. 260 on FlockLab): The combination
of RLNC and ST is more efficient in terms of communication. The range of performance
improvements on Indriya is wider than on FlockLab as a) with M = 94 messages the
slot length is determined by the processing time T,, which limits the improvement to
1.4x for small messages, and b) the larger network diameter allows for higher spatial
reuse, pushing the improvement up to 3.8x for large messages.

Looking at each individual metric, we find that latency, shown in Figure 2.6a, increases
linearly with message size because the slot length of both primitives increases linearly,

4The limited RAM on the TelosB would prevent us from running all-to-all experiments with messages
larger than 35 B on Indriya. Thus, for these message sizes on Indriya, nodes do not store the transmitted full-
size payloads (i.e., only the coding vectors are stored), and instead perform cycle-accurate computations
on a fake payload.
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FIGURE 2.7: Performance on FlockLab and Indriya for different initial message distributions.
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too. On FlockLab, MixER’s latency is 131-453 ms, a range enabling feedback control
in industrial automation [4]. Thanks to MixeRr’s smart shutdown feature, radio-on
time (Figure 2.6b) follows the same linear trend. Both primitives reach their highest
goodput (Figure 2.6c) with 110 B messages on FlockLab: 18.5 kbps for S-Grossy and
53.7 kbps for MIXER.

2.5.1.2 Impact of Initial Message Distribution

Theoretical analysis shows that starting with a well-mixed distribution, where initially
all messages are equally spread over the network, can boost performance compared
to the case where all messages reside at the same node [60]. To evaluate this aspect,
we fix the message size (60 B) and the number of messages M (27 on FlockLab, 94 on
Indriya), and vary the fraction of the N nodes that initially holds the M messages: N
(all-to-all), N/2, N/4, N/8, and 1 (one-to-all). Messages are equally distributed across

the respective source nodes.

Results. Our results in Figure 2.7 confirm that MixeRr benefits from a well-mixed
initial message distribution, while performance with S-Grossy is unaffected. The
effect becomes noticeable when messages are pooled at N /4 or fewer nodes, yet the
performance loss is at most 22 % compared to the all-to-all case. We attribute this
behavior especially to MIXER’s improved startup phase (Section 2.3.2.3), which ensures
fast-growing coding potential even in one-to-all scenarios.

2.5.1.3 Impact of Number of Messages (Generation Size)

In a final set of performance experiments, we investigate the impact of the number of
messages M to be exchanged in a round (generation size). We use again a message size
of 60 B and equally distribute 7, 21, 35, 49, and 63 messages to seven source nodes on
FlockLab.’

Results. Looking at Figure 2.8, we see that MixeR only has a performance advantage
over S-GLossy if there are at least a handful of messages to be exchanged. Otherwise,
the coding potential is too small and fine-tuned sequential Glossy floods perform
better. Nevertheless, MIXER’s performance advantage grows quickly with the number
of messages: MIXER is 2X faster and more efficient than S-Grossy for 21 messages, and
already 3x better for 63 messages.

Interestingly, we find in every all-to-all experiment that MIXER needs on average
about 3 - M slots to deliver M messages despite vastly different payload sizes, network
diameters, and node densities on the two testbeds. This gives an idea of the constants
hidden by the O-notation in the order-optimal scaling O(M + T) of RLNC-based gossip
for our MIXER implementation. Indeed, for small generation sizes M, the number of
slots T needed to disseminate one message dominates, whereas M dominates for large
generation sizes. T is determined by the diameter of the network.

>We only show result from FlockLab because the number of active nodes on Indriya changed significant-
ly during our experiments so that the results would not be comparable to those in Figs. 2.6 and 2.7.
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F1GURE 2.8: Performance on FlockLab for different number of messages equally distributed
to seven source nodes.

2.5.2 Network Dynamics: Node Failures

In practice, nodes can suddenly drop out due to disconnection or failure. While the
absence of a node for several rounds is handled by a higher-layer protocol, MIXEr must

cope with situations where nodes disappear shortly before or during a round.

To study this aspect, we run experiments on FlockLab in which we let a given number
of nodes simultaneously fail. We consider the failure of 1, 2, and 5 nodes and vary the
slot in which the failure occurs from 1 to 50. For each combination we perform at least
100 rounds. Nodes exchange 10 B messages in an all-to-all fashion, and non-failing
nodes log after each round how many of the 27 messages they can successfully decode.

Results. Figure 2.9 plots the probability that a non-failing node decodes all messages
against the slot in which the failure occurs. We see that a failure before or at the very
beginning of a round prevents the non-failing nodes from decoding all messages. This
is because the nodes fail before they can transmit for the first time. Thus, a failure in
later slots increases the probability that the non-failing nodes can decode all messages.
The increase shifts to the right with more failing nodes as nodes also need to transmit
linearly independent packets. Beyond a certain point (e.g., slot 20 for 1 failing node),
the probability to decode all messages is close to 100 %.

Note that, barring packet losses due to other reasons, a node for sure decodes all
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FIGURE 2.9: Probability that nodes decode all messages against the slot in which a set of
nodes concurrently fails.

messages that initially resided at non-failing nodes. For instance, in our runs each
non-failing node always decodes at least 26, 25, and 22 messages for 1, 2, and 5 failing
nodes, respectively. We can therefore conclude that MixeRr is highly robust to node
failures, providing guaranteed service to non-failing nodes while salvaging messages
of failing nodes with high probability.

2.5.3 Network Dynamics: Node Mobility

Emerging applications increasingly rely on nodes attached to mobile entities [86, 140].
We investigate MIXER’s resilience against the resulting network dynamics in an outdoor
experiment.

Scenario. We deploy 14 battery-powered TelosB nodes on cardboard boxes in a 80 m
by 230 m area as illustrated in Figure 2.10. Another node is mounted on a car and
attached over USB to a laptop. Nodes transmit with 0 dBm on channel 26, using MIXER
to periodically exchange 15 28 B messages in an all-to-all fashion. The messages contain
performance counters and the IDs of all nodes from which the nodes have directly
received a packet during the previous MIXer round (i.e., their 1-hop neighbors). We
set the slot length to 2 ms according to the guidelines in Section 2.4. Nodes initiate a
round every 500 ms, while the round length is 150 slots. At the end of each round, the
node on the car uses the remaining 200 ms to log the messages it received over USB
before the next round begins.

We first measure for 10 min with the car standing next to location A (see Figure 2.10).
Then we measure for 10 min while performing different maneuvers with the car. We
repeatedly pass locations A—=B—C—D, then make a turn at location E, and repeatedly
pass locations D—-C—B—A. We drive with a speed of 20-40 km/h while going in
circles, and hit 60 km/h between locations E and C. Such speeds are typical of state-of-
the-art mini and micro drones [31].

Results. Figure 2.11 shows the 1-hop neighbors of the node on the driving car over
time. We can see that the mobile node cannot directly communicate with all other
nodes: It has different sets of neighbors depending on its location. Indeed, we recognize



38 Chapter 2. Mixkr: Efficient Many-to-All Broadcast

g .9 .8 .7 6.
x|
C 10
33 @14 .13 ° 11 De E
v @25 =
2 230 m g

FIGURE 2.10: Setup of outdoor experiment with a mobile node mounted on a car that drives
at a speed of 20-60 km/h.
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FIGURE 2.11: 1-hop neighbors of mobile node as the car drives rounds counterclockwise
(CCW) and clockwise (CW).

a recurring pattern that allows us to infer how often the car drove around the circle.
For example, before completing the fourth round counterclockwise (CCW), the car
drove up to location E, leaving the mobile node with only two neighors and increasing
the network diameter to at least three hops. Then, the car made a turn and continued
to drive the circle clockwise (CW) three more times.

Despite heavy network dynamics due to the high speed of movement, we measure the
same performance compared to when the car was standing. As visible from Table 2.2,
MIxER consistently provides high reliability >99.99 % and low latency <98.4 ms. For
shorter messages (e.g., a few bytes carrying GPS data), one could further reduce the
slot length to 1 ms. As a result, latency in this scenario would reduce to about 50 ms,
which is sufficient for drone swarm coordination requiring all-to-all communication
every 100 ms [30, 140]. In summary, the results show that MixeRr is highly robust to
network dynamics and satisfies the demands of emerging applications.

2.5.4 Potential of Faster CPUs and Physical Layers

MIXER can benefit from a more powerful CPU: Using the same PHY, a faster CPU
allows MIXER to process packets at line rate for a wider range of payload sizes and
number of messages. For example, 2x faster processing shifts the crossover point
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TABLE 2.2: MIXER’s performance with and without mobility.

Performance Metric With Mobility Without Mobility

Reliability [%] >99.99 >99.99
Latency [ms] 96.2 98.4
o 120 -
E 100 - M = 7 messages 106
)
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FIGURE 2.12: Speedup of ARM cores over TelosB in processing received packets for different
generation sizes.

in Figure 2.5 from 75 to 215 messages. Conversely, to fully exploit a faster PHY, the
processing speed should increase as well.

CPU cores. We perform microbenchmarks on the TelosB and three different 32-bit
ARM cores: Cortex-M0+ running at 32 MHz (labeled L0), Cortex-M4 running at 80 MHz
(L4), and Cortex-M4 running at 180 MHz (F4). Despite higher clock speeds, L4 and F4
offer extended instruction sets and richer hardware capabilities than the L0.

Processing speedup. To measure the processing speedup, we port MIXEr’s packet
processing routines to the ARM cores. We profile the time needed to process received
packets (building transmit packets involves similar operations, merely with lower
variance). To obtain real-world execution times for the same input on all cores, we run
tests on FlockLab with 60 B messages for different generation sizes (M = {7, 35, 63})
and trace the sequence of received packets at each node. We feed the collected traces
into the four cores to get a total of 40,000 execution time measurements per core.

The speedups, shown in Figure 2.12, are 7-10X, 28—40X, and 62-106X for the L0, L4,
and F4, respectively. The speedup depends on the generation size M, because MIxXER
processes payloads in batches and delayed from coding vectors. This optimization be-
comes more important with higher average batch size and thus with more messages M.
We use a highly optimized implementation of this approach on the TelosB, and expect
that similar ARM-specific code optimizations reduce the differences in speedups for
different M.

Projected benefits. We use (2.4) and (2.5) to project the impact of a faster CPU and/or
a faster PHY on MIXER’s performance. Specifically, we multiply T, with the speedup in
PHY bitrate and T, with the processing speedup over the TelosB. Using the speedups
from Figure 2.12, we assume that all processing activites in Mixer benefit as much as
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TaBLE 2.3: Projected latency of MixgRr on FlockLab (all-to-all, 60 B messages) for different PHY
bitrates and CPU cores. Latencies in italics are CPU-bound (i.e., core is underdimensioned).

PHY Bitrate TelosB Lo L4 F4
[Mbps] [ms] [ms] [ms] [ms]
0.25 295.6 295.6 295.6 295.6

1 161.8 73.9 73.9 73.9

11 161.8 23.1 6.7 6.7

54 161.8 23.1 5.8 2.6

the processing of received packets. In this way, we can check, for example, whether a
CPU core is under-, over-, or well-dimensioned for a given PHY bitrate.

As an example, consider an all-to-all scenario with 60 B messages on FlockLab. We
know from Section 2.5.1 that MIXER needs about 95 slots with IEEE 802.15.4, and
studies suggest that capture (and hence Mixer) works comparable or better with other
PHYs [118]. Table 2.3 lists projected average latency in milliseconds for 16 PHY/CPU
combinations, using the minimum speedups for each core from Figure 2.12. We see,
for example, that the L0 is sufficient to fully leverage a PHY bitrate of 1 Mbps used by
BLE, while the L4 or the F4 is needed to match 11 or 54 Mbps of IEEE 802.11 variants.
The latter combination (F4, 54 Mbps) would reduce latency by 100X compared to the
TelosB.

2.6 Discussion

Larger finite fields. M1xER currently uses GF(2), which keeps the coding vectors small
and allows for a straightforward and efficient implementation on standard hardware.
Instead, the network coding literature favors larger finite fields, such as GF(28) [51], to
increase the chances that a received packet is innovative. We studied the impact of
larger finite fields on MIXER’s performance in simulation and found that the gains are
smaller than one may expect: Using GF(22) reduces the average number of slots by about
10 % compared with GF(2), but GF(23. .. 2%) does not provide further improvements.
We attribute this to the fact that the spreading of innovation in an area (as promoted
by larger finite fields) is upper-bounded by the influx of messages into that area. It is
also questionable whether the fewer slots with larger finite fields can indeed translate
into shorter latencies in practice as the computational load and the size of the coding
vectors would increase by several orders of magnitude.

Robustness to interference. MIXER achieves nearly perfect reliability in almost
all our experiments conducted under typical wireless interference in office buildings.
Nevertheless, it would be possible to borrow standard techniques such as frequency
hopping from other technologies (e.g., Bluetooth) to make MIXER even more robust to
interference. To this end, the slot number may serve as an index into a pseudo-random
sequence of channel frequencies that is known to all nodes. One may also increase the
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slot length T; to tolerate interference bursts (at the cost of higher latency), or adapt T
in a pseudo-random fashion to evade systematic jamming.

Setting the length of a round. MIXER provides a parameter that specifies the number
of slots constituting a round. Together with the slot length T; this parameter defines
the nominal length of a round and makes the running time of MIXER predictable, in
addition to the timeout mentioned in Section 2.3.3.1. However, one limitation of MIXER
is that the number of slots required until all nodes have reached full rank is difficult to
predict. While some applications allow for using a conservative estimate, this approach
may be problematic for applications with critical time constraints. Theoretical works
have looked at the worst-case number of slots for different network and communication
models [36, 51, 60, 129]. It would be worthwhile to adapt these models to MIXER (e.g.,
by incorporating existing capture models [83, 182]) to determine safe bounds on the
length of a round. Our experiments suggest that useful predictions are within reach:
We observe in all all-to-all runs that MIXER needs on average about 3 - M slots despite
different network topologies and payload sizes.

2.7 Related Work

Theoretical foundations. Ahlswede et al. introduced network coding, showing that
it achieves the multicast capacity of wireline networks [3]. It was later found that these
bounds can be achieved using linear codes, and that encoding and decoding can be
done in polynomial time [84, 97]. This also holds if nodes pick random coefficients [70].
These works form the theoretical foundation of RLNC, which we combine in MIXER
with the following technique.

Synchronous transmissions. MIXER exploits simultaneous transmissions from
multiple senders. SourceSync is the first system that demonstrates the benefits of
multiple senders transmitting the same packet in real IEEE 802.11 networks [143].
Glossy uses this concept for fast and reliable flooding in multi-hop IEEE 802.15.4
networks [48]. These protocols rely on accurate symbol-level synchronization to
benefit from sender diversity. In MIXER, instead, nodes transmit different packets,
which relaxes the required synchronization to the length of the preamble to possibly
receive one of the transmitted packets due to the capture effect [93, 94, 189]. The
capture effect has been used for collision resolution [181], network flooding [102],
aggregation [91], and agreement [5]. Instead, MIXER exploits the capture effect for
efficient many-to-all broadcasting of sizable messages.

Practical wireless network coding. Network coding has been extensively studied
in wireless and sensor networks; however, the vast majority of works focuses on
theoretical gains or evaluates new protocol designs only in simulation (see [134] for a
recent survey), thereby ignoring many practical issues that complicate or even prevent
a real implementation.
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COPE [80] and MORE [29] are the first implementations of network coding for multiple
unicast flows and a single multicast flow in IEEE 802.11 networks. Pacifier [87] achieves
a higher multicast throughput than MORE. These works target stationary networks
and specific traffic patterns, which allows them to leverage long-lived network and
routing state for coding and packet forwarding. This, however, makes them unfit
for dynamic networks and concurrent multicast flows, both of which MixER readily
supports. Moreover, they target PC-class devices with plenty of compute power,
memory, wireless bandwidth, and energy. MIxeR can cope with stringent constraints
on any of these resources, allowing low-power wireless systems to benefit from network
coding without putting restrictions on the traffic pattern.

Splash [41] and Pando [42] integrate pipelined flooding with XOR and fountain coding
for one-to-all data dissemination in IEEE 802.15.4 networks. While these solutions
run on resource-constrained devices, only the source encodes packets; all other nodes
forward the encoded packets and decode, which simplifies design and implementation.
They also assume stationary networks and support only a single source node. Instead,
MIXER supports dynamic networks, any number of sources, and efficiently performs
forwarding, en-/recoding, and decoding at every node in the network. As a result,
MixER performs comparable or better to these specialized protocols, and yet supports
a much broader range of scenarios.

Many-to-all broadcasting. The unstructured spreading of messages in MIXER is
reminiscent of gossip [78]. Deb and Médard showed that combining gossip with RLNC
for the dissemination of multiple messages outperforms any non-coding approach (in
terms of needed slots) in a specific communication scenario [36]. More precisely, they
consider a random phone call model where the underlying network graph is complete.
Later works study variants of this approach theoretically [129] and in simulation [51],
primarily on static networks. However, the underlying network model does not fit
wireless mesh networks because a) the random phone call model implies that all links
work independently (i.e., there is no interference); b) it is assumed that a node is able to
receive multiple packets simultaneously or can perfectly avoid collisions. Further, the
results rely on assumptions regarding the initial message distribution and the field size
used for network coding. In particular, [36, 129] consider cases where the field size g
has been chosen such that ¢ > M while the simulations in [51] use GF(28). With packet
size constraints as in IEEE 802.15.4, such field sizes can lead to significant limitations
and performance degradation as discussed in Section 2.6.

