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07730, México D.F., México, Apdo. Postal 14-805.
Tel. +52-9175-7623, Fax +52-9175-7079. rlopezle@imp.mx
∗∗ Delft Center of Systems and Control, Delft University of
Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Tel. +31-15-278 5489, Fax +31-15-278 6679.
J.M.A.Scherpen@dcsc.TUDelft.nl

Abstract: An electromagnetic one-dimensional transmission line represented in a
distributed port-Hamiltonian form is lumped into a chain of subsystems which
preserve the port-Hamiltonian structure with inputs and outputs in collocated
form. The procedure is essentially an adaptation of the procedure for discretization
of Stokes-Dirac structures presented in (Clemente-Gallardo et al., 2002), that
does not preserve the port-Hamiltonian structure after discretization. With some
modifications essentially inspired on the finite difference paradigm, the procedure
now results in a system that preserves the collocated port-Hamiltonian structure
along with some other desirable conditions for interconnection. The simulation
results are compared with those presented previously in (Golo et al., 2002).
Copyright 2004 c©IFAC
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1. INTRODUCTION

The symbiosis of systems and control theory and
classical mechanics has resulted in a fruitful field
of research that has provided highly structured
and systematic tools for a diversified class of
physical systems. In particular, the class of port-
Hamiltonian systems has interesting properties
useful for modelling and control purposes. Since
the introduction of distributed port-Hamiltonian
systems in (Maschke and van der Schaft, 2000)
and lately in (van der Schaft and Maschke, 2001),
several important applications could be envisioned

with the use of the so called Stokes-Dirac struc-
tures based on the success of the applications that
have resulted from its finite dimensional counter-
part, the Dirac structures.
At the heart of the interconnection of such infinite-
dimensional models of conservation laws is pre-
cisely the Stokes-Dirac structure. For an appli-
cations point of view the adequate spatial dis-
cretization of this structure is fundamental for the
preservation of such conservation and interconnec-
tion relations. Therefore, some efforts have been
devoted to the systematic discretization of such
structure (Golo et al., 2003; Clemente-Gallardo
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et al., 2002). In order to deal with arbitrary di-
mensions a common framework using differential
geometry concepts is used. Despite having such
common ground, each procedure approaches the
problem of approximation of the geometric objects
in a different form.
On the one hand, in (Golo et al., 2003) their
geometric procedure is based, roughly speaking,
on the approximation of the differentiable n-forms
into finite element objects. For instance 0-forms
and 1-forms as linear splines, etc. With such tools
at hand the Stokes-Dirac structure of the port-
Hamiltonian model of a one-dimensional trans-
mission line is discretized, simulated and com-
pared with the exact solution of the model. This
approach allows them to deal with uniform and
non-uniform grids (for further details see (Golo et
al., 2003)).
On the other hand, in our approach (Clemente-
Gallardo et al., 2002), such differentiable n-forms
lie in a spatial domain which has associated a grid
of points or nodes from where a finite-difference
provides a way to approximately express each n-
form. In this way a 0-form (a function) lies at the
node, a 1-form is defined to lie on the midpoints
between two collinear nodes, 2-forms lie at the cen-
ter of the square, etc. The procedure was tested on
the non-homentropic model of a one-dimensional
pipeline, but no further analysis on the precision
of the discretization was presented. In this paper
the precision of the methods is tested for an im-
proved version of the discretization presented in
(Clemente-Gallardo et al., 2002), which preserves
the port-Hamiltonian structure, for the (simpler)
model of the one-dimensional transmission line.
The availability of an exact solution for a state
variable at the boundary in (Golo et al., 2003)
provides us a trustable benchmark on the precision
of the method.
The paper is organized as follows. After briefly
presenting in Section 2 some necessary adap-
tations of the procedure shown in (Clemente-
Gallardo et al., 2002) in the particular case of
the Stokes-Dirac structure of the model of the
one-dimensional transmission line, in Section 3 we
present some structures in the collocated port-
Hamiltonian form along with some comments on
the properties of such structures under intercon-
nection. In Section 4 the simulation results are
shown along with some preliminary conclusions
drawn from the comparison of the results with the
exact solution presented in (Golo et al., 2003), to
finish with some general conclusions.

