30,774 research outputs found

    A Hamiltonian approximation method for the reduction of controlled systems

    Get PDF
    This paper considers the problem of model reduction for controlled systems. The paper considers a dual/adjoint formulation of the general optimization problem to minimize a criterion function subject to plant dynamics and system constraints. By carrying out an approximation on the Lagrangian or Hamiltonian system that is inferred from the dual optimization problem, a reduced Hamiltonian system is obtained that approximates the optimally controlled dynamical system. The merits of the method are illustrated on an example of a controlled binary distillation process

    Ancilla-based quantum simulation

    Full text link
    We consider simulating the BCS Hamiltonian, a model of low temperature superconductivity, on a quantum computer. In particular we consider conducting the simulation on the qubus quantum computer, which uses a continuous variable ancilla to generate interactions between qubits. We demonstrate an O(N^3) improvement over previous work conducted on an NMR computer [PRL 89 057904 (2002) & PRL 97 050504 (2006)] for the nearest neighbour and completely general cases. We then go on to show methods to minimise the number of operations needed per time step using the qubus in three cases; a completely general case, a case of exponentially decaying interactions and the case of fixed range interactions. We make these results controlled on an ancilla qubit so that we can apply the phase estimation algorithm, and hence show that when N \geq 5, our qubus simulation requires significantly less operations that a similar simulation conducted on an NMR computer.Comment: 20 pages, 10 figures: V2 added section on phase estimation and performing controlled unitaries, V3 corrected minor typo

    Lumped Approximation of a Transmission Line with an Alternative Geometric Discretization

    Get PDF
    An electromagnetic one-dimensional transmission line represented in a distributed port-Hamiltonian form is lumped into a chain of subsystems which preserve the port-Hamiltonian structure with inputs and outputs in collocated form. The procedure is essentially an adaptation of the procedure for discretization of Stokes-Dirac structures presented previously, that does not preserve the port-Hamiltonian structure after discretization. With some modifications essentially inspired on the finite difference paradigm, the procedure now results in a system that preserves the collocated port-Hamiltonian structure along with some other desirable conditions for interconnection. The simulation results are compared with those presented previously.

    Controlling chaotic transport in a Hamiltonian model of interest to magnetized plasmas

    Get PDF
    We present a technique to control chaos in Hamiltonian systems which are close to integrable. By adding a small and simple control term to the perturbation, the system becomes more regular than the original one. We apply this technique to a model that reproduces turbulent ExB drift and show numerically that the control is able to drastically reduce chaotic transport

    Multilevel coarse graining and nano--pattern discovery in many particle stochastic systems

    Get PDF
    In this work we propose a hierarchy of Monte Carlo methods for sampling equilibrium properties of stochastic lattice systems with competing short and long range interactions. Each Monte Carlo step is composed by two or more sub - steps efficiently coupling coarse and microscopic state spaces. The method can be designed to sample the exact or controlled-error approximations of the target distribution, providing information on levels of different resolutions, as well as at the microscopic level. In both strategies the method achieves significant reduction of the computational cost compared to conventional Markov Chain Monte Carlo methods. Applications in phase transition and pattern formation problems confirm the efficiency of the proposed methods.Comment: 37 page

    Singular perturbations and Lindblad-Kossakowski differential equations

    Full text link
    We consider an ensemble of quantum systems whose average evolution is described by a density matrix, solution of a Lindblad-Kossakowski differential equation. We focus on the special case where the decoherence is only due to a highly unstable excited state and where the spontaneously emitted photons are measured by a photo-detector. We propose a systematic method to eliminate the fast and asymptotically stable dynamics associated to the excited state in order to obtain another differential equation for the slow part. We show that this slow differential equation is still of Lindblad-Kossakowski type, that the decoherence terms and the measured output depend explicitly on the amplitudes of quasi-resonant applied field, i.e., the control. Beside a rigorous proof of the slow/fast (adiabatic) reduction based on singular perturbation theory, we also provide a physical interpretation of the result in the context of coherence population trapping via dark states and decoherence-free subspaces. Numerical simulations illustrate the accuracy of the proposed approximation for a 5-level systems.Comment: 6 pages, 2 figure

    Dimer states in atomic mixtures

    Full text link
    A mixture of heavy atoms in a Mott state and light spin-1/2 fermionic atoms is studied in an optical lattice. Inelastic scattering processes between both atomic species excite the heavy atoms and renormalize the tunneling rate as well as the interaction of the light atoms. An effective Hamiltonian for the latter is derived that describes tunneling of single fermions, tunneling of fermionic pairs and an exchange of fermionic spins. Low energy states of this Hamiltonian are a N\'eel state for strong effective repulsion, dimer states for moderate interaction, and a density wave of paired fermions for strong effective attraction.Comment: 10 pages, 3 figure, extended versio

    Second order nonlinear gyrokinetic theory : From the particle to the gyrocenter

    Get PDF
    A gyrokinetic reduction is based on a specific ordering of the different small parameters characterizing the background magnetic field and the fluctuating electromagnetic fields. In this tutorial, we consider the following ordering of the small parameters: ϵ_B=ϵ_δ2\epsilon\_B=\epsilon\_\delta^2 where ϵ_B\epsilon\_B is the small parameter associated with spatial inhomogeneities of the background magnetic field and ϵ_δ\epsilon\_\delta characterizes the small amplitude of the fluctuating fields. In particular, we do not make any assumption on the amplitude of the background magnetic field. Given this choice of ordering, we describe a self-contained and systematic derivation which is particularly well suited for the gyrokinetic reduction, following a two-step procedure. We follow the approach developed in [Sugama, Physics of Plasmas 7, 466 (2000)]:In a first step, using a translation in velocity, we embed the transformation performed on the symplectic part of the gyrocentre reduction in the guiding-centre one. In a second step, using a canonical Lie transform, we eliminate the gyroangle dependence from the Hamiltonian. As a consequence, we explicitly derive the fully electromagnetic gyrokinetic equations at the second order in ϵ_δ\epsilon\_\delta

    The three-site Bose-Hubbard model subject to atom losses: the boson-pair dissipation channel and failure of the mean-field approach

    Full text link
    We employ the perturbation series expansion for derivation of the reduced master equations for the three-site Bose-Hubbard model subject to strong atom losses from the central site. The model describes a condensate trapped in a triple-well potential subject to externally controlled removal of atoms. We find that the π\pi-phase state of the coherent superposition between the side wells decays via two dissipation channels, the single-boson channel (similar to the externally applied dissipation) and the boson-pair channel. The quantum derivation is compared to the classical adiabatic elimination within the mean-field approximation. We find that the boson-pair dissipation channel is not captured by the mean-field model, whereas the single-boson channel is described by it. Moreover, there is a matching condition between the zero-point energy bias of the side wells and the nonlinear interaction parameter which separates the regions where either the single-boson or the boson-pair dissipation channel dominate. Our results indicate that the MM-site Bose-Hubbard models, for M>2M>2, subject to atom losses may require an analysis which goes beyond the usual mean-field approximation for correct description of their dissipative features. This is an important result in view of the recent experimental works on the single site addressability of condensates trapped in optical lattices.Comment: 9 pages; 3 figures in color; submitted to PR
    corecore