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Abstract  

 
In this work, we describe the electron dynamics in semiconductor superlattices 

(SLs) when driven by an acoustic wave.  

First, we discuss the physical features and structure of SLs. Then we describe 

semiclassical transport in periodic potential driven by a plane wave, and the dynamics 

of ultracold atoms in the periodic potentials.  

Secondly, we explore single electron dynamics in superlattices driven by an 

acoustic wave, then present and analyse the types of electron trajectories according to 

the strength of the acoustic wave amplitude. The two dynamical regimes obtained 

depend on the wave amplitude strength and the initial position of electrons in the 

acoustic wave. The frequency range of the oscillation produced can be as large as 

terahertz.  

Lastly, we discuss the effect of applying a static electric field to the acoustically 

driven SLs. When the acoustic wave and electric fields were applied together along the 

axis of SLs, we obtained a higher peak drift velocity than when the acoustic wave or 

electric fields were applied alone. We use the phase portrait to explain the electron 

trajectory and the path of the electrons. The global state associated with the drastic 

change in the drift velocity of the electrons depends on the varied parameters in the 

dynamical systems.  We numerically calculate the electron trajectories while we varied 

the strength of electric field and wave amplitude to investigate the role of interactions 

in the system. When very high electric field and very high wave amplitude are applied 

together along the axis of SL, global catastrophe occurs. This is the discontinuous 

bifurcation in dynamical system. 
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Chapter 1 

Semi-classical transport in periodic potentials 
driven by a plane wave. 

1.1 Motivation 
 

Understanding the effect of periodic potential on the motion of quantum 

particles is very important in solid-state physics [1]. Unique dynamical effects like 

complex spatio-temporal patterns including chaos have interested scientists for many 

years [2, 3]. There are two important systems in which quantum particles experience 

periodic potentials: electrons in SLs and cold atoms in optical lattices. Ultra cold atoms 

inside light-induced periodic potential (optical lattices) share many features with 

electrons in solids [4]. 

Interest in SLs has steadily grown over the years; this can be seen in different on-

going studies seeking to understand the electronic properties of these novel structures 

[5-7]. Esaki and Tsu initiated synthesized SLs of a one-dimensional periodic structure of 

alternating layers with its period less than the electron mean free path [1, 8-9]. SLs are 
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nanostructures that consist of two or more different semiconductor materials that have 

similar lattice constants. The materials are deposited alternatively on one another to 

form a periodic structure in the direction of growth. Consequently, SLs have a large 

effective lattice period of ~ 1-10 nanometres that can be structured at will during its 

formation for different applications; for example, it can be used as a light source or 

photodetectors [10, 11]. SLs are also used as logic and light modulators, as well as 

infrared detectors [12, 13]. Some important novel quantum phenomena are observed 

when an external field is applied to the device. SLs are used as terahertz source 

generators and for quantum cascade lasers [14]. The lattice period of SLs is larger than 

that of conventional crystals; therefore the electrons in the former are allowed to 

traverse a whole miniband before scattering.  

Optical lattices are formed when two laser beams interfere with each other 

creating standing wave potentials, which is a periodic intensity pattern seen as a 

periodic potential by the atom [15]. The atom in the optical lattice is an analogue to an 

electron in a solid; therefore the two share many of the same properties [16]. Like the 

SL, the lattice parameter can be altered by changing the wavelengths and the intensity 

of the laser beams. Unlike the SL, however, there are no defects or lattice vibrations, so 

there is no consideration for scattering. The lattice periods are also longer, which makes 

the measurement of the dynamics easy and the time scale longer than that of electron 

dynamics (milliseconds to picoseconds). The atoms in the lattice can be imaged and the 

optical lattice can be turn off, which allows for an extra degree of control over the 

system, and the momenta of the atoms can be measured directly [17]. Optical lattices 

are used in atomic physics in the area of atom diffraction with applications in atom 

optics and atom interferometry to trap and cool atoms [18-20]. 

The analysis of the dynamics of conducting electrons in this unique structure 

predicted the occurrence of THz Bloch oscillations [21], dynamical electron confinement, 

negative differential conductance [7, 22], cyclotron-Bloch resonances and chaotic 

transport [23].  These interesting phenomena have led to various studies on SLs over 

the years [24-27]. For example, research has recently been conducted on intersubband 

transitions in SLs and quantum wells [28] and optoelectronic devices [29, 30]. The                                          

unique dynamical effects were observed when electric or magnetic fields were applied 

to the axes of SLs. When a constant electric field is applied to the axis of a SL the 

electrons perform a periodic motion both in the Brillouin zone and in the real space, 
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which is referred to as a Bloch oscillation, and the accelerating charges emit radiation 

[8]. Electrons in the periodic potential of a SL experience chaotic behaviour when both 

electric field and magnetic field are applied together [31, 32]. A recent study was 

conducted on effect of applying an acoustic wave along the axis of a SL [33]. 

An acoustic strain pulse, when applied along the axis of a SL, induces current in 

the device [33], even when the electric field is not applied to the SL. The charge is used 

to study ultrafast carrier dynamics in SLs. The strain pulses applied to the axis of SLs is 

generated by ultrafast optical excitation of an Al film [25, 34] and this strain pulse 

propagates through the material at the speed of sound over large distances [35]. SLs 

exhibit non-KAM chaos (Kolmogorov-Arnold-Moser Theorem) when in an electric field 

and a tilted magnetic field, which have effect on its electrical conductivity, revealing 

vital information on quantum effects, nonlinear effects and scatterings [35-38]. The 

oscillation produced when external fields are applied emits terahertz radiation [39]. 

 

1.2 Aims 
  

The aim of this research was to study electron transport in SLs induced by the 

applied acoustic wave. To do this, we investigated the dynamics and paths of the 

electrons in SLs using an acoustic wave.  

The electron dynamics in SLs were also investigated when both the electric field 

and acoustic wave were applied together along the axes of SLs and when an acoustic 

wave alone was applied [40]. In this case, the electron transport by the static electric 

field interacted with the electrons that were being dragged through the lattices and 

produced high-frequency current oscillations. The oscillations emitted terahertz 

radiation that has useful applications in the ultrafast electronics industry. The intense 

THz radiation has been exploited to engineer transient states of matter, to control 

matter and light resonantly and nonresonantly [41]. The SL is used as a terahertz source 

generator and it is applicable in quantum cascade lasers [14, 39]. Many of the 

optoelectronic devices are designed using SLs [42]. 

 In order to understand the electron dynamics in the SLs, we looked at some 

fundamental theories of electrons in solids [43-46], the crystal structure of SLs and 

some quantum mechanics tools used in this work. Atom dynamics in optical lattices are 
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closely related to electron dynamics in solid-state crystals, but optical lattices have 

favourable characteristics such as an absence of defects and a high degree of 

experimental control [47-48]. The work consisted of the theoretical analysis of the 

behaviour of electron transport in the SLs when a static electric field and acoustic wave 

were applied. The results of this thesis were obtained by the numerical solutions of 

differential equations.   

 

1.3 Scope of the work 
 

 Chapter 1 has explained the system under consideration in detail, as well as 

some applications of this system. Chapter 2 looks at the general theory of some of the 

quantum mechanics tools that were used in this work. 

In Chapter 3, we explore the effect of applying an acoustic wave to a SL. A coherent 

acoustic wave applied along the axis of a SL will generate a deformation potential given 

by the electron-phonon interaction. An acoustic wave propagating in a SL is an example 

of a moving lattice propagating through a stationary lattice. The dynamics of electron 

and drift velocity depend critically on the wave amplitude. 

Chapter 4 examines the effect of the static electric field on the acoustically driven SL, 

when the static electric field and acoustic wave are applied simultaneously along the 

axes of SLs. We investigate the effect at values less than the critical values of both 

electric field and acoustic wave. The critical values depend on the parameters of the SL. 

Finally, Chapter 5 summarizes the overall results of the work. 
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Chapter 2  
 

Semi-classical theory of periodic potentials 
 
2.1 Band theory 
 

Energy-band theory is a quantum mechanical theory of the motion of electrons 

in a solid. The electronic band structures explain the ranges of energy an electron in the 

solid can have and may not have, these are referred to as “allowed” or “forbidden” 

bands respectively. The band structure of a solid describes those ranges of energy in 

which an electron is forbidden or allowed to thrive, and the band gap is the energy 

range in the crystal where no electron state exists. The free electron model of metal 

does not explain the distinction between metals, semiconductors and insulators [49]; it 

only answers qualitative questions like how an electron behaves in metals [50].  

Band theory explains distinctly how metals, semiconductors and insulators differ 

from each other. In insulators, there is a big gap between the highest occupied state and 

the lowest unoccupied state. The electrons in the valence band are separated by a large 

gap from the conduction band, and this makes it difficult for electron to migrate to it. 

Therefore, an insulator cannot conduct electricity even if the temperature of the 

material is increased to cause excitation of the electrons.  In metals or conductors, the 

valence band and the conduction band overlap, so the electron can easily move into the 

conduction band. The electron can move randomly in the conductors or metals even 

when no external fields are applied. In the conduction band the electron can move freely 

through the material and when an external field is applied the electron will move in the 

direction of the applied force.  
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In the case of semiconductors, there is a small gap between the valence and 

conduction bands. This gap is close to 𝑘𝐵𝑇 , where 𝑘𝐵 is the Boltzmann constant and  𝑇 

is the temperature. This gap can be bridged by thermal or other excitations and cause 

the electrons to move in the direction of the applied field. The pure semiconductor is a 

poor electrical conductor but, doping these materials can increase their conductivity 

greatly [51-54]. When a significant number of electrons are excited thermally into the 

conduction band, the crystal is enabled to carry current. The semiconductor interaction 

with an electric field or light makes it useful for the construction of a device that can 

switch, amplify and convert an energy input. The band structures of semiconductors can 

be engineered, and this provides opportunity to tailor their electronic properties for 

specific needs. There are two types of semiconductor, n-type and p-type, depending on 

the doping nature. The p-type semiconductors are doped with acceptor impurities 

which are trivalent impurities such as boron, aluminium or gallium. They create 

deficiencies of valence electrons called hole. The n-type semiconductors are doped with 

donor impurities which are pentvalent element such as antimony, arsenic or 

phosphorous to contribute free electrons. When two types of semiconductor are 

brought together to form an artificial crystal, the mismatch in the band levels causes the 

band to “bend” across the device junction. This is as shown in Fig. 2.1 when p-type and 

n-type semiconductors are brought together. This study examines the electron 

transport in the artificial crystal and the effect of an applied electric field and acoustic 

wave.  
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Figure 2.1: The two types of semiconductor (n-type and p-type) brought together to 

form an artificial crystal, showing bend at the junction.  𝐸𝐹 is the Fermi energy level. The 

figure is adapted from reference [55]. 

Band theory is important for understanding the dynamics of particles in the 

crystal. The energy bands in solids are the fundamental electronic structure of a crystal. 

For simplicity, we consider the electron behaviour in a one-dimensional periodic lattice 

which can be explained by the Schrödinger equation. Therefore, for a particle with 

energy  𝐸 moving in the periodic potential  𝑉(𝑥) , the crystal lattice will have an 

eigenstate 𝜓(𝑥)  that satisfies  

      Ĥ𝜓 =  �− ħ2

2𝑚
∇2  + 𝑉(𝑥)�𝜓(𝑥) =   𝐸𝜓(𝑥)                                         (2.1) 

The Bloch theorem states that ‘the eigen-functions of the wave equation for a 

periodic potential are the product of a plane wave  𝑒𝑥𝑒(𝑖𝑘𝑥)  and a wave function 

𝑢𝑘(𝑥)  with periodicity of the crystal lattice’ [56].  Therefore, the above eigenstate can 

be written as   

                                 𝜓𝑘(𝑥) = 𝑢𝑘(𝑥)𝑒𝑥𝑒(𝑖𝑘𝑥)  ,                                                       (2.2) 

where  𝑢𝑘(𝑥) is a periodic function, and also the translational symmetry of the lattice. A 

periodic potential  𝑉(𝑥)  will create a spatial lattice generated by the atoms in a solid or 

by counter propagating lasers in an optical lattice [57]. The Bloch wave functions for a 
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particular system can be determined by solving Schrödinger’s equation, where  𝐸 is the 

energy of the system and  𝜓  is the wavefunction 

                                                         Ĥ𝜓 =  𝐸𝜓   ,                                                                           (2.3) 

where the Hamiltonian operator Ĥ of a periodic system of infinite extent that is a large 

periodic potential is 

                                                     Ĥ = − ħ2

2𝑚
∇2 + 𝑉(𝑥)                                                            (2.4) 

where 𝑉(𝑥) is the potential energy of the system and has the periodicity of the lattice, 𝑚 

is the mass of the quantum particles and ∇2is the Laplacian [34, 53]. In the above 

equation, ħ = ℎ 2𝜋⁄   where   ℎ = 1.054 × 10−34J𝑠−1 , the Planck constant [58-59]. 

Equation 2.2 can be solved using different techniques, analytical and numerical. So the 

dynamics of electrons in the SLs can be determined by solving the time-independent 

Schrödinger equation [60]. 

The solution of the Schrödinger equation (2.3) shows that there is an unlimited 

number of solutions for a given value of  𝑘. Therefore, each wave function with a 

particular wavevector  𝑘 is assigned a quantum number, 𝑛 and has a corresponding 

energy 𝐸𝑛(𝑘) ; this function is known as the dispersion relation. The Bloch theorem 

then physically means that the wavefunction at position 𝑥 + 𝑋 and 𝑥 are the same, 

except for the phase factor 𝑒𝑖𝑘𝑖 , a plane wave. 𝑋  is any translation vector of the lattice 

under consideration. Since, the wave function  𝑢(𝑥)  must be periodic   

                                                    𝑢(𝑥) = 𝑢(𝑥 + 𝑋)                                                                    (2.5) 

the periodicity induced properties of the single-electron Schrödinger equation will then 

be 

                              �− ħ2

2𝑚
∇2  + 𝑉(𝑥)�𝜓(𝑥) = 𝐸𝜓(𝑥)                                                       (2.6) 

if we substitute equation (2.2) into equation (2.6) , the solution of Schrödinger equation 

will then be   

                   �−ħ
2∇2

2𝑚
+ 𝑉(𝑥)� 𝑒𝑖𝑘𝑖𝑢(𝑥) = 𝐸𝑒𝑖𝑘𝑖𝑢(𝑥)                                                       (2.7) 

and the function  𝑢(𝑥) satisfies the condition, for all vectors of lattice X; therefore the 

potential is periodic.         
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To obtain the dispersion relation energy   𝐸𝑛(𝑘) for the electron, we solve the 

Schrödinger equation for a single primitive cell of the SL. We use the Kronig-Penney 

model, which represents the one-dimensional periodic potential for the energy band. 

