510 research outputs found

    Prescribing Challenges after Bariatric Surgery

    Get PDF
    Obesity is an increasing problem in the UK, with over half the population being overweight or obese. The use of gastric surgery is increasing, with a 5% increase in 2016/17 compared to 2015/16. However, little is known about ideal drug formulations after bariatric surgery. An exploratory literature search of research databases was carried out to address this. We found that there was a dearth of high-quality primary studies available, with many studies using low numbers of participants. The major finding was of the need for increased vigilance and monitoring of patients after surgery

    Análise de propriedades intrínsecas e extrínsecas de amostras biométricas para detecção de ataques de apresentação

    Get PDF
    Orientadores: Anderson de Rezende Rocha, Hélio PedriniTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Os recentes avanços nas áreas de pesquisa em biometria, forense e segurança da informação trouxeram importantes melhorias na eficácia dos sistemas de reconhecimento biométricos. No entanto, um desafio ainda em aberto é a vulnerabilidade de tais sistemas contra ataques de apresentação, nos quais os usuários impostores criam amostras sintéticas, a partir das informações biométricas originais de um usuário legítimo, e as apresentam ao sensor de aquisição procurando se autenticar como um usuário válido. Dependendo da modalidade biométrica, os tipos de ataque variam de acordo com o tipo de material usado para construir as amostras sintéticas. Por exemplo, em biometria facial, uma tentativa de ataque é caracterizada quando um usuário impostor apresenta ao sensor de aquisição uma fotografia, um vídeo digital ou uma máscara 3D com as informações faciais de um usuário-alvo. Em sistemas de biometria baseados em íris, os ataques de apresentação podem ser realizados com fotografias impressas ou com lentes de contato contendo os padrões de íris de um usuário-alvo ou mesmo padrões de textura sintéticas. Nos sistemas biométricos de impressão digital, os usuários impostores podem enganar o sensor biométrico usando réplicas dos padrões de impressão digital construídas com materiais sintéticos, como látex, massa de modelar, silicone, entre outros. Esta pesquisa teve como objetivo o desenvolvimento de soluções para detecção de ataques de apresentação considerando os sistemas biométricos faciais, de íris e de impressão digital. As linhas de investigação apresentadas nesta tese incluem o desenvolvimento de representações baseadas nas informações espaciais, temporais e espectrais da assinatura de ruído; em propriedades intrínsecas das amostras biométricas (e.g., mapas de albedo, de reflectância e de profundidade) e em técnicas de aprendizagem supervisionada de características. Os principais resultados e contribuições apresentadas nesta tese incluem: a criação de um grande conjunto de dados publicamente disponível contendo aproximadamente 17K videos de simulações de ataques de apresentações e de acessos genuínos em um sistema biométrico facial, os quais foram coletados com a autorização do Comitê de Ética em Pesquisa da Unicamp; o desenvolvimento de novas abordagens para modelagem e análise de propriedades extrínsecas das amostras biométricas relacionadas aos artefatos que são adicionados durante a fabricação das amostras sintéticas e sua captura pelo sensor de aquisição, cujos resultados de desempenho foram superiores a diversos métodos propostos na literature que se utilizam de métodos tradicionais de análise de images (e.g., análise de textura); a investigação de uma abordagem baseada na análise de propriedades intrínsecas das faces, estimadas a partir da informação de sombras presentes em sua superfície; e, por fim, a investigação de diferentes abordagens baseadas em redes neurais convolucionais para o aprendizado automático de características relacionadas ao nosso problema, cujos resultados foram superiores ou competitivos aos métodos considerados estado da arte para as diferentes modalidades biométricas consideradas nesta tese. A pesquisa também considerou o projeto de eficientes redes neurais com arquiteturas rasas capazes de aprender características relacionadas ao nosso problema a partir de pequenos conjuntos de dados disponíveis para o desenvolvimento e a avaliação de soluções para a detecção de ataques de apresentaçãoAbstract: Recent advances in biometrics, information forensics, and security have improved the recognition effectiveness of biometric systems. However, an ever-growing challenge is the vulnerability of such systems against presentation attacks, in which impostor users create synthetic samples from the original biometric information of a legitimate user and show them to the acquisition sensor seeking to authenticate themselves as legitimate users. Depending on the trait used by the biometric authentication, the attack types vary with the type of material used to build the synthetic samples. For instance, in facial biometric systems, an attempted attack is characterized by the type of material the impostor uses such as a photograph, a digital video, or a 3D mask with the facial information of a target user. In iris-based biometrics, presentation attacks can be accomplished with printout photographs or with contact lenses containing the iris patterns of a target user or even synthetic texture patterns. In fingerprint biometric systems, impostor users can deceive the authentication process using replicas of the fingerprint patterns built with synthetic materials such as latex, play-doh, silicone, among others. This research aimed at developing presentation attack detection (PAD) solutions whose objective is to detect attempted attacks considering different attack types, in each modality. The lines of investigation presented in this thesis aimed at devising and developing representations based on spatial, temporal and spectral information from noise signature, intrinsic properties of the biometric data (e.g., albedo, reflectance, and depth maps), and supervised feature learning techniques, taking into account different testing scenarios including cross-sensor, intra-, and inter-dataset scenarios. The main findings and contributions presented in this thesis include: the creation of a large and publicly available benchmark containing 17K videos of presentation attacks and bona-fide presentations simulations in a facial biometric system, whose collect were formally authorized by the Research Ethics Committee at Unicamp; the development of novel approaches to modeling and analysis of extrinsic properties of biometric samples related to artifacts added during the manufacturing of the synthetic samples and their capture by the acquisition sensor, whose results were superior to several approaches published in the literature that use traditional methods for image analysis (e.g., texture-based analysis); the investigation of an approach based on the analysis of intrinsic properties of faces, estimated from the information of shadows present on their surface; and the investigation of different approaches to automatically learning representations related to our problem, whose results were superior or competitive to state-of-the-art methods for the biometric modalities considered in this thesis. We also considered in this research the design of efficient neural networks with shallow architectures capable of learning characteristics related to our problem from small sets of data available to develop and evaluate PAD solutionsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação140069/2016-0 CNPq, 142110/2017-5CAPESCNP