Recently, it was shown that RLNC-based gossip achieves the optimal scaling O(M + T)
also in dynamic networks for any initial message distribution and field size [60].
Furthermore, [60] provides results for a broadcast model that fits much better to the
inherent nature of wireless networks. However, the analysis is purely theoretical and
still assumes that nodes are able to receive multiple packets simultaneously. As for
dynamic wireless mesh networks, Mixer is the first design that translates the projected
benefits from theory into practice by combining RLNC with ST.
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Concurrently to our work, Mohammad and Chan [127] proposed Codecast, combining
LT codes [103] with ST. LT codes can be interpreted as a special variant of RLNC.
However, they lack the recoding capabilities of generic RLNC: In Codecast, a node
is not able to recode arbitrary payloads, it can only (re-)encode previously decoded
messages. Thus, the coding potential at the nodes grows slower than it does with
MIXER, eventually leading to longer rounds. Indeed, the results in [127] suggest that
MIixER outperforms Codecast by up to 3x on FlockLab. Further, the design of Codecast
suffers from severe scalability issues for more than M = 30 messages.
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PosTscrirT

With MIXER, we have contributed an efficient, scalable, and reliable many-to-all commu-
nication primitive for wireless mesh networks. Moreover, MIXER’s versatility supports
the full spectrum from one-to-all to all-to-all communication and from static to dy-
namic networks, including fast mobile agents. Compared to prior practical many-to-all
protocols that rely on message routing or flooding, MIXER exploits the synergy of RLNC
and ST to disseminate all messages simultaneously. Our implementation of MIXER is
up to 3.8% faster and more efficient than the state of the art while providing nearly
100 % reliability. Thus, MIXER empowers emerging wireless CPS, as we demonstrate in
Chapter 6, and enables applications that have seemed out of reach.



BUTLER: Increasing the Availability of

Low-Power Wireless Communication Protocols

PREFACE

Dependability is undoubtedly one of the most important requirements of CPS appli-
cations, especially in medical and industrial scenarios. Our communication protocol
MIXER, presented in the previous chapter, already provides a very reliable communica-
tion service. However, MIxER and all other ST-based communication protocols contain
a single point of failure that fundamentally impairs the availability of the communica-
tion service in the presence of node crashes and network partitions. The problem is
that these protocols require tight time synchronization and use one dedicated node for
this task. Distributing this task across multiple nodes comes with various challenges.

This chapter addresses this problem and proposes BUTLER, a lightweight and dis-
tributed time synchronization mechanism. BUTLER synchronizes all nodes in the
network, regardless of node failures, so any set of nodes can start the communica-
tion process, effectively eliminating the single point of failure. In addition, we also
formally prove BUTLER’s correct synchronization behavior. The experimental evalua-
tion shows that BUTLER can reliably synchronize the network to within +3 ps despite
unpredictable node failures and network partitions. Experiments with MIXer and
BUTLER demonstrate a truly fault-tolerant communication service. Moreover, BUTLER
has no noticeable impact on the overall communication performance, and its temporal
overhead ranges well below 1 %. Thus, the efficiency and effectiveness of BUTLER can
significantly improve the availability of existing ST-based protocols to meet the strict
dependability requirements of CPS applications.
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3.1 Introduction

In recent years, wireless sensor networks (WSNs) have become an integral part of
CPS and the Industrial Internet of Things with applications ranging from personalized
medicine through infrastructure control to smart factories. WSNs offer unprecedented
flexibility and cost efficiency in terms of installation, operation, and maintenance
compared to wired communication systems [17, 88, 147]. However, as defined by the
International Society of Automation, the dependability of the wireless communica-
tion service is essential in these critical application domains, where small disruptions
can cause system outages involving huge financial losses or even catastrophic conse-
quences [190].

In parallel to advances in hardware enabling more capable yet ultra-low-power micro-
controllers, communication protocols have also evolved. With Glossy [48], ST became
popular, and many different ST-based protocols emerged in the following years that
greatly outperform the traditional link-based protocols [196]. For example, in the
EWSN Dependability Competition [157], which attracted participants from industry
and academia, teams with ST-based protocols consistently placed in the top three
ranks. These new protocols can satisfy higher application requirements and make
WSNss suitable even for demanding closed-loop control applications (e.g., [172], and
our work later in Chapter 4). One of the key advantages of many ST-based protocols
is their topology-independent protocol logic, which provides unprecedented resilience
and flexibility as required, for example, in highly dynamic application scenarios with
mobile robots [17] or drone swarms [61].

Problem. From an application’s perspective, a dependable communication service
should transport messages reliably across the network and be available when needed to
ensure efficient and timely message delivery. State-of-the-art ST-based protocols [196]
provide a highly reliable and efficient message transport. Furthermore, protocols like
Virtus [50] and Wireless Paxos [137] provide mechanisms (virtual synchrony and
consensus) to build higher-layer fault-tolerant systems.

Despite these achievements, these protocols are themselves not fault-tolerant: already
the failure of a single node can lead to the unavailability of the communication service
in the entire network. The fundamental problem is that ST-based protocols require
tight time synchronization, which is achieved by selecting a particular node, often
named initiator (see, e.g., [48, 91], and our MIXER protocol in Chapter 2), that provides
a time reference. Typical faults in WSN deployments (e.g., due to software/hardware
failures, fabrication problems, environmental factors, adversarial attacks, and battery
depletion [77]) can cause the initiator and hence the communication service to fail.
Moreover, the single initiator is also a problem when the network splits into different
partitions, for example, because the node connectivity is affected by environmental
factors such as obstacles or interference and by moving nodes (e.g., a swarm of drones
splitting up in flight). In these situations, the single initiator is only part of one partition,
and the nodes in all other partitions are no longer able to exchange any messages.
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Contribution. To solve the availability problem, we present the design, theoretical
analysis, and experimental validation of BUTLER, a lightweight and distributed synchro-
nization mechanism. BUTLER enables ST-based protocols to distribute the role of the
initiator across multiple nodes (randomly selected at run-time) so that all non-faulty
nodes that are physically able to communicate can do so at the required time. To
achieve this, BUTLER uses a fully distributed and highly efficient mechanism where
nodes probabilistically propose and distribute reference times using short messages
that feature a natural order. This order allows nodes to quickly converge toward
the same accurate reference time despite possible node failures, message losses, and
network partitions. Afterward, communication can be initiated in a dependable way by
multiple synchronized initiators, which is key to leveraging the efficiency and reliability
of ST.

After describing the design of BUTLER in Section 3.3, we formally analyze and prove
its correctness in Section 3.4. Section 3.5 presents an open-source implementation of
BUTLER on the popular nRF52840 platform, which we use in Section 3.6 to evaluate
performance and efficiency on the FlockLab testbed [173]. Our results demonstrate
that BUTLER reliably synchronizes all nodes in the network to within +3 ps despite
large initial time offsets and unpredictable node failures. BUTLER achieves this while
incurring only a minimal temporal overhead that ranges below 1 % in realistic scenarios.
Moreover, experiments with our ST-based communication protocol Mixer (Chapter 2)
show that the communication performance in terms of latency and reliability signifi-
cantly decreases when using multiple initiators. When instead extending the standard
MIXER protocol with BUTLER to synchronize the initiators, our results indicate no
performance degradation: latency and reliability are at least as good as for the original
Mixer with a single initiator while providing superior availability.

In summary, this work contributes the following:

« The design of BUTLER, a lightweight and distributed synchronization mechanism
that pushes the availability of ST-based protocols to previously unseen heights.

« A rigorous theoretical analysis of BUTLER, including a formal proof of BUTLER’s
correctness.

+ Real-world experiments that validate the theoretical analysis by demonstrating
outstanding synchronization accuracy at minimal temporal overhead despite
node failures.

+ A case study demonstrating that BUTLER increases the availability of a state-
of-the-art ST-based protocol without sacrificing overall communication perfor-
mance.



48 Chapter 3. BuTLER: Highly Available Low-Power Wireless Protocols

3.2 Motivation and Background

Providing high availability in WSNs is an important yet unsolved research problem. The
problem originates from the dependability requirements of emerging CPS applications.
We discuss these requirements next, then review previous approaches toward providing
dependability in WSNs, and, finally, state the problem. Section 3.7 discusses existing
work that is most closely related to our specific contributions.

Application requirements and fault model. WSNs offer high flexibility and cost
efficiency, making them a key building block for many current and future CPS, including
mission- and safety-critical applications [17]. In addition to high performance demands,
these applications require a dependable communication service that enables reliable
data exchange and is available when needed despite certain failures [190].

We define a communication service to be available if messages can be exchanged at the
required time (i.e., as requested by the application or a high-layer protocol) between
all nodes in the network that are physically able to communicate with each other (i.e.,
when the signal-to-interference-plus-noise ratio between these nodes is high enough
to permit information transfer). Providing availability thus requires robustness and
fault tolerance such that failures of individual nodes do not affect the availability of

the communication service between the non-faulty nodes.

WSNs are deployed at scale and consist of many low-cost, resource-constrained em-
bedded devices that can fail for various reasons [45]. For example, because of software
and hardware faults or depleted batteries, nodes may suddenly stop working (i.e.,
fail-stop). Nodes may also recover from a failure and resume operation (i.e., crash
recovery). In addition, the environment of the deployment also has a significant impact
on the network. Due to obstacles, external interference, and node movement, the
communication links are constantly changing, which leads to time-varying message
losses and may split the network into several isolated partitions. While we consider
all aforementioned types of failures (i.e., node crashes, message losses, and network
partitions), we do not consider Byzantine (i.e., erratic or malicious) faults. That is, we
assume that a node works according to its specification whenever it is operational, and
modifications to messages during transmission can be reliably detected (e.g., using
error detection codes such as a cyclic redundancy check (CRC)).

Dependability in wireless sensor networks. Early WSN protocols adopted link-
oriented and routing-based communication techniques [56] to meet the requirements
of uncritical applications (e.g., environmental monitoring [168]). Yet, already in 2003,
Stankovic et al. noted the importance of real-time and dependability guarantees
in WSNs to meet the requirements of more demanding applications, such as those
involving control [164].

Motivated by the growing importance of such CPS applications, recent WSN protocols
based on ST have been shown to provide real-time guarantees [195] and certain
dependability properties. For example, Virtus [50] provides atomic multicast and view
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management, while A? [5] and Wireless Paxos [137] provide distributed agreement and
consensus. These dependability properties are fundamental to building fault-tolerant
systems through redundancy and replication [156]. Providing these properties has
been possible since ST allow the protocol logic to abstract away the complexity and
dynamics of wireless networks. For instance, the temporary or long-term failure of
individual wireless links can be smoothly handled by the spatio-temporal diversity of
the ST technique [196].

Problem statement. However, ST-based protocols cannot deal with the failure of
critical nodes, such as the node that initiates the communication process. Wireless
Paxos, Virtus, A%, MIXER, and many other ST-based protocols (e.g., [48, 91]) rely on
one dedicated initiator that starts a packet exchange by transmitting first. This single
initiator is a serious threat to the protocols’ availability: a failure of this node prevents
any communication in the network as all other nodes will keep waiting for an incoming
transmission event that never occurs.

The reason for the single initiator is the need for an accurate time reference. ST require
tight synchronization across nodes which must minimally satisfy the constraints set by
the capture effect (e.g., 160 ps for IEEE 802.15.4) known as capture window [91]. If the
time offsets of nodes exceed the capture window, communication becomes inefficient
and unreliable.

To solve the availability problem, an ST-based protocol should ideally use a large set
of multiple initiators, randomly and independently selected at run-time before every
individual packet exchange. The problem, however, is that the nodes, and therefore the
set of potential initiators for the next packet exchange, quickly get out of sync due to
the inevitable clock drift between nodes. For example, the IEEE 802.15.4 standard [71]
requires a clock drift of at most +40 ppm, which means that in the worst case, two
initially perfectly synchronized nodes violate the capture window already after 2s.

Based on these requirements, a scheme is needed that synchronizes the nodes to
within the size of the capture window. Moreover, an effective synchronization mech-
anism must itself be fault-tolerant under the above-mentioned fault model, and be
lightweight (i.e., low overhead) to avoid negatively affecting the overall communication
performance.

3.3 Design

We introduce BUTLER, a synchronization mechanism that solves the problem outlined
above to boost availability. Before presenting the details of BUTLER’s design, we provide
a high-level overview and state the scope of our work.

3.3.1 BUTLER Overview

BUTLER is a lightweight and distributed synchronization mechanism that is designed to
directly integrate with existing communication protocols. It does not require periodic



Chapter 3. BuTLER: Highly Available Low-Power Wireless Protocols

50

BuTiER | Communication < sleep . BuTLER | Communication l« sleep | BuTiLER | Communication
| _ | _
\\\\\\\\\\\\\\\\\\ »11»«1;111»«1;«1/»1/»« time
D [T afEm] [ F=] [
BRI [ [l [ | [ vsen
e _ _ 6, ny 4,1y _ 1, n, _H_ RX no sync
QR 7 B N I N e B I [ rxand syne
4+ 7 -
Dw&wm N.WE.& Tsior T

FIGURE 3.1: BUTLER is executed right before scheduled communication to synchronize the network. This removes the need for
a single initiator in ST-based communication protocols, which increases their availability. The example shows how 4 nodes
(n1 - ny) with a maximum initial offset of A, synchronize their local slot grids. The contents of the sync messages (T; and o)
are shown inside the slots, whereas T; is expressed in terms of the remaining number of slots until BUTLER terminates. Initially,
ny - n3 synchronize on the proposed reference time of ny, but re-synchronize upon reception of the earlier reference time from ny.
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activity and is executed right before a scheduled communication round, as illustrated
in the upper part of Figure 3.1. BUTLER reliably establishes a common reference time 7
among nodes despite node failures, message losses, and network partitions such that
multiple initiators can start the communication protocol at the same time.

Because of clock drift, the nodes are initially unsynchronized and start BUTLER with
different time offsets t,5, as shown in the lower part of Figure 3.1. We assume a
maximum initial offset Az, between the nodes, which can be calculated based on
the current communication period and the known maximum clock drift. During the
execution of BUTLER, the nodes probabilistically exchange sync messages. Each sync
message is associated with a certain reference time. Using BUTLER, the nodes always
synchronize to the earliest (minimum) reference time and propagate this reference
time further in the network. Eventually, all nodes have the same reference time, which
marks the end of BUTLER.

Scope. BUTLER is just one important piece of the puzzle to achieve high availability
of the overall system. Specifically, BUTLER is meant to improve the availability of ST-
based communication protocols that are responsible for the message exchange among
nodes (M1xeRr (Chapter 2), Chaos [91], and others [196]). These protocols, sometimes
also referred to as communication primitives, can benefit from BuTLER if they are in
principle able to support multiple initiators—any protocol that does not fulfill this
requirement cannot provide availability! The necessity for multiple initiators rules out
protocols that can only realize a one-to-all message exchange in each execution (e.g.,
Glossy [48]) since there can only be one specific source node by design. Moreover, all
protocols that build upon such protocols, for example, the LWB [49] or Crystal [73], are
therefore inherently limited and cannot be made available with BuTLER. Higher-layer
WSN protocols that also perform network management tasks at one dedicated node
(e.g., scheduling) require additional mechanisms to provide availability by avoiding
this single point of failure.

3.3.2 BUTLER in Detail

In the following, we will explain the structure and operation of BUTLER. Additionally,
we will discuss certain design decisions and their impact.

Slot grid and sync message. In BUTLER, each node follows a local slot grid, as shown
in Figure 3.1, which is defined by the grid reference tg,;4 and the slot length Ty;,;. While
T is fixed and known to all nodes, each node uses t,5, the time at which it started
BUTLER, as their initial fg4. During the execution, nodes exchange sync messages
to align their local slot grids and determine a common 7. Because the nodes align
transmissions to their local slot grid, the receiving nodes will know the grid reference
fgn-d of the sender based on the receive timestamp. Each sync message is associated
with a certain 7 and contains two pieces of information: The duration T;, which is the
time from # grid until 7, and origin o, the ID of the node that sent the particular 7 for
the first time. Note that sync messages with the same ¢ always describe the same 7.
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Algorithm 2 BUTLER (core algorithm)
1: procedure BUTLER_START ()
2 T, « slots = Tyy; > Remaining duration
3: torid < tofs > Slot grid reference
4 T tgig + Tz > Reference time
5 o, tIx — 0
6: while T; > 0 do > Each loop iteration corresponds to one local slot
7: if tx or (Prx > raNDOM()) then > Make transmit decision
8: if 0 = 0 then
9: L O ¢ n;
10: TRANSMIT(T; — Tyjor, O) > Transmission starts at tgiq + Tior
11: iIx «— 0
12: else
13: if RECEIVE() # 0 then
14: 7= i‘gn-d +T, > Received reference time
15: if (0 =0) or (¥ < r) then
16: ‘ sync ()
17: elseif (7 =7) and (6 < o) then
18: B ~ sync ()
19: terid < tgrid + Tstor
20: [ [ T — T; — Tyor
21: procedure sync ()
22: 0, Tr, tgrig, T < G, YA}, igrida T
23 tx 1 > Relay new 7 in the next slot

We use the size of a sync message to determine Ty, because we want transmissions

with the same o to either overlap completely or not at all.

