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Charged domain walls as quantum strings on a lattice
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Recently, experimental evidence has been accumulating that the doped holes in tfig tigiate super-
conductors form domain walls separating antiferromagnetic domains. These so-called stripes are linelike ob-
jects and if these persist in the superconducting state, highuperconductivity is related to a quantum string
liquid. In this paper the problem of a single quantum meandering string on a lattice is considered. A kink model
is introduced for the string dynamics, which allows us to analyze lattice commensuration aspects. Building on
earlier work by den Nijs and Rommelfehys. Rev. B40, 4709(1989], this lattice string model can be related
both to restricted solid-on-solid models, describing the world-sheet of the string in Euclidean space time, and
to one-dimensional quantum spin chains. At zero temperature a strong tendency towards orientational order is
found and the remaining directed string problem can be treated in detail. Quantum delocalized strings are found
whose long-wavelength wandering fluctuation is described by free field theory and it is argued that the fact that
the critical phase of delocalized lattice strings corresponds to a free Gaussian theory is a very general conse-
guence of the presence of a lattice. In addition, the mapping on the surface problem is exploited to show the
existence of different types of localized string phases; some of these are characterized by a proliferation of
kinks, but the kink flavors are condensed so that the long-wavelength fluctuations of these strings are sup-
pressed. The simplest phase of this kind is equivalent to the incompreds$édtiane phase of thes=1 spin
chain and corresponds to a bond centered string: The average string position is centered on bonds. We also find
localized phases of this type that take arbitrary orientations relative to the underlying lattice. The possible
relevance of these lattice strings for the stripes in cuprates is discyS£H®63-182608)05132-1

. INTRODUCTION diagonal sector of, e.g?He,’° it can be imagined that the
charge and spin sectors of this quantum stripe problem have
A series of experimental developments has changed then interesting internal structure. Because charged domain
perspective on the problem of high- superconductivity walls are linelike objects, the charge sector might be looked
drastically. As long as the doping level is not too high, elec-at as aquantum string liquid***2Little is known in general
trons bind at temperatures well aboVg (Ref. 1) and the about such problems and a theoretical analysis is needed. In
superconducting state appears to be in tight competition witlerder to address the problem of many interacting strings, it is
some collective insulating stateThere exists compelling first necessary to find out the physics of a single string or
evidence that this insulating state corresponds with a differcharged domain wall in isolation. A string is an extended
ent type of electron crystal, characterized by both spin and
charge condensation: the stripe ph&seThis phase consists

of a regular array otharged magnetic domain wall§he @ 4444 ® 444
holes introduced by doping form linelike textures that are at -0-0-0-0- vorty
the same time antiphase boundaries, separating antiferromag- BB = - g/o‘
netic spin domains; see Fig(dl. This stripe phase is ob- RN N t¥xot
served in systems where the insulating state is stabilized by vEbty
Zn doping® or by the so-called low temperature tetragonal
(LTT) collective pinning potential* R
Inelastic neutron scattering data reveal that strong dy- Al S

namical stripe correlations persist in the metallic and super-
conducting regime$®-8 Although no static stripe order is
present, the magnetic fluctuations as measured by inelastic
neutron scattering should reflect stripe correlations. As was
shown very recently, the magnetic modulation wave vector
of the static stripe phase seems identical to that of the dy-
namical spin fluctuations in the metal and superconductor for
various doping level8.In addition, it was argued that the
anomalous normal state magnetic dynamics can be explained F|G. 1. (a) Charged domain wall separating spin domains of
in terms of domain wall meandering dynamics. opposite antiferromagnetic order parameid). Breaking up do-

The exciting possibility arises that the zero-temperaturénain walls causes spin frustration, while) “kinks” do not. (d)
superconducting state is at the same time a relatively mildlKinks can gain kinetic energy by moving along the domain wa)l.
fluctuating quantum stripe fluid. Unlike the rather featurelessTypical rough wall.(f) Example of a directed string.
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object, carrying a nontrivial collective dynamics: In con- describe a free string, while the last term is responsible for
trast to particlelike problems, the elementary constituent ofhe lattice commensuration effects: Every time the string is
the string liquid poses already a serious problem. The physdisplaced by a lattice constant, the potential energy is at a
ics of quantum strings is a rich subject. This is most easilyminimum. This model is well understodd. When the
discussed in terms of path integrals. It 1)-dimensional  strength of the nonlinear interaction exceeds a critical value
Euclidean space time, a particle corresponds to a world lingg> g ), the interaction term is relevant and the string local-
and so the quantum string corresponds to a “world sheet.jzes The excitation spectrum develops a gap and it is char-
The statistical physics of membranes is a rich subject, whichcierized by well-defined kink and antikink excitations.
is still under active |nves_t|gat|ojr?’._ . _ . When (g<g,.) the sine term is irrelevant and although the
_The debate on the microscopic origin of the stripe instaynamics is at least initially kinklike on microscopic scales,
bility is far from closed:*™*~** Nevertheless, in this paper o string behaves as a free string at long wavelength. The
we will attempt to isolate some characten;ucs that might ,b‘?atter is the most elementary of all quantum strings. It fol-
common to all present proposals for the microscopy to arrivgsys immediately that the relative transversal displacement
at some general considerations regarding the quantum meagy (o points separated by an arclendtialong the string
dering dynamics. From those we will abstract a m'”'maldiverges ad[z(1)—z(0)]2)~In 1.2 The string as a whole is
model for the string dynamics. The phase diagram of thisperefore delocalized and this is the simplest example of a
model can be mapped out completely and turns out to beitical” string.
remarkably rich. o A central result of this paper is that Ed..1) is, at least in
These characteristic features are the followifig.It IS  inciple, not fully representative for the present lattice prob-
assumed that the charge carriers are confined to domajay, More precisely, starting from a more complete micro-
walls. This is the major limitation of the present work and it scopic kink dynamics modéBec. 1), we find a richer infra-
is hoped that at least some general characteristics of thigy fixed-point structure. The phase diagram incorporates
strong-coupling regime survive in the likely less strongly phases associated with the quantum sine-Gordon model fixed
coupled regime where nature appears to(bgIn addition,  nqint put also includes additional phases that are intimately
we assume that domain walls are not broken up, as sketche@nnected with the effects of the lattice and of the nearest-
in Fig. 1(b), as this would lead to strong spin frustratidii.)  pejghpor interactions between the holes. In Sec. Il we derive
Most importantly, we assume a dominant role of lattice cOmy " hath.integral representation of our model. It turns out that
mensuration on the scale of the lattice constant. Configurgne \orld sheet of this string in Euclidean space time corre-
tion space is built from strings that consist of “holes” on the sponds with two coupled restricted solid-on-so{RSOS
sites of an underlying lattice. An example of such a stringg,;iface25 each of which describes the motion of the string
configuration is sketched in Fig(d. This automatically im- j ejther thex or y direction on the two-dimensional lattice.
plies that the microscopic dynamics is thakaiksalong the The bare model is invariant under rotations of the string in
strings[Figs. 1c) and Xd)] and this leads to major simplifi- gn506  As discussed in Sec. IV, we find indications for a
cations with regard to the long-wavelength behavior of theyeneric zero-temperature spontaneous symmetry breaking:
string as a whole. Note that there is ample evidence for the,. physical choices of parameters, the invariance under
importance of lattice commensuration: the scaling of the inymmetry operations of the lattice is broken. Even when the
commensurability with hole densityfor x<g,” the special  gying is critical(delocalized in spageit acquires a sense of
instability atx=3,* and the LTT pinning mechanisftiv) It girection On average, the trajectories corresponding to the
is assumed that the strings do not carry other low-lying in-gying configurations move always, forward in one direction,
ternal degrees of freedom, apart from the shape fluctuationghile the string might delocalize in the other direction; see
Phygcglly this means that localized strln%s_ Wpuld be eIecFig_ 1(f). This involves an order-out-of-disorder phenom-
tronic insulators. The data of Yamada al” indicate that  engn, which is relatively easy to understand intuitively.
this might well be the case at dopings<g (the linear de-  Quantum mechanics effectively enhances the fluctuation di-
pendence of the incommensurability anindicates an on- mension by stretching out the string into a world sheet in the
domain wall charge commensuratjobut it is definitely vio-  timewise direction and the enhancement of the effective di-
lated at_larger dopings where the strings should bgnensjon reduces the effect of fluctuations. Thermal fluctua-
metallic>"** Work is in progress on fluctuating metallic tjons destroy this directedness, but they do so more effec-
strings, where we find indications that the collective St“”gtively when the string is less quantum mechanical.

dynamics is quite similar to what is presented here for insu- This directedness simplifies the remaining problem con-

. . 3
lating strings? _ _ . siderably. We will show that the directed string problem is
Given these requwemegés, one would like to consider &qyivalent to a well-known problem in surface statistical
quantum sine-Gordon modgffor the string dynamics, physics: Its world sheet is equivalent to a single RSOS sur-

face. At the same time, this model is easily shown to be
equivalent to a generalizedXZ quantum spin-chain prob-
lem. The particular model we study is actually equivalent to
the S=1 spin chain, which has been studied in great detail.
The RSOS surface problem and the quantum spin-chain
Here z(l) is the transversal displacement at pdimin the  problem are therefore also related to each other. This equiva-
string, I1(1) is its conjugate momentum defined through thelence was actually at the center of the seminal work of den
commutation relatiof IT(1),z(1")]=i8(I—1"), andcis the = Nijs and Rommelse on the hidden order in Haldane spin
transversal sound velocity. The first two terms in EfJ) chains?® From our perspective, the introduction of the physi-
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cally appealing quantum string model as an intermediatelirection and assuming periodic boundary conditions, this
model that connects both with the spin chain and the RSOStraight string can be positioned M, ways on the lattice.
surfaces also helps to appreciate the depth of the work of deBbviously, such a string will delocalize bgpcal quantum
Nijs and Rommelsé® moves: The particles tunnel from site to sif¢°Moving the