2. THE STOKES-DIRAC MODIFIED
DISCRETIZATION

Consider a 1-dimensional Riemannian manifold
M with metric g and 0−dimensional boundary
∂M, consider two spaces F and E defined by

F =Fq × Fϕ × Fb =
1

∧

(M) ×
1

∧

(M) ×
0

∧

(∂M),

and

E = Eq × Eϕ × Eb =
0

∧

(M) ×
0

∧

(M) ×
0

∧

(∂M),

where the subindex b stands for boundary vari-
ables. Throughout the section we denote

{

f i = (f i
q, f

i
ϕ, f i

b) ∈ F
ei = (ei

q, e
i
ϕ, ei

b) ∈ E

along with a product 〈〈(f1, e1), (f2, e2)〉〉 in the
space F × E defined as

∫

M

{

e1
q ∧ f2

q + e1
ϕ ∧ f2

ϕ + e2
q ∧ f1

q + e2
ϕ ∧ f1

ϕ

}

+

∫

∂M

(e1
b ∧ f2

b + e2
b ∧ f1

b ). (1)

As described by (van der Schaft and Maschke,
2001) the subspace D associated to the one-
dimensional transmission line defined by
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, (2)

defines a Stokes-Dirac structure on F × E , where
q and ϕ stand for charge and flux densities (one-
forms) respectively.
As shown in (van der Schaft and Maschke, 2001),
the distributed port-Hamiltonian representation of
the one-dimensional transmission line is given by











∂tq

∂tϕ

ϕ

q











=











0 −d 0 0

−d 0 0 0

0 0 0 −1

0 0 1 0





















δqH

δϕH

δqH|∂Z

δϕH|∂Z











(3)

with energy stored in the Hamiltonian expressed
by the functional

H =

∫

Ω

1

2

{

q2

C
+

ϕ2

L

}

dΩ. (4)

where Ω denotes the boundary. Based on the pro-
cedure of discretization of Stokes-Dirac structures
presented in (Clemente-Gallardo et al., 2002), it
is necessary first to identify the geometric objects
involved in the particular structure used to model
the transmission line, eq. (2), namely the one-
forms and the exterior differential operator d.
The Hamiltonian function H is defined by a se-
quence of nodes in a uniform grid. Given a Hamil-
tonian functional (4) and a finite grid defining
n−finite sections, a finite dimensional Hamilto-
nian

Hi =

∫

vi

1

2

{

q2

C
+

ϕ2

L

}

dVi, (5)
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Fig. 1. A schematic grid of nodes interconnection
for the transmission line.

can be obtained for each i−volume Vi, resulting
in a total Hamiltonian

H =
n

∑

i

Hi. (6)

Since the integration takes place assuming that
the energy is uniformly distributed in each grid-
volume, a lumped Hamiltonian can be defined for
each volume. For instance, for the one-dimensional
case define the following lumped Hamiltonian ’per
unit length’,

H =
1

∆(xi)
H(X), (7)

where the length ∆(xi) depends on the different
block element used. Since both q and ϕ are one-
forms, such forms can be placed at the middle
of two adjacent nodes. Finally the approximation
of the partial derivative ∂xH can be performed
in several forms namely backward ∂xH ≈ (Hi −
Hi−1)/∆x, forward ∂xH ≈ (Hi+1 − Hi)/∆x or
central differentiation ∂xH ≈ (Hi+1−Hi−1)/2∆x.
Different selections of approximated differentia-
tions, result in different structures which may fail
to be skew symmetric.

3. LUMPING THE TRANSMISION LINE

The structure of the blocks is defined with port-
Hamiltonian systems in a particular structure
called collocated port-Hamiltonian systems
(Lopezlena et al., 2003) (see figure 2) the essen-
tial characteristic of this arrangement is that the
inputs and outputs are paired at each boundary
such that they determine the energy transfer,
i.e., at each boundary there exist a transfer or
energy without a predefined assumption on the
direction of transfer. For a given set of power
defining variables at the boundary, some variables
are defined by the system at one two-port and the

Port-Hamiltonian
System
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U2

U2

Y1

Y1

Y2

Fig. 2. A PHS with collocated inputs and outputs
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Fig. 3. A schematic of interconnection of 2-D and
3-D PHS blocks.
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dqH(i+1)
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dqH(i)

dfH(i)

Fig. 4. A single block in A form.

complementary variables are defined at the oppo-
site two-port (for further details see (Lopezlena
et al., 2003)). This does not modify at all the
structure of the Port-Hamiltonian paradigm. The
difference remains in the way of looking at in-
terconnection of these structures: they can be
chained in 1-D problems, grided in 2-D and as-
sembled into polyhedric structures for 3-D cases,
see figure 3. For more general structures including
dissipation and feedforward terms see (Lopezlena
and Scherpen, 2004)). In particular, assume that
J(x) = −JT (x). The collocated representation
can be written as
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With the purpose of series interconnection con-
sider a second system with G(x) = −GT (x) in the
form
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(9)

Assuming that the interconnection is compatible,
i.e. y2 = v1 and u2 = z1, then, as can be seen after
some simple algebra, the interconnected system
has the form :
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ẋ1

ẋ2
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and it can be verified that the resulting structure
is again skew symmetric.