Operation. We explain BUTLER’s operation based on the example in Figure 3.1 and
directly refer to the relevant lines in Algorithm 2. At the beginning, the nodes initialize
the remaining BUTLER duration T; (i.e., the time until 7) as a multiple of T, (line 2).
The grid reference tgy and T; are used to determine the initial 7 (line 4). Furthermore,
all nodes start unsynchronized and set ¢ to 0 (line 5). BUTLER’s main loop (line 6) is
executed once per slot, at the end of which tg,4 and T; are updated accordingly (lines
19-20). At T, = 0, r is reached and BUTLER terminates. In each slot, the nodes decide
independently whether to transmit a sync message or listen. We start with the transmit

decision and explain reception afterward.

The transmit decision is made with probability Prx (line 7). If ¢ = 0, the node is still
unsynchronized and will propose its own 7 to the network, setting o to its node ID
(lines 8-9). The node then aligns the start of the transmission to the next slot (tgiq+ Tsior)
and sets the duration in the sync message to T; — T, (line 10). This is the case for the

first transmission of n; and ny in Figure 3.1.
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In case a node decides not to transmit, it will listen for an incoming sync message.
After a successful reception (line 13), the node computes the reference time 7 associated
with the sync message (line 14). If ¢ = 0 or the received 7 is earlier than 7, the node
synchronizes to 7 (lines 15-16). The rationale behind this is that the earliest reference
time had the most time to propagate through the network and therefore is expected
to reach the most nodes compared to other reference times. In Figure 3.1, n; and
n3 synchronize to their first reception (RX and sync) because of ¢ = 0 and later re-
synchronize due to 7 < 7. Synchronizing to a new reference time involves updating the
local information with the information from the sync message and adjusting the local
slot grid (line 22). To quickly spread the new z, the node will always transmit in the
next slot (line 23). In contrast, ny discards the first reception (RX no sync) because it is
synchronized to an earlier reference time, hence the local slot grid remains unchanged
as can be seen in Figure 3.1. In the unlikely case that both 7 and 7 are equal, the node
synchronizes to the reference time of the sync message with the lower o (lines 17-18).

Using Algorithm 2, BUTLER aligns the local slot grids of initially unsynchronized nodes
to within T, so that multiple nodes can reliably initiate the communication process

at the same time in the subsequent communication round.

3.4 Analysis

After describing the design of BUTLER, we now theoretically analyze its synchronization
behavior.

System model. We consider a system consisting of a set N = {ny,ny,...,nx} of
N embedded devices (nodes). Each node n; has a local clock that runs at a specific
clock speed v;, which may vary from node to node due to imperfect clock sources (e.g.,
a crystal oscillator). The nodes have unique IDs and are equipped with half-duplex
RF transceivers to transmit and receive messages wirelessly. Communication over
the shared wireless medium is unreliable, and the probability of successful packet
reception is always below 1. Moreover, we assume that nodes do not have access to
external synchronization sources such as GPS and must exclusively synchronize via
communication. In general, multi-hop communication is needed to reach all nodes
in the network because of the limited communication range. Due to environmental
factors (e.g., interference), node faults, or node mobility, the network can split into
partitions. We define a network partition as a subset of N where all nodes in the same
partition can bidirectionally exchange information with each other over one or more
hops.

3.4.1 Correctness of BUTLER

The goal of BUTLER is to achieve synchronicity among the nodes in the network such
that multiple nodes can safely initiate the upcoming communication round (i.e., within
the capture window Tc4p). Therefore, BUTLER is correct if the maximum difference Ar
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TaBLE 3.1: State transition matrix for node n; in a network with N nodes. Reference times represent the different
states and are ordered from the latest (z;) to the earliest (zy). Each entry describes the transition probability from one
state to another. The triangular form results from BUTLER’s behavior to synchronize only to earlier reference times.

To

From u T T Ti TN_1 N
u  Prx(92) Prx(11) Prx(12) Prx ... Ppx(zn-1)  Prx(7n)
Ty 0 Prx (@) + P1x Prx(72) 0 o Prx(tn-1)  Prx(7n)
T 0 0 Prx (@) + Prx ... 0 Prx(tn-1) Prx(Nn)
0 0 0 0 Prx(tn-1) Prx(n)
T 0 0 0 0 TmXA@v +Prx ... WxXAﬁZIHv TNXAN.ZV
0 0 0 0 0 Prx(tn-1) Prx(n)
TN-1 0 0 0 0 0 0 NumkA@v + Prx TNXAN.ZV

N 0 0 0 0 0 0 0 1
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between the reference times of all nodes in the same network partition does not exceed

Tcap .

3.4.1.1 Equal Clock Speeds

We begin with the simpler case, assuming all clocks run at the same speed, and prove
the correctness of BUTLER for nodes in the same network partition.

Lemma 1. If all clock speeds are equal, then there is a unique total order of all reference
times over the entire execution of BUTLER.

Proof. Reference times in BUTLER have a natural temporal order. If two reference times
are equal, we select the reference time with the lower o as the earlier one. However,
nodes in BUTLER do not have a shared time base, so a sync message describes the
reference time relative to its transmission time (7 = tg.q + T). This relative duration
is affected by the clock speed of the transmitting node, which would not be the case
with absolute timestamps and a shared time base. Leveraging the assumption that all
nodes have the same clock speed, the order of the reference times will be the same at
any point during the execution of BUTLER. m]

Theorem 1. If all clock speeds are equal, BUTLER is correct.

Proof. In BUTLER, the current reference time 7 and its origin o essentially describe the
state 7, of a node. Based on Lemma 1 and without loss of generality, we assume the
following (arbitrary) order among reference times r; > 7, > ... > 7, such that 7 is
the earliest. We can then create a corresponding state transition matrix for a node
n;, shown in Table 3.1, with the different states represented by the reference times.
All nodes start in the unsynchronized state u, with u > 7; for 1 < j < N. The table
entries describe the transition probabilities, for example, n; transitions from u to 7,
with Prx(73), the probability of receiving 7, from any other node. These transition
probabilities are highly dependent on the situation and continuously change based on
factors such as network topology, environment, node behavior, as well as the state of
its neighboring nodes. In BUTLER, nodes propose their own reference time only if they
are in state u, that is, they have not received any other reference time. Consequently,
other nodes can reach 7; only if n; proposes it in the first place. Nodes remain in their
current state if they either transmit (Prx) or receive nothing (Prx(@)), which includes
receiving later reference times that are ignored.

In a network partition, all nodes can communicate with each other either directly
or over multiple hops. Since the nodes decide randomly and independently if they
transmit or listen, all transitions probabilities Prx(7;) for proposed reference times 7;
in Table 3.1 are greater than 0. BUTLER ensures that transitions are only allowed toward
earlier reference times, leading to the triangular form of the state transition matrix.
Therefore, all nodes synchronize to the same reference time with high probability.
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FIGURE 3.2: Local time vs. global time of nodes n; and n; with Av relative to each other. The

nodes are synchronized to different reference times. Three scenarios with different initial

offsets for n; are shown. Although the order of reference times can change during execution,
BUTLER is still correct.

Because we assume that all clock speeds are equal, it follows that the pairwise difference
between the reference times of all nodes is At = 0 < T,yp, which proves correctness. O

3.4.1.2 Varying Clock Speeds

In the real world, the clock speeds of the nodes are imperfect and may vary within
a certain range, specified by the frequency tolerance and stability properties of the
clock source (e.g., a crystal oscillator). We can determine Av, which is the maximum
clock speed difference between two nodes based on the hardware specifications. For
example, the IEEE 802.15.4 standard [71] requires Av = 80 ppm (+40 ppm). We now
extend the correctness proof for varying clock speeds by incorporating Av.

Lemma 2. Correctness of BUTLER can only be ensured if the maximal execution duration
TB S Tcap/AV-

Proof. We consider two nodes with Av relative to each other. Assuming that both nodes
synchronize simultaneously to the same reference time, they are perfectly time-aligned
at this point (A7 = 0). As time progresses, the local times of both nodes drift away
from each other due to Av, and it takes T,qp/Av time to have a difference of Az = T,y
between them. If BUTLER progresses further, correctness is violated, although both
nodes are synchronized to the same reference time. Therefore, with varying clock
speeds, it is necessary to limit the duration of BUTLER’s execution to Tg = Tegp/Av. O

Theorem 2. BUTLER is correct as long as Tg < Teqp/Av.

Proof. With varying clock speeds, the order of the reference times can change during
the execution of BUTLER. We will now prove BUTLER’s correctness by analyzing the
different situations that can occur with two reference times proposed by nodes n;
and n;. Figure 3.2 shows how the local times of n; and n; progress compared to the
global time. We assume that both nodes have Av relative to each other, with n; having
the lowest and n; having the highest clock speed. The nodes execute BUTLER for a
duration of Tg according to the local time (y-axis), leading to different execution times
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concerning global time (x-axis). To visualize the different possible situations, we depict
three scenarios for n;, each with a different initial offset (¢, t;, and t,) for the start of
BUTLER, while n; always starts at t.

If n; starts BUTLER before #), 7; will be earlier than 7; for the entire BUTLER execution.
Similarly, if n; starts BUTLER after t,, 7; will always be earlier than 7;. In these cases,
all nodes eventually synchronize to the same reference time, and because of Lemma 2,
At will not exceed Tgp.

We now look at the case when n; starts BUTLER between t, and t,, for example at t;.
Since n; starts BUTLER before n;, 7; is earlier than 7;, and nodes would synchronize to
7; upon reception. However, during the execution, the local time of n; “overtakes” n;
(intersection), and the order of the reference times changes, that is, 7; > 7;. Depending
on the initial offset of n;, this can happen at any time during the execution, leading
to nodes possibly being synchronized to different reference times when BUTLER ter-
minates. Nevertheless, because of Lemma 2, the difference At between the reference

times is less than or equal to Te,.

As aresult, either there is a unique reference time, or all chosen reference times differ
by at most T,yp, implying BUTLER’s correctness. O

3.4.2 Network Partitions

BUTLER is a distributed synchronization mechanism with probabilistic transmit behav-
ior that seamlessly supports network partitions. We assume that the network partitions
can arbitrarily change between executions of BUTLER but that they remain stable while
synchronization is ongoing, except that nodes can leave or fail at any point in time.
This assumption is necessary to prevent a node with the earliest reference time from
joining a new partition at the end of BUTLER, leaving no time for the other nodes in the
partition to resynchronize. However, this is usually not a problem since the execution
of BUTLER only takes a few tens of milliseconds (see Section 3.6.3).

With symmetrical communication links, and based on our definition of a network
partition, all nodes that can communicate with each other must be in the same partition.
Then, the presented proofs apply directly to each network partition. The state transition
matrix in Table 3.1 would contain disjoint sets of states with one set per partition, and
the transition probabilities between states of different sets would be 0 as no messages
can be exchanged.

However, with asymmetrical links, nodes from one partition could receive a reference
time 7; from another node that is not in the same partition. If 7; is earlier than all
other reference times in the partition, all nodes will eventually synchronize to z;.
Otherwise, if there exists an earlier reference time in the partition, then r; will be
ignored. Therefore, the correctness of BUTLER is not affected by network partitions
because it is irrelevant whether the node that proposed the reference time is part of
the same partition.
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3.4.3 Discussion

Limited time to converge. Our analysis shows an interesting area of tension between
the theoretical proof of BUTLER’s correctness and the practical challenge that the
duration of BUTLER’s execution is limited due to imperfect clocks (Av # 0). Whether
the maximum duration Tg of BUTLER (see Lemma 2) is sufficient for the nodes to
converge on a single reference time depends on the network topology and environment,
the node behavior, and the tolerance and stability of the clock source. In general, a
network can have arbitrarily weak communication links so that the time to converge
cannot be bounded. However, as we show in the evaluation in Section 3.6, these
problems may be of low relevance in practice as the time to converge is several orders
of magnitude lower than Tg. Among others, one reason is that the number of proposed
reference times during the execution of BUTLER is low (as discussed in Section 3.5)
compared to the overall number of nodes N, as most of the nodes will never propose
their own reference time. Thus, the matrix in Table 3.1 will typically be sparse, which

reduces the convergence time.

Impact of interference. During the execution of BUTLER, the nodes will receive a
reference time several times due to the random transmit behavior; thus, missing some
messages, for example, due to interference, can usually be compensated. In general,
stronger interference leads to more message loss and increases the average time to
converge but does not violate the correctness of BUTLER, which is independent of
the receive probability. Note that a receive probability of 0 means the node is not
connected. In practice, stronger interference can be proactively accounted for by
deliberately extending the duration of BUTLER.

3.5 Implementation

We have implemented BUTLER on the popular Nordic nRF52840 platform using the
IEEE 802.15.4 PHY [71]. The code is published as open source at https://gitlab.
com/nes-lab/butler.

Usage of BUTLER. It is straightforward to combine BUTLER with an existing ST-
based communication protocol. BUTLER’s APl is a single function butler_start(id),
which takes the ID of the node as an argument. During the execution, BUTLER takes
care of correctly handling all interrupts and should not be interfered with from the
outside. Upon termination, the function returns the final reference time and origin
shortly after reaching it. At this point, the nodes are synchronized and can start the
next communication round. BUTLER does not require periodic or repeated execution
and is scheduled on demand, provided the maximum initial offset At based on the

communication period is known.

Sync message. Figure 3.3 shows the structure of a sync message for the IEEE 802.15.4
PHY. The synchronization header (SHR) is responsible for the capture window T,
and contains the preamble and the SFD. SHR and the length field (len) are mandatory
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FIGURE 3.3: Packet structure of a sync message in BUTLER using the IEEE 802.15.4 PHY.

parts of the communication standard. BUTLER adds the remaining duration T, and
the origin ¢ as payload, whose space requirements are known at compile-time but
vary depending on the application and network size. Since the duration of BUTLER is
initialized as a multiple of the slot length T, (line 2 in Algorithm 2), we can represent
T; in the sync message more compactly as the number of remaining slots. To detect
and filter out corrupted packets, we use a hardware-supported CRC.

From design to implementation. BUTLER operates in a slotted fashion (see Algo-
rithm 2), where nodes decide to transmit or receive in every slot. The corresponding
transmit probability Prx will be low in practice (e.g., 2-4 % in the evaluation), so nodes
will often be receiving for multiple consecutive slots in a row. The nodes will continu-
ously listen for incoming messages independent of slot boundaries and only align TX
decisions to the slot grid. This implementation increases efficiency and avoids possible
sync message misses at the slot boundaries, as sync messages can be received at any
point in time.

In BUTLER’s design, nodes switch instantly between RX and TX and vice versa, for
example, after synchronizing to a new reference time. However, the radio hardware
requires a turnaround time of 40 ps to execute this mode change. During the switch,
the radio is deaf and cannot receive or transmit, effectively causing service downtime.
One option to alleviate this issue would be to increase the slot length Ty, by the
turnaround time, which would affect all slots. However, the number of slots in which a
node synchronizes to a new reference time and is thereafter forced to transmit is only
a fraction compared to the overall number of slots. Therefore, we instead opted to skip
one slot when switching from RX to TX as it is more efficient to keep Tj;,; unchanged.

A crucial point in BUTLER is the computation of the reference time 7 from the received
sync message (line 17 in Algorithm 2). The remaining duration T, is part of the sync
message and gq is determined based on the receive timestamp. This requires that the
receive timestamp is equal to tgq of the sender, except for negligible differences due
to the time of flight of packets. We discovered that this is not the case on the nRF52840
platform and the receive timestamp is delayed by around 10 bit durations, depending
on the data rate of the current radio mode. For example, using a data rate of 250 kbps
and the IEEE 802.15.4 PHY results in a receive timestamp delay of 40 ps, which has to
be considered for the computation of #iq. As this delay splits equally between the TX
and RX paths, we have to add 20 ps to the slot length Ty, which is otherwise oriented
at the size of the sync message (Figure 3.3).
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Variable transmit probabilities for efficiency. A probabilistic and independent
transmit decision is essential to make BUTLER fault-tolerant and avoid single points
of failure. As shown in Figure 3.1, the local slot grids are initially unaligned, but
increasingly synchronize as the execution progresses. At the beginning, the chances
are high that transmissions overlap arbitrarily and violate the timing requirement T,
of the capture effect, which leads to a reduced communication efficiency (i.e., a lower
packet reception rate). Thus, Prx should initially be chosen cautiously to reduce the
number of transmissions. A side effect of a lower initial Pry is that fewer reference
times will be proposed, which decreases the overall convergence time. However, nodes
already aligned to the same reference time can benefit from the capture effect since their
transmissions start concurrently within T,,,. With an increasing number of aligned
nodes, a higher Prx improves the convergence to the final reference time. Therefore,
the optimal value for Prx varies over time and is network-specific. A similar challenge

is faced in the Mixer protocol (Chapter 2), where the transmit decisions depend on the

100 %
N2

until a node first transmits and doubling after that provides a conservative starting

local node density. We tested different topologies and found that choosing Prx =

point for many topologies.