The bulk of this papefSecs. V-VII) is devoted to an whole string one position in thg direction involves an in-
exhaustive treatment of this directed string model. Soméinity of local moves in the thermodynamic limit and the
powerful statistical physics notions apply directly to the different classical strings occupy dynamically disconnected
present model and these allow us to arrive at a completeegions of Hilbert space.
description of the phase diagram of the quantum string. As This is analogous to what is found in one-dimensional
was mentioned already in Ref. 11, this phase diagram is susystems with a discrete order paraméfem the case of,
prisingly rich: There are in total ten distinct phases. In thee.g., polyacetylene the order parameter is ofZhdind: The
context of the quantum spin-chain/RSOS surfaces, alreadyond order wave can be either---A-B-A-B---- or
six of those were previously identified. However, viewing ----B-A-B-A---- (A is a single bond an& a double bony
this problem from the perspective of the quantum string, itwhile a single translation over the lattice constant transforms
becomes natural to consider a larger number of potentiallyhe first state of the staggered order parameter into the
relevant operators and the other four phases become obviousscond kind of state. This is a discrete operation because

Compared to strings described by Hg.1), we find a the lattice forces the bond order to localize on the center
much richer behavior, but this is limited to the regime whereof the bonds. Such an order parameter structure implies
lattice commensuration dominates over the kinetic energy sthe existence of topological defects, which are Ising
that the string as a whole is localized. We use “localized” domain walls: - ---A-B-A-B-B-A-B-A---- (“kink” ) and
here in the sense that the transversal string fluctuations of.-B-A-B-A-A-B-A-B---- (“antikink” ). When they occur
two widely separated points remain finitgz(1) —z(0)]1?)  in isolated form, these are also genuine building blocks for
—const ad — . Besides the different directions the purely the quantum dynamics because although their energy is fi-
classical strings can take in the lattice, we also find a numbaetite, it involves an infinity of local moves to get rid of them
of localized strings that have a highly nontrivial internal (topological stability. In the particular problem of polya-
structure: the “disordered flat” strings, characterized by acytelene, these kinks only proliferate under dopfogarged
proliferation of kinks, but where the kink flavors condense sosolitong. Although topological quantum numbers are no
that the string as a whole remains localized. On the othelonger strictly obeyed when the density of topological de-
hand, the quantum-delocalizéctitical) strings are all of the fects is finite, it has been shown in a number of cases that
free-field variety and as we will argue in Sec. IX, this mightthey nevertheless remain genuine ultraviolet quantities as
be a very general consequence of the presence of a lattiteng as they do not overlap too strongiy*?
cutoff. If we consider a(locally) directed piece of string, the

string is analogous, except that the symmetry is Eqp/y\z On

the torus, a half infinity of the string is localized at the
position ny, and the other half can be displaced rip+1,
Whatever one thinks about the microscopy of the stripesn,+2,...,n,— 1. Hence, in total there afé¢,— 1 distinct kink
in the end any theory will end up considering the chargedexcitations with the topological invariants corresponding to
domain walls as a collection of particles bound to form athe net displacement of the half string in tlgedirection.
connected trajectory, or such a model will be an importanBecause the kink operators can occur in many flavors, this
ingredient of it. Moreover, these trajectories will communi- problem is therefore in principle richer than that of one-
cate with the crystal lattice because the electrons from whicklimensional solids.
the strings are built do so as well. This fact alone puts some Clearly, kinks with different flavors have to be dynami-
strong constraints on the collective dynamics of the chargedally inequivalent. Since there is apparently a reason for the
domain walls. particles to form connected trajectories, it should be more
Let us consider the string configuration space. On the latfavorable to create a kink corresponding to a small displace-
tice this will appear as a collection of particles on lattice ment than one corresponding to a large jump. Here we will
sites, while every particle is connected to two other particlesocus on the simplest possibility: Only kinks occur corre-
via links connecting pairs of sites. The precise microscopisponding to a displacement ohe lattice constant in the
identity of these particles is unimportant: They might bedirection. This restriction is physically motivated by the fact
single holes(filled charged domain waft4!® as in the that the string is thought to separate two antiferromagneti-
nickelated’), an electron-hole paithe charge-density waves cally ordered states; so, if the displacement of successive
of Nayak and Wilczel or Zaanen and O&9), or a piece of  holes would be larger than one lattice constant, the antifer-
metallic® or even superconductifdomain wall. All that romagnetic ordering would be strongly suppressed: After all,
matters is that these entities have a preferred position witthis is the very reason that holes tend to line up in stripes. In
regard to the underlying latticgsite orderetf or bond addition, we will specialize on the “neutral” string. It will
ordered®. Quite generally, curvature will cost potential en- be assumed that the string is characterized by a gap in its
ergy and a classical string will therefore be straight, orientedtharge and spin excitation spectrum, so that the strings with
along one of the high-symmetry directions of the lattice.kinks contain the same number of particles as the classical
Without loss of generality, it can be assumed that the latticeeference configurations. The model we will consider might
is a square lattice while the string lies along tig0) (x) apply literally to the charge commensurate stripes of the
direction. Denoting adl, the number of lattice sites in the nickelate?’ In the cuprates, it might be better to consider the

IIl. MODEL: THE MEANDERING LATTICE STRING
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@) projection operatoP(r . ;—r;), which restricts the motion

%Ko o-g of holel to the space of string configurations,
0/0¥ od 000

(b) o The string is quantized by introducing conjugate njon;lenta
goo od al, [, Th]=18| m0s 5, Wherea=x ory. A term "™
t t acts like a ladder operator and causes particte hop a

FIG. 2. (a) Set of local configurations and their classical ener-dIStanCen in the x direction,

gies. (b) Two allowed hopping processes. We taket’. einﬁf|xl>= %, +n). (2.3

stripes as one-dimensional metals or superconductors, charherefore, the kinetic-energy term becomes

acterized by massless internal excitations. In these cases, it

remains to be demonstrated that eventually the transversal

string fluctuations decouple from the internal excitations for HQZZT% Plr+1— 1) Pgdri—r—g)cog ).

the present model to be of relevance. ’ 2.4
Given these considerations, we propose the following

model forquantum lattice stringsThe string configurations Note that the particles, even undey,, keep their order and

are completely specified by the positions of the particlegherefore can be labeled Hy Thus the fermion nature of

(holes r,=(x,,y;) on the two-dimensiona2D) square lat- holes in realistic domain walls plays no role at our level of

tice. Two successive particlésindl +1 can only be nearest approximation and quantum statistics becomes irrelevant.

or next-nearest neighbors, fm.;—r|=1 or v2. We will The above model is minimal since it contains only

call these connections between successive partiadks. — nearest-neighbor hopping and the simplest string tension

Two classes of links, those of length 1 and those of lengtfierms. One natural extension would be to take the two hop-

V2, exist. Taking the order of the particles into account, theré?ing amplitudesZ in Fig. 2(b) to be different since there is

are eight distinct links. The string Hilbert space is spannedl© microscopic reason why they should be identical. In the

by all real-space configurations satisfying the above strindollowing sections we will discuss the zero-temperature

constraint. properties of the above string model. The self-avoidance
We consider local discretized string-tension interactiongerm is a complicated nonlocal operator. However, we will

between nearest and next-nearest holes in the chiin (find that, surprisingly, the kinetic energy favocsiented
=—fH) walls without loops. Therefore, this term turns out to be un-

important for the present zero-temperature discussion.

Hor= 2 | KX+ 1—%|—1)8(|y1c1—yi|— 1) IIl. RELATION TO RSOS-LIKE SURFACE MODELS
|

The problem introduced in the preceding section can be
E . . reformulated as the classical problem of a two-dimensional
2 Lioe=x-al =D 8y =yi-al =) surface (worldsheet embedded in (2 1)-dimensional
space, using the Suzuki-Trotter mapping. The model can be
seen as two coupled RSOS surfaces. The solid-on-solid mod-
+M,’Em o(N =) (2.2 els are classical models for surface roughedmghey de-
scribe stacks of atoms of integer height in two dimensions,
The various local configurations and interaction energies ar@ith an interaction between adjacent stacks depending on the
shown in Fig. 2. The last term is an echuded-volume-typehelght differences. With this construction overhangs are ex-
interaction: The physically relevant limit il —c, so that cluded. In the RSOS models these height differences are lim-

holes cannot occupy the same site. The interadtiatistin-  ited to be smaller or equal to some integern the present
guishes horizontal from diagonal links adigj=£;; is a set  €@se, the two RSOS models parametrize the motion of the
of two-link interactions, which one can think of as micro- World sheet in the spatiat andy directions, respectively,
scopic curvature terms. Furthermore, we exclude strings witH/hile the (strong couplings between the two takes care of
a physically unrealistic extreme curvature by takidg, the integrity of the world sheet as a whole. _

—. Note also that configurations that would give a contri- N the Suzuki-Trotte¥ or Feynman path-integral picture
bution Ly, to the energy are automatically excluded in the©n€ writes the finite-temperature partition function as an in-
limit M—c, which we will take throughout this paper. finite product over infinitesimal imaginary time slices. In this
There are five local configurations, distinguished by four palimit the commutators between the various terms in the
rameters. Therefore, we can choddg=0 and the string is Hamiltonian vanish like 1i°, wheren is the number of Trot-

determined by the parametes L1, Lq1,, andL,,; see Fig. ter slices, and the partition function can be written as
2. ; Hei/InaHg /nyn
= Cl
The second term ifi{ is a quantum term that allows the 2 r!'f:o Tr(e erem)™. @D
particles to hop to nearest-neighbor lattice positions. How-
ever, such hopping processes should not violate the strinfjo show the relation with RSOS models, we will cast the
constraint. This constraint can be enforced by means of &ansfer matrice3 in the form of a two-dimensional classical

2
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effective Hamiltonian. This implies writing the matrix ele- coordinate of holé at the time slicé is now identified as the
ments of thel matrix between configuratiods,} in terms of  height of a RSOS column positioned atk) in the square
an effective classical energy depending on the world-shedattice. In a similar way they coordinates define a second
positions{r, ,}, wherek is the imaginary time index running RSOS surface, coupled strongly to the first by the above
from 1 to n with periodic boundary conditions. Schemati- classical interactions. Since the stefig can at most be
cally, equal to 1, the RSOS sheets are restricted to height differ-
ences 0+1 between neighboring columns. The classical
lim ({r 1 €M |{r }ye ) —eMerfheliied) (3.2 model as defined above is not unique. While the above map-
n—= ping allows us to exploit the connection to other models
Since H¢, is diagonal in the real-space string basis, it ismost efficiently, for the numerical Monte Carlo calculations

already in the required form a different decomposition is used, which allows for a more
efficient approach to the time continuum limit. This is further
lim ({r },|eMHei e@MHedih({r 1|, (3.3  discussed in Appendix A.
n—o
For Hy a few more steps are needed, IV. DIRECTEDNESS AS SPONTANEOUS SYMMETRY
BREAKING

{rihde™™l{r byt 1) o -
We are not aware of any similarity of the statistical phys-

_ i i ﬂ m ics problem of the preceding section to any existing model.
(U “om |\ n b RSOS problems are well understood, but it should be real-
ized that in the present model the two RSOS problems are

Ha 1 strongly coupled, defining a different dynamical problem.