Fig. 2.2 shows an infinite periodic array of potential barriers,  𝑉0 and an electron moving 

in the 𝑥-direction. Regions I and II represent well and barrier respectively. The potential 

function is approximately equal to the square potential. 

 
 

Figure 2.2: The square well periodic potential, showing an electron moving in the 𝑥-

direction against the Kronig-Penney potential, 𝑉(𝑥) . Region  𝐼  is the well and region 𝐼𝐼 

is the barrier. 

In the region, 0 < 𝑥 < 𝑎, the potential, 𝑉 = 0 and the eigenfunction is  

                                                   𝜓 = 𝐴𝑒𝑖𝑖𝑖 + 𝐵𝑒−𝑖𝑖𝑖                                                                        (2.8)      

with the energy in the region described as       

                                                                            𝐸 =  ħ
2𝑖2

2𝑚
 

Similarly in the region,  −𝑏 < 𝑥 < 0 , the solution will be  

                                                𝜓 = 𝐶𝑒𝑄𝑖 + 𝐷𝑒−𝑄𝑖                                                                             (2.9) 

we described the energy in the region as  

𝑉 − 𝐸 =
ħ2𝑄2

2𝑚
 

Using the Bloch theorem, the wavefunction would satisfy 
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                        𝜓(𝑎 < 𝑥 < 𝑎 + 𝑏) = 𝜓(−𝑏 < 𝑥 < 0)𝑒𝑖𝑘(𝑎+𝑏)                                                  (2.10) 

and the boundary conditions at  𝑥 = 0 and  𝑥 = 𝑎  for 𝜓 and  
𝑑𝑑
𝑑𝑖

 to be continuous [45]. 

Let                                    𝛽 = 𝑄
𝑖

                and          𝑑 = 𝑎 + 𝑏 

therefore, we obtain 

                              cos𝑘𝑑 =  cos𝑄𝑏 cos 𝑘𝑎 + 1
2
�𝛽 − 1

𝛽
� sinh𝑄𝑏 sin𝑘𝑎                               (2.11) 

This equation can be solved numerically for the dispersion relation in the miniband. Let 

represent the right hand of the equation (2.11)  as 𝑓(𝜀) and expand it around the energy 

eigenvalue  𝜀𝑗   of an isolated well (that allows for narrow minibands), then 

equation (2.11)  will become  

                             cos𝑘𝑑 = 𝑓�𝜀𝑗� + 𝑓′�𝜀𝑗��𝜀 − 𝜀𝑗�                                                                      (2.12) 

Solving for  𝜀 , gives  

             𝜀 = 𝜀𝑗 − 𝑓�𝜀𝑗  � 𝑓
′�𝜀𝑗  �� + 1 𝑓′�𝜀𝑗  � cos𝑘𝑑⁄                                                            (2.13) 

The cosine dispersion is a good approximation for narrow minibands. The miniband 

dispersion is approximated by the cosine function with bandwidth, ∆  and band edge  𝜀0 

which can be derived from the dispersion relation in the equation (2.11). Therefore, for 

the electron band, we write 

                                         𝜀(𝑘) ≈ 𝜀0 −
∆
2

(1 − cos(𝑘𝑑))                                                       (2.14) 

 

2.2     Effective mass 

 

 Particles in a Bloch state will respond to an external field differently than a free 

particle. An important concept that describes this difference is the idea of an effective 

mass [52]. The effective mass is the mass that a free particle would have if it responded 

to applied forces in the same way as a particle in a Bloch state [61]. An electron with the 

effective mass of  𝑚∗ in the semiclassical model, will respond to an external electric field 

and the velocity associated with the centre of mass of the particle as  

                                                           𝑣 =   1
ħ
𝜕𝜕(𝑘)
𝜕𝑘

                                                               (2.15) 

This can be differentiated to give an expression for the acceleration as 



15 
 

                              𝑑𝑑
  𝑑𝑑

=  1
ħ
𝑑
𝑑𝑑
�𝑑𝐸
𝑑𝑘
� =  1

ħ
𝑑2𝐸
𝑑𝑘2

𝑑𝑘
𝑑𝑑

                                        (2.16) 

Let equation (2.16) be equal to force, 𝐹 as                   

                                                        𝐹 =  � 1
ħ2

𝑑2𝜕
𝑑𝑘2

�
−1 𝑑𝑑

𝑑𝑑
                                                       (2.17) 

If this is compared to the Newton’s second law, it shows that the effective mass of the 

Bloch particle is      

                               𝑚∗ =  � 1
ħ2

𝑑2𝜕
𝑑𝑘2

�
−1

= ħ2 �𝑑
2𝜕

𝑑𝑘2
�
−1

                                                    (2.18)                                              

Therefore, the electron in a lattice behaves like a particle with an effective mass. This is 

the force exerted on the particle by a periodic potential, and it has negative values when 

the particle is demonstrating a negative acceleration due to the force in the positive 

direction. Fig.  2.3 shows a typical variation of the effective mass with the wave vector of 

the electron. We can see that the effective mass, 𝑚∗ in the principal material of the 

structure is effectively constant around 𝑘𝑖 = 0 , and also that, due to scattering, the 

electron will remain near the centre of the Brillouin zone of the crystal lattice. 

 

             

Figure 2.3: The plot of ratio of the effective electron mass 𝑚∗ to the bare electron 

mass 𝑚𝑒 against the wave vector in the 𝑘-space. In the lowest energy band, the ratio of 

effective mass to the bare electron mass within the 𝑘-space where the dispersion 

relation is 𝑑2𝐸 𝑑𝑘2⁄ = 0 is shown in the figure. 



16 
 

 We then assume that the effective mass is constant with varying wave vector 𝑘𝑖 . 

Therefore, the mass of the electron in the SL was replaced with the effective mass to 

include the effect of the principal crystal lattice.  The electron in SL is subjected to two 

different types of periodic potentials:  the rapidly varying potential due to the crystal 

structure, and the slow variation of the conduction band edge in the layers of the SL, 

called the superlattice potential, 𝑉𝑆𝑆. The mass of the electron in the SL is replaced with 

the effective mass to incorporate the effect of the crystal lattice. That is, the crystal 

potential is taking into account without including it explicitly in the calculations. 

Therefore, for an electron in one-dimensional superlattice potential, 𝑉𝑆𝑆  with the 

influence of an effective mass approximation, the time-independent Schrödinger 

equation will be    

                                                    �− ħ2

2𝑚∗
𝜕2

𝜕𝑖2
+ 𝑉𝑆𝑆�𝜓(𝑥) = E𝜓(𝑥)                             (2.19) 

 

 

2.3 Bloch oscillations  
 

 

Electrons in the crystal behave like free particles under some conditions. We can 

therefore calculate the velocity of the particle in the state |𝑘 >. In elementary wave 

mechanics, the dispersion relation or energy, 𝐸(𝑘) is associated with a time-varying 

factor, so the electron energy is related to the frequency of the electron wave as  

                                                            𝜔= 1
ħ

 𝐸(𝑘)                                                                         (2.20) 

ħ is the reduced Planck constant, and the energy depends on the wave vector 𝑘 . In a 

dispersive medium the group velocity of a wave packet near this frequency will be 

described as   

                                                          𝑣𝑔  = 𝑑𝑑
𝑑𝑘

  =   1
ħ
𝜕𝜕(𝑘)
𝜕𝑘

                                                           (2.21) 

Therefore, the velocity of an electron in the Bloch state is the gradient of 𝐸(𝑘) in 𝑘-space. 

For free electrons, the energy is described as    
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                                                           𝐸(𝑘)  =  ħ
2𝑘2

2𝑚
                                                                         (2.22) 

The gradient of 𝐸(𝑘) in  𝑘-space for free electrons will then be described as          

                                       ∴ 𝑣𝑔 =   1
ħ
𝜕
𝜕𝑘
�ħ

2𝑘2

2𝑚
�   =    𝑝

 𝑚
                                                               (2.23) 

where  𝑒 is the momentum, 𝑚 is the effective mass and 𝑣𝑔 is the velocity of an electron 

considered as a wave packet moving freely in space with a momentum ( ħ𝑘 ), which 

makes the momentum  𝑒 =  ħ𝑘 . This is not the case in the semiclassical model; for 

Bloch electrons, the quantity ħ𝑘 is known as the crystal momentum. The rate of change 

of the actual momentum depends upon the total force acting on the particle, including 

the force experienced due to periodic potential. In the Newtonian law, “The rate of 

change of crystal momentum is therefore equal to force” [51, 62].  

Bloch’s work on the dynamics of electron wave packets in the periodic potentials 

led to the prediction that an electron in a uniform electric field performs Bloch 

oscillations instead of linear acceleration if there is no scattering. Bloch oscillations are 

the coherent motion of quantum particles in periodic structures when they are 

subjected to an external force [63, 64]. These oscillations are caused by Bragg 

reflections of ballistically accelerated electrons at the Brillouin zone boundary. They are 

the motions of electrons in a real space due to evolution through the Brillouin zone 

when an external field such as a static electric field is applied and they describe the 

oscillation of particles that are confined in a periodic potential when a constant force is 

acting on them. In natural crystals this phenomenon is extremely hard to observe due to 

the scattering of electrons by lattice defects, but it has been observed in SLs. A SL has an 

artificial periodic constant that is larger than the period of natural crystals. The 

dynamics of a particle are affected by the band gap structure of its energy spectrum in a 

periodic potential, like a SL. Such a particle does not follow the direction of the driving 

force or linear acceleration but rather performs an oscillatory motion called Bloch 

oscillation, which is one of the predictions of the semi-classical model of electron 

dynamics [56, 65]. Maxime, et al., in the experiment where they prepared ultracold 

caesium in the ground energy band of the potential induced by an optical standing 

wave, observed the Bloch oscillations of atoms which are driven by a constant inertial 

force [66].  
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When force is applied to SLs, the electrons will gain momentum since the band 

structure is periodic. The initial field distribution will be recovered after one cross of 

the Brillouin zone. Therefore, an oscillatory motion is observed and there will be no net 

shift of the particle in a real space as shown in Fig 2.4. For a constant electric field 

applied along the  𝑥-direction of a lattice to a particle in the lowest energy band, the 

wave vector  𝑘𝑖 will increase linearly with time but at constant rate and the energy 

applied is equal to         

                 

                                   𝐹𝑖 =  ħ 𝑑𝑘
𝑑𝑑

                                                                       (2.24) 

 

Initially  𝑘𝑖 = 0 with the applied force, 𝑘𝑖 increasing towards the Brillouin zone 

boundary to 𝑘𝑖 =  𝜋/𝑑 with time. So, the gradient of the dispersion curve becomes 

increasingly positive and the particle accelerates and increases its velocity in the real 

space in the 𝑥 -direction. As the velocity is increasing, the particle approaches the first 

Brillouin zone boundary, gaining energy. When the electron passes the zone edge at  

𝜋/𝑑  it reappears at - 𝜋/𝑑 , then descends again. This motion in 𝑘-space is periodic and 

the particle repeats the motion. The particle reaching the edge of the Brillouin zone 

at  𝑘𝑖 =  𝜋/𝑑 and reappearing at the opposite boundary  𝑘𝑖 = −𝜋/𝑑 , and the wave 

vector value  𝑘𝑖    increasing at a constant rate, is referred to as Bragg reflection. This is 

illustrated well in Fig. 2.4 for the energy-wave vector relation of a quantum particle in a 

one-dimensional lattice of constant 𝑑 .  

At one point the gradient of dispersion curve is negative and the particle will be 

moving in the negative direction in real space. It will continue to accelerate in the 

negative direction attaining a maximum negative speed when   𝑑𝜀 𝑑𝑘⁄   is maximal. The 

velocity, 𝑣 is maximal when  𝑑𝜀 𝑑𝑘⁄  is maximal; and when  𝑑𝜀/𝑑𝑘 = 0 the particle comes 

to a standstill. Thereafter the particle slows until  𝑘𝑖 = 0 where it reaches a standstill at 

its starting position in a real space. The rate of change of  𝑘 is constant 

 

𝑑𝑘
𝑑𝑑

 = �𝑒
ħ
𝐹� 
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Therefore, the frequency of oscillation will be  𝑑𝑑 = 2𝜋ħ 𝑒𝐹𝑑⁄  , where 𝑒  is electron, 

𝑑 is the lattice constant and 𝐹 is the electric field applied. The process is known as Bloch 

oscillation, and it repeats over and over [67, 68]. Fig. 2.4 shows the wave vector tracing 

the dispersion relation, the electron moving up and down and repeating indefinitely 

while the wave vector changes steadily. 

 

Figure 2.4: The motion of electron (electron coloured red on line) changing at a constant 

rate, It is relating the applied energy, 𝑬 to the wave vector, 𝒌. 

Bloch oscillation can then be described as an electron returning repeatedly to its 

original position in momentum space, causing a periodic motion both in momentum and 

real space leading to the reduction and eventual disappearance of transport as external 

fields’ increase [69, 70]. The critical field therefore drives the electrons through the 

Brillouin zone before they are scattered. 

 

2.4   Semiconductor superlattices 
 

Esaki and Tsu in 1969 [7, 71] considered the idea of a one-dimensional SL which 

is a periodic structure of layers of two or more materials. The materials have a similar 

lattice constant but a different bandgap. The structure is formed by a periodic variation 

of alloy composition or impurity density introduced during epitaxial growth. These 

nanostructures consist of two or more different (typically two) semiconducting 

materials of similar lattice constants. The materials are deposited alternatively on each 
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other to form a periodic structure in the growth direction [72, 73]. Nowadays the 

fabrication of these structures has been made possible by the development of epitaxial 

growth techniques such as molecular beam epitaxy. The process involves heating the 

pure element so that it sublimates. The resulting gaseous elements are allowed to 

condense on a substrate to form a layer of the constituent atoms of that element. The 

process, crucially, is slow (around a monolayer per second) so that it is possible to 

precisely control the constituent atomic layers of the device, allow for the crystal to be 

tailored for specific experiments and applications [33, 43]. However, it is hard to grow 

materials with high vapour pressure using this process. Other types of epitaxial growth 

techniques are metal-organic chemical vapour deposition (MOCVD) and nanoscale 

lithography techniques (electron beam lithography) [74]. 