3.6 Evaluation

Based on our implementation, we evaluate BUTLER in a real-world wireless testbed. We
investigate BUTLER’s behavior and confirm its correctness, together with measurements
regarding performance and efficiency. Finally, we examine the interaction between
BuTLER and our ST-based communication protocol Mixer (Chapter 2), and its impact
on the communication performance. Our key findings are:

« Correctness: In our experiments, all nodes always synchronize to the same
reference time at the end of BUTLER, validating BUTLER’s correctness from the
analysis.

« Accuracy: BUTLER synchronizes nodes to within +3 s, which is well below the
maximum tolerable time offset of 160 ps (i.e., size of the capture window).

« Efficiency: Thanks to BUTLER’s efficient run-time execution, the temporal over-
head of synchronizing the nodes is small and significantly below 1% in most
scenarios.

« End-to-end performance: BUTLER increases the availability of existing communica-
tion protocols without any negative impact on the communication performance.

3.6.1 Experimental Settings

All our experiments are executed on the FlockLab [173] testbed with 23 nodes deployed
in an office environment as shown in Figure 3.4. The experiments were conducted
during the daytime and, thus, exposed to various sources of interference, for example,
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F1GURE 3.4: The FlockLab testbed with 23 nRF52840 devices.

Wi-Fi. Our implementation uses the nRF52840 platform and the IEEE 802.15.4 PHY.
Using a transmit power of 8 dBm, the nodes form a network with 3-4 hops.

Since the clock drift of the nodes is unknown and also subject to change, we use the
GPIO actuation capabilities of FlockLab to control the timing in our experiments. This
also allows us to test larger initial offsets between the nodes without having to run
excessively long experiments (i.e., with huge gaps between communication rounds). A
final aspect is that by using the GPIO to purposely control the timing, we also increase
the repeatability of our experiments. This way, each node realizes a random initial
offset in the range 0 < o5 < 50 ms. The maximum offset Aty = 50 ms corresponds to
a communication period of ~10 min. To assess the robustness of BUTLER, we inject
artificial node faults. Therefore, each node independently decides with a probability
of 5 % not to participate in the next BUTLER execution. Furthermore, with this fault
probability, the network sometimes splits into two partitions during the experiments,
which permits an investigation of the behavior under network partitions.

In BUTLER, the sync information ¢ and T; require 1B each, resulting in a packet size of
10 B (see Section 3.5) and a slot length Ty, of 335 ps. Using a few trial runs, we find that
250 slots (83.75 ms) are sufficient for BUTLER to synchronize all nodes on FlockLab for
the considered range of initial offsets (see Section 3.6.3). We use two different values
for the transmission probability (see Section 3.5), which are Prx = 2.2 % for the time
until the first transmission, and Prx = 4.3 % afterward.

3.6.2 BUTLER in Action

Before delving into the evaluation of BUTLER’s performance, we look at its operation
in a real low-power wireless network. Figure 3.5 depicts the behavior of each of the 23
nodes on FlockLab during one representative execution of BUTLER. The beginning of



Chapter 3. BuTLER: Highly Available Low-Power Wireless Protocols

62

Time [ms]

| 1 an
> —— - 22 IEEEEEEEEEEEEE]
22 —_—— 21 EEEEEEI
20 m “ 718 20
! 19
: o - ;
; e r :
1
1 " ! - 15
o1 ! m © 213
212 - i 212
S 11 Lo _ S 1 EEEE
Z 10 . 10 EEEEEEI
9 1 1
8 ! ! 8
7 i i 7
6 i i 6
; | — ; EEEEEEEEEEEEEEEEEEEEEEEEEEEEE
3 | — | 3 |NNEEEEEEEEEEEEEEEEEEEEEENEEEE
2 i 1 2
1 X faulty R ! 1
1 1 1 1 1 1 T T T 1 T 1 T 1 I 1 )
0 10 20 30 40 50 15 16 17 18 19 20 21 22 23 24 25

Time [ms]

(a) Nodes start BUTLER at different times but eventually synchronize to
the same reference time of node 18 at around 50 ms. Node 1 is faulty.

(b) Zoom into the marked area of the left plot, showing the individual
slots. During this interval, the most synchronization events happen.

FIGURE 3.5: Time synchronization of nodes during the execution of BUTLER with colors indicating which reference time a node
follows during execution. Reference times in the legend (gray means unsynchronized) are sorted from earliest (715) to latest (zs).
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FIGURE 3.6: The number of times each node proposed the final reference time is uniformly
distributed in BuTLER. With 1016 runs, each node is expected to be the sync origin 44 times.

a bar in Figure 3.5a indicates when a node started the execution of BUTLER. The color
of the bar indicates which proposed reference time a node currently follows. We can
see that the nodes start BUTLER at different times with At,; = 50 ms. Despite these
significant initial offsets, BUTLER eventually makes all nodes follow the same reference
time, as indicated by the green bars in the figure.

Diving a bit deeper into BUTLER’s behavior in this particular run, we can see that most
nodes initially have a gray bar. This means that these nodes did not propose their own
reference time, but synchronized to the reference time of the first sync message they
received. In contrast, nodes with a colored bar at the beginning did propose their own
reference time at some point before receiving a sync message. Overall, there were 5
different reference times proposed in this execution, originating from nodes 3, 5, 7,
18, and 22. Node 18 started BUTLER first, a few microseconds before node 3, so the
reference time of node 18 (green) is the earliest to which all other nodes eventually
synchronize.

During the framed time interval between 15-25 ms, many nodes synchronize to new
reference times. We zoom into this interval in Figure 3.5b, where we can see the
individual slots of BuTLER. Looking at the orange slots, we can see how the respective
reference time propagates from hop to hop through parts of the network. At around
19 ms node 11 synchronizes to it. Two slots later, which is the implementation-specific
delay due to the RX-TX turnaround time of the radio, node 11 transmits the new
synchronization information (not shown in the figure) that is then received by the
nodes 12, 21, and 22. Again two slots later, the orange reference time is further relayed
to node 10. Eventually, however, the green reference time prevails as it is the earliest
among all proposed reference times in this particular run.

The origin of the final reference time, that is, the node which proposed it, is uniformly
distributed among all nodes over all runs as shown in Figure 3.6, underlining BUTLER’s
distributed nature. Moreover, the experiments show that the number of proposed
reference times is related to the transmit probability Prx. There are, on average, ~4
different reference times.

The network splits into two partitions in a few runs due to multiple node faults. We
find that the nodes correctly synchronize to the respective reference time in each
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FIGURE 3.7: Synchronization accuracy before and after BUTLER. Despite excessive initial
offsets between the nodes (top), BUTLER synchronizes all nodes to within a few microseconds
(bottom), which is far better than the required Tc,, = 160 ps.

partition. Composition into even more partitions would also work seamlessly without
adjusting the protocol.

3.6.3 BUTLER’s Performance and Efficiency

Accuracy. The main goal of BUTLER is to achieve synchronicity, such that the nodes
in the network are time-aligned within the capture window T.,,. Our experiments
show that BUTLER achieves this goal and synchronizes the nodes well below T,

We use the GPIO tracing capabilities of FlockLab and mark the times when a node
starts (t,5;) and finishes () BUTLER. The accuracy is measured as the difference between
the observed values and the empirical mean in each BUTLER execution. Figure 3.7
shows the results for around 900 executions. At the top, the distribution of the initial
offsets tof; across all nodes is as expected, since each node picks a random initial offset
between 0 and 50 ms. ! In the lower plot we can see that despite the excessive initial
offsets, most of the nodes achieve an accuracy of +2 ps, with at most 6 us between any
two reference times. These values are well below the requirement of T,, = 160 s
and validate the correctness of BUTLER, a necessary precondition for achieving high
accuracy.

Efficiency. We evaluate the efficiency of BUTLER by measuring the time it takes to
synchronize the network. To this end, we run experiments with varying maximum
offsets (At,s), and nodes choose a random initial offset in the range of 0ms < t,5 <
At,fs. The time to synchronize the network starts with the first node entering BUTLER
and ends when all nodes are synchronized to the same reference time, for example,
~51ms in Figure 3.5a.

IThe accuracy exceeds —25 000 ps and 25 000 ps because it is based on the empirical mean of each
BUTLER execution, which has some variation.
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F1GURE 3.8: Time needed to synchronize all nodes for different initial offsets. BUTLER reliably
synchronizes all nodes within a few milliseconds and the synchronization time scales well
with the clock drift.

Figure 3.8 shows the distribution and mean of synchronization times for all nodes
and all BUTLER executions (~1000) per experiment. We see that on FlockLab it takes
on average about 8 ms to synchronize all nodes using BUTLER for Aty = 0 ms. With
larger offsets, the synchronization time converges toward the respective Atz value.
This is because many nodes are already synchronized to the final reference time before
the last node starts BUTLER, as can be seen in Figure 3.5a.

Duration and overhead. In general, the duration of BUTLER is the sum of two factors.
One factor is the convergence time on the specific network topology, which can be
experimentally explored at At = 0 ms and is ~35 ms (100 slots) on FlockLab. The other
factor is the maximum initial offset Atz to compensate for the accumulated clock drift
since the last synchronization. Since the latter only depends on the communication
period (assuming maximum clock drift Av), the duration of BUTLER can be easily
adjusted to any period during run-time; thus, BUTLER can be executed on demand.
However, for very long communication periods, Aty can become large and exceed
BUTLER’s maximum duration Tp (Section 3.4.1). For instance, in our experiments
Tp = 25, which corresponds to a communication period of ~7h. To support longer
periods, BUTLER would have to be executed in-between to reset the accumulated clock

drift.

In most scenarios, BUTLER only needs to be executed once per communication period, so
we report its temporal overhead in relation to the period. Our results listed in Table 3.2
demonstrate that BUTLER is a lightweight mechanism with very little to negligible
temporal overhead, enabling easy integration with communication protocols as BUTLER
does not constrain their execution. Moreover, the temporal overhead decreases as
the initial offset and associated communication period increase. For example, at a
communication period of ~3s, the temporal overhead drops below 1%, with only
0.01 % at a period of 10 min. However, the increased availability of BUTLER does come
at the cost of increased energy consumption, as the execution time of BUTLER could
otherwise be spent in sleep mode.
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TaBLE 3.2: Temporal overhead of BUTLER for different initial offsets and their corresponding
communication periods.

Max. initial Corresponding BUTLER Temporal

offset (At,f) com. period duration overhead
80 s 1s 33.58 ms 3.36 %
400 ps 5s 33.9ms 0.68 %
800 ps 10s 34.3ms 0.34%
4.8 ms 1min 38.3ms 0.06 %
24 ms 5 min 57.5ms 0.02 %
48 ms 10 min 81.5ms 0.01%

3.6.4 Making an Existing Protocol Available Through BUTLER

After investigating BUTLER’s performance and efficiency in isolation, we now turn to
the target use case where BUTLER is used to increase the availability of a low-power

wireless communication protocol.

Scenario and settings. As an example, we use our novel communication protocol
MixeR (Chapter 2), which offers an efficient, reliable, and scalable communication
service. However, MIXER provides no availability, often a key requirement in control
applications, as it relies on a single initiator node that starts the many-to-many packet
exchange. To overcome this problem and enable the use of multiple initiators in
MIXER, we let BUTLER run before every communication round to synchronize the set
of initiators. To be able to compare different settings and reproduce our results, we
use a fixed set of two initiators located at opposite ends of the FlockLab testbed and

also refrain from injecting artificial node failures.?

We compare the performance of Mixer with and without BuTLER for different initial
offsets between the two initiators. Compared to the previous experiments, we use
much smaller initial offsets here to show that multi-initiator MIXER requires help
from BUTLER already at short communication periods. However, BUTLER can be used
efficiently with MIXER irrespective of the communication period and resulting initial
offset. For each setting, we conduct an experimental run that involves around 500
communication rounds. We also run the original MIXER with a single initiator as a
baseline for the communication performance. In every communication round, each
node initially has a 16 B message that it needs to share with all other nodes in the
network during the MIxeR round, so that eventually every node has all 23 messages.
We consider two key metrics: Latency, which is the time it takes for a node to receive
all messages in a round, and reliability, which is the fraction of received messages per
round. Note that latency does not include BUTLER’s execution time because BUTLER
finishes before the scheduled communication round starts.

2We note that in order to maximize availability, a larger set of initiator nodes randomly and dynamically
chosen at run-time should be used, which is straightforwardly supported by our implementation.
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Results. Figure 3.9a shows the latency distribution with single- and multi-initiator
Mixer for different initial offsets; markers indicate the 1st and 99th percentiles. We can
see that without BUTLER, the latency increases significantly by up to 2.8x for increasing
initial offsets. When instead extending it with BUTLER, the latency of multi-initiator
MIXER remains as low as for the original Mixer with a single initiator while providing
higher availability. This is thanks to BUTLER’s ability to accurately synchronize the
initiators, which becomes an absolute necessity already for an initial offset of 160 ps to
achieve high performance. Thus, the experiments also confirm our assumption about
Teqp for correctness in Section 3.4.1.

Figure 3.9b shows the reliability of single- and multi-initiator MixkRr for different initial
offsets when we limit the length of the multi-initiator Mixer rounds to the time needed
by single-initiator MIXER (about 300 ms). This scenario is representative of typical
constraints found in control applications, where interactions between distributed
sensors and actuators must be completed within hard real-time deadlines to match the
dynamics of physical processes [4]. Looking at Figure 3.9b, we see without BUTLER
the mean reliability decreases dramatically by up to 30 % as the initial offset increases.
With BUTLER, the reliability remains unchanged and always above 99.9 %.

In summary, these results demonstrate that BUTLER effectively solves the problem
of clock drift when using multiple initiators. BUTLER increases the availability of

low-power wireless communication without sacrificing performance.

3.7 Related Work

BUTLER is the first work to address the availability problem of ST-based communication
protocols. However, the underlying concept is closely related to the existing literature
on time synchronization. Most time synchronization algorithms aim to provide an
accurate, globally shared, and constantly available time base to all nodes in the network.
While this is a powerful synchronization service that is essential for some applications,
it needs to run periodically, and the associated overhead in terms of energy, time, and
wireless bandwidth is very high. In fact, to distribute the initiator role among multiple
nodes, which is what BUTLER aims for to increase availability, the nodes do not need a
globally shared time base that is maintained for the entire lifetime of the system: all
they need is to be able to perform a coordinated action [89]. This is also known as
synchronicity [180] and can be achieved with less effort compared to full-fledged time

synchronization.

Many time synchronization protocols, including TPSN [54], FTSP [119], Glossy [48],
PulseSync [95], and TATS [100], use one dedicated node as a time reference for the
entire network. Generally, these algorithms achieve excellent synchronization accuracy
but are not fault-tolerant, which is a prerequisite for high availability. Furthermore,
they often rely on topology information, causing instability in dynamic networks.
The single node providing the reference time is also insufficient if the network splits
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into several isolated partitions. BUTLER overcomes these issues by adopting a fully
distributed approach that does not rely on topology information.

Over the years, several distributed synchronization protocols have been developed to
mitigate centralization issues, such as RFA [180], DCTS [154], ATS [153], MTS [62],
and MACTS [158]. These protocols do not rely on special nodes and are thus more
robust and versatile than their centralized counterparts. The downside, however, is
that these algorithms typically require a significant amount of time to synchronize
the network, ranging from tens of seconds to multiple minutes. By contrast, BUTLER
needs only tens of milliseconds to synchronize an entire network to within a few
microseconds, thus substantially saving energy, time, and wireless bandwidth. The
difference is that in most synchronization protocols, the nodes converge, for example,
by averaging the local clocks in an iterative process, which is needed to find a stable
global time but requires a large number of messages to determine and account for
the different clock drifts [158]. Furthermore, nodes that lose their state, for example,
due to a failure, potentially require all nodes to converge again. BUTLER does not
adjust clock drift and uses the natural order of proposed reference times, requiring
only a few messages to achieve the goal of synchronicity. BUTLER’s short duration also
simplifies the integration with communication protocols, which can be difficult with
existing time synchronization protocols due to their significant overhead and the need
for periodic executions.
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PosTscrirT

In response to the availability weakness of ST-based communication protocols, we
have designed BUTLER, a new distributed low-power wireless synchronization scheme
that eliminates their single point of failure. BUTLER can be used on demand anytime
synchronization is needed, such as before communication with ST-based protocols. A
formal analysis shows that BUTLER can correctly synchronize the network toward the
same reference time, and experiments validate this claim and reveal an exceptional
accuracy of +3 ps. At the same time, its temporal overhead ranges well below 1 %.
Moreover, we demonstrate that using Mixer and BUTLER together makes a truly
fault-tolerant low-power wireless protocol feasible. Since BUTLER does not interfere
with the communication protocol, the communication performance remains virtually
unchanged while its last vulnerability is eliminated. Thus, BUTLER helps to fulfill the
high dependability requirements of present and emerging CPS applications.
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Feedback Control Goes Wireless: Guaranteed
Stability over Low-Power Multi-Hop Networks

PRrEFACE

In the second part of this thesis, we are devoted to developing and analyzing real-
world wireless CPS based on a tight co-design approach of communication and control.
Specifically, we focus on the need to close feedback loops fast and over long distances,
which is key to emerging applications; for example, robot motion control and swarm
coordination require update intervals of tens of milliseconds. Prior works on wireless
control that validate their designs through experiments on physical platforms have only
been demonstrated for systems with slow dynamics or in small single-hop networks,
significantly alleviating the challenges.