=\ {1+ i) +O[ 12 When we studied this problem with the quantum Monte

Carlo method, we found a generic zero-temperature symme-

try breaking: Although the string can be quantum delocal-
e k1~ k) ized, it picks spontaneously direction in space. This sym-

metry breaking happens always in the part of parameter

Il 11

a=X,y

space that is of physical relevance.
+ o 8l - 1)) Let us first discuss the simulations. In principle, the prop-
erty of directedness is global quantity. Consider 2D space
_ S inl 2|1 -1 with open boundary conditions. Directedness means that if
R4 Ny L0 k2= X00d = 1) the string starts at, say, the left boundary it will always have

its end point at the right boundary and it will never reach the
top or bottom boundaries. Although in our specific model it
appears possible to rephrase this global property in terms of
a local order parameter, a quantitative measure of directed-
The expression in the last line is of course only valid forpess can be constructed that is more general. Although awk-
states in which they's in successive time slices differ by at \ard for analytical purposes, this measure is easily evaluated
most one unit. Combining these two energy contributionspnymerically and it illustrates effectively the phenomenon.
we arrive at the classical problem Every continuous string configuraticican be written as a
L oy parametrized curve in two dimensiohs(t),y(t)], wheret
Z=lim Tr e'teff, ; . .
e could, for instance, be the discrete label of the successive
(3.5  particles along the string. When the string configuration can
K be parametrized by aingle-valuedfunction x(y) or y(x),
n

+8(Y1 ke 1= Vil — DI (3.9

SUX 4 1= X1l = 1) (Y1 16— Y1kl — 1) we call the string configuration direct¢dee Fig. 1f)]. The
quantum string vacuum is a linear superposition of many
2 string configurations. When all configurations in the vacuum
+ 2 ﬁ S(|X 1 1k—X1— 14— 1) correspond to single-valued functiongy) or y(x), the
ij=0 N ' ’ string vacuum has a directedness order parameter. At zero

. temperature, the ground-state wave function of the string is
X3(|Yi+1k=Yi-1 1)

M
+F§ (X k= Xmk) (Y1 k= Ym) 1N

X\ yik

z) [Toy= 2 ao({x YD {x v, 4.1
n

where every state in string configuration spagex(y,}))
. corresponds to a trajectonfy(t),y(t)]. Consider first the
case of a continuous string. For every configuration, the total
This classical world sheet is constrained |9, ,—x,,|  String arclength is given by
<1 andy x+1—Yik/<1 and the interactions are aniso-

tropic. The above classical model can be viewed as two _ | moT—
coupled two-dimensional RSOS surfacgg andy, . Thex L({x ’y'})“’t_f ds—f dx+dy”. 4.2

XX k1= Xkl = D)+ 8(|Y1 k1= Vil = D]
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<

FIG. 3. lllustration of the way we measure the directedness of a
string (@) in the continuum case an) on the lattice. The heavy
solid parts of the string indicate the parts where the projection of the
string onto thex axis is single valued and for which the indicator
functiong,(x) equals 1.

X-Y point +—a—t
1 classical e

N

Consider now an indicator functiagy(x), which equals 1
when the string is single valued when projected ontoxhe
axis and zero otherwise, and analogously a functjgty),
which equals 1 when the curve is single valued when pro-
jected onto they axis and zero otherwisesee Fig. 3. The
total directed length in thg andy directions is then defined

as
dy\?
L({x -yl})dir,x:JdX gy(x) \/ 1+ d_x) ,

dx
@.

The measure of directedness in the string vacuum is then
defined as the larger &f};(0) andN;(0), where

LY} dir
7 (0)= 0 TR
N¢ir(0) {X%ﬁ |@®(x v L(X YD tot

and »=Xx,y. On the lattice, our measure of directedness is
the immediate analog of this definition, except that we just
count the number of directed bonds, irrespectively of
whether they are oriented dlagqnglly or horlzontally. By FIG. 4. Monte Carlo result for the directedness denkigy(T)
thermal averaging, the above definition of directedness den-.

L . L at four points.(a) The XY point (triangles where all curvature
sity is immediately extended to finite temperature, energies are zero. Two points are in the flat phase, Withl1.8

(crosses and K= 4.0 (filled squarey the rest of the curvature en-
Ngir(T):E e*ﬁ(En*Eo)Ngir(n), 4.5 ergies are zero(b) Inset: a point in the middle of the Gaussian
n phase with parameter§=0.5, £,;=—0.25, £,,=—1.0, andLq;
=0 (open circles The full line in both figures is the result for a
classical string where only flat bonds amd2 corners are present
with £,,=1.

4.3

L({x vyl})dir,y:f dy g(y) \V1+

(4.9

whereNJ,(n) is the directedness density of a string excita-
tion with energyE, .

Equation(4.5) can be straightforwardly calculated using
the quantum Monte Carlo method. A Monte Carlo snapshot
defines a stack of coupled string configurations along thétring world sheet(Trotter direction and then over the
imaginary-time directionthe Trotter direction We calcu- Monte Carlo measurements. The same is doneNg(n).
late N, for every Trotter slice by calculating the fraction of The larger ofNj;(n) and N, (n) is then the density of di-
the string length in this configuration that is single valued inrectedness at the given temperature.
the x direction. This is given by the number of bonds that In Fig. 4 we show the results of typical Monte Carlo
step forward in thex direction divided by the total number of calculations for the density of directedness as a function of
bonds in the string. We then average this quantity over théemperaturéNg;,(T). We have considered four points in the
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parameters space; as will be discussed later, these points are 2

representative for phases with interesting quantum fluctua- A
tions and serve to clarify our conclusion. In Figiajthe T
triangles(dashed lingis the result for the density of direct- =

edness at the point where all the classical curvature energies
are zero, i.e., corresponding to the pure quantum string. The
crossegdotted ling and the filled square@ash-dotted ling ¢

o[1]2]3]4[5]6]7 olofofofofo]o]o
are the results for points whetée= 1.8 and 4.0, respectively, 505000 0111231415617 0i0/0[0j0]0]0]O
and the rest of the classical curvature energies are zero. In One SRGEE ;’:;’:::f;’
terms of the phase diagram for the directed string problem of oft1]2]3]4]s]6]7 olo[ololo]o]o]0
Fig. 8 in Sec. VI and Table Ill in Sec. VII, the first point orilzisi4lsi6l7i |olojolojololojo
corresponds to a Gaussian strifgure quantum and the ! t
other two correspond to flat strings. The poitt 1.8 lies ¢

just inside the flat string phase Il where significant quantum T e N R T
fluctuations are still present, while the poitt=4.0 lies deep M of1]2[3]4]5]6]7 ol e[ 1ol 1] 1[1]2
inside the flat phase. The fourth curve in Figa}4 given by 3 1' ; ; : : g ; g 8 i g } ; %22
the full line, is the result of a Monte Carlo calculation for a ol 112314l s[6l7 ol Tl 2302
classical string 7=0) where only flat segments ang/2 — 1 —_— 1

corners are allowetho diagonal segmentsThis same clas- . . . ) .
FIG. 5. (a) Undirected string with two kinks propagating along

sical result is shown again in Fig.(®) together with the
g g tog ifferent directions. Note that the bend blocks the propagation of

result of the directedness density for a point in the middle of’. . ;
the Gaussian XY) phase (=05, Ly=—0.25, L, ﬁmks. (b) (1,0 string and the corresponding twooupled RSOS

. B . N o surfaces along the and they directions, respectively. The numbers
=—1.0, and’,;=0 corresponding ® =0 andJ=—0.5). correspond to the (y) position of holel at imaginary timet. (c)

A further Q'SCUSS'On ,Of the numerical resultg as well as th isordereddirectedstring and the corresponding ordered and dis-
interpretation of the finite temperature behavior can be foundjared RSOS surfaces.

in Appendix C.

Our general conclusion, based also on Monte Carlo stud- ] o ]
ies of the behavior in other phases summarized in Appendix A third possibility is that one of the RSOS subproblems is
C, is thatapart from some extreme classical limits, the gen_ordered, while the other is disordered. Dismissing crumpled
eral lattice string model at zero temperatures is a directedPhases(such as condensates of tifg;-type corners the
string. The phase diagram of the general string model intro©Nly possibility remaining is that one of the RSOS problems
duced in Sec. Il will essentially be the sanf@art from _step_s up alwayg, while thel other is dlsorde_red, as |Ilgstrated
special limitg as the corresponding phase diagram of thd" Fig. 5(c). This results in a disorderedirected string
simplified directed string model. In the remaining sections ofvacuum: The string steps always forward in, say,xtrec-
this paper we will therefore focus on the phases and pha§é3”’ while it freely fluctuates m_th«y dlrect_lon. Hence the
transitions of the directed string. local order parameter underlying the dl_rectedness corre-

Although we have not found yet a formally rigorous de- SPonds to the diagonal flat ordgrhase | of Fig. of at least
scription of the directedness symmetry breaking, we can ofone of the two RSOS surfaces describing the string.
fer a qualitative explanation at least on the level of our spe- What is the source of the condensation energy? As we
cific model. As we showed in Sec. Ill, the string problem can@lréady stated, violation of directedness implies tha2
be mapped on the problem of two strongly coupled classicdPends occur on the string, e_zquwalent to overhangs on the
RSOS surface problems. The symmetry breakingssifigle world shget. A; can be easily seen, these bends bloc_k the
RSOS surface will be discussed in great detail later, but foProPagation of links along the chain. Close to the bend itself
the present discussion it suffices to know that such a singlie particles in the chain cannot move as freely as in the rest
surface can be fully ordered, as well @mrtly) disordered.  ©f the chain. This effect is shown in Fig. 6. _
Because of the strong coupling, it would priori appear Therefore, the pr_esence_of these_bends increases the _kl-
questionable to discuss the dynamics of the full model offetic energy associated with the kink propagation and it
Sec. Il in terms of the dynamics of the two separate RSOgnakes no difference whether the bend consists of a single
subproblems. However, in the context of directedness it i§7/2 corner or twom/4 corners. This kinetic-energy cost dis-
quite convenient to do so. When both tkeandy RSOS
problems would be fully disordered, it is easy to see that the
string vacuum would be undirected. This is illustrated in Fig.