In the presence of external electric and magnetic fields the transport of electrons 

in minibands is a complex behaviour which results in a number of interesting 

phenomena that have useful applications in the ultrafast electronics like THz Bloch 

oscillations [71, 75], dynamical electron confinement, negative differential velocity [63], 

cyclotron-Bloch resonances and dynamical chaos [62]. These properties of SLs derive 

from a number of periodic layers that can be structured and controlled as desired. The 

chemical composition of SLs varies periodically in space at distances of (1-10nm) which 

is greater than the periods of its constituent materials. This man-made structure is 

made to investigate a fundamental quantum mechanical phenomenon that forms 

quantised energy states [17, 76-77], since the thickness of the layers, the number of 

periods and periodic potential strength can be controlled [43]. The motion of electrons 

in the SLs is modified by the arrangement of the atoms in a periodic way; it has been 

assumed in this research that there was no interaction between the electrons. The 

magnitude of the band gap of the SLs can be tuned and the parameters of the materials 

can be varied, which optimises and widens its applications. The arrangement shown in 

Fig. 2.5, is describing the SL used in this study. The SL consisted of two layers of 

different semiconductors of similar lattice constants and had a lattice period,  𝑑.  The 

figure illustrates the vertical axis as the energy, 𝐸 or the potential, and the horizontal 

axis indicates the direction, in which the particle was moving, 𝑥. 
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Figure 2.5: Schematic illustration of alternating structure of semiconductor with the 

lattice period, 𝑑 for the SL formed. The superlattice unit cell consists of a quantum well 

(GaAs) enclosed by barriers (AlAs). 

 The difference in the width of the energy gap in different semiconductors forms 

the boundary of the conductivity band for perfect SLs which is modulated periodically 

and leads to the formation of energy minibands [14, 78]. The doping and controlled 

lattice strain in the SL structure can be combined to achieve a maximum tuneable state.  

SLs can be categorised as a weakly or strongly coupled based on the thickness of the 

barriers separating the quantum wells [8]. The weakly coupled have relatively thick 

barriers between the quantum wells, which makes the decay length of the electron 

wavefunction small and resonant, like the emission of acoustic phonons that occurs in 

the vertical hopping transport regime [79]. 

In this work, the SL structure consisted of two layers and was strongly coupled, 

since the barriers were thin. The electron wave functions of such a structure can extend 

over several periods of the SL. A diagram explaining the structure of the SL is shown in 

Fig. 2.6. The first layer is AlAs with a relatively large bandgap that serves as a barrier 

region controlling the position of the new quantum states that will be generated in the 

well, and GaAs is the quantum well. So the lattice period, 𝑑𝑠𝑠  of the device will be the 

addition of each of the lattice periods. That is  𝑑𝐴𝑠 + 𝑑𝐺𝑎  which is  12.5𝑛𝑚  for this 

sample and the first miniband width, is 7𝑚𝑒𝑉.  
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Figure 2.6:  The physical structure of one period of the SL sample and the potential of 

the SL in the unit cell, which is due to the variation in the conduction band edge,  𝑈𝐴𝑠 =

409 𝑚𝑒𝑉 and  𝑑𝐴𝑠 = 2.5𝑛𝑚 , 𝑑𝐺𝑎 = 10𝑛𝑚 . Therefore, 𝑑𝑠𝑠 = 12.5𝑛𝑚 . 

 

2.5 Electron scattering and drift velocity 
 

When considering the dynamics of electrons in a SL it is realistic to consider the 

effect of scattering on transport. As was shown in the discussion of the Bloch oscillation, 

without scattering there would be no electrical conduction in solids. The ions that form 

a solid influence the electrons in the solid. The effects of these ions on electron 

transport are included in Bloch theory [8]. We do not have perfect lattice ions in reality, 

and the effect of imperfect lattices on electron transport needs to be considered. A 

scattering event occurs from two major sources, one of which is the imperfections in the 

structure of the semiconductor crystal [80]. This imperfection includes impurities in the 

structure and deformations in the lattice structure and both disrupt the periodicity of 

the lattice. When fabricating the nanostructure of SLs by molecular beam epitaxy, the 

likelihood of defects forming in the structure can be minimised by controlling the 

deposition process. Another lattice defect is associated with the interface between two 

types of semiconductor materials. The interface roughness can occur in the deposition 
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process, but can also arise if the adjoining semiconductor materials have a different 

lattice constant that stretches or compresses the two layers when they are in contact, 

and this can lead to electron scattering events [33]. The second type of imperfection 

occurs as a result of external factors such as mechanical deformations or thermal 

vibrations of the lattices; this again disrupts the periodicity of the crystal and leads to 

electron-phonon scattering events. This vibration occurs at all temperatures of the 

lattice, but the impact decreases as the temperature decreases.  

The scattering mechanics can be categorised as inelastic and elastic scattering. 

Inelastic scattering arises from electron-phonon interactions, and the electron 

trajectory deviations are due to scattering events in which both the energy and 

momentum can change. Only the momentum of the electrons is allowed to change 

during elastic scattering and the energy remains constant. For the model of transport in 

SLs the concept of scattering time, 𝜏 is introduced, and we define the probability of a 

scattering event to occur in small time 𝑑𝑑 (≪ 𝜏) as   𝑑𝑑 𝜏⁄ . 

Drift velocity is the average velocity a particle will have when an external field is 

applied to the device. It is the actual velocity that the electrons have due to the applied 

field. Electron drift velocity is calculated to determine the measured transport 

characteristics of electron in SLs because of the scattering effect. The electron drift 

velocity can therefore be described using the Esaki-Tsu formula as 

                                𝑣𝑑 =  1
𝜏 ∫ �̇�(𝑑)∞

0 𝑒−𝑑 𝜏� 𝑑𝑑                                    (2.25) 

𝜏 is the scattering time and takes the value 𝜏 = 2.5 × 10−13s. 
 
The electron drift velocity analysis takes into account scattering, which is why we have 

a relaxation time approximation in the model of the drift velocity. The electron in the SL 

is affected by scattering events and, by the approximation; the scattered electrons do 

not remember their behaviour before the scattering event. The scattering time does not 

depend on the position and the dispersion relation, therefore it could be considered as a 

constant [7, 51]. 

 So, the drift velocity of an electron in a SL can be estimated if we assume that the 

number of electrons that are not scattered at time, 𝑑 is 𝑁(𝑑). We take the probability of 

an electron that will scatter in time  𝑑𝑑 to be  𝑑𝑑/𝜏 as discussed and  𝜏 is the scattering 

time. So therefore the number of electrons scattered in time 𝑑𝑑 will be  
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                                                        𝑁(𝑑) 𝑑𝑑
𝜏

                                                                                      (2.26)                                                  

The probability of an electron scattering in time, 𝑑𝑑 is therefore the number of electrons 

that will scatter in time, 𝑑𝑑 divided by the total number of electrons that is 

                                 𝑃(𝑑)𝑑𝑑 =  𝑁(𝑑)𝑑𝑑
𝜏

 1
𝑁0

                                                                               (2.27) 

The number of unscattered electrons at time 𝑑 is  𝑁(𝑑) = 𝑁0𝑒−𝑑 𝜏⁄  where 𝑁0 is the 

number of electrons is at time, 𝑑 = 0.  Therefore, substituting for  𝑁(𝑑) in the equation 

(2.27) will get the probability as 𝑁(𝑑)                                      

                                               𝑃(𝑑)𝑑𝑑 =  𝑁0𝑒
−𝑡 𝜏⁄

𝜏
 1
𝑁0

                                                                     (2.28)                                                        

Only the behaviour of the electrons after the scattering event at time 𝑑 will contribute to 

the average electron velocity at time, 𝑑. Therefore the total electron drift velocity at time, 

𝑑 over the entire system will be given as         

                                           𝑣𝑑(𝑑) = ∫ 𝑣𝑖
∞
0 (𝑑)𝑃(𝑑)𝑑𝑑                                                              (2.29)                                                                                   

Substituting equation (2.28) into the above equation will give a general form for the 

drift velocity of an electron in a SL. 

                                              𝑣𝑑(𝑑) = 1
𝜏 ∫ 𝑣𝑖

∞
0 (𝑑)𝑒−𝑑 𝜏⁄ 𝑑𝑑                                                      (2.30)   

When there is no magnetic field, the velocity of the electron will be as stated in 

equation (2.15),   

                                              𝑣𝑖 =   1
ħ
𝜕𝜕(𝑘)
𝜕𝑘𝑥

 

The dispersion relation can be described as the relationship between energy and the 

wave vector for a miniband that has inversion symmetry about the centre of the 

Brillouin zone to give,  

                      𝐸(𝑒𝑖) =  ∆𝑆𝑆
2
�𝑎0 − ∑ 𝑎𝑛 cos �𝑛𝑝𝑥𝑑𝑆𝑆

ħ
�∞

𝑛=1 �                                      (2.31)                       

∆𝑆𝑆 is the width of the first energy band. The SL period is 𝑑𝑆𝑆 and  𝑛 is an integer, while 

 𝑎𝑛are the Fourier coefficients that can be determined. If we substitute equations (2.15) 

and (2.31) into equation (2.30), we obtain   

       𝑣𝑑(𝑑) = ∆𝑆𝑆
2ħ

 ∑ 𝑛𝑎𝑛∞
𝑛=1 ∫ sin �𝑛𝑝𝑥𝑑𝑆𝑆

ħ
�∞

0 𝑒−𝑑 𝜏⁄ 𝑑𝑑 𝜏⁄                                       (2.32) 

At  𝑑 = 0 , the electron will initially be at the bottom of the miniband and when the 

electric field is applied such that  𝑒𝑖 = 𝑒𝐹𝑥  and by integrating equation (2.25) by parts 

we have the drift velocity as 
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                                               𝑣𝑑 = ∆𝑆𝑆
2ħ

 ∑ 𝑛𝑎𝑛∞
𝑛=1 � 𝑛𝑑𝐵𝜏

1+(𝑛𝑑𝐵𝜏)2�                                             (2.33)         

We define  𝑒𝐹 𝑑𝑆𝑆 ħ⁄ = 𝜔𝐵; 𝜔𝐵  is known as the Bloch frequency. For the first miniband 
in a given SL and a simple miniband approximation of 𝑎0 = 𝑎1 = 1,𝑎𝑛 > 1 = 0 [81] we 
obtain using equation (2.31) 

𝐸(𝑒𝑖) =  
∆𝑆𝑆
2
�1 − cos �

𝑒𝑖𝑑𝑆𝑆
ħ

�� 

 
And, with the same miniband approximation, the drift velocity will be  
 

                                                 𝑣𝑑 = ∆𝑆𝑆𝑑𝑆𝑆
2ħ

 � 𝑑𝐵𝜏
1+(𝑑𝐵𝜏)2�                                                            (2.34) 

 
Relating the drift velocity to the applied electric field gives an expression known as the 

Esaki-Tsu curve, Fig.2.7 and we observed a maximum drift velocity at  𝜔𝐵 = 1⁄τ. 

When  𝜔𝐵 ≪ 1 ⁄ τ   the relation is ohmic, due to a long Bloch period that allows for 

scattering to take place before a Bloch oscillation can be completed, therefore electron 

localisation is suppressed. At  𝜔𝐵 > 1 τ�    a phenomenon is predicted called a negative 

differential velocity, which occurs when the Bloch oscillations increase rapidly with 

increasing electric fields; this allows for a demonstration of localisation effects before 

scattering. 

 

    
 

Figure: 2.7: Plot showing the form of the Esaki-Tsu curve, 𝑣𝑑(𝐹). The drift velocity 

varied with the electric field. 

 

𝑣𝑑(𝑚𝑠−1) 

𝐹(105𝑉𝑚−1) 
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The maximum drift velocity is reached when   𝜔𝐵𝜏 = 1 , where   𝜔𝐵  is the 

frequency of the Bloch oscillations when electric field is applied to the SL, defined as  

𝜔𝐵 = 𝑒𝐹𝑑 ħ⁄  . 𝜏  is the scattering time, 𝑑 is the lattice constant, 𝑒 is the electron charge, 

ħ is Planck’s constant, and 𝐹 is the electric field. Therefore, the electric field applied to 

the SL at that frequency of Bloch oscillations will be  

𝐹 =
ħ
𝑒𝑑𝜏

 

 

 

2.6 Optical lattices 
 

 
The energy band transport is realised not only in the crystal structure but also in 

optical lattices [51, 82]. Optical lattices are usually formed when two laser beams 

interfere with each other creating standing wave potentials, which is a periodic 

intensity pattern seen as a periodic potential by the atom.. The atom in the optical 

lattice can be considered as an analogue to an electron in a solid; therefore the two 

share many of the same properties [83 - 84]. Like the SL, the lattice parameter can be 

altered by changing the wavelengths and the intensity of the laser beams [83]. Unlike 

the SL, there are no defects or lattice vibrations so there is no consideration for 

scattering. The lattice periods are also longer which makes the measurement of the 

dynamics easy; and the time scale is longer than that of electron dynamics (milliseconds 

to picoseconds). The atom in the lattice can be imaged and the optical lattice can be 

turned off, which allows an extra degree of control over the system and the momenta of 

the atoms can be measured directly [85 - 86]. In the Fig. 2.8, the electron is trapped in 

the potential wells that are created by the standing-wave laser beam; 𝑋 indicates the 

position of the atom and 𝑉0 is the potential. 
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Figure 2.8: Atoms (red colour on line) in an optical lattice trapped in a sinusoidal 

potential well created by a standing-wave laser beam [87]. 

Optical lattices provide a way of exploring a quantum system which is analogous to 

electrons in a crystal but with complete control over the lattice and the atom. A 2D 

optical lattice can be used in experiments to produce highly correlated states, such as 

the Mott-insulator state, or to engineer 1D potentials [88]. 

A static electric field from the lasers produces a periodic potential energy profile 

that acts on the ultra-cold alkali atoms. When an electric field 𝐹 is applied to a single 

atom, it induces an electric dipole moment 𝑑 in the atom by shifting the energy levels. 