In this chapter, we demonstrate the feasibility of fast feedback control with stability
guarantees via low-power wireless multi-hop networks. Our wireless embedded system
is based on a co-design that tames imperfections impairing the control performance
(e.g., jitter and message loss) to the extent possible and exploits the essential properties
of this system in the control design. Due to careful orchestration of communication and
control tasks at run-time, we can meet real-time constraints and provably guarantee
closed-loop stability for physical processes with LTI dynamics. Experiments on a
CPS testbed with 20 wireless nodes and multiple cart-pole systems show, for the first
time, feedback control and coordination over wireless multi-hop networks for update
intervals of 20-50 ms.
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4.1 Introduction

CPS use embedded computers and networks to monitor and control physical sys-
tems [39]. While monitoring using sensors allows, for example, to better understand
certain characteristics of environmental processes [32], it is control and coordination
through actuators what nurtures the CPS vision exemplified by robotic materials [33],
smart transportation [19], and multi-robot swarms for disaster response and manufac-
turing [61].

A key hurdle to realizing this vision is how to close the feedback loops between sensors
and actuators as these may be numerous, mobile, distributed over large spaces, and
attached to devices with size, weight, and cost constraints. Wireless multi-hop com-
munication among low-power, possibly battery-powered devices! provides the cost
efficiency and flexibility to overcome this hurdle [101, 179] if two requirements are met.
First, fast feedback is needed to keep up with the dynamics of physical systems [12]; for
example, robot motion control and drone swarm coordination require update intervals
of tens of milliseconds [1, 140]. Second, as feedback control modifies the dynamics
of physical systems [11], guaranteeing closed-loop stability under imperfect wireless
communication is a major concern.

Hence, this chapter investigates the following question: Is it possible to enable fast feed-
back control and coordination across real-world low-power wireless multi-hop networks
with formal guarantees on closed-loop stability? Prior works on control over wireless
that validate their design through experiments on physical platforms do not provide
an affirmative answer. As shown in Figure 4.1 and detailed in Section 4.2, solutions
based on multi-hop communication have only been demonstrated for physical systems
with slow dynamics (i.e., update intervals of seconds) and do not provide stability
guarantees. Practical solutions with stability guarantees for fast process dynamics (i.e.,
update intervals of tens of milliseconds as typical of, e.g., mechanical systems) exist,
but these are only applicable to single-hop networks and therefore lack the scalability
and flexibility required by many future CPS applications [61, 108].

Contribution and road map. This chapter presents the design, analysis, and practical
validation of a wireless CPS that fills this gap. Section 4.3 highlights the main challenges
and corresponding system design goals we must achieve when closing feedback loops
fast over wireless multi-hop networks. Our approach is based on a careful co-design
of the wireless embedded components (in terms of hardware and software) and the
closed-loop control system, as described in Section 4.4 and Section 4.5. More concretely,
we tame typical wireless network imperfections, such as message loss and jitter, so
that they can be tackled by well-known control techniques or safely neglected. As a
result, our solution is amenable to a formal end-to-end analysis of all CPS components
(i.e., wireless embedded, control, and physical systems), which we exploit to provably
guarantee closed-loop stability for physical systems with LTI dynamics. Moreover,

I'While actuators may need wall power, low-power operation is crucial for sensors and controllers,
which may run on batteries and harvest energy from the environment [4].
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FIGURE 4.1: Design space of wireless CPS that have been validated on physical platforms
and real wireless networks.

unlike prior work, our solution supports control and coordination of multiple physical
systems out of the box, which is a key asset in many CPS applications [1, 61, 140].

To evaluate our design in Section 4.6, we have developed a CPS testbed that consists
of 20 wireless embedded devices forming a three-hop network and multiple cart-pole
systems whose dynamics match a range of real-world mechanical systems [11, 171]. As
such, our testbed addresses an important need in CPS research [101]. Our experiments
reveal the following key findings: a) two inverted pendulums can be safely stabilized
by two remote controllers across the three-hop wireless network; b) the movement of
five cart-poles can be synchronized reliably over the network; c) increasing message
loss rates and update intervals can be tolerated at reduced control performance; and

d) the experiments confirm our analyses.
In summary, this work contributes the following:

« We are the first to demonstrate feedback control and coordination across real low-
power wireless multi-hop networks at update intervals of 20 to 50 milliseconds.

« We formally prove that our end-to-end CPS design guarantees closed-loop sta-

bility for physical systems with LTI dynamics.

+ Experiments on a novel CPS testbed show that our solution can stabilize and
synchronize multiple inverted pendulums despite significant message loss.

4.2 Related Work

Feedback control over wireless communication networks has been extensively studied.
For instance, the control community has investigated control design and stability
analysis for wireless (and wired) networks based on different system architectures,
delay models, and message loss processes (see, e.g., [6, 55, 104, 142, 160, 161, 175, 185,
193]); recent surveys provide an overview of this body of fundamental research [69, 191].
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However, the majority of those works focuses on theoretical analyses or validates
new wireless CPS designs (e.g., based on WirelessHART [96, 111]) only in simulation,
thereby ignoring many fundamental challenges that may complicate or prevent a real
implementation [101]. One of the challenges, as detailed in Section 4.3, is that even
slight variations in the quality of a wireless link can trigger drastic changes in the
routing topology [27]—and this can happen several times per minute [56]. Hence,
to establish trust in feedback control over wireless, a real-world validation against
these dynamics on a realistic CPS testbed is absolutely essential [101], as opposed to
considering setups with a statically configured routing topology and only a few nodes
on a desk as, for example, in [155].

Figure 4.1 classifies prior control-over-wireless solutions that have been validated
using experiments on physical platforms and against the dynamics of real wireless
networks along two dimensions: the diameter of the network (single-hop or multi-hop)
and the dynamics of the physical system (slow or fast). While not representing absolute
categories, we use slow to refer to update intervals on the order of seconds, which is
typically insufficient for feedback control of, for example, mechanical systems.

In the single-hop/slow category, Araujo et al. [10] investigate resource efficiency
of aperiodic control with closed-loop stability in a single-hop wireless network of
IEEE 802.15.4 devices. Using a double-tank system as the physical process, update
intervals of 1-10s are sufficient.

A number of works in the single-hop/fast class stabilize an inverted pendulum via a
controller that communicates with a sensor-actuator node at the cart. The update
interval is 60 ms or less, and the interplay of control and network performance, as
well as closed-loop stability are investigated for different wireless technologies: Blue-
tooth [44], IEEE 802.11 [136], and IEEE 802.15.4 [14, 67]. Belonging to the same class,
Ye et al. use three IEEE 802.11 nodes to control two dryer plants at update intervals of
100-200 ms [188], and Lynch et al. use four proprietary wireless nodes to demonstrate
control of a three-story test structure at an update interval of 80 ms [109].

For multi-hop networks, there are only solutions for slow process dynamics and with-
out stability analysis. For example, Ceriotti et al. study adaptive lighting in road
tunnels [27]. Owing to the length of the tunnels, multi-hop communication becomes
unavoidable, yet the required update interval of 30 s allows for a reliable solution built
out of mainstream sensor network technology. Similarly, Saifullah et al. present a
multi-hop solution for power management in data centers, using update intervals of
20 s or greater [150].

In contrast to these works, as illustrated in Figure 4.1, we demonstrate fast feedback
control over wireless multi-hop networks at update intervals of 20-50 ms, which is
significantly faster than existing multi-hop solutions. Moreover, we provide a formal
stability proof, and our solution seamlessly supports both control and coordination of
multiple physical systems, which we validate through experiments on a real-world
CPS testbed.
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FIGURE 4.2: Application tasks and message transfers of a single feedback loop. In every
iteration, the sensing task (S) takes a measurement of the physical system and sends it to
the control task (C), which computes a control signal and sends it to the actuation task (A).

4.3 Problem Setting and Approach

Scenario. We consider wireless CPS that consist of a set of embedded devices equipped
with low-power wireless radios. The devices execute different application tasks (i.e.,
sensing, control, and actuation) that exchange messages over a wireless multi-hop
network. Each node may execute multiple application tasks, which may belong to
different distributed feedback loops. As an example, Figure 4.2 shows the execution of
application tasks and the exchange of messages for a single periodic feedback loop with
one sensor and one actuator. The update interval Ty is the time between consecutive
sensing or actuation tasks. The end-to-end delay Tp is the time between corresponding
sensing and actuation tasks.

Challenges. Fast feedback control over wireless multi-hop networks is an open
problem due to the following challenges:

« Lower end-to-end throughput. Multi-hop networks have a lower end-to-end
throughput than single-hop networks because of interference: the theoretical
multi-hop upper bound is half the single-hop upper bound [133]. This limits the
number of sensors and actuators that can be supported for a given maximum
update interval.

o Significant delays and jitter. Multi-hop networks also incur longer end-to-end
delays, and the delays are subject to larger variations because of retransmissions
or routing dynamics [27], introducing significant jitter. Delays and jitter can
both destabilize a feedback system [175, 183].

« Constrained traffic patterns. In a single-hop network, each node can communicate
with every other node due to the broadcast property of the wireless medium. This
is generally not the case in a multi-hop network. For example, WirelessHART
only supports communication to and from a gateway that connects the wireless
network to the control system. Feedback control under constrained traffic
patterns is more challenging and may imply poor control performance or even
infeasibility of closed-loop stability [187].
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« Correlated message loss. Message loss is a common phenomenon in wireless
networks, which complicates control design. Further, because there is often sig-
nificant correlation among the message losses [162], a valid theoretical analysis
to provide strong guarantees is hard, if not impossible.

o Message duplicates and out-of-order message delivery are typical in wireless
multi-hop protocols [43, 56] and may further hinder control design and stability
analysis [191].

Approach. We adopt the following co-design approach to enable fast feedback control
over wireless multi-hop networks: Address the challenges on the wireless embedded
system side to the extent possible, and then consider the resulting key properties in the
control design. This entails the design of a wireless embedded system that aims to:

G1 reduce and bound imperfections impairing control performance (e.g., reduce Ty
and Tp and bound their jitter);

G2 support arbitrary traffic patterns in multi-hop networks with real dynamics (e.g.,
time-varying link qualities);

G3 operate efficiently in terms of limited resources, while accommodating the
computational needs of the controller.

On the other hand, the control design aims to:

G4 incorporate all essential properties of the wireless embedded system to guarantee
closed-loop stability for the entire CPS for physical systems with LTI dynamics;

G5 enable an efficient implementation of the control logic on state-of-the-art low-
power embedded devices;

G6 exploit the support for arbitrary traffic patterns for straightforward distributed
control and multi-agent coordination.

4.4 Wireless Embedded System Design

To achieve goals G1-G3, we design a wireless embedded system that consists of three
key building blocks:

1) a low-power wireless protocol that provides multi-hop many-to-all communica-
tion with minimal, bounded end-to-end delay and accurate network-wide time

synchronization;

2) a hardware platform that enables a predictable and efficient execution of all
application tasks and message transfers;

3) a scheduling framework to schedule all application tasks and message transfers
so that given bounds on Ty and Tp are met at minimum energy costs for wireless

communication.



4.4. Wireless Embedded System Design 79

P Round period T
| | -

H |data| |data| |data| elele |data|

v

FIGURE 4.3: Time-triggered operation of low-power wireless multi-hop protocol. Communi-
cation occurs in rounds that are scheduled with a given round period T. Every beacon (b)
and data slot in a round corresponds to an efficient, reliable one-to-all Glossy flood [48].

We describe each building block below, followed by an analysis of the resulting prop-
erties that matter for the control design.

4.4.1 Low-Power Wireless Protocol

To support arbitrary traffic patterns (G2), we require a multi-hop protocol capable of
many-to-all communication. Moreover, the protocol must be highly reliable and the
time needed for many-to-all communication must be tightly bounded (G1). It has been
shown that a solution based on Glossy floods [48] can meet these requirements with
high efficiency (G3) in the face of wireless dynamics (G2) [195]. Thus, similar to other
recent proposals [49, 73], we design a wireless protocol on top of Glossy, but aim at a
new design point: bounded end-to-end delays of at most a few tens of milliseconds for

the many-to-all exchange of multiple messages in a control cycle.

As shown in Figure 4.3, the operation of the protocol proceeds as a series of periodic
communication rounds with period T. Each round consists of a sequence of non-
overlapping time slots. In every time slot, all nodes in the network participate in
a Glossy flood, where a message is sent from one node to all other nodes. Glossy
approaches the theoretical minimum latency for one-to-all flooding at a reliability
above 99.9 %, and provides microsecond-level network-wide time synchronization [48].
In particular, a flood initiated by a dedicated node in the beacon slot (b) at the beginning
of every round is used for synchronization. Nodes exploit the synchronization to remain
in a low-power sleep mode between rounds and to awake in time for the next round,
as specified by the round period T.

It is important to note that, because of the way Glossy exploits ST [48], the wireless
protocol operates independently of the time-varying network topology. In particular,
this means that the wireless protocol and any logic built on top of it, such as a control
algorithm, need not worry about the state of individual wireless links in the network.
This is a key difference to existing wireless protocols based on routing, such as Wire-
lessHART and 6TiSCH, which, as we shall see, simplifies the control design and allows
for providing formal guarantees that also hold in practice.

As detailed in Section 4.4.3, we compute the communication schedule offline based
on the traffic demands, and distribute it to all nodes before the application operation
starts. A schedule includes the assignment of messages to data slots in each round
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(see Figure 4.3) and the round period T. Using static schedules brings several benefits.
First, we can a priori verify if closed-loop stability can be guaranteed for the achievable
latencies (see Section 4.5). Second, compared to prior solutions [49, 73, 195, 74], we
can support significantly shorter latencies, and the protocol is more energy efficient
(no need to send schedules) and more reliable (schedules cannot be lost).

4.4.2 Hardware Platform

CPS devices need to concurrently handle application tasks and message transfers.
While message transfers involve little but frequent computations, sensing and especially
control tasks may require less frequent, but more demanding computations (e.g.,
floating-point operations). An effective approach to achieve low latency and high
energy efficiency for such diverse workloads is to exploit hardware heterogeneity (G3).

For this reason, we leverage a heterogeneous dual-processor platform (DPP). Applica-
tion tasks execute exclusively on a 32-bit MSP432P401R ARM Cortex-M4F application
processor (AP) running at 48 MHz, while the wireless protocol executes on a dedicated
16-bit CC430F5147 communication processor (CP) running at 13 MHz. The AP has
a floating-point unit and a rich instruction set, accelerating computations related to
sensing and control. The CP features a low-power microcontroller and a low-power
wireless radio operating at 250 kbps in the 868 MHz frequency band.

AP and CP are interconnected using Bolt [166], an ultra-low-power processor in-
terconnect that supports asynchronous bidirectional message passing with formally
verified worst-case execution times. Bolt decouples the two processors with respect
to time, power, and clock domains, enabling energy-efficient concurrent executions
with only small and bounded interference, thereby limiting jitter and preserving the

time-sensitive operation of the wireless protocol.

All CPs are time-synchronized via the wireless protocol. In addition, AP and CP must
be synchronized locally on each DPP to minimize end-to-end delay and jitter among ap-
plication tasks running on different APs (G1). To this end, we use a GPIO line between
the two processors, called SYNC line. Every CP asserts the SYNC line in response to
an update of Glossy’s time synchronization. Every AP schedules application tasks
and message passing over Bolt with specific offsets relative to these SYNC line events
and resynchronizes its local time base. Likewise, the CPs execute the communication
schedule and perform SYNC line assertion and message passing over Bolt with specific
offsets relative to the start of communication rounds. As a result, all APs and CPs act

in concert.

4.4.3 Scheduling Framework

We illustrate the scheduling problem we need to solve with a simple example, where
node P senses and acts on a physical system and node C runs the controller.

Figure 4.4 shows a possible schedule of the application tasks and message transfers.
After sensing (S1), APp writes a message containing the sensor reading into Bolt (w).
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CPp reads out the message (r) before the communication round in which that message
(ms1) is sent using the wireless protocol. CP¢ receives the message and writes it into
Bolt. After reading out the message from Bolt, AP computes the control signal (C1)
and writes a message containing it into Bolt. The message (mc;) is sent to CPp in the
next round, and then APp applies the control signal on the physical system (A1).