5(a): Two kinks moving the string from &1,0) to a (0,1) -
direction in the lattice correspond to one kink that can move -

freely in the horizontal part of the string and one kink that

can move freely in the vertical part of the string. On the other

hand, when both RSOS problems are ordered, the string is ---e
also ordered. For instance, ttig0) string can be thought of O_O\)'_B{)_O_O_O_O G '\ > o0

as a combination of a RSOS surface that always steps up-

ward in thex direction and one that is horizontal in tlye FIG. 6. lllustration of the fact that a bend blocks the propagation
direction[Fig. 5b)]. of links along the string. Note that holes 1 and 2 cannot move.
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appears when one of the two RSOS surfaces straightens and )

this drives the directedness condensation. It might be called a O/}O\C\)_C/q Directed
guantum order-out-of-disorder mechanism and it is sus- o) String
pected that a theory of the Hartree mean-field type can be +0--0 + - Spin 1

formulated catching the phenomenon on a more quantitative

level (with the kinks playing the role of electrons and the FIG. 7. Relation between spin 1 and directed strirgfs; y,, 1

second surface offering the potentjal§o emphasize the -vy,.

order-out-of-disorder aspect, it is easy to see that in the clas-

sical case,7=0, in many regions of parameter space thechain. Apart from this guider degree of freedom the directed

problem becomes that of a self-avoiding walk on a lattice instring problem reduces to a one-dimensional quantum prob-

the limit T—0, which does not exhibit the directedness or-lem with three flavors.

der. From Eq.(3.5 one directly deduces the Hamiltonian of
The directedness phenomenon might be viewed from #he string directed along,

more general perspective. At zero temperature, the quantum

string is equivalent to a thermally fluctuating sheet in three oy _z

dimensions. Now it is well known from studies of classical eff ™ £

interfaced* that while a one-dimensional classical interface

in two dimensions does not stay directed due to the strong 12

fluctuations, for a two-dimensional sheet the entropic fluc- + n S(IYi+ 1k Y11 = 1)

tuations are so small that interfaces can stay macroscopically

flat in the presence of a latti®®3® For this reason, the

roughening transition in a three-dimensional Ising model is

properly described b¥i.e., is in the same universality class

a9 a solid-on-solid model in which overhangs are

neglected>>® In other words, even if microscopic configu-

rations with overhangs are allowed, a classical interface on a

lattice in three dimensions can stay macroscopically flat oft IS clear that the directedness simplifies the model consid-
“directed,” in agreement with the findings from our specific erable. The directed version can not self-intersect and the

model. Obviously, directedness order is rather fragileaft- excluded-volume constraint. is sqtisfied automatically. Fur-
not existat any finite temperature. When temperature is fi-"érmore, they, type of configurations are not allowed, thus
nite, the width of the world sheet in the imaginary time di- the directed model is specified by three para_meters a_nd the
rection becomes finite as well and the long-wavelengtf€mperature T=1). Because of the preceding consider-

fluctuations of the string becomes a 1D statistical problem@tions, Eq.(5.1) corresponds to a (£ 1)-dimensional prob-
which cannot be directed. fem, which is actually equivalent to a general quantum

spin-1 chain.
We identify the spin with the strindneight difference
V. DIRECTED STRINGS AND THE SPIN-1 CHAIN Yi+1— Y, which can be either 0, 1, or1; see Fig. 7. These
link dynamical variables specifying the string can be directly
identified with them;=0,=1 variables of the spins on the
Sites of the spin chain. Defining the latter using hard-core
n5’osonsbﬁqs, the spin operators for th8=1 case become

K
n 8(Yiv1k—Yin—1)

Ly,
t O(Yis1k—Yi-1x—2)

95(|yl,k_yl,k+l|_l) . (5.7

Quite generally, the string problem does not simply re-
duce to that of the internal dynamics of the world sheet be
cause of the requirement that the world sheet has to be e
bedded in D+1)-dimensional space. However, in the N N t t
presence of directedness order and in the absence of partice=P1P1—b-;b_; and S"=v2(bibo+bsb_;) and by
number fluctuationé! the string boundary conditions are comparing the action of the spin and string operators on their
trivially fulfilled and the string problem is equivalent to that "€Spective Hilbert spaces one arrives at operator |der_ﬁFt|es.
of a single “world sheet” in 1+1 dimensions. Assume the A duantum hop fromy to y+1 increases the height differ-
string to be directed along thedirection. Since the string €nce on the left of by one and decreases it by one on the
steps always forward in this direction, the number of par-ight, as is easily s%en by inspecting the two hopping terms
ticles in the string has to be equal to the number of latticd" Fig- 2. Thereforé,
sites in thex direction and every directed string configuration

will connect the boundaries in this direction. The string is S=Yie1- Y1,
still free to move along thg direction. Instead of labeling . . (5.2
the positions in the 2D plane the string is completely speci- S_1S" =2Ps(y1—Yi-1)PslYi+1—y e .

fied by the list of links, for which there are only three pos-
sibilities [in the (1,1), (1,0, or (1,—1) direction], and the
position of a single “guider point.” As a guider point we can a1 Cy—1)=(S)?
take the positiorr of any one of the particles, which, to- Y11=yl =D =(S)7%

gether with the relative coordinates given by the links, fixes - s 2 rez 2

the position of the entire string. Since the guider represents 8([Y1+1=Y1-1l =D =(S) "+ (S~ 2(S'S7- )",
just a single degree of freedom and since the thermodynamic 53
behavior of a chain is determined by the link interactions, the 1 ezez e

guider coordinates will be irrelevant for the behavior of the 8(|yi+1=yi-1l—=2)= 35S 1[1+5/57,4]

The identities, forS=1,
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are easily checked. The directed string problem can now be
reformulated in spin language as

L
(K+2L)($)+ 5 SIS

Hspin: EI

CZZ
+ 7_ 2L

(S'st-p)?

T +o— — ot
t5(STS+S S ). (5.4

. . . ' FIG. 8. Phases and phase transitions of the directed quantum
Following the spin-1 literature, we define the parameters  gying as a function of the on-site anisotropyand the Ising inter-

actionJ of the corresponding spin-£XZ model. The parametet

D=K+2L,,, is set to zero.
J=L,002, (5.5 VI. PHASES (E=0)
In this section the general string Hamiltonian will be sim-
E=L52—2L15. plified by leaving out the quartic Ising terfE=0 in Egs.

(5.4 and (5.95)]. Our string problem is now equal to the
The E term is new. It is a quartic Ising term, leading to extra Spin-1XXZ model. The zero-temperature phase diagram of
phases and phase transitions. For the special choic@ the string problem is surprisingly rich, and even for the case

(7=1), the above Hamiltonian reduces to the famikaxz  E=0 there are six phases and a large variety of phase tran-
model with on-site anisotropy, sitions. These phases can be classified in three groups: clas-

sical strings localized in space, quantum rough strings of the
free variety, and partly delocalized phases of which the dis-
Hyxr= >, [D(SH)?+ISS ;+3(S'S_1+S S )] ordert_ad flgt phase_ is a rem_arkable exampl_e. In this _section
' we will briefly review the six phases as discussed in the
(5.6 Jiterature on the spin-XXZ problem(5.6). The problem will
. _ be addressed from the quantum string perspective. For more
The zero-temperature phase diagram of the above spinetajls we refer to Ref. 26. In Sec. VII we will show that
model has been discussed in detail in the literat(r&“°in ~  \ith  finite E>0 four additional phases are stabilized.
Sec. VI we will br.ieﬂy review Fhe six phases found for this  The phase diagram of the quantum string is shown in Fig.
model, from a string perspective. Then we will show that ag 55 5 function oD andJ. We have used th&XZ model
nonzero_E parameter leads to the appearance of four eXtr"i‘)arameters, defined in E€5.5), such that the phase diagram
phases in Sec. VII. _ _ _ can be compared directly with the spin-1 literafliré® and
den Nijs and qumel%@ discuss a direct mapping be- iy particular with Fig. 13 of Ref. 26. We will introduce be-
tween the spin chain and the RSOS surface. We stress thafy the various order parameters that have been introduced
this mapping in fact involves two steps. First the RSOSj, this reference to distinguish the six phases in this phase

model is mapped on a string problem, using thenatrix.  giagram. The relation between the more genefi()
Then the spins are identified as shown above. Thus the QUaBfring and spin phases will be clarified in Sec. VIL.

tum string is anatural intermediateof the two other models. There is first of all a horizontal and a diagonal string

den Nijs and Rommelse make use of the freedom in thghase. In the diagonal phase | no quantum fluctuations are
choice of theT matrix to define a mapping that is slightly gjowed since a diagonal string does not couple to other
different from ours since they introduce a transfer matrixgisteg by, (this is illustrated in Fig. 16 in Appendix A, to
a}long a diagonal, wh|le we introduce one along Mrec—' which we refer for further details This phase is stabilized
tion. As a result, in their case there are only interactions,y 5 |arge and negativé,,, so that sinceE=0 also J
between next-nearest neighbors along (i) direction, =L,,/2=2L,, is large and negative. A suitable variable in-

while our choice allows for interactions between next-nearest.4 . ced to define order parameters, following Ref. 26, is the
neighbors along th& direction. Therefore, our RSOS model Ising spin variabler;=(—1)", which identifies whether a

differs slightly from theirs. L iven height is in an even or odd layer. This underlying spin
The RSOS representation is more transparent than the -qa| can have “ferromagnetic” or “antiferromagnetic”

quantum model. The spin-1 phases and the nature of thgqer ang so we introduce the corresponding order
phase transitions all have a natural interpretation in spaces, .- natefl

time. For instance, the Haldane phase, or Affleck, Kennedy,

Lieb, and Tasak{AKLT ) wave function, with its mysterious

hidden string order parameter is identified as a “disordered p={(01), Ppsag={(—1)'oy),

flat” RSOS surfac® with a simple local order parameter. (6.2)
The height representation, dual to the spins, gives a similar

local order parameter for the quantum string. pse={(Yi+1=Y1))-
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Here the angular brackets denote the ground-state expecta- il al ol
tion value as well as an average over string membeénsEq.