    Local Binary Patterns in Focal-Plane Processing. Analysis and Applications

    Get PDF
    Feature extraction is the part of pattern recognition, where the sensor data is transformed into a more suitable form for the machine to interpret. The purpose of this step is also to reduce the amount of information passed to the next stages of the system, and to preserve the essential information in the view of discriminating the data into different classes. For instance, in the case of image analysis the actual image intensities are vulnerable to various environmental effects, such as lighting changes and the feature extraction can be used as means for detecting features, which are invariant to certain types of illumination changes. Finally, classification tries to make decisions based on the previously transformed data. The main focus of this thesis is on developing new methods for the embedded feature extraction based on local non-parametric image descriptors. Also, feature analysis is carried out for the selected image features. Low-level Local Binary Pattern (LBP) based features are in a main role in the analysis. In the embedded domain, the pattern recognition system must usually meet strict performance constraints, such as high speed, compact size and low power consumption. The characteristics of the final system can be seen as a trade-off between these metrics, which is largely affected by the decisions made during the implementation phase. The implementation alternatives of the LBP based feature extraction are explored in the embedded domain in the context of focal-plane vision processors. In particular, the thesis demonstrates the LBP extraction with MIPA4k massively parallel focal-plane processor IC. Also higher level processing is incorporated to this framework, by means of a framework for implementing a single chip face recognition system. Furthermore, a new method for determining optical flow based on LBPs, designed in particular to the embedded domain is presented. Inspired by some of the principles observed through the feature analysis of the Local Binary Patterns, an extension to the well known non-parametric rank transform is proposed, and its performance is evaluated in face recognition experiments with a standard dataset. Finally, an a priori model where the LBPs are seen as combinations of n-tuples is also presentedSiirretty Doriast