This schedule resembles a pipelined execution, where in each communication round the
last sensor reading and the next control signal (computed based on the previous sensor
reading) are exchanged (mg; mco, msz mc1, . - .). Note that while it is indeed possible to
send the corresponding control signal in the same round (mgs; mc1, msy mey, . . .), doing
so would increase the update interval Ty at least by the sum of the execution times of
the control task, Bolt read, and Bolt write. For the example schedule in Figure 4.4, the
update interval Ty is exactly half the end-to-end delay Tp.

In general, the scheduling problem entails computing the communication schedule and
the offsets with which all APs and CPs in the system perform wireless communication,
execute application tasks, transfer messages over Bolt, and assert the SYNC line. The
problem gets extremely complex for any realistic scenario with more nodes or multiple
feedback loops that are closed over the same wireless network, so solving it must be
automated.

To this end, we leverage Time-Triggered Wireless (TTW) [75], an existing framework
tailored to solve this type of scheduling problem. TTW takes as main input a depen-
dency graph among application tasks and messages, similar to Figure 4.2. Based on
an integer linear program, it computes the communication schedule and all offsets
mentioned above. TTW provides three important guarantees: a) a feasible solution
is found if one exists, b) the solution minimizes the energy consumption for wireless
communication, and c) the solution can additionally optimize user-defined metrics
(e.g., minimize the update interval Ty; as for the schedule in Figure 4.4).

4.4.4 Essential Properties and Jitter Analysis

Essential properties. The presented wireless embedded system design provides the
following key properties for the control design:

P1 Asanalyzed below, for update intervals Ty and end-to-end delays Tp up to 100 ms,
the worst-case jitter on Ty and Tp is bounded by +50 ps. It holds Tp = 2Ty.

P2 Statistical analysis of millions of Glossy floods [194] and percolation theory for
time-varying networks [79] have shown that the spatio-temporal diversity in a
Glossy flood reduces the temporal correlation in the series of received and lost
messages by a node, to the extent that the series can be safely approximated by
an independent and identically distributed (i.i.d.) Bernoulli process. The success
probability in real multi-hop networks is typically larger than 99.9 % [48].

P3 By provisioning for multi-hop many-to-all communication, arbitrary traffic
patterns are efficiently supported.
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P4 It is guaranteed by design that message duplicates and out-of-order message
deliveries do not occur.

Worst-case jitter analysis. To underpin P1, we analyze the worst-case jitter on Ty
and Tp. We refer to ind as the nominal time interval between the end of two tasks
executed on (possibly) different APs. Due to jitter J, this interval may vary, resulting
in an actual length of Tona +J. In our system, the jitter is bounded by

17122 (eny + esmc + Tond (pap + Pir)) + Eras ()

where each term on the right-hand side of (4.1) is detailed below.

1) Time synchronization error between CPs. Using Glossy, each CP computes an estimate
of the reference time [48] to schedule subsequent activities. In doing so, each CP makes
an error e, with respect to the reference time of the initiator. Using the approach
from [48], we measure e, for our Glossy implementation and a network diameter of
up to nine hops. Based on 340,000 data points, we find that e,.r ranges always between
—7.1ps and 8.6 us. We thus consider &, = 10 us a safe bound for the jitter on the
reference time between CPs.

2) Independent clocks on CP and AP. Each AP schedules activities relative to SYNC line
events. As AP and CP are sourced by independent clocks, it takes a variable amount of
time until an AP detects that CP asserted the SYNC line. The resulting jitter is bounded
by ésync = 1/ fap, where fap = 48 MHz is the frequency of APs clock.

3) Different clock drift at CPs and APs. The real offsets and durations of activities on
the CPs and APs depend on the frequency of their clocks. Various factors contribute to
different frequency drifts pcp and p4p, including the manufacturing process, ambient
temperature, and aging effects. State-of-the-art clocks, however, drift by at most

Pcp = Pap = 50 ppm [95].

4) Varying task execution times. The difference between the task’s best- and worst-case
execution time é,,5 adds to the jitter. For the jitter on the update interval Tyy and the
end-to-end delay Tp, only the execution time of the actuation task matters, which
typically exhibits little variance as it is short and highly deterministic. For example,
the actuation task in our experiments has a jitter of +3.4 ps. To be safe, we consider
€1ask = 10 s for our analysis.

Using (4.1) and the above values, we can compute the worst-case jitter for a given
interval ﬁnd. Fast feedback control as considered in this work requires Tend =Tp =
2Ty < 100 ms, which gives a worst-case jitter of +50 us on Ty and Tp, as stated by
property P1.

4.5 Control Design and Analysis

Building on the design of the wireless embedded system and its properties P1-P4,
this section addresses the design of the control system to accomplish goals G4-G6
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from Section 4.3. Because the wireless system supports arbitrary traffic patterns (P3),
various control tasks can be solved regardless of whether sensors, actuators, physical
system(s), and controller(s) are co-located or spatially distributed. This includes typical
single-loop tasks such as stabilization, disturbance rejection, or set-point tracking, as

well as multi-agent scenarios such as synchronization, consensus, or formation control.

Here, we focus on remote stabilization and synchronization of multiple agents over
wireless multi-hop networks as prototypical examples for both the single- and multi-
agent case. For stabilization, modeling and control design are presented in Section 4.5.1
and Section 4.5.2, thus achieving G5. The stability analysis is provided in Section 4.5.3,
which fulfills G4. Synchronization is discussed in Section 4.5.4, highlighting support
for straightforward distributed control Gé6.

4.5.1 Model of Wireless Control System

We address the remote stabilization task depicted in Figure 4.5 (left), where controller
and physical system are associated with different nodes, which can communicate via
the wireless network. Such a scenario is relevant for instance in process control, where
the controller often resides at a remote location [111]. We consider stochastic LTI

dynamics for the physical process
x(k+1) = Ax(k) + Bu(k) + v(k). (4.2a)

This model describes the evolution of the system state x(k) € R” with discrete time
index k € N in response to the control input u(k) € R™ and random process noise
v(k) € R™. As typical in the literature [11, 69], the process noise is modeled as an i.i.d.
Gaussian random variable with zero mean and variance Xoc, v(k) ~ N(0, Xproc), and

captures, for example, uncertainty in the model.

We assume that the full system state x (k) can be measured through appropriate sensors,
that is,

y(k) = x(k) +w(k), (4.2b)

with sensor measurements y(k) € R” and sensor noise w(k) € R", w(k) ~ N(0, Zpeas)-
If the complete state vector cannot be measured directly, it can typically be recon-
structed via state estimation techniques [11].

The process model in (4.2) is stated in discrete time. This representation is particularly
suitable here as the wireless embedded system offers a constant update interval Ty with
worst case jitter of 50 pus (P1), which can be neglected from controls perspective [28,
p- 48]. Thus, u(k) and y(k) in (4.2) represent sensing and actuation at periodic intervals
Ty, as illustrated in Figure 4.4.

As shown in Figure 4.5, measurements y(k) and control inputs #(k) are sent over the
wireless network. According to P1 and P2, both arrive at the controller, respectively
system, with a delay of Ty and with a probability governed by two independent
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FIGURE 4.5: Wireless control tasks: stabilization (left) and synchronization (right). The

feedback loop for stabilizing the physical system (left) is closed over the low-power wireless

multi-hop network. This induces delays and message loss, which is captured by i.i.d. Bernoulli

variables 8 and ¢. Two physical systems, each with a local controller (Ctrl), are synchronized
over the wireless network (right).

Bernoulli processes. We represent the Bernoulli processes by 8(k) and ¢ (k), which
are i.i.d. binary variables, indicating lost (6(k) = 0, ¢(k) = 0) or successfully received
(0(k) = 1, ¢(k) = 1) messages. To ease notation and since both variables are ii.d.,
we can omit the time index in the following without any confusion. We denote the
probability of successful message delivery by g (i.e., P[0 = 1] = ), respectively pg.
As both, measurements and control inputs, are delayed, it also follows that in case of
no message losses, the applied control input u(k) depends on the measurement two
steps ago y(k — 2). If a control input message is lost, the input stays constant since
zero-order hold is used at the actuator, that is,

u(k) = ¢a(k) + (1 - $)u(k - 1). (4.3)

The model proposed in this section thus captures the properties P1, P2, and P4. While
P1 and P2 are incorporated in the presented dynamics and message loss models, P4
means that there is no need to take duplicated or out-of-order sensor measurements and
control inputs into account. Overall, these properties allow for accurately describing
the wireless CPS by a fairly straightforward model, which greatly facilitates subsequent
control design and analysis. Property P3 is not considered here, where we deal with a
single control loop, but will become essential in Section 4.5.4.

4.5.2 Controller Design

Designing a feedback controller for the system in (4.2), we proceed by first discussing
state-feedback control for the nominal system (i.e., without delays, message loss, and
noise), and then enhance the design to cope with the network and sensing imperfec-
tions.

Nominal design. Assuming ideal measurements, y(k) = x(k) holds. A common
strategy in this setting is static state-feedback control, u(k) = Fx(k), where F is a
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constant feedback matrix, which can be designed, for instance, via pole placement or
methods from optimal control, such as the linear quadratic regulator (LQR) [7, 11].
Under the assumption of controllability [11], desired (in particular, stable) dynamics
can be obtained for the state in (4.2a) in this way.

Actual design. We augment the nominal state-feedback design to cope with non-
idealities, in particular, delayed measurements and message loss, as shown in Figure 4.5
(left).

Because the measurement arriving at the controller y(k — 1) represents information
that is one time step in the past, the controller propagates the system for one step as

follows:

2(k) = 0Ay(k—1) + (1-0)Ax (k—1) + Bi(k—1)
= 0Ax(k—1) + (1-0)A%(k—1) + Bir(k—1) + 0Aw(k—1), (4.4)

where x(k) is the predicted state, and #(k) is the control input computed by the
controller (to be made precise below). Both variables are computed by the controller
and represent its internal states. The rationale of (4.4) is as follows: If the measurement
message is delivered (the controller has information about 6 because it knows when
to expect a message), we compute the state prediction based on this measurement
y(k—1)=x(k—1) + w(k—1); if the message is lost, we propagate the previous prediction
%(k—1). As there is no feedback on lost control messages (i.e., about ¢) and thus a
potential mismatch between the computed input #(k—1) and the actual u(k—1), the
controller can only use #(k—1) in the prediction.

Using X (k), the controller has an estimate of the current state of the system. However,
it will take another time step for the currently computed control input to arrive at the
physical system. For computing the next control input, we thus propagate the system
another step,

i(k +1) = F(Ax (k) + Bu(k)), (4.5)
where F is as in the nominal design. The input @(k + 1) is then transmitted over the
wireless network (see Figure 4.5, left).

The overall controller design requires only a few matrix multiplications per execution.
This can be efficiently implemented on embedded devices, thus satisfying goal G5.

4.5.3 Stability Analysis

We now present a stability proof for the closed-loop system given by the dynamic
system described in Section 4.5.1 and the proposed controller from Section 4.5.2. Be-
cause the model in Section 4.5.1 incorporates the physical process and the essential
properties of the wireless embedded system, we achieve goal G4.
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While the process dynamics in (4.2) are time invariant, message loss introduces time
variation and randomness into the system dynamics. Therefore, we leverage stability
results for linear, stochastic, time-varying systems [24]. For ease of exposition, we
consider (4.2) without process and measurement noise (i.e., (k) = 0 and w(k) = 0), and
comment later on extensions. We first introduce required definitions and preliminary
results, and then apply those results to our problem.

Consider the system
z(k+1) = A(k)z(k) (4.6)

with state z(k) € R" and A(k) = Ay+ ZiL:l Aipi (k); the p;(k) are i.i.d. random variables
with mean E[p;(k)] = 0, variance Var[p;(k)] = 0;2),-’ and E[p;(k)p;(k)] = 0Vi, j.

A common notion of stability for stochastic systems like the one in (4.6) is mean-square
stability:

Definition 1 ([24, p. 131]). Let Z(k) := E[z(k)z (k)] denote the state correlation matrix.
The system in (4.6) is mean-square stable (MSS) if limy_,. Z(k) = 0 for any initial z(0).

That is, a system is called MSS if the state correlation vanishes asymptotically for any
intial state. MSS implies, for example, that z(k) — 0 almost surely as k — oo [24,
p. 131].

In control theory, linear matrix inequalities (LMIs) are often used as computational
tools to check for system properties such as stability (see [24] for an introduction and
details). For MSS, we employ the following LMI stability result:

Lemma 3 ([24, p. 131]). System (4.6) is MSS if, and only if, there exists a positive definite

matrix P > 0 such that

~ ~ N ~ ~
APAy P+ " ot A[PA; <0, (4.7)
i= i

We now apply this result to the system and controller from Section 4.5.1 and Sec-
tion 4.5.2. The closed-loop dynamics are given by (4.2)-(4.5), which we rewrite as an
augmented system

x(k+1) A 0 B 0 \/[x(k)
x(k+1) _ A (1-0)A 0 B || x(k) (4.8)
u(k +1) 0 PFA  (1—-@)I ¢FB||u(k)| '
a(k+1) 0 FA 0 FB | \i(k)
—_— ~——
z(k+1) A(k) z(k)

The system has the form of (4.6); the transition matrix depends on € and ¢, and thus on
time (omitted for simplicity). We can thus apply Lemma 3 to obtain our main stability
result, whose proof is given in Appendix 4.A.1.
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Theorem 3. The system (4.8) is MSS if, and only if, there exists a P > 0 such that (4.7)
holds with

A 0 B 0 o 0 00
. (1-pg)A 0 B A, = [ ~HoA peA 00
0 0  pgpFA (1—pg)I pyFB |° 1 0 0 00}
0 FA 0 FB 0 0 00
$ 5 3 8
A — 2 _ 1/ _ 2 1/ _
A2 - (g —,u,/(;FA yg] —,ugFB); O-Pl - /ﬂe 1; sz = /}l¢ 1.

Using Theorem 3, we can analyze stability for any concrete physical system (4.2), a
state-feedback controller F, and probabilities pg and pg. Searching for a P > 0 that
satisfies the LMI in (4.7) can be done using efficient numerical tools based on convex
optimization (e.g., [90]). If such a P is found, we have the stability guarantee (G4).

The stability analysis can be extended to account for process and measurement noise so
that MSS then implies bounded Z (k) (see [24, p. 138]). Moreover, other combinations
of end-to-end delay Tp and update interval Ty are possible, including Tp = nTy (n € N).
Also the sensor-to-controller and controller-to-actuator delays may be different.

4.5.4 Multi-Agent Synchronization

In distributed control architectures, different controllers have access to different mea-
surements and inputs, and thus, in general, different information. This is the core
reason for why such architectures are more challenging than centralized ones [58, 105].
Which information a controller has access to depends on the traffic pattern and topol-
ogy of the network. For instance, an agent may only be able to communicate with its
nearest neighbor via point-to-point communication, or with other agents in a certain
range. Property P3 of the wireless embedded system in Section 4.4 offers a key advan-
tage compared to these structures because every agent in the network has access to
all information (except for rare message losses). We can thus carry out a centralized
design, but implement the resulting controllers in a distributed fashion (cf. Figure 4.5,
right). Such schemes have been used before for wired-bus networks (e.g., in [171]).

Here, we present synchronization of multiple physical systems as an example of how
distributed control tasks can easily be achieved with the proposed wireless control
system (G6). We assume multiple physical processes as in (4.2), but with possibly
different dynamics parameters (A;, B, ...). We understand synchronization in this
setting as the goal of having the system state of different agents evolve together as
close as possible. That is, we want to keep the error x;(k) — x;(k) between the states
of systems i and j small. Instead of synchronizing the whole state vector, also a subset
of all states can be considered. Synchronization of multi-agent systems is a common
problem and also known as consensus or coordination [106].

We demonstrate feasibility of synchronization with multiple systems in Section 4.6.3.
The synchronizing controller is based on an LQR [7]; details of the concrete design are

given in Appendix 4.A.3.
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FIGURE 4.6: Layout of CPS testbed consisting of 20 DPP nodes that form a three-hop low-
power wireless network and five cart-pole systems (two real ones attached to nodes 1 and 2,

4.6

three simulated ones at nodes 9, 14, and 15).

Experimental Evaluation

This section uses measurements from a CPS testbed (see Figure 4.6) consisting of 20

wireless embedded devices (forming a three-hop network) and several cart-pole systems

to evaluate the performance of the proposed wireless CPS design. Our experiments

reveal the following key findings:

We can safely stabilize two inverted pendulums via two remote controllers across
the three-hop low-power wireless network.

Using the same CPS design with a different control logic, we can reliably syn-
chronize the movement of five cart-poles thanks to the support for arbitrary
traffic patterns.

Our system can stabilize an inverted pendulum at update intervals of 20-50 ms.
Increasing the update interval decreases the control performance, but leads to
significant energy savings on the wireless communication side.

Our system is highly robust to message loss. Specifically, it can stabilize an
inverted pendulum at an update interval of 20 ms despite 75 % i.i.d. Bernoulli
losses and in situations with bursts of 40 consecutively lost messages.