(6.1) we have also included the order parametgf dis- T 21112411
cussed below. In the horizontal phase Il one particular height o 1lota1ta2li
is favored, thus the order paramejeis nonzero here. This £

phase is stabilized by a large positif& which suppresses E 1f1to0oy71712
diagonal links. However}{, causes virtual transitions from ST Tl
two horizontal links into two diagonal ones; see Fig. 2. On

the 2D world sheet these fluctuations show up as local ter- space —*

races that do not overlap and thus do not destroy the long- FIG. 9. Vertices(thick dots on th . . " i
range order. In both phases the elementary excitations are -~ Verticesthick dots on the space, imaginary-ime string
gapped. world sheet. The numbers correspond to the heights Arrows

U I inak the t d at . tare drawn when the heights of neighbors differ. When four arrows
pon lowering € terraces grow and at Some point ;.. 5; 5 crossing point this is called a vertex.
they will form a percolated network: The string has become

disordered in both space and imaginary time. Via the well-

known Kosterlitz-Thouless roughening transitidrphase 1V :
is entered forJ<0. This phase belongs to the well-known RSOS. problem as the _product of a six-vertex ”.‘Ode' anq the
2D Ising model ofs spins on the six-vertex lattice, as dis-

XY universality class, characterized by algebraic correlation X . ; X
functions and gapless meandering excitations: capillar ?:Sggz;ln (iietgg by:lne; :Igziﬂi R;;rg(;gg‘f@ré'dzehhor;]z;sn;a\l}l all
waves in fluid interface language. The roughness, howeve&or?eS o’nd ?o Isg:n ordepi=(a) is nonzero ingthephorizon-
is extremely “soft” and the height difference diverges only P >INg p= 0|' : : .
tal phase Il, whilepgia=((— 1) o) is nonzero in the diago-

logarithmically, {(y;—Ym)?)~In|l—m|. The transition from .

the Gaussian phase that is rough and on average orientQ&I phasel, the.2|gza.g phase lil, and the roug_h phase VI. The

horizontally to the “frozen” diagonal phase is a “quasi-first- ts}:x-vertfex part is g.ef'gedTﬁF‘ t_z(e crost§|ng pr?'m;?ygfl sttegs on
" . : T e surface; see Fig. 9. This is(sometimes hig ilute

order” potassium dihydrogen phosphateDP) transition- set of points. The Ising degree of freedom disorders on the

For large negativéC diagonal links are favored over hori- .
zontal ones. There is a transition to a second rough phagéans't'on between phases Ill and V and between |V and VI,

(phase V). It is distinguished from the first by the order while the six-vertex part remains unchanged. Therefore,

parameterpg,g, Which is zero in phase IV. In this phase }Cese\:/ traar?dSIItII:)n?/IaaTe Irsellr;%egkted t;—(raasni)S(I-t\I/c()arr‘tsej:(Malrt—t;\e/::,om-
horizontal links are virtual and occur in pairs. As we will ;* "’ - P

discuss later in Sec. VII, for large negatikethe model can ![rr]s?nsci?itcl)(rzwasu ;rre]dk::)eviﬁ flr%?np tr?gd uﬁ%sthergltéé-irr::ﬁ;ilr?ﬁ?e
therefore be reduced to an effective siproblem. transition I-1V is related to the fgmo s surface-ro - henin
For negativelC and positivel (= L£14/2= L,,/8) the string " ’ us sy ughening

. . . . . transition, of the Kosterlitz-Thouless type*® The subtle
becomes dphysically unlikely zigzag with alternating up }ransition between phase Il and V is co}ilréed a “preroughen-

and down diagonal pieces. Excitations to pairs of horlzontaIng transition” by den Nijs. It separates two gapped phases.

links are gapped. Agaipstag=<(—1)"cr|> serves as an or- " . ;
der parameter. Upon increasirig the islands formed by AF the ‘ra!”s't"’” the gap closes and th_e_syst_er&és Gaussian,
with varying exponents along the transition litle:

pairs of horizontal links start to overlap and there is an Ising T
transition into the Haldane or disordered fl&XOF) phase. or d'zlf]:::ailet::ﬁpzasesazzr;) be gfég‘&ut'ﬁgf?hggeﬂ;% i%?ve
i = = » Pstagr strs
The pointJ=1, D=0 belongs to the gapped DOF IOhase'discriminate between the diagonal phase | and the rough

in agreement with Haldane’s educated geSkthat integer ase VI. These two phases can be identified by also intro-
spin chains are gapped at the Heisenberg antiferromagnet@@ ; ’ P y
ucing an order parameter that detects the presence of an

point. In this “disordered horizontal” string phase the pro- average slo —( —y)). In Table | we list the vari-
totypical wave function, equal to the AKLT valence bond ﬁ F;gé"f‘g ylalth Y .d t

state?* has every up diagonal link followed by a down link, ousAp asesh I —dan th € orter p?ramg etrr?. |

with a random number of horizontal links in between. The S We shall see In the next section, in the general case
heighty, takes just two values, say, 0 and 1. The local orderE%O It Is more convenient to mtroduc_e slightly different
parametenp,, is defined in Eq(6.1). This order parameter spin variables to identify all the ten different phases that
measures the correlation between the next step direction and TABLE 1. ord ers that distinauish bet the si
whether one is in a layer of even or odd height. W ) - order parameters that distinguish between tne six
=1, the string just Ste)pl)s up and down betwegen thtm?gyersdn‘ferent phases in the phase diagram et 0. A plus entry in the
but’the steps can occur at arbitrary positions. Note that thgable indicates that the particular order parameter is nonzero.
height is a global quantity in spin language, i.e., it is the

This phase diagram can be rationalized by writing the

accumulated sum over spiys=3! _,S%. Because of this Phase P Pstag Pt Psiope
the above order parameter becomes nonlocal when rewritten | + +
in terms of the “string” of spins. Therefore, it is often called I +

the string order parameter. We will also use this name, but 11 + +

stress that the “string of spins” to which this name refers v

should not be confused with the general strings that are the v +

basis of our model and that the other order parameters are vy +

nonlocal as well in terms of the original spifs
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TABLE Illl. Schematic representation of the different phases.
Also shown is the long-range order of the two spﬁns ando, as
defined in the textF denotes ferromagneti€,1 up-spin ferromag-
netic, F2 down-spin ferromagnetic, AF antiferromagnetic, dbd

disordered.
Phase o s String Spin 1
O | I Fl F o+
FIG. 10. Typical low-temperature string in the slanted parameter 1 F2 sreceseee 00000000
region VIl. Il F1  AF . ——t—4—
occur then. The choice of Ref. 26 discussed here is some e 0e%%."
what more convenient for understanding the universality v D D * +0-+0+0—+
classes of the various phase transitions. v D AF o os o —40—0 04—
VII. THE FULL PHASE DIAGRAM: VI Fl D o o5t e — e
PHASE-BOUNDARY ESTIMATES ° *
As mentioned above, the quartic Ising term with prefactor ..'"
E generalizes theXXZ Hamiltonian and leads to extra v D F * 0+0++0+00
phases. We will show that four extra phases are to be ex L
pected and that they are stabilized by a posiEearameter. VIII AF F L 04+04+0-+04+0
The most disordered phase is still the Gaussian plsse
Fig. 10. BRI B
Using a decomposition similar to that above, we can de- X AF D °° 0+0-+0-0+0
termine how many different phases to expect for a genera x AF AF ve® e 040—0+0—0

spin-1 chain withz-axis anisotropy and nearest-neighbor
interactions'® Think of the spin 1 as consisting of two spins

1. NI .
2, S€e Taztble . Thezﬁrs: igr“=| when the spin 1 ha§* There are four new phases, VII-X, compared to the phase
=0 ando*=1 whenS*= =1, similarly to the Ising degree of giagram discussed in Sec. VI. All four are stabilized by a
freedom defined above. This spin thus indicates the PresencRisitive E parameter in Eq(5.4). Three phases, VIII-X

or azlbsence Oi a step. The second S%"ﬂz's defined ass®  regyit from an antiferromagnetic order of thespin. This
=572 whenS*=*1 and is absent whe§=0. This is re-  corresponds to alternating horizontal and diagonal string
lated to the diluted vertex network discussed by den Nijs angins (see Table Ill. The diagonal links can be either all up
Rommelse, in that if there is a step, theomponent ofs  [ferromagnetidFM), phase VI, alternatingly up and down
indicates whether_thls step is up or dowr_L The s@rean (AF, phase X, or disorderedphase I¥. In phase VII theo
have ferromagneticK) or antiferromagneti¢AF) order or  gpin is disordered, while thespin is in the FM phase. This
they can be disordered). For o the two ferromagnetic s 5 diagonal wall diluted with horizontal links. These links
cases correspond to different physical situations and we havygnerently move up and down along the wall, lowering the
to distinguish ferromagnetiq (F2), a horizontal string, inetic energy. The wall can take any average angle between

from ferromagnetic] (F1). Wheno hasF2 order,s be-  _7/4 and #/4 and this angle is fixed by the value of the
comes irrelevantor better, there are disconnected finite ter-

races ofs spins with short-range correlation3 herefore, one
expects ten phases, depending on the order of the two spin
species: oné-2 phase, thre&1 phases, three-disordered
phases, and three-antiferromagnetically ordered phases.
These are listed in Table Ill. An example of a phase diagram
in a case in which all ten phases are present is show in Fig.
11, which corresponds to the caSe=5. The detailed of how
this phase diagram was obtained will be discussed below.

TABLE Il. Spin-1 Sseen as a combination of two spi%mf and
S.