We can define the polarisability of the atom, denoted as  𝛼 , as the measure of the 

tendency of the electron to be distorted by the external field. But the expectation value 

of the dipole moment is proportional to the applied field, therefore 

                                          〈𝑑〉 = 𝛼𝐹                                                                                       (2.35) 

A small change in the energy of the atom’s state in the electric field then will be  

                                                𝑑𝑉 = −〈𝑑〉 .𝑑𝐹                                                                       2.36)           

 Integrating the equation (2.36) gives, 

                            ∆𝑉 = −∫𝛼𝐹.𝑑 𝐹 = −1
2

 𝛼𝐹2                                                                   (2.37) 
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For an electric field oscillating with a frequency 𝜔 , we can say   𝐹(𝑑) = 𝐹0 cos𝜔𝑑, 
therefore the energy will be a function of the frequency dependent, dynamical 

polarisability, 𝛼′(𝜔)  

                                 ∆𝑉 = −1
2
𝛼′(𝜔)〈𝐹(𝒓, 𝑑)2〉𝑑                                                             (2.38) 

The field is the square of the electric field, averaged over a time much longer than the 

period of the wave. To have a lattice potential the electric field must be constructed so 

that it is periodic in space. For a one-dimensional optical lattice, the two counter 

propagating laser beams of wavelength, 𝜆 , will have electric fields as  

                                       𝐹1(𝑥, 𝑑) =  𝐹0
2
𝑒𝑖(𝑘𝑖−𝑑𝑑)                                                                 (2.39) 

and                    

                                     𝐹2(𝑥, 𝑑) =  𝐹0
2
𝑒𝑖(−𝑘𝑖−𝑑𝑑)                                                                (2.40)         

where  𝑘 = 2𝜋 𝜆⁄ . If we sum equations (2.39) and (2.40) we have a standing wave 

equation  

                           𝐹(𝑥, 𝑑) = 𝐹1(𝑥, 𝑑) + 𝐹2(𝑥, 𝑑) = 𝐹0 cos(𝑘𝑥)𝑒(−𝑖𝜔𝑑)                           (2.41) 

and the real part of the wave is 

                               ℜ{𝐹(𝑥, 𝑑)} = 𝐹0 cos(𝑘𝑥) cos(𝜔𝑑)                                                (2.42) 

By substituting equation (2.42) into (2.38) we obtained an expression for the effective 

periodic potential that an atom will experience due to the optical lattice. 

 

∆𝑉 = −1
2
𝛼′(𝜔)𝐹0

2 cos2(𝑘𝑥)〈cos2(𝜔𝑑)〉𝑑 = 𝑉0 cos2(𝑘𝑥)                          (2.43) 

where   𝑉0 is described as  

                    𝑉0 = −1
2
𝛼′(𝜔)𝐹02〈cos2(𝜔𝑑)〉𝑑                                                           (2.44) 
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With  𝑘 = 2𝜋 𝜆 ⁄ , and trigonometric identity, cos2 𝐴 = (1 + cos(2𝐴)) 2⁄  substituting in 

equation (2.43) gives 

                                      ∆𝑉 = 𝑉0
2

+ 𝑉0
2

cos �2𝜋 𝑖
𝜆
2�
�                                                                   (2.45) 

Therefore, the period of the optical lattice, 𝑑𝑂𝑆, is  𝜆 2⁄  . 

The cold atoms can be ultracold bosonic, a dilute gas of bosons cooled very close 

to absolute zero or fermionic condensate: fermionic particles at low temperature. The 

cold atoms have a temperature very close to zero kelvin, formed by trapping and pre-

cooling in a magneto-optical trap through laser cooling. The atom is cooled further by 

evaporative cooling in a magnetic or optical trap [85, 89].The cold atoms are used to 

study quantum many-body physics when placed in an optical lattice. They are also used 

to study superfluid behaviour in the lattices [85, 90]. 

 

2.7 Acoustic wave in solid 
 

Acoustic waves are longitudinal waves; they are sound pressure vibrating in an 

active medium. The mode of vibration in a crystal is particle-like, which means they 

have energy, and the quantum of lattice vibration is the phonon. Therefore, the energy 

or frequency of the phonon can be determined as a function of the wave vector, since 

phonon dispersion is the relationship between frequency and wave vector. The 

conversion of acoustic energy into electromagnetic radiation was discovered in the mid-

1930s [91, 92]. The heat pulse was viewed as a collection of quantized lattice vibrations 

or phonons, and its propagation through the solids was similar to the propagation of 

photons through matter. But advancements such as the development of femtosecond 

laser technology produced some other experimental procedures to generate picosecond 

acoustic waves [33].  An acoustic wave can be generated by a SASER device, the 

analogue to LASER. Sound amplification by stimulated emission of radiation, acoustic 

radiation, the sound wave, is emitted by the process of sound amplification that was 

based on the stimulated emission of phonons. The coherent strain pulse is generated by 

the fast thermoelastic deformation of a thin metal film. The strain pulse moves in the 

material at the speed of sound for the material, and the frequency of range of the strain 

pulse is between 100 -200 GHz. The pulse was used recently to drive an electric current 
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through SLs with no electric field applied to it [34]. The coherent strain pulse of the 

acoustic wave when it propagated along the axis of the SL caused an effect on the 

dynamics of the electron and induced an electric current [93].  

A longitudinal coherent acoustic wave propagating along the 𝑥-axis of the SLs 

could generate a deformation potential given by the electron-phonon interaction, and it 

is assumed that the piezo-electric potential effects are negligible [94]. When an acoustic 

wave propagates in the SLs, it interacts with electrons: this electron-phonon interaction 

is due to the phonon existing in a real system. Therefore, the electron dynamics are 

affected by the electron-phonon interaction, and this changes the property of the 

dynamical localization of the electron.  

When the phonon frequency is equal to the Bloch frequency in a dc field or 𝑤 in ac field, 

or one of them is in an ac/dc field, the electron will scatter rapidly. In order to be able to 

establish the dynamical localization of an electron in an experiment, the resonance 

between the phonon and external electric field must be controlled [95, 96].  

 Each miniband electron will gain potential energy due to the longitudinal 

acoustic wave. The energy is a function of wave vector, 𝑘𝑆 and 𝑈, the amplitude of the 

wave which depends on the maximum strain, 𝑆0 and the deformation potential, 𝐷. 

 

                                             𝑈 =  𝑆0𝐷                                                                              (2.46) 

𝑆0 is usually < 0.5% , and the deformation potential is usually obtained from the 

periodic variation of the conduction band edge of the SLs [97, 98]. The stress will lead to 

deformation in the energy bands caused by the interaction of the electron with acoustic 

phonons [99,100]. When energy in the form of the acoustic wave is applied to the SL, it 

interacts with the electron excitations causing a shift in the energy of the band edge per 

unit of the elastic strain. This is the deformation potential the electron in the crystal will 

experience. Table 1.0 shows, the deformation potential value for some semiconductors; 

the energies are in  𝑒𝑉. 𝐷𝑑  and  𝐷𝑢 are constants characteristics of the conduction band 

valley. 𝐷𝑑  relates to pure dilation and is associated with pure shear. a, b and d are 

positive strains that lower the valence band edge, and these are associated with acoustic 

strains.  𝑑0 is the optical deformation potential for the valence band.  𝐷0 is an optical 

deformation potential constant for the electron, and it is energy per unit displacement 

[74]. 
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Table 1.0 

Deformation potentials for some semiconductors 

 𝑫𝒅 
(𝒆𝒆) 

 

𝑫𝒖 
(𝒆𝒆) 

 

a 
(𝒆𝒆) 

b 
(𝒆𝒆) 

d 
(𝒆𝒆) 

𝒅𝟎 
(𝒆𝒆) 

𝑫𝟎 
(𝒆𝒆)𝒄𝒎−𝟏 

        
Si -6.0 7.8 

9.2 
 2.1 

2.5 
3.1 
5.3 

 (109 𝑖𝑛𝑑𝑒𝑖𝑣𝑎𝑖𝑖𝑒𝑖) 

Ge -9.1 
-12.3 

15.9 
19.3 

2.6 
3.9 

-2.4 
-2.7 

-4.1 6.4 7×  108 < 111 > 

        
AlSb +1.8 

+2.2 
 

6.2 
  

-1.4 
 

4.3 
  

        
GaSb  20 

22.6 
 -2 

-3.3 
-4.6 
-8.4 

  

        
GaAs +7.0 +7.4 -8.7 

-9.2 
-1.8 
-2.0 

-4.6 
-6.0 

 (109 𝑖𝑛𝑑𝑒𝑖𝑣𝑎𝑖𝑖𝑒𝑖) 

        
GaP  6.2  -1.3 -4.0   

        
InSb +4.5 

+16.2 
 -88 -0.2 

-2.1 
-4.6 
-5 

  

        
InP  21  -1.6 -4.4   

 

Table 1.0: The deformation potential for some semiconductors; the energies are in (eV). 

𝐷𝑑  and 𝐷𝑢 are constants characteristics of the conduction band valley. 𝑎, 𝑏 and 𝑑 are 

positive strains that lower the valence band edge, and 𝑑0 are associated with acoustic 

strains. 𝑑0 is the optical deformation potential for the valence band.  𝐷0 is an optical 

deformation potential constant for the electron [77].  
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In semiconductors, the attention is near the band extremum and the shift in 

energy of the band edge per unit of elastic strain is called the deformation potential 𝐷. 

Since 𝑢 is the displacement of a unit cell, we define the strain tensor as  

 

𝑆𝑖𝑗 =  
1
2
�
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

� = 𝑆𝑗𝑖  

 
The change in energy of a given non-degenerate band edge can be defined by 
                                                        ∆𝐸 = ∑ 𝐷𝑖𝑗𝑖𝑗 𝑆𝑖𝑗 
 where 𝐷 is the deformation potential tensor and 𝑆𝑗𝑖  is the strain tensor.  
 
 

2.8 Semi-classical model of acoustic wave 
 

 
A longitudinal coherent acoustic wave propagating along the 𝑥-axis of the SL will 

generate a deformation potential, resulting in the periodic variation of the conduction 

band edge of the SL. In this analysis the strain wave is taken to travel along the principle 

growth axis of the SL, therefore the piezo-electric coupling is zero. This means that any 

piezo-electric potential effects will be negligible and only the mechanism of electron-

phonon interaction exists and is equal to the deformation potential. 

The potential energy obtain as a result of strain of the lattice, S in the semi-

classical model will be 

 

                                                        𝑉𝑆 = 𝐷𝑆                                                                                     (2.47) 

 

The electron-phonon coupling constant is described by 𝐷  and can be measured 

experimentally; in previous work it was found to be ~ 10 𝑒𝑉 [27, 31]. The strain, 

𝑆(𝑥, 𝑑) that will be obtained due to the coherent acoustic wave propagating along the x-

axis of SLs will be  

 

                                    𝑆 =  −𝑆0 sin(𝑘𝑠𝑥 + 𝜔𝑆𝑑)                                                                         (2.48) 
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The maximum strain the wave generates is  𝑆0 < 0.5% ;   𝑘𝑠 is the wave number of the 

acoustic wave and takes the value within the first half of the SL minizone. If we assume a 

linear dispersion relation for the frequency of this acoustic wave, 𝜔𝑆 = 𝑣𝑆𝑘𝑠   and the 

speed of sound is  𝑣𝑆 = 5000 𝑚𝑠−1 from the experiment [79], the maximum strain is  

                                     

                                                        𝑆0 = 𝑘𝑠𝐴                                                                                     (2.49) 

𝐴 describes the physical displacement of the lattice obtained from the acoustic wave 

and is called the mechanical displacement amplitude. Therefore, substituting equations 

(2.48) and (2.49) into equation (2.47), we obtain the potential energy generated by the 

acoustic wave as   

                                          𝑉𝑆(𝑥, 𝑑) = −𝑈 sin(𝑘𝑠𝑥 − 𝜔𝑆𝑑)                                                             (2.50) 

and  𝑈 = 𝐷𝑆0 , the wave amplitude. 
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Chapter 3 
 
Dynamics of electron in semiconductor 
superlattice driven by acoustic wave 

 

 3.1 Introduction 
  

 In this chapter, the electron dynamics in the SL will be explained by 

analysing electron trajectories, and calculating the drift and average velocity of 

electrons when driven by an acoustic wave. Greenaway in his work [33] and others [35, 

40] studied the dynamics of a single electron in SLs using acoustic waves. They showed 

that an acoustic wave propagating through a SL will induce a charge current, and that 

there are two dynamical regimes. This hinges on whether the energy amplitude of the 

acoustic wave is more or less than a critical value which is defined as the value of the 

wave amplitude where the dynamical change occurred, denoted as  𝑈𝑐 . This critical 

value depends on the parameter of the SLs. When a coherent acoustic wave is applied 

along the axis of a SL, it generates a deformation potential produced by the electron-

phonon interaction. An acoustic wave propagating through a SL can be considered as an 

example of a moving lattice propagating through a static lattice. A continuous gigahertz 

acoustic wave will create complex terahertz electron dynamics in a SL, consequently 

producing high-frequency current oscillations [34]. When the amplitude of the acoustic 
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wave is less than the critical value, the electron will be dragged through the SL by the 

velocity of the acoustic wave. This causes a strong resonant enhancement of the 

electron transport that can be accompanied by a high periodic frequency oscillation of 

the electron orbits [26]. If the wave amplitude is increased to a value greater than   𝑈𝑐 , 

the electrons will perform Bloch-like oscillations that dramatically suppress electron 

transport, localising the electrons in a quantum well of the SL. The minibands electrons 

driven by a gigahertz acoustic wave attain a higher maximal drift velocity due to the 

scattering and the assumption that the electron start at  𝑥 = 0. When an acoustic wave 

is applied along the axis of a SL whose electrons are moving randomly, the electrons will 

move in the direction of the travelling wave.  

In this work, we investigated the transport characteristics of electrons 

depending on the initial conditions. We calculated the average trajectory by averaging 

across the initial conditions, since the electrons in the device were moving randomly. 

We assumed the temperature was very close to zero,  𝑇~0 so that the momentum would 

start at zero. The velocity of the electron can be determined using the potential energy 

generated by the acoustic wave and we describe the semiclassical Hamiltonian of the 

system. The phase portrait will be analysed to understand the electron behaviour in the 

SL. 

 

3.2 Model of electron dynamics 
 

To describe the single-electron dynamics in the SL, driven by an acoustic wave, 

we formulated a model from the semiclassical Hamiltonian of the system. In section (2.8) 

we derived an expression for the potential energy,   𝑉𝑆(𝑥, 𝑑),  from the acoustic wave. 

