42,555 research outputs found

    Short expressions of permutations as products and cryptanalysis of the Algebraic Eraser

    Get PDF
    On March 2004, Anshel, Anshel, Goldfeld, and Lemieux introduced the \emph{Algebraic Eraser} scheme for key agreement over an insecure channel, using a novel hybrid of infinite and finite noncommutative groups. They also introduced the \emph{Colored Burau Key Agreement Protocol (CBKAP)}, a concrete realization of this scheme. We present general, efficient heuristic algorithms, which extract the shared key out of the public information provided by CBKAP. These algorithms are, according to heuristic reasoning and according to massive experiments, successful for all sizes of the security parameters, assuming that the keys are chosen with standard distributions. Our methods come from probabilistic group theory (permutation group actions and expander graphs). In particular, we provide a simple algorithm for finding short expressions of permutations in SnS_n, as products of given random permutations. Heuristically, our algorithm gives expressions of length O(n2log⁥n)O(n^2\log n), in time and space O(n3)O(n^3). Moreover, this is provable from \emph{the Minimal Cycle Conjecture}, a simply stated hypothesis concerning the uniform distribution on SnS_n. Experiments show that the constants in these estimations are small. This is the first practical algorithm for this problem for n≄256n\ge 256. Remark: \emph{Algebraic Eraser} is a trademark of SecureRF. The variant of CBKAP actually implemented by SecureRF uses proprietary distributions, and thus our results do not imply its vulnerability. See also arXiv:abs/12020598Comment: Final version, accepted to Advances in Applied Mathematics. Title slightly change

    Controlled non uniform random generation of decomposable structures

    Get PDF
    Consider a class of decomposable combinatorial structures, using different types of atoms \Atoms = \{\At_1,\ldots ,\At_{|{\Atoms}|}\}. We address the random generation of such structures with respect to a size nn and a targeted distribution in kk of its \emph{distinguished} atoms. We consider two variations on this problem. In the first alternative, the targeted distribution is given by kk real numbers \TargFreq_1, \ldots, \TargFreq_k such that 0 < \TargFreq_i < 1 for all ii and \TargFreq_1+\cdots+\TargFreq_k \leq 1. We aim to generate random structures among the whole set of structures of a given size nn, in such a way that the {\em expected} frequency of any distinguished atom \At_i equals \TargFreq_i. We address this problem by weighting the atoms with a kk-tuple \Weights of real-valued weights, inducing a weighted distribution over the set of structures of size nn. We first adapt the classical recursive random generation scheme into an algorithm taking \bigO{n^{1+o(1)}+mn\log{n}} arithmetic operations to draw mm structures from the \Weights-weighted distribution. Secondly, we address the analytical computation of weights such that the targeted frequencies are achieved asymptotically, i. e. for large values of nn. We derive systems of functional equations whose resolution gives an explicit relationship between \Weights and \TargFreq_1, \ldots, \TargFreq_k. Lastly, we give an algorithm in \bigO{k n^4} for the inverse problem, {\it i.e.} computing the frequencies associated with a given kk-tuple \Weights of weights, and an optimized version in \bigO{k n^2} in the case of context-free languages. This allows for a heuristic resolution of the weights/frequencies relationship suitable for complex specifications. In the second alternative, the targeted distribution is given by a kk natural numbers n1,
,nkn_1, \ldots, n_k such that n1+⋯+nk+r=nn_1+\cdots+n_k+r=n where r≄0r \geq 0 is the number of undistinguished atoms. The structures must be generated uniformly among the set of structures of size nn that contain {\em exactly} nin_i atoms \At_i (1≀i≀k1 \leq i \leq k). We give a \bigO{r^2\prod_{i=1}^k n_i^2 +m n k \log n} algorithm for generating mm structures, which simplifies into a \bigO{r\prod_{i=1}^k n_i +m n} for regular specifications

    On the sphere-decoding algorithm I. Expected complexity

    Get PDF
    The problem of finding the least-squares solution to a system of linear equations where the unknown vector is comprised of integers, but the matrix coefficient and given vector are comprised of real numbers, arises in many applications: communications, cryptography, GPS, to name a few. The problem is equivalent to finding the closest lattice point to a given point and is known to be NP-hard. In communications applications, however, the given vector is not arbitrary but rather is an unknown lattice point that has been perturbed by an additive noise vector whose statistical properties are known. Therefore, in this paper, rather than dwell on the worst-case complexity of the integer least-squares problem, we study its expected complexity, averaged over the noise and over the lattice. For the "sphere decoding" algorithm of Fincke and Pohst, we find a closed-form expression for the expected complexity, both for the infinite and finite lattice. It is demonstrated in the second part of this paper that, for a wide range of signal-to-noise ratios (SNRs) and numbers of antennas, the expected complexity is polynomial, in fact, often roughly cubic. Since many communications systems operate at noise levels for which the expected complexity turns out to be polynomial, this suggests that maximum-likelihood decoding, which was hitherto thought to be computationally intractable, can, in fact, be implemented in real time - a result with many practical implications

    Simplest random K-satisfiability problem

    Full text link
    We study a simple and exactly solvable model for the generation of random satisfiability problems. These consist of ÎłN\gamma N random boolean constraints which are to be satisfied simultaneously by NN logical variables. In statistical-mechanics language, the considered model can be seen as a diluted p-spin model at zero temperature. While such problems become extraordinarily hard to solve by local search methods in a large region of the parameter space, still at least one solution may be superimposed by construction. The statistical properties of the model can be studied exactly by the replica method and each single instance can be analyzed in polynomial time by a simple global solution method. The geometrical/topological structures responsible for dynamic and static phase transitions as well as for the onset of computational complexity in local search method are thoroughly analyzed. Numerical analysis on very large samples allows for a precise characterization of the critical scaling behaviour.Comment: 14 pages, 5 figures, to appear in Phys. Rev. E (Feb 2001). v2: minor errors and references correcte

    Phase Transitions in Operational Risk

    Get PDF
    In this paper we explore the functional correlation approach to operational risk. We consider networks with heterogeneous a-priori conditional and unconditional failure probability. In the limit of sparse connectivity, self-consistent expressions for the dynamical evolution of order parameters are obtained. Under equilibrium conditions, expressions for the stationary states are also obtained. The consequences of the analytical theory developed are analyzed using phase diagrams. We find co-existence of operational and non-operational phases, much as in liquid-gas systems. Such systems are susceptible to discontinuous phase transitions from the operational to non-operational phase via catastrophic breakdown. We find this feature to be robust against variation of the microscopic modelling assumptions.Comment: 13 pages, 7 figures. Accepted in Physical Review

    Diffusion-limited reactions and mortal random walkers in confined geometries

    Full text link
    Motivated by the diffusion-reaction kinetics on interstellar dust grains, we study a first-passage problem of mortal random walkers in a confined two-dimensional geometry. We provide an exact expression for the encounter probability of two walkers, which is evaluated in limiting cases and checked against extensive kinetic Monte Carlo simulations. We analyze the continuum limit which is approached very slowly, with corrections that vanish logarithmically with the lattice size. We then examine the influence of the shape of the lattice on the first-passage probability, where we focus on the aspect ratio dependence: Distorting the lattice always reduces the encounter probability of two walkers and can exhibit a crossover to the behavior of a genuinely one-dimensional random walk. The nature of this transition is also explained qualitatively.Comment: 18 pages, 16 figure
    • 

    corecore