S 1 0 -1
T l T FIG. 11. Phases and phase transitions of the quantum string for
s 1 1 E=5 as a function of. On the axis are the on-site anisotrdpyand

the Ising interactiord.
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parameters. We will call this the “slanted” phase. In terms(0,0) spin pair(two horizontal link$ the spins can still fluc-
of the decomposition into an Ising spin model and a six-tuate, (1;-1)—(0,0)—(—1,1). One finds, using second-
vertex model of den Nijs and Rommelse it is easy to see thatrder perturbation theory i@/,
the horizontal links change the orientation of the Ising spin
and act like a Bloch wall. The Ising spin is therefore disor-
dered. The six-vertex term is irrelevant for the existence of
the slanted phase: In the case of a single horizontal link,
i.e., on the boundary between the slanted and diagonal string
phase, there are no vertices.
A large part of the phase boundaries can be estimated
exactly, almost exactly, or to a fair approximation. Let us _ 272
focus first on the classical phases. The diagonal, horizontal, J¢=m- (7.3
and zigzag phases have the following energies in the classi-
cal approximation in which there are no fluctuations, as idlere we subtracted an irrelevant constant term. This has the
easily verified: form of the well-studied spig-Heisenberg chain with Ising
anisotropy. Transitions occur wherd4 j_.=*j. or when
E=L(K+ L,)=L(D+J+E), J=0 (lll to VI) andJ=—1/2D+3E| (I to VI) (settingT
=1).
E,~0, (7.2 The above estimates seem to suggest that theln@ is
special. Our numerical results show that it describes accu-
En~LK=L(D—-J+E), rately the transition between phases Il and VI, but also the
) ] ) o transition between phases IV and V. This agrees with the
whereL is the length of the chain. 'I_'he first-order trans't'onsarguments given by den Nijs and Rommé&¥s¢hat the
will therefore occur close to the line§=—Ly, (D=-J  Kosterlitz-Thouless transition between phases IV and V
—E) between phases | and 1£;,=0 (J=0) between gnoyld occur precisely at thi=0 line.

Heﬁ<Dﬂ—oc>=<4J+jt>Z S

il +am -t
+J¢E§|: (S Si+1tS Si+1),

phases | and Ill, and’=0 (D=J—E) between phases Il The slanted phase consists predominantly of up diagonal
and Ill. These transitions become exact in the classical opng horizontal links. Neglecting down diagonals altogether,
large-spin limit. which turns out to be a good approximation, one can again

The transition between phases | and VII, the Qiggopal anqinap the string or spin-1 chain on an effective spigystem.
slanted phases, can be found exactly. The transition is of thggw the relevant degree of freedom is thésing degree of
Pokrovsky-Talapov or conventional 1D metal-insulator typefreedom. Because'= (a diagonal link is not symmetri-
(see, for instance, Ref. 25The horizontal link can be seen cally equivalent too=| (a horizontal link the spins will

as a hard-core particle or a spinless fermion, with the param-ee|» an effective magnetic field, which regulates the den-
eters determining an effective chemical potential. For a C”t"sity of horizontal links. Rewriting Eq(5.4) gives

cal chemical potential equal to the bottom of the band of the

hard-core particle the band will start to fill up. The transition

occurs when the diagonal string becomes unstable with re- Heﬁ=DE| ((T|Z+%)+(J+E)2l (of+3)(0ofi1t+3)
spect to a diagonal string with one horizontal link added.

This single link delocalizes along the string with a momen- . .

tum k and a kinetic energy Zcosk). The minimal energy is +T2 (o) 011t 01 01414) (7.4
(L=1)K+(L—2)Ly+2L41,—2T and the transition occurs

whenK=2(L,,— L~ 7) or, with 7= 1, when the phase | to and, after rescaling and puttirig-1,

phase VIl transition

D=-2(J+E+1) (7.2 Heﬁ=h2| U|Z+A2 ‘T|Z(T|Z+1+%EI (0] o141t 07 041),

occurs. 7.9

The transition between phases Il and V will occur whenwith the field h=(D+J+E)/2 and Ising couplingA=(J
horizontal link pairs unbind in the zigzag background. A +E)/2. On the lineh=0 the number of up diagonal links
rough estimate, neglecting fluctuations, is obtained by comequals the number of horizontal links. The average tilt angle
paring the energy of a single horizontal link with that of a is thus 22.5° in this approximation. The phase diagram of the
perfect zigzag. In the same way as above we estimate th&pin- chain in theh-A plane was discussed by Johnson and
phase boundary to be closefo=2(J—E—1). In the same McCoy® Forh=0 there are three phases. The ferromagnet
way the transition from phase Il to V or IV is determined by corresponds to phase |, the antiferromagnet to phase VIII:
the energy of a single diagonal step in a horizontal walland the gapless disordered phase translates to the slanted
which becomes favorable wheld=2. This last estimate string phase VII. Increasing the fieldin the AF phase will
turns out to be very crude, in that it largely underestimate<ause a transition to the gapless phase with a finite magneti-
the stability of the flat phase. zation. In the approximation that down diagonals are ne-

For large negativéC the horizontal links are strongly sup- glected, it follows from the results of Johnson and Mctoy
pressed and the string can be mapped perturbatively on taat the pointA=1, h=0 or J=2—E is the point with the
spin5 chain. Identify S?=1 (diagonal upwardwith s?=1 most negative value af where phase VIl is stable. Fd
and $*= — 1 (diagonal downwardwith s*=|. Via a virtual =0 (as well as for small values dE) this occurs in the
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LIE1(L)-Eo(L) ]
3.2

3.1

2.9
28 |
27
. L. . . . 2_6- N | [ Lo
_FIG. 12. Various phase transitions, obtglned from semlclas_smal 0 02 04 06 08 1 1.2
estimates, exact arguments, and perturbative mappings tc.spin D

positive J side of the phase diagram, meaning that the tran- FIG. 13. Estimate of the preroughening transition between
sition from phase VIII to phase X will in fact not be stable: Phases Il and V. The plot showis[E;(L) —Eo(L)] for various
For positive values o), down steps in the original model 'engthsL, as a function of the parametér, with J=0.8 andE

proliferate. To have a phase diagram with all ten phaseszo- The two crossing points between the successive curves form an

present we choosE=5. upper and lower estimate of the transition.

In Fig. 12 the various phase-boundary estimates given . ,
above are summarized. The topology of the main part of th@@ined in Sec. lll. The Monte Carlo method has the disad-
phase diagram has now become clear. In the center of théntage that an extra limit to zero temperature has to be
figure for E=5 the Johnson-McCoy phase diagram is in-taken, a regime v_vh_ere the_updatmg slows down conS|der_any
serted. The estimates suggest that at least phases VIl af#d where itis difficult to judge the accuracy. To determine
VIl are stabilized by takinge=5. The dotted line through the phase boundaries of the d|r¢cted string we mainly used
phase VIII is the line where the effective fiefdis zero and  the Lanczos results for the equivalent spin model. On the
the number of diagonal links &early equal to the number Other hand, the Monte Carlo space-time world sheets provide
of horizontal ones. a transparent physical insight into the phases, phase transi-

We finally argue that the slanted phase exists in somdOnS, order parameters, etc. Moreover, the Monte Carlo

region of the phase diagram for af>0. To see this, first Method allows, of course, one to treat bigger systems.
consider the cas&€=0. Along the lineD=0, our model We are in the fortunate situation that the order parameters

(with E=0) corresponds to the Heisenberg model with IsingOf the various phases and the universality classes of the tran-
anisotropy and the poirlt=— 1 corresponds to the isotropic sitions are known. This offers a variety of approaches to

ferromagnetic Heisenberg point. Along the libe=0, the ge’;}ermme ]Er:ﬁ cr|t|gal lines: ?ne can lmtqnlt?r th?. f|n|te—5|tzhe
transition from the “ferromagnetic’{diagonal in string lan- ehavior of the oraer parameter, correiation functions, or the

guage phase | to theXY phase IV therefore occurs at ene&g;gle;/eltspacmg& '[yplci!ly Wedappllgd FW? |ndepen<tj(fr?t
=—1. Now, for E=0, the exact location of the line along Mc00S 10 the various transitions. LUr aim Is to map out the

which phase | becomes unstable to the slanted phase VI‘Fmire phase diagram with an accuracy of roughly the line
given byD = —2(J+ 1) according to Eq(7.2), goes exactly thickness in the phase diagram. For very accurate estimates
through the ferromagnetic Heisenberg 'po,intJat—l as other methods, notably the density-matrix renormalization-
well. The results of Fig. 13 of den Nijs and Romma&fke 9rOUP treatment of Whit€] are more appropriate.

indicate that this line then touches the phase boundary be- An eIe'gan't and powerful method IS the phenomenollogllcal
trenormallzatlon-group approach pioneered by Nightin-

tween phases | and IV right at this point in such a way thal 28.49 . . S S92
_ ale”™ ™ In this approach one considers an infinite strip with
for E=0 no slanted phase occurs. If we assume that botff~ L S .

. e . awidthL, as a finite-size approximation to the 2D classical
phase boundaries shift linear infor E nonzero and small, it system. At the critical temperature of the infinite system one
is clear that the slanted phase must stabilize in some reg|or¥ X L per y

expects, from finite-size scaling, that the correlation length

near the poinD =0, J= —1. for one sign ok, while for the . ) ;
other sign the phase must be absent. Physically, it is cleaarIong the strip scales like the width of the stflp, or L),

that the stabilization of the slanted phase will occur for posi- L
. >0. 1
tive values ofE, E>0 & (To= 5 £,(To). (8.1

VIl NUMERICAL ANALYSIS The infinite strip is solved by diagonalizing tHénite) T

To fill in the details of the phase diagram we have per-matrix. The correlation length can be calculated from
formed exact diagonalization and finite-temperature quantum
Monte Carlo calculations. Ground-state properties of strings E=1/In(N1/N\g), (8.2
up to 15 holegspin chains of length J4vere obtained using
the Lanczos diagonalization method. For the Monte Carlovhere\, and); are the largest and second largest eigenval-
method we used the checkerboard decomposition, briefly exses of theT matrix.
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A finite 1D quantum chain can be viewed as a strip infi-
nitely long in the imaginary-time directiofzero tempera-
ture). In the time continuum limit, writingl =exp(H), the
equation corresponding to Eq8.1) and(8.2) is

Li[E1(L1) —Eg(L1)]=Lo[Eq(Ly)—Eo(L2)] (8.3

G(r)

for two different string length& ; ,L,— and for parameter
values at criticality. Her&, andE are the ground state and
first excited energy of a quantum Hamiltonikin According

to Eq.(8.3), a phase transition line can be located by study-
ing the energy gap as a functionlgfwhile monitoring when
Eqg. (8.3 is obeyed. A practical example of E@8.3) is

shown in Fig. 13. Successive curves for lengthsind L 0-50.'5 e — 2

+2 show two crossing points. Extrapolating these crossing In(r)

points to infiniteL gives two estimates of the preroughening T

transition from phase Il to phase V. FIG. 14. Estimate of the Kosterlitz-Thouless transition between
The above scaling holds when time and space scale in thehases IV and V. At the transition the slope betw&m) ={((y;

same way oIE,(q) — Ey~q? with a dynamical exponerz  —Y,)?) and In¢) approaches 2 (the dotted lines