The measured jitter on the update interval and the end-to-end delay is less than
+25 ps, which validates our analysis of the theoretical worst-case jitter of +50 ps
from Section 4.4.4.
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FIGURE 4.7: Schematic of a cart-pole system used in our testbed as physical systems. By
controlling the force applied to the cart, the pole can be stabilized in the upright position
around 6 = 0°.

4.6.1 Cyber-Physical Systems Testbed

Realistic CPS testbeds are essential for the validation and evaluation of CPS solu-
tions [15, 101]. We developed the wireless CPS testbed depicted in Figure 4.6. It
consists of 20 DPP nodes, two real physical systems (A and B), and three simulated
physical systems (C, D, and E). The testbed is deployed in an office building and ex-
tends across an area of 15 m by 20 m. All nodes transmit at 10 dBm, which results in a
network diameter of three hops. The wireless signals need to penetrate various types
of walls, from glass to reinforced concrete, and are exposed to different sources of
interference from other electronics and human activity.

We use cart-pole systems as physical systems. As shown in Figure 4.7, a cart-pole
system consists of a cart that can move horizontally on a track and a pole attached to
it via a revolute joint. The cart is equipped with a DC motor that can be controlled
by applying a voltage to influence the speed and the direction of the cart. Moving
the cart exerts a force on the pole and thus influences the pole angle 6. This way,
the pole can be stabilized in an upright position around 8 = 0°, which represents an
unstable equilibrium and is called the inverted pendulum. The inverted pendulum has
fast dynamics, which are typical of real-world mechanical systems [23], and requires
feedback with update intervals of tens of milliseconds.

For small deviations from the equilibrium (i.e., sin(6) ~ 0), the inverted pendulum can
be well approximated by an LTI system. The state x(k) of the system consists of four
variables. Two of them, the pole angle 6(k) and the cart position s(k), are measured by
angle sensors. Their derivatives, the angular velocity #(k) and the cart velocity §(k),
are estimated using finite differences and low-pass filtering. The voltage applied to the
motor is the control input u(k). In this way, the APs of nodes 1 and 2 interact with
the two real pendulums A and B, while the APs of nodes 9, 14, and 15 run simulation
models of the inverted pendulum.

The cart-pole system has a few constraints. Control inputs are capped at £10V. The
track has a usable length of +25 cm from the center (see Figure 4.7). Surpassing the
track limits immediately ends an experiment. At the beginning of an experiment, we
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FIGURE 4.8: Cart position s, pole angle 6, and control input u of one cart-pole system when

concurrently stabilizing two cart-pole systems over a multi-hop network at an update interval

of 45 ms. The cart position and the pole angle always stay within safe regimes, and less than
half of the possible control input is needed.

move the carts to the center and the poles in the upright position; then the controller
takes over. Appendix 4.A.2 and Appendix 4.A.3 detail the implementation of the
controllers for multi-hop stabilization and multi-hop synchronization, following the
design outlined in Section 4.5.2 and Section 4.5.4.

Using this CPS testbed, we measure the control performance in terms of pole angle,
cart position, and control input. In addition, we measure the radio duty cycle at each

node in software and record messages that are lost over the wireless network.

4.6.2 Multi-Hop Stabilization

In our first experiment, we want to answer the main question of this work and in-
vestigate the feasibility of fast feedback control over low-power wireless multi-hop

networks.

Setup. We use two controllers running on nodes 14 and 15 to stabilize the two real
pendulums A and B at 8 = 0° and s = 0 cm. Hence, there are two independent control
loops sharing the same wireless network, and it takes in total six hops to close each
loop. We configure the wireless embedded system and the controllers for an update
interval of Ty = 45ms. As per property P2 and confirmed by our measurements
discussed below, we expect a message delivery rate of at least 99.9 %. With this we have
Mo = iy = 0.999, and we can prove stability of the overall system using Theorem 3.

Results. The experimental results confirm the theoretical analysis: We are able to
safely stabilize both pendulums over the three-hop wireless network, even while
carrying around the controller because our design is independent of the network
topology ? (see Section 4.4.1). Figure 4.8 shows a characteristic 30 s trace of one of
the pendulums. Cart position, pole angle, and control input oscillate, but always stay
within safe regimes. For example, the cart never comes close to either end of the track
and less than half of the possible control input is needed to stabilize the pendulum.
Not a single message was lost in this experiment, which demonstrates the reliability of

our wireless embedded system design.

2A video of this experiment can be found at https://youtu.be/19xPHjnobkY.
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FIGURE 4.9: Distribution of the jitter on the end-to-end delay Tp; results for the update
interval Ty are similar. The measurements are within the theoretical worst-case bounds
determined in Section 4.4.4.

During the same experiment, we also use a logic analyzer to continuously measure the
update interval Ty and the end-to-end delay Tp (see Figure 4.4). Figure 4.9 shows the
measured jitter on Tp; the results for Ty look very similar. We see that the empirical
results are well within the theoretical worst-case bounds, which validates our analysis
in Section 4.4.4 and assumptions in Section 4.5.

4.6.3 Multi-Hop Synchronization

We now apply the same wireless CPS design to a distributed control task to demonstrate
its flexibility and versatility.

Setup. We use the two real pendulums A and B and the three simulated pendulums C,
D, and E. The goal is to synchronize the cart positions of the five pendulums over the
wireless multi-hop network, while each pendulum is stabilized by a local control loop.
This scenario is similar to drone swarm coordination, where each drone stabilizes its
flight locally, but exchanges its position with all other drones to keep a desired swarm
formation [140]. In our experiment, stabilization runs with Ty = 10 ms, and nodes 1, 2,
9, 14, and 15 exchange their current cart positions every 50 ms.

Results. The left plot in Figure 4.10 shows the cart positions over time without
synchronization. We see that the carts of the real pendulums move with different
amplitude, phase, and frequency due to slight differences in their physics and imperfect
measurements. The simulated pendulums, instead, are perfectly balanced and behave
deterministically as they all start in the same initial state.

In the middle plot of Figure 4.10, we can observe the behavior of the pendulums when
they synchronize their cart positions over the wireless multi-hop network. Now, all
five carts move in concert. The movements are not perfectly aligned because, besides
the synchronization, each cart also needs to locally stabilize its pole at 8 = 0° and
s = 0 cm. Since no message is lost during the experiment, the simulated pendulums all
receive the same state information and, therefore, show identical behavior.

This effect can also be seen in our third experiment, shown in the bottom plot of
Figure 4.10, where we hold pendulum A for some time at s = —20 cm. The other
pendulums now have two conflicting control goals: stabilization at s = 0 cm and 6 = 0°,
as well as synchronization while one pendulum is fixed at about s = —20 cm. As a result,
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FIGURE 4.10: Cart positions of five cart-pole systems stabilized locally at an update interval

of 10 ms and synchronizing their cart positions (middle and bottom plot) over the low-power

wireless multi-hop network at an update interval of 50 ms. With synchronization enabled, all

five carts move in concert and even try to mimic the temporary disturbance of pendulum A,
shown in the bottom plot.

they all move toward this position and oscillate between s = 0 and s = —20 cm. Clearly,
this experiment demonstrates that the cart-pole systems influence each other, which is
enabled by the many-to-all communication over the wireless multi-hop network.

4.6.4 Impact of Update Interval

The next experiment takes a look at the impact of different update intervals (and hence
end-to-end delays) on control performance.

Setup. To minimize effects that we cannot control, such as external interference, we
use two nodes close to each other: pendulum A (node 1) is stabilized via a remote
controller running on node 2. We test different update intervals in consecutive runs.
Starting with the smallest update interval of 20 ms that the wireless embedded system
can support in this scenario, we increase the update interval in steps of 10 ms until
stabilization is no longer possible.

Results. Figure 4.11 shows control performance and radio duty cycle for different
update intervals based on more than 12,500 data points. We see that a longer update
interval causes larger pole angles and more movement of the cart. Indeed, the total
distance the cart moves during an experiment increases from 3.40 m for 20 ms to 9.78 m
for 50 ms. This is consistent with the wider distribution of the control input for longer
update intervals. At the same time, the radio duty cycle decreases from 40 % for 20 ms
to 15 % for 50 ms. Hence, there is a trade-off between control performance and energy
efficiency, which may be exploited based on the application requirements.
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FIGURE 4.11: Distribution of control performance metrics and average radio duty cycle when

stabilizing an inverted pendulum over low-power wireless at different update intervals. A

larger update interval leads to larger pole angles and more movement of the cart, but also
reduces the average radio duty cycle.

4.6.5 Resilience to Message Loss

Finally, we evaluate how control performance is affected by message loss, which is a
well-known phenomenon in wireless networks [163].

Setup. We use again the two-node setup from before, but now we fix the update
interval at 20 ms. We let both nodes intentionally drop messages in two different ways.
In a first experiment, the two nodes independently drop a received message according
to a Bernoulli process with given failure probability. Specifically, we test three different
failure probabilities in different runs: 15 %, 45 %, and 75 %. In a second experiment,
the two nodes drop a certain number of consecutive messages every 10 s, namely
between 10 and 40 messages in different runs. This artificially violates property P2 of
the wireless embedded system, yet allows us to evaluate the robustness of our control

design to unexpected conditions.

Results. Figure 4.12a and Figure 4.12b show the distributions of the pole angle and
the control input for varying i.i.d. Bernoulli message loss rates. We see that the control
performance decreases for higher loss rates, but the pendulum can be stabilized even
at a loss rate of 75 %. One reason for this is the short update interval. For example,
losing 50 % of the messages at an update interval of 20 ms is comparable to an update
interval of 40 ms without any losses, which is enough to stabilize the pendulums as

we know from the previous experiment.
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FIGURE 4.12: Control performance and input when stabilizing one pendulum over wireless
under artificially injected message loss, for i.i.d. Bernoulli losses (top), and for longer bursts
of multiple consecutive losses (bottom). Depending on the update interval, the pendulum can
be stabilized despite significant and bursty message loss, albeit with reduced performance.

Figure 4.12c plots the pole angle as a function of time for a burst length of 40 consecu-
tively lost messages, with the right plot zooming into the time around the second burst
phase. No control inputs are received during a burst, and depending on the state of
the pendulum and the control input right before a burst, the impact of a burst may be
very different as visible in Figure 4.12c. The magnified plot shows that the pole angle
diverges from around 0° with increasing speed. As soon as the burst ends, the control
input rises to its maximum value of 10V in order to bring the pendulum back to a
non-critical state, which usually takes 1-2s. These results show that while property
P2 of our wireless embedded system design significantly simplifies control design
and analysis, the overall system remains stable even if this property is dramatically
violated, which is nevertheless very unlikely as demonstrated in prior work [79, 194].

4.A Control Details

In this appendix, we provide further details of the control design and analysis. We
present the proof of Theorem 3, implementation details of the controllers we use
for the multi-hop stabilization experiments, and outline the approach to multi-agent

synchronization.
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4.A.1 Proof of Theorem 3

For clarity, we reintroduce time index k for 6 and ¢. Following a similar approach
as in [148], we transform 6(k) as 0(k) = po(1 — dp(k)) with the new binary random
variable §p(k) € {1,1 — /uo} with P[Jg(k) = 1] =1 — pg and P[Sg(k) = 1 — Vue] = pg;
and analogously for ¢(k) and d4(k). We thus have that J(k) is ii.d. because 8 is
ii.d. with E[dg(k)] = 0 and Var[dg(k)] = 012, .» and similarly for 84 (k). Employing this
transformation, A(k) in (4.8) is rewritten as A(k) = Ag + Zle A;pi(k) with p;(k) =
d9(k), p2(k) = 4(k), and A; as stated in Theorem 3. Thus, all properties of (4.6) are
satisfied, and Lemma 3 yields the result.

4.A.2 Stabilizing Controllers

For the stability experiments of Section 4.6.2, we employ the design outlined in Sec-
tion 4.5.2. The system matrices A and B of the cart-pole system that are used for
predictions and nominal controller design are given by the manufacturer in [141]. The
nominal controller is designed for an update interval Ty = 40 ms via pole placement,
and we choose F such that we get closed-loop eigenvalues at 0.8, 0.85, and 0.9 (twice).
In experiments with update intervals different from 40 ms, we adjust the controller to

achieve similar closed-loop behavior.

To derive more accurate estimates of the velocities, filtering can be done at higher
update intervals than communication occurs. For the experiments in Section 4.6,
estimation and filtering occur at intervals between 10 ms and 20 ms, depending on the

experiment.

4.A.3 Synchronization

For simplicity, we consider synchronization of two agents in the following, but the
approach directly extends to more than two, as we show in the experiments in Sec-
tion 4.6.3.

We consider the architecture in Figure 4.5, where each physical system is associated
with a local controller that receives local observations directly, and observations from
other agents over the network. We present an approach based on an optimal LQR [7]
to design the synchronizing controllers. We choose the quadratic cost function

J= lim 2B 3 (xH000m (k) + 6k R (k)

K-1 2
K —

=0 1

k
+ (e (K) = %2 () Quyme (1 (K) = %2 (K)) | (49)

which expresses our objective of keeping x;(k) — x2(k) small (through the weight
Qsync > 0), next to usual penalties on states (Q; > 0) and control inputs (R; > 0). Using
augmented state ¥ (k) = (x;(k), x2(k))T and input @(k) = (u;(k), uz(k))T, the term in
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the summation over k can be rewritten as

Ql + stnc _stnc

~T k
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)x(k) +1 (k)( 0 Rz)u(k).

Thus, the problem is in standard LQR form and can be solved with standard tools
[7]. The optimal stabilizing controller that minimizes (4.9) has the structure u; (k) =
F11%1(k) + Fiax0(k) and uy (k) = Forx1(k) + Faxp(k); that is, agent 1 (u(k)) requires
state information from agent 2 (x;(k)), and vice versa. Because of many-to-all commu-
nication, the wireless embedded system directly supports this (as well as any other
possible) controller structure (P3).

As the controller now runs on the node that is co-located with the physical process,
local measurements and inputs are not sent over the wireless network and the local
sampling time can be shorter than the update interval of the network over which
the states of other agents are received. While the analysis in Section 4.5.3 can be
generalized to the synchronization setting, a formal stability proof is beyond the scope
of this work. In general, stability is less critical here because of shorter update intervals
in the local feedback loop.

For the synchronization experiments in Section 4.6.3, we choose Q; in (4.9) for all
pendulums as suggested by the manufacturer in [141] and set R; = 0.1. As we here
care to synchronize the cart positions, we set the first diagonal entry of Qgsyn to 5 and
all others to 0.
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PosTscrirT

We have presented a CPS design that enables, for the first time, fast feedback control
over low-power wireless multi-hop networks with update intervals of 20-50 ms. By
contrast, existing feedback control approaches are either limited to small single-hop
networks or systems with slow dynamics, where update intervals of several seconds
significantly relax timing and reliability requirements. In our co-design approach, we
tame network imperfections to the extent possible, take the resulting properties of the
communication network into account in the control design, and carefully coordinate
all run-time tasks to meet real-time demands. Thus, we can formally prove closed-loop
stability of the entire CPS. We validate our findings with experiments on a novel CPS
testbed featuring multiple physical systems. By demonstrating how feedback loops
can be closed quickly and reliably over large distances, we are taking an important
step toward realizing the CPS vision.

Furthermore, we have extended the adaptivity of our design in a follow-up work
by introducing so-called mode changes. Because CPS potentially have to perform
various tasks at run-time, they may switch between different modes of operation, for
example, to realize a highly individual manufacturing process. Our extended system
can dynamically change between different application tasks executing on spatially
distributed embedded devices, while closed-loop stability is provably guaranteed even
across mode changes. The corresponding publication is not part of this thesis:

Dominik Baumann*, Fabian Mager*, Romain Jacob, Lothar Thiele, Marco Zimmerling,
and Sebastian Trimpe. “Fast Feedback Control over Multi-hop Wireless Networks with
Mode Changes and Stability Guarantees” ACM Transactions on Cyber-Physical Systems,
4(2):18:1-18:32, 2019. doi:10.1145/3361846

* Both authors contributed equally to this work.

In addition to the laboratory experiments, we successfully demonstrated our system
and testbed in other locations, including a public demonstration at the CPS-IoT Week
2019 in Montreal:

Fabian Mager*, Dominik Baumann*, Romain Jacob, Lothar Thiele, Marco Zimmerling,
and Sebastian Trimpe. “Demo Abstract: Fast Feedback Control and Coordination with
Mode Changes for Wireless Cyber-Physical Systems.” In International Conference on
Information Processing in Sensor Networks (IPSN), pages 340—-341, Montreal, Quebec,
Canada, 2019. doi:10.1145/3302506.3312483 (Best demo award)

* Both authors contributed equally to this work.
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Control-Guided Communication: Efficient
Resource Arbitration and Allocation in

Multi-Hop Wireless Control Systems

PREFACE

The CPS we have presented in the previous chapter uses a classical time-triggered
control design, where each agent transmits information periodically; thus, the band-
width demands increase linearly with the number of agents. It is expected that the
number of agents in emerging CPS applications will increase significantly, making the
limited communication bandwidth a highly contested resource. Modern ETC and STC
designs reduce the generated traffic by transmitting data only when needed, which
enables considerable energy savings and better scalability. However, no prior work
can transfer these benefits to multi-hop networks and enable freed-up bandwidth to
be reallocated to other agents because communication resources must be allocated

ahead of time.