    Accelerated Object Tracking with Local Binary Features

    Get PDF
    Multi-object tracking is a problem with wide application in modern computing. Object tracking is leveraged in areas such as human computer interaction, autonomous vehicle navigation, panorama generation, as well as countless other robotic applications. Several trackers have demonstrated favorable results for tracking of single objects. However, modern object trackers must make significant tradeoffs in order to accommodate multiple objects while maintaining real-time performance. These tradeoffs include sacrifices in robustness and accuracy that adversely affect the results. This thesis details the design and multiple implementations of an object tracker that is focused on computational efficiency. The computational efficiency of the tracker is achieved through use of local binary descriptors in a template matching approach. Candidate templates are matched to a dictionary composed of both static and dynamic templates to allow for variation in the appearance of the object while minimizing the potential for drift in the tracker. Locality constraints have been used to reduce tracking jitter. Due to the significant promise for parallelization, the tracking algorithm was implemented on the Graphics Processing Unit (GPU) using the CUDA API. The tracker\u27s efficiency also led to its implantation on a mobile platform as one of the mobile trackers that can accurately track at faster than realtime speed. Benchmarks were performed to compare the proposed tracker to state of the art trackers on a wide range of standard test videos. The tracker implemented in this work has demonstrated a higher degree of accuracy while operating several orders of magnitude faster

    SYSTEM-ON-A-CHIP (SOC)-BASED HARDWARE ACCELERATION FOR HUMAN ACTION RECOGNITION WITH CORE COMPONENTS

    Get PDF
    Today, the implementation of machine vision algorithms on embedded platforms or in portable systems is growing rapidly due to the demand for machine vision in daily human life. Among the applications of machine vision, human action and activity recognition has become an active research area, and market demand for providing integrated smart security systems is growing rapidly. Among the available approaches, embedded vision is in the top tier; however, current embedded platforms may not be able to fully exploit the potential performance of machine vision algorithms, especially in terms of low power consumption. Complex algorithms can impose immense computation and communication demands, especially action recognition algorithms, which require various stages of preprocessing, processing and machine learning blocks that need to operate concurrently. The market demands embedded platforms that operate with a power consumption of only a few watts. Attempts have been mad to improve the performance of traditional embedded approaches by adding more powerful processors; this solution may solve the computation problem but increases the power consumption. System-on-a-chip eld-programmable gate arrays (SoC-FPGAs) have emerged as a major architecture approach for improving power eciency while increasing computational performance. In a SoC-FPGA, an embedded processor and an FPGA serving as an accelerator are fabricated in the same die to simultaneously improve power consumption and performance. Still, current SoC-FPGA-based vision implementations either shy away from supporting complex and adaptive vision algorithms or operate at very limited resolutions due to the immense communication and computation demands. The aim of this research is to develop a SoC-based hardware acceleration workflow for the realization of advanced vision algorithms. Hardware acceleration can improve performance for highly complex mathematical calculations or repeated functions. The performance of a SoC system can thus be improved by using hardware acceleration method to accelerate the element that incurs the highest performance overhead. The outcome of this research could be used for the implementation of various vision algorithms, such as face recognition, object detection or object tracking, on embedded platforms. The contributions of SoC-based hardware acceleration for hardware-software codesign platforms include the following: (1) development of frameworks for complex human action recognition in both 2D and 3D; (2) realization of a framework with four main implemented IPs, namely, foreground and background subtraction (foreground probability), human detection, 2D/3D point-of-interest detection and feature extraction, and OS-ELM as a machine learning algorithm for action identication; (3) use of an FPGA-based hardware acceleration method to resolve system bottlenecks and improve system performance; and (4) measurement and analysis of system specications, such as the acceleration factor, power consumption, and resource utilization. Experimental results show that the proposed SoC-based hardware acceleration approach provides better performance in terms of the acceleration factor, resource utilization and power consumption among all recent works. In addition, a comparison of the accuracy of the framework that runs on the proposed embedded platform (SoCFPGA) with the accuracy of other PC-based frameworks shows that the proposed approach outperforms most other approaches

    An Experimental and Numerical Investigation of Nitrogen Dioxide Emissions Characteristics of Compression Ignition Dual Fuel Engines