The semi-classical Hamiltonian of the system is the sum of the kinetic and potential 

energy and is described as  

                                Ĥ(𝑥,𝑒𝑖 , 𝑑) = 𝐸(𝑒𝑖) + 𝑉𝑠(𝑥, 𝑑)                                                              (3.1) 

The total kinetic energy  is the dispersion relation as derived in section (2.5) and is  

 

                                   𝐸(𝑒𝑖)   =   ∆𝑆𝑆
2
�1 − 𝑐𝑐𝑠 �𝑝𝑥𝑑

ħ
��                                                            (3.2) 

 and the potential energy is described as 

                                    𝑉𝑠(𝑥, 𝑑) = −𝑈 sin(𝑘𝑠𝑥 − 𝜔𝑆𝑑)                                                                  (3.3)       
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 where 𝑈 is the wave amplitude. We described  𝑈 = 𝑆0𝐷 as the wave amplitude of the 

acoustic wave which creates the maximum strain, 𝑆0<0.5% on the deformation 

potential,𝐷. The wave number, 𝑘𝑠 of acoustic waves lies within the inner half of the 

minizone so the linear dispersion for frequency of the acoustic wave will be 𝜔𝑠= 𝑣𝑠𝑘𝑠 

where 𝑣𝑠 is the speed of the sound wave. Therefore, the Hamiltonian of the system will 

be 

                       ∴        Ĥ =  ∆
2
�1 − cos 𝑝𝑥𝑑

ħ
�  − 𝑈 sin(𝑘𝑠𝑥 − 𝜔𝑆𝑑)                                      (3.4) 

The semi-classical Hamilton’s equations of motion can be obtained from the 

Hamiltonian in the above equation as  

                              𝑣𝑖 =  𝑑𝑖
𝑑𝑑

=   𝜕𝜕
𝜕𝑝𝑥

 = ∆𝑑
2ħ

sin 𝑝𝑥𝑑
ħ

                                                                    (3.5) 

               𝑑𝑝𝑥
𝑑𝑑

=  −𝜕𝜕
𝜕𝑖

   =  𝑘𝑠𝑈 cos(𝑘𝑠𝑥 − 𝜔𝑆𝑑)                                                                     (3.6) 

 We solved these equations (3.5) and (3.6) numerically using a 4th order Runge-Kutta 

algorithm [101-102]. Taking initial position and momentum to be  𝑥 =  𝑒𝑖 = 0  when 

 𝑑 = 0 , for time independent, the electron trajectories are determined in the absence of 

scattering.  We obtained the electron trajectories for different wave amplitudes and 

analysed the trajectories to understand the electron transport in the SL. 

 

3.3  Electron driven acoustically in superlattices 
 

 When the acoustic wave is applied along the axis of a SL, the electron dynamics 

depends on the value of the wave amplitude. The wave amplitude will produce a force 

on the electrons that causes them to experience acceleration and movement, since 

energy states are available in the bands. The electrons’ drift velocity as explained in 

equation (2.25) helps to determine the measured transport characteristics of the 

electron in a SL in the presence of scattering. Fig. 3.1 shows the relation of the drift 

velocity against the wave amplitude applied for the miniband electrons. Thus, we have a 

region of negative differential velocity which is caused by the localisation of the electron 

trajectories due to Bloch-like oscillations. We obtained a peak value for  𝑣𝑑  of about 

 4.5 × 104𝑚𝑠−1and a high magnitude of the negative differential velocity. 
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Figure 3.1: The drift velocity, 𝑣𝑑  versus wave amplitude, 𝑈 obtained for the miniband 

electron been driven by the acoustic wave with initial value of  𝑥 = 0 ,𝑒 = 0. The dashed 

vertical line is the position of 𝑈𝑐, the transition between the two dynamical regimes. 

Here, it was assumed that the electron started from 𝑥 = 0  for simplicity, at a 

temperature very close to zero,  𝑇~0 , where the initial momentum can be considered 

as  𝑒𝑖 = 0.  It can be observed in Fig. 3.1 that when the values of the wave amplitudes 

are between 1𝑚𝑒𝑉 and 3𝑚𝑒𝑉, for the single electron dynamics, we have an almost 

linear curve in the positive direction. Afterward a maximum is reached before a steeper 

negative drift velocity. This suggests that there must be a transition between the 

dynamical regimes. The dashed vertical line in Fig. 3.1 is the position of  𝑈𝑐, the critical 

value. This is the value of wave amplitude at the transition between the two dynamical 

regimes. At this point the critical value must be equal to the local maximum of  𝘌′  (𝑃𝑖), 

the modified dispersion relation. This is defined as  

                                       𝘌′ (𝑒𝑖)   =  𝐸(𝑒𝑖) - 𝑣𝑠𝑒𝑖                                                                       (3.7) 

𝑒𝑖  is the momentum and 𝑣𝑠 is the speed of sound, where 𝐸(𝑒𝑖) is the dispersion energy 

given in equation (3.2) . The local maximum of  𝐸′(𝑒𝑖)  will occurs when  

                                                
𝑑𝜕′(𝑝𝑥)    

𝑑𝑝𝑥
= 0                                                                                   (3.8) 

Therefore                            
𝑑𝜕′(𝑝𝑥)    

𝑑𝑝𝑥
=  𝑑

𝑑𝑝𝑥
�∆2 �1 − cos 𝑝𝑥𝑑

ℏ
� − 𝑣𝑠𝑒𝑖� = 0 

𝑈𝑐 
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                                                                   =   ∆𝑑
2ℏ

sin 𝑝𝑥𝑑
ℏ

    -  𝑣𝑠 =      0                                                               
Therefore,  

                                          sin 𝑝𝑥𝑑
ℏ

    =     2ℏ𝑑𝑠
∆𝑑

                                                                               

Using Taylor expansion around 𝜋 for 𝑒𝑖 in the first Brillouin zone,  

                   Taylor series: 𝑓(𝑎) + 𝑓
′(𝑎)
1!

(𝑥 − 𝑎) + 𝑓
′′(𝑎)
2!

(𝑥 − 𝑎)2 + 
𝑓3(𝑎)
3!

(𝑥 − 𝑎)3 + -- - - - - -. 

Therefore we now have 

  sin 𝑝𝑥𝑑
ℏ

    =    sin𝜋  + cos𝜋 �sin 𝑝𝑥𝑑
ℏ

    − 𝜋� 

                         ∴        sin 𝑝𝑥𝑑
ℏ

  =     𝜋 −    𝑝𝑥𝑑
ℏ

                                                            

So we now have  

                              𝜋 −    𝑝𝑥𝑑
ℏ

      =           2ℏ𝑑𝑠
∆𝑑

   , 

therefore maximum momentum is   

                                                   𝑒𝑖𝑚    ≈        𝜋ℏ
𝑑

      -     2ℏ
2𝑑𝑠

∆𝑑2
                                                         

The Hamiltonian of the system in the rest frame is  

         𝐻′ =  𝐸(𝑒𝑖) - 𝑣𝑠𝑒𝑖 + 𝑉(𝑥′)    =    𝐸′(𝑒𝑖)   + 𝑉(𝑥′)                                                                (3.9)   

where 𝐻′ = 0 , since it does not depend explicitly on time, is a constant of motion and is 
equal to zero for all time, t. So therefore at maximum  

                           𝐸(𝑒𝑖𝑚)  -  𝑣𝑠𝑒𝑖𝑚  = − 𝑉(𝑥′)                                                                            

therefore,    

                  ∆
2
�1 − cos 𝑃𝑥

𝑚𝑑
ℏ
�  -  𝑣𝑠𝑃𝑖𝑚  =    − 𝑉(𝑥′)                                                                          (3.10) 

Substituting for   𝑃𝑖𝑚   in the above equation, we have   

                      ∆
2
�1 − cos �𝜋 − 2ℏ2𝑑𝑠

∆𝑑2
�� −𝑣𝑠 �

𝜋ℏ
𝑑
− 2ℏ2𝑑𝑠

∆𝑑2
� =  − 𝑉(𝑥′)                                               

Considering the parameter used [33], 2ℏ𝑑𝑠
∆𝑑

 ≈ 0.08 and consequently 2ℏ
2𝑑𝑠

∆𝑑2
  will be 

negligible. Therefore 

                             ∆ − 𝑣𝑠
𝜋ℏ
𝑑

 = − 𝑉(𝑥′)                                                                                    (3.11) 
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This is the potential, which is  𝐸′(𝑒𝑖) = ∆ − 𝑣𝑠
𝜋ℏ
𝑑

  and can only take values between 

±𝑈 which are determined by the amplitude 𝑉(𝑥′)  

                                                             ∴ 𝘌′ (𝑒𝑖)  = 𝑈𝑐  

This is the critical value of the wave amplitude. 

We illustrate the electron trajectories for different values of wave amplitude to 

see if the dynamical regime can be distinguished. Fig. 3.2 shows the electron trajectory 

when  𝑈 = 1𝑚𝑒𝑉 , which was obtained numerically from equations (3.5) and (3.6). The 

𝑥(𝑑) trajectory consists of regular oscillations that are almost sinusoidal, and the 

electron is being dragged in the SL with the velocity of the acoustic wave. 

         

Figure 3.2: The electron trajectory in real space when the wave amplitude, 𝑈 = 1𝑚𝑒𝑉, 

initially at  𝑥 = 0 𝑎𝑛𝑑 𝑒 = 0 . The electron is being dragged in the SL with the velocity of 

the acoustic wave. 

In this region, when 𝑈 = 1𝑚𝑒𝑉, the electrons are trapped. The electron will be in the 

parabolic region of the 𝐸′ (𝑒𝑖) curve, where the momentum,  𝑒𝑖 = 0 as shown in Fig. 3.3. 

The electron is confined within a single potential well in the acoustic wave and 

oscillates back and forth across the well. 𝐸′ (𝑒𝑖) is the modified dispersion relation. 

When 𝑈 reaches the critical value, 𝑈𝑐 this is equal to the local maximum of  𝐸′ (𝑒𝑖), 

arrowed in Fig.3.3, the electron is no longer trapped within the acoustic wave but 

traverse since the wave amplitude, 𝑈 > 4𝑚𝑒𝑉. 
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Figure 3.3: The modified dispersion relation is plotted against the momentum showing 

electron transport in the potential well. The wave amplitude must be greater than the 

miniband for the electron to traverse over the barrier. At the arrowed peak 𝐸′ (𝑒𝑖) =

𝑈𝑐 refer to as the critical value.  The figure is adapted from reference [33].  

As the wave amplitude increases, consequently increasing the drift velocity of the 

system, the electrons begin to Bloch oscillate.  Fig. 3.4 is the electron trajectory when 

the wave amplitude is increasing; the wave amplitude is 7𝑚𝑒𝑉.  At this region, the 

electron has started Bloch oscillate which causes the electron transport to be 

suppressed. The electron  𝑥(𝑑)  trajectory consists of Bloch-like oscillations caused by 

the acoustic wave.  

 

Figure 3.4: Electron trajectory when the wave amplitude, 𝑈 = 7𝑚𝑒𝑉. The frequency 

oscillations are interrupted by jumps in the negative  𝑥 − 𝑑𝑖𝑖𝑒𝑐𝑑𝑖𝑐𝑛. 

𝑥(𝑚) 

 

𝑑(𝑠) 
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Figure 3.5: Electron trajectory in real space when the wave amplitude is 𝑈 = 10𝑚𝑒𝑉 

with initial condition  𝑥 = 0 and  𝑒 = 0. The high frequency oscillations are driven by 

the acoustic wave.  

When the wave amplitude is increased further, we have bursts of high-frequency 

fluctuations in electron trajectory 𝑥(𝑑)  but they are moving in the negative 𝑥 −direction. 

The bursts of Bloch-like oscillations are interrupted by jumps in the negative direction 

as shown in Fig. 3.5. We could observe a change in trajectory at different strengths of 

wave amplitude but more investigations are still required. 

 

3.3.1  Average drift velocity 

The average drift velocity is needed since we are dealing with propagating wave whose 

wavelength is less than the length of the SL. The average drift velocity measures the 

actual velocity of the electron and this helps produce a general overview of the 

dynamics of the electron in the SL. To calculate average drift velocity ⟨𝑣𝑑⟩ , we assume 

that the electron will start at  𝑥 = 𝑥0, and at a low temperature close to zero; then the 

momentum states as  𝑒𝑖 = 0 . We sum up the electron drift velocity at different initial 

conditions over many periods of oscillation and average over all the initial conditions. 

Fig. 3.6 shows the ⟨𝑣𝑑⟩ against the wave amplitude applied. From the graph, when the 

wave amplitude 𝑈 is between 1𝑚𝑒𝑉 and 3𝑚𝑒𝑉, we have an almost linear curve that 

reaches the arrowed peak at(1), the curve dropped down sharply to point (2).   

𝑥(𝑚) 

𝑑(𝑠) 𝑑(𝑠) 
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Figure 3.6: Relationship between the average drift velocity, ⟨𝑣𝑑⟩ and the wave 

amplitude, 𝑈 when an acoustic wave is applied along the axis of the SL. The arrowed 

peak of the average drift velocity is observed between 3𝑚𝑒𝑉 and 4𝑚𝑒𝑉. 

 

After the drop, the graph maintains a steady slope, arrowed (3)  as the wave amplitude 

is increased further. Therefore, there is dynamical change and the maximum still exists. 

Thus, we conceivably will observe the dynamics of the electron before the peak when 

the wave amplitude is very minimal, the dynamics of electron at the peak of  ⟨𝑣𝑑⟩  and 

far away from the peak when the wave amplitude is much higher. This means that we 

have transitions in the dynamical regimes. We have three distinct regimes: before the 

peak, the peak or maximum of the drift velocity and far beyond the peak. For further 

investigation, we calculate average trajectories at each of these phases: before the peak, 

when  = 1𝑚𝑒𝑉 , at the peak we take the wave amplitude to be 𝑈 = 4𝑚𝑒𝑉  and after the 

peak when 𝑈 = 10𝑚𝑒𝑉.  Fig. 3.7 shows the average electron trajectories calculated for 

these wave amplitudes. The area marked (1) corresponds to when  𝑈 = 1𝑚𝑒𝑉, and the 

average trajectory is as shown in Fig. 3.7 (a). The graph shows a monotonic behaviour. 

The area marked (2) relates to 𝑈 = 4𝑚𝑒𝑉, and Fig. 3.7(b) of the �̅�(𝑑) trajectory is a non-

linear function going down. In Fig. 3.7(c), the �̅�(𝑑)  trajectory for 𝑈 =  10𝑚𝑒𝑉 

corresponds to an area far away from the peak, marked (3) and the graph is meandering 

down swiftly.  
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Figure 3.7: (a) The linear curve is the average electron trajectory,  𝑥 calculated for 

𝑈 = 1𝑚𝑒𝑉 before the peak in Fig. 3.6. Fig. 3.7(b) is average trajectory when  𝑈 = 4𝑚𝑒𝑉  

and corresponds to the arrowed (transition) for average velocity in Fig.3.8. Fig. 3.7(c) 

represents the calculated average trajectory for  𝑈 = 10𝑚𝑒𝑉 far away from the peak. 