In this chapter, we propose control-guided communication, a novel co-design that
integrates distributed STC and wireless multi-hop communication to close this gap.
The core idea is that the control system predicts transmission demands ahead of time
and informs the communication system such that communication resources can be
allocated accordingly. We validate our approach on a CPS testbed and demonstrate
how communication resources can be dynamically saved or reallocated to other traffic.
Thus, we achieve a real end-to-end benefit, including control and communication,

which enables more efficient and adaptive wireless CPS.
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TABLE 5.1: Qualitative comparison of prior and our work on integrating STC with wireless
communication, evaluated through real-world experiments.

Fast update ~ Multi- Energy  Reallo- Distributed
Work . . . . .
intervals hop savings cation implementation

[10] X X 4 v X
(9] X X v 4 X
[110] X 4 4 X X
[151] v X v X X
[152] v/ X v/ X X
This v v v v v

5.1 Introduction

The unparalleled flexibility and cost efficiency when closing feedback loops over
wireless networks enables many CPS applications. For instance, in a smart factory,
plants are controlled via remote controllers, mobile robots interact with the plants,
and distributed sensors provide additional measurements. Another example is drones
regularly exchanging data to fly in formation. These and other applications demand
wireless multi-hop communication to cover large distances and fast update intervals of
tens of milliseconds to keep up with the dynamics of the systems to be controlled [4].

Challenges. Fast feedback control over wireless multi-hop networks is challenging
owing to the inherent imperfections of wireless networks, such as transmission delays
and message loss. Moreover, the limited network bandwidth can lead to congestion
when many agents need to communicate at the same time, and wireless radios draw
considerable power, which is a major concern for embedded sensors and mobile devices
that must be untethered and thus powered by batteries. For these reasons, adaptive
schemes are needed where agents use the network only when necessary to save energy,
and available resources are reallocated at run-time to serve those in need.

To use the limited bandwidth and energy more efficiently, ETC and STC methods have
been developed [63, 124]. Unlike periodic control, in ETC and STC the decision whether
to communicate or not is based on events, such as an error exceeding a threshold. ETC
instantaneously decides whether to communicate, leaving no time to save energy or
reallocate bandwidth in case of a negative triggering decision. STC, instead, decides
ahead of time about the next triggering instant. However, to utilize freed resources
(e.g., to serve traffic from additional remote sensors), an integration of STC designs and
wireless communication protocols is required. Moreover, such co-design approaches
must be evaluated on real CPS testbeds to establish trust in feedback control over
wireless [101]. While a large body of work on STC exists (see [63, 121, 124, 174, 178]
and the references therein), the integration of STC designs with wireless protocols
including an experimental evaluation has rarely been considered. The few exceptions
are listed in Table 5.1 and discussed next.
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Prior work. Existing approaches integrating STC and wireless communication tar-
get remote control, for example, of a double-tank process [9, 10], a simulated load-
positioning system [110], or a mobile robot [151]. Coordination in multi-robot systems
has been studied in [152], but the control commands are computed by a central entity,
so the implementation is not distributed. All works show that STC allows for solving
the control task with less communication than periodic control, enabling significant
energy savings. However, reallocation of freed resources has only been demonstrated
in [9, 10], for single-hop networks and update intervals of a few seconds. In fact, STC
over a wireless multi-hop network has only been shown in [110], with an update
interval of 1.

In summary, no solution exists that provides energy savings and reallocation of freed
resources for the control of systems at fast update intervals over multi-hop networks.
Moreover, no work has shown a distributed implementation of a STC law, where
agents locally use information obtained over the network to solve a common control
task. However, a complete solution is needed to enable novel applications, such as
collaborative multi-robot swarms for future smart production systems.

Contribution. We present a co-design of control and communication for multi-hop
wireless networks that fills this gap. Our approach arbitrates the available communica-
tion bandwidth among different types of traffic from any entity in the network, while
simultaneously shutting down resources completely to save energy when neither the
control system nor any other entity needs the full bandwidth. We evaluate the ap-
proach on a three-hop CPS testbed with multiple physical systems [15], demonstrating
improved resource efficiency at high control performance for update intervals below
100 ms.

At the heart of our solution is the novel concept of control-guided communication:
The control system informs the communication system at run-time about its resource
requirements, and the communication system leverages this information to dynam-
ically allocate or shut down resources. Concretely, we consider the setup depicted
in Figure 5.1. Each agent uses STC to decide at the current communication instant
when it will communicate next. The agent piggybacks the decision of its self trigger
onto the messages it sends. The network manager uses this information as input
when dynamically computing the communication schedule at run-time. For example,
when some agents do not need to communicate, their share of the bandwidth can be
reallocated to serve other traffic (e.g., from remote sensors) or can be shut down to
conserve energy. The concrete scheduling policy is an exchangeable component of

our design and can be adapted to the application requirements.
In essence, we make the following two main contributions:

« We propose control-guided communication, a tight integration of STC and
wireless multi-hop communication in which the control system informs the
network at run-time about future communication demands to enable both energy

savings and reallocation of network bandwidth.
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FIGURE 5.1: We consider multiple physical systems connected over a wireless multi-hop

network. Each system is associated with a self trigger that computes at the current communi-

cation instant when it needs to communicate the next time. This information is piggybacked

onto the message it sends. The network manager uses this information to compute a com-

munication schedule respecting these demands and, if possible, saves energy or reallocates
bandwidth to additional systems or data sources.

« Using experiments on a real CPS testbed with five inverted pendulums, we are
the first to demonstrate distributed STC over wireless multi-hop networks with
update intervals below 100 ms, while showing energy savings of up to 87 %
compared to the periodic baseline.

5.2 Problem Setting

We consider N physical systems connected over a wireless multi-hop network, as
shown in Figure 5.1. Each agent is modeled as a stochastic, linear, and time-invariant
system

x,‘(k + 1) = Al-x,-(k) + B,u,(k) + Z)l‘(k), (51)

with state x;(k) € R”, input u; (k) € R™, and v;(k) € R" a Gaussian random variable
with zero mean and variance ¥;, capturing process noise. We assume each agent has a
local controller that receives local observations directly, but also needs information
from other agents for distributed control.

There are various methods to design distributed controllers (see, e.g., [105]). In this
work, we adopt an approach based on the LQR [7]. Using augmented states x(k) =
(x1(k), ..., xn(k))" and inputs @(k) = (u;(k), ..., un(k))", we define the cost function

J = lim %E[ScT(k)ch(k) + i (k)Ri(k)], (5.2)

with positive definite weight matrices Q and R. The optimal stabilizing controller that
minimizes (5.2) is of the form u;(k) = X; Fi;jx;(k), where F;; denotes entry (i, j) of the
feedback matrix F. That is, to implement this controller, each agent needs information
from all other agents, which is sent over the wireless multi-hop network. To provide
high-performance control while efficiently using limited network bandwidth and

energy resources, the system must meet several requirements:
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« For coordination, the agents need to exchange data; in particular, for optimal
control according to (5.2), all agents need to communicate with one another

(all-to-all).

« Wireless multi-hop communication must be reliable and fast to support feedback
control of physical systems with fast dynamics; we target mechanical systems
requiring update intervals on the order of tens of milliseconds [4].

+ The network must arbitrate among multiple types of data traffic as determined
by the communication schedule, while always giving highest priority to control
traffic.

« If some fraction of the bandwidth is not allocated to any entity, this resource
should be shut down to save energy.

5.3 Co-Design Approach

The main goal of this work is to facilitate high-performance distributed control across
multi-hop wireless networks with highly adaptive resource arbitration and allocation
to support multiple traffic types and save unused resources. Prior work failed to reach
this goal because the many imperfections of wireless systems, such as time-varying
end-to-end delays and limited throughput, complicate the control design and make it
difficult to quickly coordinate the system-wide operation and resource usage based on
the current control-traffic demands.

To tackle this issue, we propose a novel co-design approach that integrates the control
and communication systems in two ways. First, the design of the communication
system tames network imperfections as much as possible, and the control system
accounts for the emerging key properties and remaining imperfections. Second, during
operation, the control system reasons about its future communication demands and
informs the communication system accordingly. The communication system, on the
other hand, adapts to these demands by arbitrating the available bandwidth among
different types of traffic and by shutting down resources completely to save energy
when neither the control system nor any other participant needs the full bandwidth.
We call this concept control-guided communication, which we detail in the following

two sections.

In addition, our wireless communication system provides fast and reliable many-to-all
communication among any set of agents, even when the agents are mobile and thereby
causing the network topology to change continuously. This feature is a key difference
to traditional wireless communication systems, such as WirelessHART, and makes our
co-design approach directly applicable to solve various kinds of distributed control
problems that may be stated in the form of a cost function (5.2).
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FIGURE 5.2: Time-triggered operation of the low-power wireless multi-hop protocol. Com-
munication occurs in rounds with a constant period T. Each round consists of a schedule

v

slot and up to K data slots. The schedule slot serves to inform all nodes about subsequent
data slots in the round, including the number and allocation of control or other messages.
The network manager computes the next schedule after the last data slot.

5.4 Wireless Communication System Design

We first describe the design of the wireless communication system, and detail the
control design based on the emerging properties in the next section. The wireless
system builds on the periodic design presented in Chapter 4 and consists of three
elements, where 2) is significantly modified and 3) is a new component:

1) a hardware platform enabling a predictable and efficient execution of all control
tasks and message transfers;

2) a multi-hop wireless protocol that provides many-to-all communication with
minimal, bounded end-to-end delay;

3) an online scheduler that dynamically assigns bandwidth to each agent based on
its communication requirements.

Hardware platform. We use a DPP where sensing, actuation, and control execute on
an AP (MSP432P401R, 32-bit, 48 MHz) and the wireless multi-hop protocol executes
on a CP (CC430F5147, 16-bit, 13 MHz). The processors communicate through the
Bolt interconnect [166], which provides bounded worst-case execution times for the
bidirectional exchange of messages between both processors. In this way, control and
communication can efficiently execute in parallel and never interfere with each other,
providing timing predictability.

Multi-hop wireless protocol. The CP of every DPP in the network runs a multi-hop
protocol, whose design is inspired by a new breed of protocols that exploit ST-based
flooding for highly reliable and efficient communication. As shown in Figure 5.2, using
our protocol, communication occurs in rounds of equal duration that repeat with a
constant period T. Each round consists of a sequence of non-overlapping slots. In each
slot, one node is allowed to initiate a Glossy flood [48] to send a message to all other
nodes. Glossy achieves the theoretical minimum latency for flooding a message in a
multi-hop network using half-duplex radios, and provides a reliability above 99.9 %
in real-world scenarios [48, 49]. In fact, Glossy’s reliability can be pushed beyond
99.9999 % by letting nodes transmit more often during a flood, and it time-synchronizes
all nodes to within sub-microsecond accuracy at no additional cost [48].
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Any node in the network can serve as the designated network manager that uses the
first slot in a round to flood the schedule. The schedule informs all other nodes about
the number of data slots in the round (up to K) and the allocation of nodes to these data
slots. The transmitted messages carry, for example, high-priority control information
from agents or lower-priority data from other nodes, such as measurements from
a remote sensor or information about a node’s health status (e.g., its battery’s state
of charge). When sending a message, a node also piggybacks information about its
future communication demands; if the network manager does not receive a message,
it assumes that the respective node needs to transmit in the next round. Based on all
demands, the network manager computes the schedule for the next round after the
last data slot.

Online scheduler. To this end, the network manager maintains a list of unserved
communication demands, and allocates up to K nodes to the data slots in the next
round according to a scheduling policy. The scheduling policy can be adjusted to
meet different application requirements. As an illustrative example, we design in
this work a new policy that aims to strike a balance between resource efficiency and
accommodating lower-priority messages next to control traffic. Specifically, if there
are free data slots after assigning all nodes with pending control messages in the next
round, we allocate one of the free data slots to a node for sending some other message,
such as sensor or status information. The next node to send such message is chosen
in a round-robin fashion. Any other free slot is left empty. Since nodes have their
radios on only during allocated slots and off otherwise, this example policy illustrates
that our wireless communication system allows for both arbitrating bandwidth among
different traffic types and not allocating resources at all to save energy, as demonstrated
in Section 5.6.

Key properties. Our wireless system design provides highly reliable, efficient many-
to-all communication, system-wide time synchronization, and adapts at run-time
to the nodes’ communication demands. Due to the time synchronization, we can
schedule control and communication tasks such that the jitter on the update interval
and end-to-end delay is less than +50 ps, as formally and experimentally validated
in Chapter 4.

5.5 Self-Triggered Control Design

We now detail the control design, first our approach to distributed control and then
our self-triggered design.

5.5.1 Distributed Control

The wireless communication system provides a constant update interval T as the jitter
is negligible for the considered scenarios. We thus set one discrete time step in (5.1) to
T and data that is sent over the network is delayed by one time step. Moreover, the
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many-to-all communication scheme ensures that information can be received by all
agents in the network. This greatly facilitates control design as essentially arbitrary
information patterns can be implemented. For example, this allows for implementing
a (centralized) optimal controller in a distributed fashion as we show in this chapter.
Given the high reliability of the wireless embedded system, we assume that data that
are sent over the network are received by all agents.

As an example for distributed control, we consider synchronization of multiple agents
through an LQR design as in (5.2). For ease of presentation, we outline the approach
for the two-agent case, but it also extends to multiple agents as shown in Section 5.6.
We choose the quadratic cost function

K-1 2
7= lim B[ 33 (<FR0m () + uf R (k) )
k=0 i=1
+ 1K)~ x20) Qugne (1 () ~ x2(k)) |, (53)

that is, we penalize deviations between x1(k) and x; (k) through the positive definite
weight matrix Qgync, as well as deviations from the equilibrium (Q; > 0) and high
control inputs (R; > 0). Using augmented states as in (5.2), the term in the summation
over k becomes

21k ( g‘f;;;c ngéi’;ic ) (k) +a (k) (R 8 )ak).

As discussed in Section 5.2, solving the optimal control problem then leads to a feed-
back controller that has the form u; (k) = Fy1x;1(k) + Fi2x2(k), that is, agent 1 needs
information from agent 2. We account for this by letting agent 2 send u;, (k) = Fi2x2(k)
over the network. Thus, agent 1’s control input consists of uy;(k) = Fy1x;(k), which
it can compute using its local observations, and u;,(k), which it receives over the
network. We can thus define the closed-loop matrix A, = A; + B{F;; and (5.1) then
reads as follows

X1 (k + 1) = Alxl(k) + Blulg(k) + v, (k) (54)

5.5.2 Self-Triggered Approach

Different STC designs have been proposed and are conceivable to realize control-guided
communication. We use a design that exploits ideas from previous work on state
estimation [170]. Instead of sending states as in [170], we consider the communication
of control inputs. Specifically, rather than sending its entire state, agent 2 only sends
the input u, (k) that is needed by agent 1. In case of no communication, agent 1 keeps
applying uq2(k,), where k; is the last time step at which the input u;, (k) was sent. We
trigger communication based on the error ez (k) = usz2(k) — us2(ke) as follows

yo(k) =1 & (ern(k)) ez (k) > 6. (5.5)
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Here, y,(k) is a binary variable, denoting whether agent 2 communicates u;,(k)
(y2(k) = 1) or not (y2(k) = 0), while § defines the designer’s trade-off between sav-
ing communication (large ) and keeping the error to a minimum (small ).

If we directly implement (5.5), agent 2 instantaneously decides on whether to transmit
uq2(k) to agent 1. In case of a negative triggering decision, there is no possibility to
reallocate bandwidth and hence freed resources remain unused. To overcome this
problem, we use a self-triggered strategy. Whenever an agent communicates, it already
decides when to communicate next. To this end, we predict the evolution of the error
and look for the smallest M > 1 such that

E[(elz(k+M))Te12(k+M)|Z)2(k)] >4 (5.6)

and set y(k + M — 1) = 1. Here, D, (k) describes the data agent 2 collected until time
step k, that is, its local states x, and the inputs u; and u;;, that it has applied and sent
so far, respectively. The rationale behind this triggering rule is as follows: Information
that is sent over the network is delayed by one discrete time step. The inequality
in (5.6) tells us that the error exceeds, in expectation, the threshold § in M time steps.
We thus seek to communicate next in M — 1 time steps such that the new input arrives
in M time steps, which is exactly when we expect the error to exceed the threshold.

The exact computation of (5.6) is complicated by the fact that the input uy; (k) is not
available at all times at agent 2. To derive the triggering law, we assume u,; (k) is known
and then comment on how we approximate it to yield a tractable implementation.
Based on this, we get the error distribution

flerz(k+M)|Dy(k)) = N(ér2(k + Mk), P, (k + M|k)), (5.7)

with mean é;, and variance P, given as

e1n(k+Mlk) =
M
- M - M-i , (5.8a)
Fiap(Ay xo(k) + » Ay Bty (k +1)) — ura (k)
i=0
Py(k +11k) = Fl,(AyPy(k[k) Ag + ) Fia. (5.8b)
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