    Get PDF
    Detailed experimental research was conducted to explore the impact of the addition of gaseous fuels, including H2 and natural gas (NG), and engine load on the emissions of NO2, NO, and NOx from dual fuel engines. The addition of less than 2% of H2 or NG was shown to dramatically increase the emissions of NO2 until a maximum level of NO2 emissions was reached. The increased NO 2 emissions were due to the conversion of NO to NO2. The maximum NO2/NOx ratio obtained with the addition of H2 was 3.2 to 5.0 times that of diesel operation. The maximum NO 2/NOx ratio obtained with the addition of NG was 3.4 to 4.3 times that of diesel operation. Further increasing the amount of gaseous fuel beyond the point of maximum NO2 emissions resulted in a reduction of NO2 emissions. Detailed examination of factors having the potential to affect the formation of NOx and NO2 in compression ignition engines reported a firm correlation between the emissions of NO 2 and emissions of unburned H2 and methane (CH4), and their relative emissions. The presence of unburned gaseous fuels that survived the main combustion process appears to be one of the main factors contributing to the enhanced conversion of NO to NO2. This was supported by the experimental data reported in the literature. The presence of fumigation fuels outside the diesel spray plume might be the main factor contributing to the increased emissions of NO2 from dual fuel engines. The spontaneous combustion of fumigation fuels that are entrained into the diesel spray plume may not contribute to the increased emissions of NO 2. In comparison, the correlations between the increased emissions of NO2 and the variation in bulk mixture temperature and heat release process including maximum heat release rate, and combustion duration were weak.;A single zone, zero-dimensional, constant volume numerical model with detailed chemistry was used to simulate the oxidization process of the gaseous fuel, as well as its effect on the conversion of NO to NO2 after the post-combustion mixing of the gaseous fuel surviving the main combustion process with the NOx-containing combustion products. The gaseous fuel examined included CH4, H2, and carbon monoxide (CO). The simulation results revealed the significant effects of the fuel mixed, its initial concentration in the mixture, and the initial temperature on the oxidization of gaseous fuel, the conversion of NO to NO2, and the destruction of NO2 to NO after the completion of the oxidation process.;The single zone zero-dimensional model was further modified to a variable volume model with the volume of the combustion chamber calculated using the geometry of the 1999 Cummins engine and engine speed. The modified variable volume model with detailed chemistry was used to improve the simulation of the effect on the conversion of NO to NO2 of the post-combustion mixing of surviving gaseous fuel with NOx-containing combustion products. The spatial variation of the local bulk mixture temperature with the progress of the combustion process and the variation of cylinder volume during the expansion process was taken into account by a pseudo temperature at the top dead center (TDC) noted as Tpseudo TDC defined in this research. The simulation identified the importance of the phasing of postcombustion mixing on the oxidation of gaseous fuel and its effect on the conversion of NO to NO2.;A preliminary sensitivity analysis was also conducted to identify the reactions having significant effect on the conversion of NO to NO2 and its destruction to NO. Among the four reactions associated with the formation and destruction of NO2, R186 was identified as the main reaction to the formation of NO2 during the oxidation process of H 2 and CO. This was due to the high concentration of HO2 formed during the oxidation process of H2 and CO in the combustion product. The destruction of NO2 to NO occurred through R187 and R189. (Abstract shortened by UMI.)

    Face Image Modality Recognition and Photo-Sketch Matching

    Get PDF
    Face is an important physical characteristic of human body, and is widely used in many crucial applications, such as video surveillance, criminal investigation, and security access system. Based on realistic demand, such as useful face images in dark environment and criminal profile, different modalities of face images appeared, e.g. three-dimensional (3D), near infrared (NIR), and thermal infrared (TIR) face images. Thus, researches with various face image modalities become a hot area. Most of them are set on knowing the modality of face images in advance, which contains a few limitations. In this thesis, we present approaches for face image modality recognition to extend the possibility of cross-modality researches as well as handle new modality-mixed face images. Furthermore, a large facial image database is assembled with five commonly used modalities such as 3D, NIR, TIR, sketch, and visible light spectrum (VIS). Based on the analysis of results, a feature descriptor based on convolutional neural network with linear kernel SVM did an optimal performance.;As we mentioned above, face images are widely used in crucial applications, and one of them is using the sketch of suspect\u27s face, which based on the witness\u27 description, to assist law enforcement. Since it is difficult to capture face photos of the suspect during a criminal activity, automatic retrieving photos based on the suspect\u27s facial sketch is used for locating potential suspects. In this thesis, we perform photo-sketch matching by synthesizing the corresponding pseudo sketch from a given photo. There are three methods applied in this thesis, which are respectively based on style transfer, DualGAN, and cycle-consistent adversarial networks. Among the results of these methods, style transfer based method did a poor performance in photo-sketch matching, since it is an unsupervised one which is not purposeful in photo to sketch synthesis problem while the others need to train pointed models in synthesis stage
    corecore