(a) 

(b) 

(c) 

 

 

�̅�(𝑚) 

 

�̅�(𝑚) 

 

�̅�(𝑚) 
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We classified the trajectory based on the initial conditions; therefore we 

calculated the electron trajectory by averaging across all the initial conditions. We 

observed the transformation of the trajectory as the average velocity was changing in 

Fig. 3.8. Fig. 3.7(a), when𝑈 =  1𝑚𝑒𝑉, shows a monotonically increasing function. When 

the peak was reached with the increasing drift velocity, the average trajectory 

calculated for 𝑈 = 4𝑚𝑒𝑉 is as represented in Fig. 3.7(b), which is not monotonic but a 

non-linear function. Far away from the peak, we observed that the average trajectory 

calculated for 𝑈 = 10𝑚𝑒𝑉  which is a non-linear the trajectory of the dynamical system 

twisting down swiftly as shown in Fig. 3.7(c). By averaging the trajectory we could see 

the changes in the trajectory on the phase space. This suggests that there may be 

transition between the dynamical systems. This is associated with the change in the 

drift velocity and whether the transitions depend on the scattering. 

The average velocity can be calculated to achieve a more detailed overview of the 

dynamics of electrons in SLs. This was done by  taking the electron trajectory over many 

periods of oscillation, and we assumed that there were no scattering events. An example 

of such an assumption is in the dynamics of cold atoms in the moving optical lattices 

[33]. It is irrelevant to determine the drift velocity since the scattering effect in the 

transport of atoms in the optical lattices is negligible. 
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Figure 3.8: The relation between the average velocities, ⟨𝑣⟩ of electrons and the wave 

amplitude, 𝑈. In the graph, the average velocity grows steadily at low wave amplitude 

and afterwards reaches a drastic maximum and drop to negative value. 

Fig. 3.8 shows the average velocity, ⟨𝑣⟩ against the applied wave amplitude, 𝑈. At 

low wave amplitude the average velocity increases steadily and mainatains a constant 

at the peak. Thereafter it drops drastically at a certain wave amplitude and maintains a 

negative average velocity for high values of wave amplitude. In Fig. 3.8, there are 

basically three regions:- before the peak, at the peak and far beyond the peak. In the 

first region, before the peak, the average velocity is positive and steadily increases as 

the wave amplitude increases. When the wave amplitude is increased further, the 

average velocity reaches a maximum (marked) transition. At this peak of the average 

velocity, the wave amplitude is about  3𝑚𝑒𝑉.  Afterward the average velocity drops 

drastically to below zero and we have a steady negative value for the increasing value of 

the wave amplitude. This shows that we have transition before the peak and after the 

peak. 
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3.3.2   Phase portraits 

 

We analyse the phase portraits of the electron motion, which enabled us to 

understand the electron behaviour in the SL. Phase portraits provide information about 

the number of different trajectories from different initial conditions. This helps to 

characterise the transition, which is the dynamical regimes we observed depending on 

the different values of wave amplitudes applied. We used different initial conditions to 

build the phase portrait, since we obtained the average drift velocity by averaging the 

velocity of all trajectories. Therefore the phase portrait characterises the electron 

trajectory at each phase transition for the different values of wave amplitude applied. 

This enables us to qualitatively understand the equation of motion in the SL. The phase 

space of the system gives more detailed insight into the system’s dynamics. 

 In order to do this, we considered the motion of electrons in the SL in the 

reference frame of the acoustic wave. The motion of electrons in a moving reference 

frame can be described if we rewrite the dynamical system [103-106]. In the moving 

reference frame of an acoustic wave, the electrons have the velocity of the acoustic wave, 

and this is almost constant inside the SL since the SL is homogenous. Therefore, we 

transform from the lab (𝑥,𝑒) frame to the rest  (𝑥′, 𝑒) frame of the acoustic wave. The 

transformation into the moving frame of the acoustic wave helps us to understand the 

electron’s trajectory.  For this, we create the co-ordinate transformation of  𝑥(𝑑)  into 

the moving frame of the acoustic wave  𝑥′(𝑑)  by using the following substitution   

                                 𝑥′(𝑑) =  𝑥(𝑑) −  𝑣𝑠𝑑                                                                              (3.12) 

and differentiating equation (3.12) gives  

                                 ∴       �̇�′(𝑑) =  �̇�(𝑑)−  𝑣𝑠                                                                           (3.13) 

So, the equation of motion of the electron in the SL will become  

                                           �̇�′ =   ∆𝑑
2ħ

sin 𝑝𝑥𝑑
ħ
− 𝑣𝑠                                                                        (3.14)             

                                    𝑒 =  𝑘𝑈 cos𝑘𝑥′                                                                                   (3.15) 
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We solved equations (3.14) and (3.15) numerically and analytically to identify the phase 

portrait for different wave amplitudes by taking many initial values  (𝑥′,𝑒) for 

momentum and position. We considered the wave amplitude values before the peak 

transition, at the peak and faraway from the peak. The phase portrait can be obtained 

analytically by integrating the equation of motion of the electron in the SL. Let equations 

(3.14) and (3.15) be described as 

                     𝑓(𝑥, 𝑒)  =       𝑑𝑖
′

𝑑𝑑
  =        ∆𝑑

2ħ
sin 𝑝𝑥𝑑

ħ
− 𝑣𝑠                              (3.16) 

                             𝑔(𝑥,𝑒)  =       𝑑𝑝
𝑑𝑑

    =        𝑘𝑈 cos𝑘𝑥′                                       (3.17)  

The entire notations have the usual meaning, ∆ is the miniband. 𝑑 is the lattice constant, 

𝑒𝑖is the momentum in the 𝑥-direction, and the wave vector is 𝑘. Therefore, if we 

differentiate equations (3.16) and (3.17) w.r.t. 𝜏 and define  𝜏 = 𝜔𝑑 ∴ 𝑑𝜏 = 𝜔𝑑𝑑 to 

transform into dimensionless equations as : 

                                     
𝑑𝑖′

𝑑𝑑
= 𝑑𝑖′

𝑑𝜏
𝑑𝜏
𝑑𝑑

                    ∴               𝑑𝑖
′

𝑑𝜏
 =  𝑑𝑖

′

𝑑𝑑
𝑑𝑑
𝑑𝜏

 

and                       𝑑𝑝
𝑑𝑑

= 𝑑𝑝
𝑑𝑑
𝑑𝜏
𝑑𝑑                  ∴             𝑑𝑒

𝑑𝜏
= 𝑑𝑒

𝑑𝑑

𝑑𝑑
𝑑𝜏

 

we obtain dimensionless differential equations as follows  

 

      𝑑𝑖
′

𝑑𝜏
= �∆𝑑

2ħ
sin 𝑝𝑥𝑑

ħ
− 𝑣𝑠�

𝑑𝑑
𝑑𝜏

                    ∴         𝑘 𝑑𝑖′ 
𝑑𝜏

   =    ∆𝑑
2ħ𝑑

sin 𝑝𝑥𝑑
ħ
− 1 

     𝑑𝑝
𝑑𝜏

= (𝑘𝑈 cos𝑘𝑥′) 𝑑𝑑
𝑑𝜏

                         ∴         𝑑𝑝
𝑑𝜏

  =   𝑘𝑘
𝑤

cos𝑘𝑥′ 

 

If, we let     ∆𝑑
2ħ𝑑

 = 𝐴  ,         𝑑
ħ
𝑘𝑘
𝑤

= 𝐵 ,           𝑃 = 𝑒𝑥𝑑/ħ        and          𝑋 =  𝑘𝑥’    

then, 

                                                                 𝑑𝑑
𝑑𝜏

= 𝐴 sin𝑃 − 1                                                                (3.18)           

                                                                 𝑑𝑃
𝑑𝜏

=  𝐵 cos𝑋                                                           (3.19) 
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The general solution of these two equations can be determined if we divide equation 

(3.19) by equation (3.18) and we obtain  

                                                                
𝑑𝑃
𝑑𝑑

= 𝐵 cos𝑑
𝐴 sin𝑃−1  

                      

                                        (𝐴 sin𝑃 − 1)𝑑𝑃 = (𝐵 cos𝑋) 𝑑𝑋                                                    (3.20)      

and integrating equation (3.20) gives     

                                                           sin𝑋 = 𝐶−𝐴cos𝑃−𝑃
𝐵

            

where 𝐶 is an arbitrary constant that can be obtained from the initial value of  (𝑋,𝑃) 

        ∴          𝑋 = (−1)𝑛 sin−1 𝐶−𝐴cos𝑃−𝑃
𝐵

 +   𝜋𝑛                                                                         (3.21) 

                                           𝑛 = 0, ±1, ±2 … … … ……. 

Therefore, the phase portrait can be determined analytically by taking initial values for 

 𝑋 and 𝑃; these coordinates describe the state at any instant. The dynamical rule 

specifies the immediate future of all state variables, given only the present values of 

those same state variables.   

To determine the fixed points of the dynamical systems, we equate to zero 

equations (3.14) and (3.15), which are equations of motion of the electron in the SL 

[105],  

                              𝑓(𝑥,𝑒)  =      ∆𝑑
2ħ

sin 𝑝𝑥𝑑
ħ
− 𝑣𝑠 = 0                                                (3.22) 

                            𝑔(𝑥,𝑒)  =       𝑘𝑈 cos𝑘𝑥′ = 0                                                      (3.23) 

 

         ∴             sin 𝑝𝑥𝑑
ħ

     =   2ħ𝑑𝑠
∆𝑑

             and                 cos𝑘𝑥′ = 0 

                  let           𝑝𝑥𝑑
ħ

 =  𝑒                    and                𝑘𝑥′  =  𝑥 

Therefore fixed points,  𝑒 and  𝑥 will be described as  

       𝑒 =  (−1)𝑛 sin−1 2ħ𝑑𝑠
∆𝑑

 + 𝜋𝑛                                                                            (3.24) 

                                         𝑛 = 0, ±1, ±2 … … … ……. 
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     𝑥 = ± 𝜋
2

 + 2𝜋𝑎                                                                                                     (3.25) 

                                       𝑎 = 0, ±1, ±2 … … … ……. 

The fixed points can be classified according to their stability property: there are 

stable nodes, unstable nodes, centre and saddle. In this work, we obtained two types of 

fixed point, the centres and saddles shown in Fig.3.9.  

 

                                          
Figure 3.9: A typical phase portrait in the locality of an equilibrium state showing the 

fixed points: centres and saddles. The fixed points for the system under consideration 

are as shown. It does not depend on 𝑈 but on miniband, lattice constant and velocity of 

the acoustic wave. 

It is impossible to derive an explicit formula to obtain the solution of nonlinear 

equations (3.14) and (3.15), therefore analysis of the phase portraits provides a useful 

means of visualizing and understanding the qualitative features of the solution of a 

nonlinear equation.  
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3.4 Phase portrait for small  𝑼 
  

Different initial states result in different trajectories, and these sets of 

trajectories form the phase portrait of a dynamical system. Before the peak of the 

average drift velocity in Fig. 3.6, we have a linear curve where the wave amplitude, 

𝑈 has values between 1𝑚𝑒𝑉 and 3𝑚𝑒𝑉. For 𝑈 = 1𝑚𝑒𝑉, we illustrate the phase portrait 

in Fig. 3.10. There are two types of the phase trajectories here: the localised trajectory, 

marked (𝑎) and the unlocalised or unbounded trajectory which is parallel to the 

horizontal axis, marked (𝑏). The trajectories that connect the saddle point which 

separates these two phase trajectories from each other are called separatrix, marked (𝑐). 

The separatrix marks the boundary between two phase curves with different properties. 

The equilibrium or fixed point in Fig. 3.10 is the simplest form of the orbit that is not 

moved by any transformation and is marked as a fixed point. 

 

                     

Figure 3.10:  Momentum of the electron against the position describing the phase 

portrait of the system before the peak transition when 𝑈 = 1𝑚𝑒𝑉. Shown in the figure 

are the localised trajectory or central marked (𝑎) and the unbounded trajectory which is 

parallel to the horizontal axis, marked (𝑏). The separatrix, which connects the fixed 

points passing through the saddle, is marked (𝑐).  
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In this work, the phase trajectory can be classified into three different 

trajectories. We have the phase trajectory that rotates, we named it localised and 

marked it (a) in Fig. 3.10. Note that it could encircle several centres. We called the 

unbounded trajectory parallel to the horizontal axis the unlocalised trajectory, marked 

(b) in Fig. 3.10. The third phase trajectory, which usually meanders up and down, 

encircles several “ellipses” and “centres” is marked (d) in Fig. 3.23. Another important 

trajectory is the separatrix, marked (𝑐).  It separates the localised from unlocalised 

trajectory and connects the saddle point. We described the dimensionless position as 

𝑋 =  𝑘𝑥’  for the horizontal axis and for vertical axis the dimensionless momentum was 

defined as  𝑃 = 𝑒𝑑 ħ⁄  .   

In real space, the localised trajectory corresponds to regular sinusoidal 

oscillations, and the amplitude of these oscillations is equal to half the wavelength, 𝜆𝑠of 

the acoustic wave. The trajectory is moving in the positive 𝑥 −direction and the motion 

is periodic in real space. This is seen in the real-space trajectory for single electron 

dynamics as shown in Fig. 3.2.  To describe the path of electron in the SL; we take 

different points in the phase portrait as the initial value to observe the electron path in 

the phase space. Therefore in Fig. 3.10, we take equilibrium points to explain the path of 

electron. The arrow indicates the direction in which the electron is moving. The blue 

curve (on line) indicates that the electron is moving in the clockwise (positive) direction 

and whenever we have the red curve (on line) it means that the electron  is moving in an 

anticlockwise (negative) direction.  

Fig. 3.11 shows the path of the electron, the equilibrium point taken in the phase 

portrait (Fig. 3.10) is (2.0, 6.2). The position-time and momentum-time curves are 

sinusoidal, so the momentum-position graph at this point on the phase portrait showed 

that the electron path is localised. The electrons are moving in the clockwise direction. 

In real space, the electron trajectory shows an almost linear curve in the positive 

direction. At another equilibrium point on the phase portrait in Fig. 3.10, (-2.0, 2.0), the 

electron path is localised but the electrons are moving in an anticlockwise direction. 