Proposition 3.1. The following system (block) as-
sociated to the lumped Hamiltonian in (7),
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provides a space-discretization of Telegrapher’s
equations in distributed port-Hamiltonian form
and is a finite dimensional port-Hamiltonian sys-
tem with collocated inputs and outputs. Further-
more, the PHS (A) satisfies the energy conserva-
tion equation

dHi

dt
= yT

i ui (10)

and for a chain of n-blocks PHS, the total energy
satisfies the energy balance

dH

dt
=

n
∑

i=1

∂Hi

∂t
= yT u (11)

Proof. Consider the following discrete approx-
imation d(δϕH) ≈ ∆−1(δϕHi+1 − δϕHi) and
d(δqH) ≈ ∆−1(δqHi − δqHi−1) in the structure
(3). The first statement can be proved straight-
forwardly. The second statement is proved as fol-
lows: Consider the Hamiltonian function Hi =
1
2

(

q2
i /Ci + ϕ2

i /Li

)

, which is such that ∇T Hi =
(∂qHi, ∂ϕHi) . Adequate definitions of J1

1 =
−(J1

1 )T , and simple substitutions yield

dHi

dt
=

∂T Hi

∂x
[J1

1

∂Hi

∂x
+ J2

1ui] =
∂T Hi

∂x
J2

1ui

= ∂qHi∂ϕHi−1 − ∂ϕHi∂qHi+1 = yT
i ui

Since ∂qHi = Vi and ∂ϕHi = Ii, the product
defines power which after integration reproduces
the required supplied energy or delivered energy.
In order to prove the last statement consider the
following: By induction, for i = 1 was already
proved in the previous proposition. Consider the
interconnection of two systems. In such case

dH

dt
=

dH1

dt
+

dH2

dt
= ∂qH1∂ψH0 − ∂ϕH1∂qH2 + ∂qH1∂ϕH0

− ∂ϕH1∂qH2 = ∂qH1∂ϕH0 − ∂ϕH1∂qH2

which reduces trivially to yT u. Assume it is true
for i = 1 · · ·n such that at i = m the total energy
is

dH

dt
= ∂qHi∂ϕHi−1 − ∂ϕHi∂qHi+1

Since there is a cancellation of any individual
intermediate product, it can be seen that the only
residual terms are those at the boundary, result-
ing in the previous equation, which concludes the
proof. !
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Fig. 5. A block of distributed approximation of
DPHS in B form

Consider the following alternative discrete ap-
proximation d(δϕH) ≈ ∆−1(δϕHi − δϕHi−1) and
d(δqH) ≈ ∆−1(δqHi+1 − δqHi) in the structure
(3). Then an alternative form follows
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and represented in collocated form in figure 5.
Since both lumped blocks A and B are based on
a first-order discretization algorithms, one may
conceive the use of a higher order approximation
in order to increase the precision or the resulting
models. Consider finally the following discrete ap-
proximation d(δϕH) ≈ (2∆)−1(δϕHi+1 − δϕHi−1)
and d(δqH) ≈ (2∆)−1(δqHi+1 − δqHi−1) in the
structure (3). For a Hamiltonian defined as Hi =
Hi/2∆i one such block is presented as follows
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which is based on a central difference approxima-
tion and provides a second order error in approx-
imating the derivative. Higher difference approx-
imation could be probably conceived, but in the
end there does not seem to be of much benefit.

4. SIMULATION RESULTS AND
COMPARISONS

The efficiency of the method is tested in the prob-
lem posed and described in (Golo et al., 2003)
which consists of an ideal transmission line ter-
minated by a lumped resistor, whose parameters
C(x) and L(x) are varying along its position x
in the transmission line, in the interval [0, $]. As-
suming initial conditions zero, an input voltage
source u = sin(t) in this form results in a voltage
distribution in the form v(x, t) = sin(t − ln(x +
1)) which results in a voltage at the terminal of
the resistor in the waveform v($, t) = sin(t − 1).
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Fig. 6. Output voltage and absolute error.

This last waveform is to be simulated in order
to assert the precision of the lumping method. In
their test (Golo et al., 2003), a fixed and a variable
grid are used with the Runge-Kutta 4 integration
technique and step size of 0.01 s. For our method
two adequate lumping methods are available, the
method A presented in the previous section, and
the method C based on central differences. This
method of discretization has an error of second-
order and therefore it could be expected to per-
form possibly better than A which is constructed
from a combination of backward and forward dif-
ferences. The figure 6 shows the different waveform
obtained by the methods. While it can be seen
that actually method A performs better than C,
both results are still far from the exact solution
as can be seen on the plots of their error. Even
though method C was used for n = 6, (since

Table 1. Specifications of the transmis-
sion line

Variable Value Units

Total length ! e − 1 m
Spatial position x x ∈ [0, !] m
Sp. Capacitance C 1/(x + 1) H/m
Sp. Inductance L 1/(x + 1) F/m
Lumped Resistance R 1 Ω
Number of elements n 5
Fixed Grid interval ∆ !/n m