=1. This can be checked independently, giving a self-
consistent justification of the use of E.3). In a similar
spirit one can determine the critical scaling of correlation

functions of an operatoD by monitoring the lowest-energy the quantum fluctuations do not percolate in space-time. De-

state with @ nonzero overlap wit|0). This has been used ¢g5ginge these quantum fluctuation islands grow and when
extens!velﬁ to study the phases and exponents of thepey gverlap the string enters phase IV. The system is Gauss-
Gaussian phases of the spin-1 chain. We refer to these an rough in both space and time. Note the very weak loga-
ticles for more details. _ rithmic meandering; e.g., for a string of length 10, Fig. 14

Another method used to determine second-order phaséhows that the mean-square height fluctuations are only of
transitions is the Binder paramef@which we define as (3 order 1 near the KT transition. Despite this, determining the
—(m*/(m??)/2, wherem is the relevant order parameter. KT transition from G(r) works surprisingly well for the
This quantity tends to 1 in the ordered phase, wHené) small systems calculated.
~(m)*, and approaches 0 in the disordered phase, wimere ~ The fascinating order parameter of the Haldane phase or
has a Gaussian distribution aroundm)=0. In a disordered flat phase becomes transparent when looking at
renormalization-group sense the shape of the order paramefée world sheet, using the height representation instead of the
distribution function becomes independent of the size afpin-1 language. Globally, the surface is limited to two
criticality. The various curves for different sizes of the heights only and is therefore macroscopically flat. However
Binder parameter versus model parametefE siould there-  in both the time and space directions there is a disordered
fore cross at the critical point. For instance, for the Ising@T@y Of up and down steps, with the restriction that every
transition between phases Ill and V we take=(— 1)1~ step up |s.followed by a step down, when the order_|s perfect.
the Ising degree of freedom introduced before. On flat pieces, however, there are local _quctuatmjwﬁh

The Kosterlitz-Thouless transition between, for instance SONSecutive up steps or down stepecreasing the value of

phases IV and V is a subtle one due to the infinite order of'® Order parameter. These islands will grow whizn0

the transition and the exponential vanishing of the gap. Pref-rom the positive side and when they overlap the string be-

vious studies show a large uncertainty in the position of theOmMes rohugh. Noﬁ? that the ri?idd(ﬁatn?csj$ Ihs cIe_ar WZ‘?”
transition line. In the entire Gaussian rough string phase th¥/€Wing the overr]a strr]ucttﬁreg ]E e world slee_t |Pr1|. -
system is critical. Height correlations diverge very Weaklym.ens'ons' On the other hand, from a single time slice one
like G(r)={((y,—yo)2=C In(r). At the KT transition point might be tempted to conclude that the string is rough.

the prefactor takes the univer&avalueC=2/72. We found The transition from phase | to p'hlase Vil is of thg
that this relation is very useful in determining the KT tran- ProkO\ésky-'l;]alapov type;c Such transitions are often dis-
sition line; see Fig. 14. This relation gives surprisingly goodCusse in the context of a commensurate-incommensurate

results even for very small distances and is consistent with ansition of.a monolayer of atoms“on a subst.rage with a
KT transiton at J=0, as discussed by den Nijs and ifferent lattice parameter. In the “floating solid” phase
Rommelse® ’ such a system consists of a set of parallel domain walls with

The complete phase diagram 65 was already shown entrop?c meande_rin@";. The similarity_ to phase .V”'. ilus-
in Fig. 11. For this value o the slanted phase VIl is very trated in Fig. 15, is clear. The entropic meandering in the 2D

pronounced. Phases VIIl—X occur in a small region in theclassmal case is now to be interpreted as the quantum motion

middle of the diagram around the line of equal probability ofOf hard-core particleghorizontal link3 along the string.
horizontal and diagonal links, in the approximation that the
Hamiltonian can be mapped onto the spiproblem (7.5).

The rough phases occur at small negative values Bhases Motivated by stripes, we have introduced a lattice string
I-111, V, VIII, and X are gapped. model for quantum domain walls and mapped out its full

The character of the various phases becomes clear by
looking at the corresponding Monte Carlo snapshots in Fig.
15. In the flat phase one particular heightdominates and

IX. DISCUSSION AND CONCLUSIONS
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(b) @

FIG. 15. Monte Carlo snapshots @) the Haldane phasghase V, withD=0, J=1, andE=0), (b) the slanted phasg@hase VII, with
D=-0.75,J=-5, E=5), (¢ the flat phasdphase II, withD=2, J=0, andE=0), and(d) the rough phaséphase IV, withD=0, J
=—0.5, andE=0). Black to white means increasing height, except for the slanted ph&dg iahere black denotes a horizontal link and
white an up diagonal link.

phase diagram. We find a generic zero-temperature symmeperators in the massless phases. The kinetic sector is more
try breaking: The string acquires a direction in all cases. Theubtle. For instance, one would like to release the constraint
main reason is that bends in the string prohibit the quantunthat kinks only occur with “height flavor"+1. This means
transport or, vice versa, the quantum motion of kinksin surface language that one partially lifts the restrictedness
straightens out the stringhe “garden hose” effect of Nayak of the RSOS model or in spin language that anereases
and WilczeR?). We arrive at the counterintuitive conclusion the total spin e.g.,S=2 means in string language that kinks
that for increasing kink quantum disorder the orientationaloccur describing height differences af2 as well. Although
preference of the string grows. The directed string problenincreasing the magnitude of spin has an influence on the
that remains appears to be related to a well understood sulecalized phases, it does not change the fact that the massless
face statistical physiceRSOS model and simultaneously to phase away from the phase boundaries is still obeyivg
a S=1 XXZ quantum spin chain with single-site anisotropy. universality. A point of caution is that the holes in principle
Motivated by the string interpretation, we found a number ofcould change their order when larger excursions are allowed.
phases described by this class of models that were previousiowever, these “exchange loops” are strictly local and
not identified. therefore irrelevant for the long-wavelength behavior as long
Physically, the phases fall in three main categories: clasas the string is internally an insulator. These could represent
sical (flat world sheet Gaussianirough world sheet and more of a problem for strings that are internally supercon-
disordered flat phases. The phases are further distinguisheltictors or metals.
by the direction they take in the embedding space. Besides We also stress that it follows from the arguments of den
the flat strings in the horizontal and diagonal directions, weNijs and Rommels® that the occurrence of a gapped
find that the disordered flat phases show here a rich behavioHaldane-type phase for strings is not a peculiar feature of the
Apart from the known phase with horizontal direction, which spin-1 representation, but a general consequence of the exis-
is associated with the incompressible phase of the spitence of further neighbor interactions between the holes in
model, we identified another category of disordered flatstrings.
phases that take, depending on parameters, arbitrary direc- Do our findings bear any relevance to the stripes in cu-
tions in spacdthe slanted phasgs prates? At the very least, they do bring up some interesting
Although this does not apply to the localized strings, wequestions.
suspect that a strong universality principle might apply to the (a) Is the stripe solidification in, for instance, the LTT
delocalized strings: At least away from the phase boundariesuprate? initially driven by a single string effect or by a
to the localized phases, the underlying lattice renders theollective transition of the string liquid? In the end it has to
delocalized strings to be described by free field theory. Théve the latter since a single string cannot undergo phase tran-
reason is simple: Regardless of the terms that one adds to tls@ions at finite temperatures. However, it can be well imag-
lattice scale action, the problem remains of KX Z kind ined that the effect of the LTT-pinning potential is to stabi-
and the massless phases fall into the+@)-dimensional lize (1,0) directed stripes ove(l,1) stripes. In the language
0O(2) universality class. For instance, one can add other kinkef this paper, this amounts to an increase of the parargter
kink interactions, etc., and these can be all described bwyhich could move the stripe from the Gaussian phase into
products ofS? operators. Although these operators determineghe horizontal flat phase. At zero temperature, this would
the nature of the localized phases, they turn into irrelevanturn individual stripes in straight rods that are obviously
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much easier to order than meandering strings. At finite tem-  APPENDIX A: TRANSFER-MATRIX FORMALISM
peratures, this could increase the single-string persistence . . S . i
length substantially, so that stripe-stripe interactions becomﬁ1 ;ch:":‘:;g&iggﬁsw_?h\gl:n%E %UQS; g]fr;r?:fcelrfl(r::a(t)rfi;r;gr?u
more effective in stabilizing a stripe solid at finite malism that is quite 'efficient numericallgh) some specifics
temperatures® Further work is needed to establish if these regarding the uq dates, afg) some further discussign of the
single-stripe transitions are of relevance. 9 9 P ’

(b) Do the disordered flat string phases exist? The sim/finite-temperature behavior of the directedness in the various

: : ; T=0 phases.
Eﬁfésdpl(s)ﬂg:ﬁéeﬂvﬂﬁt tﬁl;aSHealIgatnhee gr? gszgn(t)?l tggbf sgp?{] The transfer matrix is constructed as follows. The parti-
chain. In string language, this is nothing but a Iocalizedt'on function is
string along thg1,0) direction in the lattice, which is, how- Z=Tr e"c* o= lim Tr(ITAITg)". (A1)
ever, not site centere@s is phase }lbut, on averagehond n—co
centered Bond-centered stripes show up in the numerical . . . .
study of thet-J model by White and Scalapir8,which In the above formule_i is the |§jent|ty operator, in our case a
shows that the ground state of this model at finite dopings iSCMPIte set of string configurations. We have chosen to

a stripe phase. A main difference with the mean-field stripe§p"t the'T matrix into a contribution from even and odd sites,
is that thes¢-J stripes are bond centered. Initially, one could ©" A @ndB sublattices(checkerboard decomposition

be tempted to think that this has a truly microscopic reason: L2
Charges irt-J tend to be on links. However, it could also be TAzex;{— > (He a+Hoa) |, (A2)
due to acollective string effectlt could be “our” phase V. ni=i ' ’

This can be easily established by measuring the appropria
(string correlators. Is it the case that on equal times th