This shows that electron is moving in both positive and negative direction in the SL. 
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Figure 3.11: Paths of the electron from an initial point on the phase portrait. (𝑎) is the 

position, 𝑋 against the time, 𝜏;  (𝑏) describes the momentum, 𝑃  against the time, 𝜏; and   

(𝑐)  is the momentum, 𝑃 versus the position, 𝑋. The initial point (𝑋,𝑃) is (2, 6.2) and the 

paths of the electron in the SL for the localised trajectory indicates the electron is 

moving in the positive direction. (𝑑) electron trajectory  𝑥(𝑑) for 𝑈 = 1𝑚𝑒𝑉 is almost 

linear curve in the positive direction. 

Fig. 3.11 shows that the path of the electron: (a) is the position against the time where 

we have a sinusoidal curve. (b) shows the momentum against the time, which is also a 

sinusoidal curve. (c) is the momentum-position curve showing that the electron path is 

localised and that the electron is moving in a clockwise, positive direction. The electron 

in this region, when the wave amplitude is minimal, is localised and moves with the 

(𝑎) (𝑏) 

(𝑐) 
(𝑑) 

𝝉 𝝉 

X P 

P 



53 
 

velocity of the acoustic wave. Fig. 3.11 (𝑑) shows that the 𝑥(𝑑) electron trajectory is 

regular, and the electron is moving in the positive direction.  

               

                                                                                             

       

Figure 3.12: Paths of electron in the phase portrait. (𝑎) is the position, 𝑋 against the 

time, 𝜏; (𝑏) is the momentum, 𝑃  against the time, 𝜏 ; and (𝑐) is the momentum,  𝑃  

against position, 𝑋. The paths of the electron in the SL, the localised trajectory indicate 

that the electron is moving in the negative  direction (red). The  initial point ( 𝑋,𝑃) is (-

2.0, 2.0) and (𝑑) is the electron trajectory  𝑥(𝑑). 

 We take another equilibrium point (−2.0,2.0) in Fig. 3.12, where (𝑎) shows the 

position against the time; (𝑏) the momentum against the time, (𝑐) describes the 

momentum against the position; and  (𝑑) is the electron trajectory  𝑥(𝑑). The initial 

value is (−2.0,2.0). The momentum-position curve in Fig. 3.12 (c) shows that the 
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localised trajectory is in an anticlockwise direction, and the electron trajectory 𝑥(𝑑) in 

Fig. 3.12 (𝑑)  is localised in the negative direction. Both the position-time and 

momentum–time curves are almost sinusoidal. 

           

                                                                                                                                    

                                                           

Figure 3.13: Paths of electron by choosing an initial value from the phase portrait. (𝑎) is 

the position, 𝑋 against the time,𝜏  which is almost a linear curve in the positive 

direction.  (𝑏) is momentum, 𝑃  against time,𝜏  (𝑐) is the momentum, 𝑃  against position,  

𝑋. The paths of electron in the SL for this  unbounded trajectory show that the electron 

is moving in the positive direction (blue) and initial value( 𝑋,𝑃) is (1.00,1.25). (𝑑) is the 

electron trajectory  𝑥(𝑑). 

 The initial point, in  Fig. 3.13 is (1.00,1.25), (𝑎) is the position against the time 

which is a linear curve. (𝑏) shows a sinusoidal curve for momentum against time. (c), 

which is momentum against position, is a sinusoidal curve moving in the positive 
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direction.  The paths of the electron in the SL for this unbounded trajectory show that 

the electron is moving in the positive direction, and the 𝑥(𝑑) trajectory in  (𝑑) is a linear 

curve moving in the positive direction. 

 

          

                                                                                                                                 

  

Figure 3.14: Paths of electron by choosing an initial value from the phase portrait. (a) is 

the position, 𝑋 against the time, 𝜏 (b) is the momentum, 𝑃  against the time, 𝜏; and (c) is 

the momentum,𝑃 in relation to the position, 𝑋. The paths of the electron in the SL 

indicate that the electron is moving in the negative direction, and the initial value ( 𝑋,𝑃) 

is (0.5, 1.10). (d) is the 𝑥(𝑑) trajectory.  

When the initial value, in the Fig. 3.14 is (0.5,1.10), (a) the position against the 

time is a linear curve in the negative 𝑥-direction. (b) shows a sinusoidal curve for the  
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momentum against the time while (c) is the momentum versus position whose 

unlocalised trajectory is moving in the opposite direction. The paths of the electron in 

the SLs for this  unbounded trajectory show that the electron is moving in the negative 

direction and the 𝑥(𝑑) trajectory in (d) shows a linear curve in the negative direction. 

 We were able to show that we have the localised electron and the unlocalised 

(unbounded) trajectories moving in both the positive and the negative directions. For 

different initial values on the phase portrait, we observed the path of the electron as it 

moved in both the positive and the negative directions. The separatrix separates the 

types of phase trajectories, so we could distinctly see the electron trajectory 

characterised the spreading of the charge transport in the SL. In this region, the electron 

is trapped in the well, and is moving to and fro in the well with the velocity of acoustic 

wave. The phase trajectories are moving in both the positive and negative directions, as 

shown in Figs. 3.11 - 3.14, for the different initial states in the phase portrait. 
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3.5 Phase portrait for 𝑼 close to maximum drift velocity 
 

As the wave amplitude of acoustic wave ,𝑈 increases and the peak is approached 

in the Fig. 3.6, the unbounded trajectories begin to disappear. The phase trajectories 

that are close to the transition are localised, all unbounded trajectories shrink away, and 

we have localised trajectories embracing several centres. At this transition, we obtain a 

trajectory that encircles several closed ellipses and the unbounded trajectory 

disappears completely.  

 

Figure 3.15: Relation of momentum of the electron against the position, the phase 

portrait of the system close to the transition when wave amplitude,𝑈 = 4𝑚𝑒𝑉 .  

Fig. 3.15 shows the phase portrait when 𝑈 = 4𝑚𝑒𝑉 , the unbounded trajectories 

are disappearing and the few that remain are spiralling down. The separatrix arrowed 

(a) connects the saddle, and the localised trajectory encircling several centres is 

arrowed (𝑏). Also, we looked at the path of the electron by taking some initial points in 

the phase portrait for 𝑈 very close to the maximum drift velocity. The electron path 

when the initial value is (−3.8,3.0) is shown in Fig. 3.16.  

 

 



58 
 

 

            

                                                                                           

                      

Figure 3.16: Paths of the electron in phase space. (𝑎) is the position, 𝑋 against the 

time, 𝜏 the graph is meandering down.  (𝑏) is the momentum, 𝑃  against the time, 𝜏  (𝑐) 

is the momentum, 𝑃  against the position, 𝑋 the twisting trajectory is towards the 

negative direction. The  paths of the electron in the SL show that the electron is moving 

in an opposite direction (red online). (𝑑) is the electron trajectory when 𝑈 = 4𝑚𝑒𝑉 at 

the initial value of (−3.8,3.0). 

In Fig. 3.16, (𝑎) is the position against the time, and where the curve is 

meandering down in the negative direction. (𝑏) is the momentum against the time, and 

the curve is sinusoidal.  (𝑐) relates the momentum with the position as the phase 

trajectory is moving toward the opposite direction. The trajectory is moving in an 

opposite direction in the phase space. The electron trajectory, 𝑥(𝑑), in (𝑑) shows that 

the electron is moving in the negative direction as the curve meanders down the slope. 
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With the increase in the wave amplitude applied, the electron is no longer trapped in 

the potential well. 

          

                                                                                                  

        
                                                                        

Figure 3.17: Paths of the electron when the initial value ( 𝑋,𝑃) of the phase plane is 

(3.5,-6.2) on the phase portrait. (𝑎) is the position, 𝑋 against the time, 𝜏 (in seconds) (𝑏)  

is the momentum, 𝑃  against the time, 𝜏  (𝑐) is the momentum,𝑃  against the position 

𝑋 .The electron path in this region indicates that some of the localised electrons  moves 

in the negative direction about the transition region.  

In Fig. 3.17, the initial point is (3.5,-6.2) from Fig.3.15, and the electron paths are 

localised  and move in an anticlockwise direction. In this region, the electron no longer 

dragged in the SL. (𝑎) is the position against the time, and the curve is sinusoidal. (𝑏) 

gives the momentum-time depedence which is also sinusoidal. (𝑐) shows the localised 
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trajectory moving in an anticlockwise direction for the momentum-position curve. The 

electron trajectory, 𝑥(𝑑) in Fig.3.17(𝑑) shows a sinusoidal curve in the negative region. 

 

              

                                                                                       

        

Figure 3.18: Paths of the electron for the phase plane  initial value ( 𝑋,𝑃)  of  (3.0,0.5) on 

the phase portrait. (𝑎) is the position, 𝑋 against the time, τ  (b) is the momentum, 𝑃  

against the time, 𝜏 , and (𝑐) is the momentum,𝑃  against the position  𝑋 . The electron 

path indicates that the electron is moving in the positive direction  and is localised.  

The figure shows the paths of electron for the phase space with the  initial value 

( 𝑋,𝑃) of  (3.0,0.5) on the phase portrait of Fig. 3.15.  Fig. 3.18 (𝑎) is the position against 

the time, and is sinusoidal. (b) describes a sinusoidal curve for the momentum against 

the time, (𝑐) is the momentum versus the position, and the electron path indicates that 
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the curve is localised and is moving in the clockwise direction. (d) is the electron 

trajectory , 𝑥(𝑑) . The phase trajectory of  the electron is localised and is moving in the 

clockwise direction. 

In this region, which corresponds to the maximum of the drift velocity as shown 

in Fig. 3.6, the phase portrait showed that the spiral trajectory observed encircles 

several closed ellipses that are localized trajectories. In real space, the electron is no 

longer trapped within the acoustic wave; it can reach the edge of the first minizone, and 

the trajectories can traverse several minizones. When the drift velocity is at maximum, 

the electron reaches the Brillouin zone edge and the electron Bragg reflects, and then 

Bloch oscillates. The localised electron undergoes Bloch-like oscillations; this 

suppresses transport, and the region of negative differential velocity exists, thus 

inducing charge in the system.  
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3.6 Phase portrait for large  𝑼 
 

 After the peak, when  𝑈 ≥ 7𝑚𝑒𝑉 , there are localised phase trajectories that 

encompass several centres and unlocalised ones that meander down, as shown in Fig. 

3.18. This is the phase portrait when  𝑈 = 7𝑚𝑒𝑉 . The separatrix, arrowed (a), connects 

the saddle. The localised phase trajectory is marked (b) 

 

Figure 3.19: Momentum of the electron against its position to describe the phase 

trajectory of the system after the peak when wave amplitude, 𝑈 = 7𝑚𝑒𝑉. Shown in the 

figure is the separatrix (arrowed (𝑎)) that connects the saddle. The localised trajectory 

is arrowed (𝑏).  

Shown in Fig.3.19 are the fixed points, and the separatrix connects the saddle. In 

real space the electron trajectories are moving toward the negative direction, which 

means that the electron moves in the negative direction. To understand the paths of the 

electron we find the phase trajectory at some initial points in the phase portrait. In Fig. 

3.20, the initial point taken on the phase portrait of Fig. 3.19 is  (−4.0,10.0). 
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Figure 3.20: Paths of the electron when the initial value ( 𝑋,𝑃)  on the phase portrait 

is (−4.0,10.0). (𝑎) is the position, 𝑋 against the time, 𝜏  (𝑏)is the momentum, 𝑃  against 

the time, 𝜏  while (c) is the momentum, 𝑃 against the position 𝑋. The electron is moving 

in the negative direction. (𝑑) is the electron trajectory, 𝑥(𝑑) initially at (-4.0,10.0).  

The initial value, in Fig. 3.20 is (−4.0,10.0), (a) is the position, 𝑋 against the time, 

𝜏  and the graph is spiralling down. (b) is the momentum against time, the curve is 

sinusoidal but the period is quite large. (c) is the momentum versus the position, and 

the phase trajectory is meandering up and down towards the negative direction. The 

path of the electron is in the negative direction, and the 𝑥(𝑑) trajectory in (d) shows that 

the electron trajectory is in the negative direction as well.    

 

 

(𝑎) (𝑏) 

(𝑐) (𝑑) 

𝜏 𝜏 

X 
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Figure 3.21: Paths of the electron with initial value ( 𝑋,𝑃) on the phase portrait 

of (−3.5, 4.0). (𝑎) is the position, 𝑋 against the time, 𝜏 (𝑏) is the momentum, 𝑃  against 

the time, 𝜏  (𝑐) is the  momentum,𝑃  against the position,  𝑋. The phase trajectory is in 

the negative direction. (d) is the electron trajectory, which is spiralling down. 

The initial point in Fig. 3.21 is (−3.5,4.0). (a) describes the position against the 

time, and the curve is meandering down. (b) is the momentum versus the time, and the 

period of the sinusoidal curve is very large. (c) gives the momentum in relation to the 

position, and the path of the electron in the phase space is a spiral trajectory moving in 

the (opposite) negative direction. The 𝑥(𝑑) trajectory at (d) shows that the electron 

trajectory is spiralling down in the negative region.  
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Figure 3.22: Paths of the electron for initial value ( 𝑋,𝑃) on the phase portrait at (1.2,-

5.2). (𝑎) is the position 𝑋 against the time 𝜏. (𝑏) is the momentum 𝑃 against the time 𝜏, 

and (𝑐) is the momentum  𝑃 against the position 𝑋. The electron path in this region 

indicates that some of the phase trajectory is localised in the clockwise direction.  

The initial point taken in Fig. 3.22 is (1.2,−5.2). (a) is the position against the time, and 

the curve is sinusoidal. (b) is the sinusoidal curve for momentum versus time. (𝑐) 

describes the curve of the momentum against the position; the phase trajectory is 

localised and moving in the clockwise direction. The 𝑥(𝑑) trajectory at (𝑑), shows that 

the electron trajectory is sinusoidal with a small period. In real space, this corresponds 

to the sinusoidal oscillations; but moving in the positive 𝑥 −direction, it actually means 

that the electron trajectory is in the positive direction. The oscillations are caused by the 

instability of the space charge in the SL due to the Bragg reflection of electrons in the 

lowest wide miniband.  

 (𝑎) (𝑏) 

(𝑐) 

X P 

P 

𝜏 𝜏 
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3.7 Phase portrait far beyond the peak 
 

Fig.3.23 shows the phase portrait for an acoustically driven SL where  

𝑈 =  10𝑚𝑒𝑉 far beyond the peak. The separatix connects the saddles and the localised 

trajectories encompass several ellipses and centres. 