Var. Grid interval ∆i e
i

n − e
i−1

n m

Table 2. Comparison of simulation re-
sults

Method n Peak error Nom. error

A 5 0.07291 0.0673
A 7 0.05554 0.04943
A 10 0.04169 0.03534
A 113 0.00666 0.0033
A 500 0.002348 0.0008
C 5 0.585 0.585
C 6 0.0784 0.0772
C 10 0.0535 0.0525
C 114 0.00932 0.00474
C 166 0.00721 0.0033

Exp. 1 ∗ 5 −0.055, 0.051 0.0033
Exp. 2 ∗ 5 −0.055, 0.051 0.004138
Exp. 3 ∗ 5 −0.055, 0.051 0.00662
Exp. 4 ∗ 5 −0.06, 0.055 0.00828
Exp. 1 ∗ 10 ? 0.00084

∗ From simulation experiments in (Golo et al., 2003).

its response is only comparably good for an even
numbers of elements), its error is still higher than
that obtained by the A-method.
As can be seen in Table 2, three parameters were
used in order to assert on the precision and per-
formance of the method. Since the number of
port-Hamiltonian blocks is typically associated to
the precision, after considering the number of ele-
ments n, two parameters of error were considered:
the peak error and the steady state (or nominal)
error. While the first one appears typically at the
simulations around t = 1, the second parameter
was considered as the extreme value (higher or
lower) of the absolute error during the rest of the
simulation (say, after t = 2). Notice that in the
curves plotted in our example, fig. 6, the approx-
imation of the time delay is performed smoothly,
while in the figures presented in (Golo et al., 2003)
the error swings with a peak error relatively larger
than the nominal error. Nevertheless in all their
simulations its peak error is still smaller than
the peak error of ours for the same number of
elements. A slight increase of the order of our
methods (n = 7 for A and n = 10 for C) seems to
be helpful in order to obtain the same peak error.
That is not the case for their remarkable nominal
error at experiment 1, n = 5. In order to reach
the same nominal error, we increase the number
of our blocks. The resulting simulation required
the order of n = 113 for method A and n = 166
for method C. Finally while trying to attain their
nominal error of Exp. 1, n = 10, a chain of up to
500 elements were needed in our simulations.

5. CONCLUSIONS

In this paper, several improvements of the pro-
cedure of discretization of Stokes-Dirac structures
presented in (Clemente-Gallardo et al., 2002) were
shown to be necessary in order to preserve the
port-Hamiltonian structure of the system. Addi-
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tional modifications were necessary in order to
ensure the integrability by quadratures of the re-
sulting system. The Stokes-Dirac approximation
procedure,– which is mainly based on a finite
difference philosophy–, was shown to be useful
for the dynamic simulation of a one-dimensional
electromagnetic transmission line and compar-
isons with another approach (Golo et al., 2003),–
mainly based on a finite element philosophy–, were
provided. The use of finite differences provides
quite direct and simple structures, which are prone
for further analysis with control purposes. But
simplicity seems to bear the price of precision.
The simulation results presented in this note show
that in all cases they provide a higher peak and
nominal errors compared with the lumping pro-
cedures presented in (Golo et al., 2003). Despite
having a higher total error in contrast to the charts
presented in (Golo et al., 2003), in our results
the transient peak error at t = 1 tends to be
almost comparable to its associated nominal error,
resulting in smoother transitions. According to
(Golo et al., 2003), the accuracy of their method is
conjectured to be of the order of 1/n2, while in our
procedure it can be asserted to follow an exponen-
tial law as seen in the chart of figure 7. In (Golo
et al., 2003) the case of a non-uniform grid was
also considered. Since our approach assumes the
existence of a uniform grid of points, and the finite
difference method assumes uniformity of the grid,
its application on a nonuniform grid destroys any
precision that the method may have. There ex-
ists though finite difference methods especially de-
signed for non-uniform grids. Such methods may
provide some improved performance but certainly
such result will not be better than those obtained
with a fixed grid.
Nevertheless for simple applications like the one
presented, the margins of error provided by this
method can be considered acceptable with a still
low computational effort. The simplicity of the
method provides a way to analyze its stability and

storage properties based on its constitutive blocks.
These advantages are attractive for the model
reduction procedures like the one presented in
(Lopezlena et al., 2003). It could be argued that
the search of reduction methods for distributed
systems is unnecessary with the availability of
procedures like (Golo et al., 2003) or the one pre-
sented here, which provide accurate operational
low-order models from the model equations. This
may be especially true for conservative systems.
The justification of the additional use of reduction
procedures can be found on the need of having a
deeper understanding of such methods in terms
of control properties like stability, controllability,
observability, passivity or dissipativity inherited
to the reduced system.
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