220 research outputs found

    A Hamiltonian Analogue of the Meandering Transition

    Full text link

    Effects of kinked linear defects on planar flux line arrays

    Full text link
    In the hard core limit, interacting vortices in planar type II superconductors can be modeled as non-interacting one dimensional fermions propagating in imaginary time. We use this analogy to derive analytical expressions for the probability density and imaginary current of vortex lines interacting with an isolated bent line defect and to understand the pinning properties of such systems. When there is an abrupt change of the direction of the pinning defect, we find a sinusoidal modulation of the vortex density in directions both parallel and perpendicular to the defect.Comment: 13 figure

    Approaching ultra-strong coupling in Transmon circuit-QED using a high-impedance resonator

    Full text link
    In this experiment, we couple a superconducting Transmon qubit to a high-impedance 645 Ω645\ \Omega microwave resonator. Doing so leads to a large qubit-resonator coupling rate gg, measured through a large vacuum Rabi splitting of 2g9102g\simeq 910 MHz. The coupling is a significant fraction of the qubit and resonator oscillation frequencies ω\omega, placing our system close to the ultra-strong coupling regime (gˉ=g/ω=0.071\bar{g}=g/\omega=0.071 on resonance). Combining this setup with a vacuum-gap Transmon architecture shows the potential of reaching deep into the ultra-strong coupling gˉ0.45\bar{g} \sim 0.45 with Transmon qubits

    Interfaces in driven Ising models: shear enhances confinement

    Full text link
    We use a phase-separated driven two-dimensional Ising lattice gas to study fluid interfaces exposed to shear flow parallel to the interface. The interface is stabilized by two parallel walls with opposing surface fields and a driving field parallel to the walls is applied which (i) either acts locally at the walls or (ii) varies linearly with distance across the strip. Using computer simulations with Kawasaki dynamics, we find that the system reaches a steady state in which the magnetisation profile is the same as that in equilibrium, but with a rescaled length implying a reduction of the interfacial width. An analogous effect was recently observed in sheared phase-separated colloidal dispersions. Pair correlation functions along the interface decay more rapidly with distance under drive than in equilibrium and for cases of weak drive can be rescaled to the equilibrium result.Comment: 4 pages, 3 figures Text modified, added Fig. 3b. To appear in Phys. Rev. Letter

    The Destruction of Tori in Volume-Preserving Maps

    Full text link
    Invariant tori are prominent features of symplectic and volume preserving maps. From the point of view of chaotic transport the most relevant tori are those that are barriers, and thus have codimension one. For an nn-dimensional volume-preserving map, such tori are prevalent when the map is nearly "integrable," in the sense of having one action and n1n-1 angle variables. As the map is perturbed, numerical studies show that the originally connected image of the frequency map acquires gaps due to resonances and domains of nonconvergence due to chaos. We present examples of a three-dimensional, generalized standard map for which there is a critical perturbation size, ϵc\epsilon_c, above which there are no tori. Numerical investigations to find the "last invariant torus" reveal some similarities to the behavior found by Greene near a critical invariant circle for area preserving maps: the crossing time through the newly destroyed torus appears to have a power law singularity at ϵc\epsilon_c, and the local phase space near the critical torus contains many high-order resonances.Comment: laTeX, 16 figure

    Control of charge transports in semiconductor superlattices using an acoustic wave

    Get PDF
    In this work, we describe the electron dynamics in semiconductor superlattices (SLs) when driven by an acoustic wave. First, we discuss the physical features and structure of SLs. Then we describe semiclassical transport in periodic potential driven by a plane wave, and the dynamics of ultracold atoms in the periodic potentials. Secondly, we explore single electron dynamics in superlattices driven by an acoustic wave, then present and analyse the types of electron trajectories according to the strength of the acoustic wave amplitude. The two dynamical regimes obtained depend on the wave amplitude strength and the initial position of electrons in the acoustic wave. The frequency range of the oscillation produced can be as large as terahertz. Lastly, we discuss the effect of applying a static electric field to the acoustically driven SLs. When the acoustic wave and electric fields were applied together along the axis of SLs, we obtained a higher peak drift velocity than when the acoustic wave or electric fields were applied alone. We use the phase portrait to explain the electron trajectory and the path of the electrons. The global state associated with the drastic change in the drift velocity of the electrons depends on the varied parameters in the dynamical systems. We numerically calculate the electron trajectories while we varied the strength of electric field and wave amplitude to investigate the role of interactions in the system. When very high electric field and very high wave amplitude are applied together along the axis of SL, global catastrophe occurs. This is the discontinuous bifurcation in dynamical system
    corecore