: . ) ._. Hamiltonian of the even string elemenit, 2qual to Eq(2.1)
charges are on sites while the kinks take care of delocahzmgr (2.4) without the sum over string link4. is the number of
the stripes over two lattice rows or is it so that on all times '

the charaes are on the links? This is obviouslv an im ortarLI{_nkS in the chain. Because of the sublattice decomposition,
arg : : ously P A IS @ simple product of locall matrices andZ becomes
question in the light of recent works relating the bond cen-

ffith a similar expression for the odd site®,(2l) is the

tering via Hubbard-ladder physics to superconductitity. noLR
We also notice that there are experimental indications for z=lm > [I1I A2 e
bond centering in the nickelaféswhere disordered flatness n—e {rr g K==L
could possibly also play a role. R
(c) If well developed stripes exist in the superconductors X{ridlts T it ) (A3)

and/or metals, these have to occur in the form of a quanturg
disordered stripe phase or a quantum string liquid. What i

'e?”‘ed in this reggrd from the. present study of a S'n.gleslice with indexk. Note that theé matrices are independent of
string? A prerequisite for the existence of a quantum Stfing 2nd k and these indices only label the position of the

liquid is that a single string is delocalized. If our conjecturematrix in the 2D world sheet. The locaatricest, andt
that a single critical string is described by free-field theorydepend only on three positidns For instance A B

turns out to be correct, this amounts to a considerable sim-

plification. In Euclidean space time, the single free stringqr} 121K 4r 1)
. ) I5kita ISk

world sheet is like a Gaussian membrane and a system o

strings becomes a system of interacting Gaussian mem- = (rz 21k 21+ 1iltA [P o 1o 51+ 140 (A4)

branes, embedded int21 dimensions. This in turn is like a _ ., .,

classical incommensurate system in three dimensions, whic/ith the restriction ra 1 =rp_1y and a4 16=rp 11

although barely studied, appears as a tractable problem. F§r'”c_e each link has eight different orientations, the ldcal

instance, it is known that the 3D incommensurate solid meltgnatrix connects in general83=64 possibilities. However,

at a finite temperature in all cas&sFor the quantum case most of thet matrix elements are zero and it decomposes into

this means that the quantum-melting transition will occur aubblocks, of which the biggest one i3. The states that
some finite value of the coupling constant, which in turn@re co_nne_cted via the locaimatrix, or the Hamiltonian, are
depends on the single-string quantum fluctuation as well asted in Fig. 16. N o
string-string interaction effects. Investigations addressing 1he localt matrix at positionl and Trotter slice is de-
this many string problem are in progress, profiting from thefined as

simple fluctuation behavior of a single string.

ach time slice is split in two subslicesandr’. The nota-
Yion {r}x denotes the set of positions at the given time

1
! I !
<r|—1,k,f|,k,|’|+1,k expﬁ H, rl—l,karl,k!rl+1,k'>'
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Block A: %o ,0-0-0, O\O/o
Block B: O_C/:O'O\o a o W

Block C: o

o O\O/(} 10-.-0
Block D: o—g K

FIG. 16. Four subblocks of the locaimatrix. The other equiva-
lent, symmetry related blocks are obtained #42 rotations and
reflections in thex or y axis.

FIG. 17. Two additional Monte Carlo operations used for the
simulations of the general stringa) The 90° rotation around posi-
tion | in this example turns a nondirected string into a directed one.
) . ) . o (b) The mirror operation is important to quench defects in diagonal
of thet matrix are easily found by first dlagonahzmgI and strings(mirror plane indicated by the dashed line
expanding the basis vectors in terms of the eigenvectors.

Block A contains three configurations; see Fig. 16. We Bjock C contains a single configuration of two diagonal

use the same order for the states as in the figure. Note thahks, and the energy ansmatrix therefore contai,,,
only half of the energykC of the diagonal link betweeh

—1 andl and the link betweehand| + 1 should be contrib- K Ly
uted tol. The Hamiltonian t=exp —+ — (A9)
K T 0 Block D consists of a square corner between one horizon-
H=|T 0 T (AB6) tal and one vertical link and,; is involved,
0 7 K
Ell
is easily diagonalized. The eigenvalues KreE , , andE_ . t=exp< ?) (A10)
Thet matrix is
tiy tio tia APPENDIX B: GLOBAL MONTE CARLO MOVES
t={tiz tz t1o]f, For the Monte Carlo program to produce sensible results
tiz tiz T it is crucial to have operations that add and remove bends

easily. We added global mirror angf2 rotation operations
illustrated in Fig. 17.

In the latter case half of the string is rotated around any of
the sitesl € 2, ... L —1. This means that, for instance, the
t,=N2a ef+/"+N? a_eB-/M, position of all holesm>1 is replaced by X,,Ym) — (X ,Y/)

+[Ym=VYi,— (Xn—X%)]. Such operations turn out to be very

1
tu=3 e+ N2 gF+ /" N2 gB-/n,

1 ) ) efficient: Completely wrapped high-temperature strings un-
== 5 et N7 eF+ M+ N2 B/, (A7) wrap in just a couple of Monte Carlo steps at low tempera-
ture.

t22: NiaieEJr /n+ NZ_eE7 /n,
APPENDIX C: DIRECTEDNESS AT LOW BUT FINITE

TEMPERATURE
2 2
g N VA H8T7 — o _
£7 o 2 ' Consider first the classical limitZ&0 and, for instance,

the energy of ther/2 corner£,;=1). At zero temperature
the string would be straight, running alofgay a (1,0 di-

E.-K 1 : w " . . .
.= . No=——r—. rection. A local “corner” configuration of the type shown in
- T T \2+a4 Fig. 2@ would be an excitation with energy,; (alterna-

. ) tively, one could consider two kinksClearly, a single cor-
Heren is the number of Trotter slices andl L1z, L22, £11, ner ‘suffices to destroy the directedness of the classical

and T are the string model parameters. , _ground state. At any finite temperature, the probability of
Block B contains two configurations, each with one hori-iho  gccurrence of at least one corner is finite:

zontal and one diagonal link. Repeating the above procedure exp(—BL,y). Hence directedness order cannot exist at

one finds finite temperatures, for the same reasons that long-range or-
der is destroyed at any nonzero temperature in one dimen-

D Dcij
e cosi(7Z/n) e sinh(77n) sion. In the simulations the string is of finite length and the

= Dai D H
e"sin(7/n)  e"cosk7/n) infinite temperature limit oN;(T) is therefore not zero but
(A8)  rather a small but nonzero vafifg~0.03 for a domain wall
b K L of length 50. Ng(T) is already close to this value for all

“2n n- temperatures of ordef,, and larger. For an infinitely long
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domain wallNy;(T) drops very fast to zero with increasing Where the directed string has a type of ordering other than
temperature. At the other limit, for oW where T<£,;, that already discussed. All the results apply2g=0 and
Ng(T) increases very fast to 1. Again, because the string i¥/e refer to Table Il in Sec. VIl for a quick introduction to

of finite length, it becomes directed already at a finite tem-{he various phases of the directed string problem and for the
perature: For all temperatures such tifaexp(—BL,)<1  numbering(I-X) of the various phases. .

the string configurations in our simulations are typically 1€ entire zero-temperature phase diagram of the directed

. o . ;  string is reproduced.
completgly directed. AE infinitely long .classmal string be Phase | is very stable with respect to bends. By “stable”
comes directed only at=0, of course, since at any nonzero

; ¢ | " ) ficiengyVé mean thafinite strings do not change their appearance
|§rr12;p§trfilnl::]re always some corners will occur in a suticiently, nen increasing the temperature from zero to a moderately

. o .. small temperature, of the order of 0°1
For the quantum string, all the curves look strikingly simi- Deep in the horizontal phase (large positivek)) quan-

lar to the classical one. When the temperature is very mucly,m fluctuations are strongly suppressed, and at the same
higher than the kinetic ternT,>7, all curves merge together time the string becomes susceptible® corers. On the
and the classical limit is reached. At oW, whereT<7,  other hand, when we approach from phase Il the boundaries
Ngi(T) again increases very fast to 1, as in the classical casg;ith phases IV and V, the fluctuations increase and the string
it reaches this value at a finite temperature for the finitegitfons (Fig. 4. This is in agreement with the picture
length string. This is even true for the purely quantum stringsyetched before that quantum fluctuations orient the string.
at the XY point, where all classical microscopic curvature Deep inside phase IIl the string changes constantly be-
energies are zergsee the dashed line in Fig(&]. We can  ween horizontal zigzags and vertical zigzags.m2 turn
understand this in terms of an effective corner or bend enggsts no extra energy. Again close to phase V quantum fluc-
ergy £ that is produced by the quantum fluctuations. As iny,ations have the effect of removing bends.

the classical case the probability for the occurrence of a bend The Haldane phase V and the rough phase IV are very

is proportional to~exp(—BL). At zero temperature no bend robust and a considerable fraction af2 bends occurs only
is present and the string becomes directed. A finite lengtft relatively high temperatures of the order of 1.2
string effectively becomes directed already at a temperature |n the slanted phase VIl high temperatures are needed
such thatL exp(—BL)<1. At intermediate temperatures, before down diagonal links come in. On the other hand, hori-
where the temperature is of the order of the kinetic termzontal links are easily replaced by vertical ones. This only
things are more difficult and it is far from obvious what is increases the energy very slightly, but the entropy gain is
going on. Especially in this region, all the various classicalconsiderable. A typical low-temperature string is shown in
curvature energies may play a role and the interplay of thesEig. 10 in Sec. VII. To zeroth order the horizontal and ver-
on the directedness is unclear. Nevertheless, as is clear frotical links can be thought of as spinless fermions moving
the data of Fig. &), this region connects the high- and low- coherently along the string. In the dilute limit these links
temperature limits smoothly. Moreover, by comparing thehave only a weak interaction. The order of the links is con-
results for the three quantum strings in this figure it is alscserved and at zero temperature the ground state has only
clear that when the string is more guantum mechanicahorizontal links. However, our simulations indicate that for a
Ngir(T) is higher. small range of negativé ,; values a diagonal string with
We end this appendix with a brief qualitative description alternating horizontal and vertical links is favored. It is again
of our observations concerning spontaneous directedness e kinetic energy of the horizontal and vertical links that
low but finite temperatures in regions of the phase diagrankeeps the string oriented in tti#&,1) direction.
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