                      

 

Figure 3.23: Momentum of the electron against the position describing the phase 

portrait of the system far beyond the peak when wave amplitude 𝑈 = 10𝑚𝑒𝑉. The 

separatrix, arrowed (𝑎) , connects the saddle. The localised phase trajectory is 

arrowed  (𝑏), and the unbounded trajectory is marked (𝑑) which is parallel to the 

vertical axis.  

 To explain the phase trajectory, we take some points as the initial points on the 

phase portrait to examine the electron’s path. 

 

 

d 
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Figure 3.24:  Paths of the electron for an initial value (𝑋,𝑃)   on the phase portrait of (-

3.5,10.0). (𝑎) is the position, 𝑋 against the time, 𝜏 (𝑏) is the momentum, 𝑃  against the 

time,𝜏  (𝑐) is the momentum, 𝑃 against the position 𝑋 showing that the phase trajectory 

is moving in the opposite direction. This show that the electron is moving in the 

negative direction in the SL. (𝑑) is electron trajectory for the intial point. 

In Fig. 3.24, the initial point is (−3.5,10.0). (a) is the position relating to the time, 

and the curve is meandering down into the negative position. (b) describes the  

momentum versus time curve with very large period for the sinusoidal-like curve. (c) is 

the momentum against the position, and the phase trajectory is meandering up and 

down toward the (opposite) negative direction. The paths of the electron in the SL for 

this spiral trajectory show a trajectory moving in the negative direction and, the 𝑥(𝑑) 

trajectory at (d) shows the sinusoidal curve in the negative region. 

(𝑎) (𝑏) 

(𝑐) (𝑑) 

X P 
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Figure 3.25: Paths of the electron, when the initial value ( 𝑋,𝑃) on the phase portrait is 

(-2.5,1.52). (𝑎) is the position, 𝑋 against the time, 𝜏  (𝑏) is the momentum, 𝑃 against the 

time, 𝜏  (𝑐) is the momentum, 𝑃 against the position 𝑋. The phase trajectory is in the 

negative direction.  The paths of the electron in the superlattices indicate that the 

electron is moving in the opposite direction.  

In Fig. 3.25 the initial point was chosen to be (−2.5,1.52). (a) is the position against the 

time curve, which is twisting down. (b) describes the momentum against the time, 

producing a sinusiodal curve of a large period. (c) is the momentum against the position, 

which gives the phase trajectory maendering up and down in the negative direction.  

The paths of the electron in the SL for this spiral trajectory are moving in the negative 

direction. The 𝑥(𝑑) trajectory in Fig. 3.25 (d) shows that the electron is moving in the 

negative direction. 
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Figure 3.26: Paths of the electron with an initial value ( 𝑋,𝑃)  on the phase portrait of (-

2.2,-9.1). (𝑎) is the position 𝑋 against the time 𝜏.  (𝑏) is the momentum 𝑃 against the 

time 𝜏, and (𝑐) is the momentum 𝑃 against the position 𝑋. The localized trajectory is 

moving in the anticlockwise direction, and the 𝑥(𝑑) trajectory in Fig. 3.26 (𝑑) shows that 

the electron is moving in the negative direction.  

In Fig. 3.26, the initial point is (−2.2,−9.1). (𝑎) gives the position against the time, 

which is a sinusoidal curve.  (𝑏)  describes the momentum versus the time, which is also 

a sinusiodal curve.  (𝑐) is the momentum against the position, which produces a 

localised trajectory that moves in the anticlowise direction. (𝑑)  is the electron 

trajectory 𝑥(𝑑), showing Bloch-like oscillations with jumps in the negative direction. The 

paths of the electron in the SL for this localised trajectory are moving in the negative 

direction.  

(𝑎) (𝑏) 

(𝑐) (𝑑) 
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Conclusion 
 

The trajectory of the electron in a SL driven by an acoustic wave depends on the 

value of the wave amplitude. We observed a sharp transition from the graph of average 

drift velocity against wave amplitude in Fig. 3.2. This transition is at the peak of the 

average drift velocity for a certain value of wave amplitude. The wave amplitude was 

minimal before the peak. The  ⟨ 𝑣𝑑  ⟩ − 𝑈 curve was linear; and thereafter at the peak 

and after the peak, the average drift dropped as we increased the value of the wave 

amplitude. We characterised these transitions by building a phase portrait.  The motion 

was observed by attaching a frame of reference to the system and measuring its change 

in position relative to the reference frame.   

There are three distinct types of phase trajectories: the localized and unlocalised 

(unbounded) trajectories, and the trajectory that meanders up and down and encircles 

several ellipses and centres. For a small acoustic wave amplitude, before the transition 

two of the types of trajectories were observed, the localised and the unbounded 

trajectories. The electron trajectory in this region in real space is regular sinusoidal 

oscillations, the motion is periodic, and the electron moves with the velocity of the 

acoustic wave applied.  As the wave amplitude is increased, the unbounded trajectory 

shirks away. We observed only the localized trajectories that encircle several closed 

ellipses. The electrons have more energy to propagate in the SL. When the wave 

amplitude is increased further, far beyond the transition the trajectories meander up 

and down and encircle the localised trajectories. The electron trajectory moves in the 

negative 𝑥 − 𝑑𝑖𝑖𝑒𝑐𝑑𝑖𝑐𝑛 . There is a velocity drop due to motion in the opposite direction. 

This phenomenon is negative differential velocity, which is observed in a SL. The 

acoustic wave force induces Bloch-like oscillations, and we have high-frequency 

oscillations interrupted by jumps, as shown in Fig. 3.24 (𝑑).  

The momentum-position curve shows the localisation of the electron. We 

observed that the paths of the electron are localized in all the transitions, and the 

electrons are moving in positive and negative directions. These trajectories depend on 

the value of the wave amplitude. There is a qualitative change in the dynamics that 

occurs when the system parameter varies. The phase trajectory is different for the 

varied value of the wave amplitude; therefore transitions exist between the distinct 

dynamical regimes. 
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Chapter 4 
 

Effect of static electric field on acoustically 
driven semiconductor superlattices 
 

4.1 Introduction 
 

In this chapter, we consider the effect of applying an electric field to an acoustically 

driven SL. In the previous chapter we demonstrated that when an acoustic wave alone 

is applied along the axis of SL, it induces charge current. The acoustic wave induces 

high-frequency single electron dynamics in the SL [33, 40]. When a high electric field is 

applied along the axis of SL, the wavefunction will be localised in each quantum well. 

This is called Wannier-Stark (WS) localization and the interband transitions are 

restricted to these regions [107-109]. The electron is subjected to a periodic potential 

proportional to the strength of the electric field. The constant electric applied to SL 

induces an oscillatory electronic motion in 𝑘 space which is called Bloch oscillation 

[21,110]. In order for Bloch oscillations to occur, the field must be strong and the crystal 

should have a large period, which we found in the SL. The larger lattice period in the SL 

will allow the electron to traverse a whole minizone even if scattering occurs [26]. In 

ordinary crystals, electrons cannot get to the boundary zone because of the limited time 

of electron collisions, which is about 10−14 seconds. 
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In the following section we shall consider a system where we jointly apply static 

electric field and acoustic wave along the axis of SL. In particular, we will theoretically 

analysis the dynamics of electron, when electric field and acoustic wave are jointly 

applied to the SL. We will examine the phase portrait to understand the effect of the 

electric field on the trajectories of an electron in an acoustically driven SL. 

 

4.2 Model of electron dynamics 
 

Within the tight-binding approximation, the dispersion, that is the relation 

between the kinetic energy and the crystal momentum for an electron along the 𝑥-axis 

for the miniband as given by equation (3.2). For this system, when the acoustic wave and 

electric field are applied along the axis of the SL with potential energy  𝑒𝐹𝑥  for the static 

electric field, the Hamiltonian is  

        𝐻(𝑥,𝑒𝑖) = ∆
2 �1 − cos 𝑝𝑥𝑑

ℏ
� − 𝑈 sin[𝑘𝑠(𝑥)−𝑤𝑠𝑑] + 𝑒𝐹𝑥 .                               (4.1) 

The semi-classical equations of electron motion for this system will then be Hamilton’s 

equation described as 

                    𝑣𝑖= 𝑑𝑖
𝑑𝑑

 = 𝜕𝜕
𝜕𝑝𝑥

 = ∆𝑑
2ℏ

sin 𝑝𝑥𝑑
ℏ

                                                                                  (4.2)                                     

 𝑑𝑝𝑥
𝑑𝑖

=−𝜕𝜕
𝜕𝑖

 = 𝑘𝑠𝑈 cos[𝑘𝑠(𝑥)−𝑤𝑠𝑑] + 𝑒𝐹                                                                        (4.3) 

 

The electron trajectories can be calculated by solving equations (4.2) and (4.3) 

numerically using 4th order Runge-Kutta algorithms. For simplicity we use the initial 

conditions 𝑥 = 0  at  𝑑 = 0, so that 𝑒 = 0  and assume that there is no scattering.  

 

 

4.3  Electron trajectory 
 
Minibands in the SL allow electrons to perform terahertz-frequency Bloch-like 

oscillations when a high electric field is applied along the axis of the SL. In order to 

understand the effect of the electric field on the electron dynamics in the acoustically 
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driven SL, we considered the change of electron trajectories in the SL. To do this, we 

solved equations (4.2) and (4.3) numerically for different wave amplitudes and electric 

field values. The frequency of the acoustic wave was taken to be  𝑤𝑠 = 𝑣𝑠𝑘𝑠 = 4 × 1011 

rad 𝑠−1. Since  𝑣𝑠 , the speed of sound in GaAs, and is 5000 𝑚𝑠−1, [33], 𝑘𝑠 = 8 × 107𝑚−1 . 

We will consider two extremes, low and high wave amplitudes, since these value 

correspond to the different dynamical regions in the previous chapter.   

 

                

                                                

Figure 4.1: The electron trajectories   𝑥(𝑑)  corresponding to 𝑈 =  1𝑚𝑒𝑉  with (a)  

 𝐹 =  1 × 102𝑉𝑚−1, (b) 𝐹 = 2 × 105𝑉𝑚−1,  (c) 𝐹 = 5 × 105𝑉𝑚−1. Both the electric field 

and wave amplitude were applied together along the axis of the SL at the initial 

condition  𝑥 = 0, 𝑒 = 0. 

Fig. 4.1 shows the electron trajectories starting from rest (𝑒𝑖(0) = 𝑥(0) = 0) for 

wave amplitude 𝑈 =  1𝑚𝑒𝑉 . We consider the SL described in section 2.4 with 

parameters ∆ = 7𝑚𝑒𝑉 𝑎𝑛𝑑 𝑑𝑆𝑆 = 12.5𝑛𝑚.  Fig.4.1 (a) shows the electron trajectory 

when the electric field is  𝐹 =  1 × 102𝑉𝑚−1 . In this case, we have the usual dragging 

(a) (b) 

(c) 
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regime when the acoustic wave alone was applied along the axis of the SL. This is 

compared to Fig.3.2 in the previous chapter. Figure 4.1 (b) and (c) illustrate the electron 

trajectories when the electric field is increased to  2 × 105𝑉𝑚−1 and  5 × 105𝑉𝑚−1 

respectively, showing that the drift decreases and the oscillations become more frequent.  

Figs. 4.2 show the electron trajectories calculated for 𝑈 =  10𝑚𝑒𝑉 and (a) is the 

electric field of  𝐹 = 1 × 102𝑉𝑚−1. (b) is the electric field of  𝐹 = 2 × 105𝑉𝑚−1  (c) is the 

electric field of 𝐹 = 5 × 105𝑉𝑚−1. 

 

             

               
  

Figure 4.2: The electron trajectories   𝑥(𝑑)  corresponding to 𝑈 =  10𝑚𝑒𝑉  with (a) 

 𝐹 =  1 × 102𝑉𝑚−1, (b) 𝐹 = 2 × 105𝑉𝑚−1,  (c) 𝐹 = 5 × 105𝑉𝑚−1. Both the electric field 

and wave amplitude were applied together along the axis of the SL and the initial 

condition was taken as 𝑥 = 0, 𝑒 = 0.The Bloch oscillation bursts are separated by big 

jumps.  

(a) 
(b) 

(c) 
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The trajectory shows high-frequency oscillations interrupted by jumps in the 

negative 𝑥 direction as compared to Fig.3.4 in chapter three. These high-frequency 

fluctuations are Bloch-like oscillations driven by both the electric field and acoustic 

wave , and the jumps are due to the period when the force of the applied fields are too 

weak to cause the Bloch oscillations [33].  At very high electric field, the electron 

trajectory shows very high frequency of oscillations but with interrupted big jumps in 

the negative 𝑥 − direction. Therefore high-frequency oscillations are obtained when an 

electric field is applied to an acoustically driven SL. To gain insight into the electron’s 

trajectory we use the phase portrait which will be discuss in section 4.5.  

 

4.4 Drift velocity with colour map 
 

To characterize the electron transport, we calculate the drift velocity of the 

electron using the Esaki-Tsu formula, equation (2.25). Fig. 4.3 shows the function 𝑣𝑑(𝑈)  

for different strength of electric fields, 𝐹. 

               

Figure 4.3: The dependence drift velocity on wave amplitude at different values of the 

static electric field. The red and green curves show the drift velocity calculated when the 

applied electric field is  𝐹 =  0.0 and  𝐹 = 1 × 105𝑉𝑚−1 respectively. The yellow and 

black curves are when  𝐹 = 2 × 105𝑉𝑚−1 and 𝐹 = 5 × 105𝑉𝑚−1 respectively. The initial 

condition is 𝑥 = 0 and 𝑒 = 0. 
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The red and green 𝑣𝑑(𝑈)  curves, corresponding to 𝐹 = 0  and  𝐹 = 1 × 105𝑉𝑚−1 

respectively, have similar peaks. When the electric field was increased to 𝐹 = 2 ×

105𝑉𝑚−1 (yellow curves), the drift velocity increases slightly before it falls with 

increasing 𝑈. The falls in drift velocity is due to the Bloch-like oscillations induced that 

caused the drift velocity to decrease. The black curves correspond to an electric 

field, 𝐹 = 5 × 105𝑉𝑚−1 . The drift velocity did not increase with increasing wave 

amplitude, but rather decreased. This is because there is localisation of the electron due 

to Bloch oscillation which has suppressed the transport.  

To get deeper insight into the joint effect of electric field and acoustic wave we 

consider the colour map of 𝑣𝑑  (U, F) in Fig. 4.4. The dashed line gives the maximum 𝑣𝑑  

(U) for different 𝐹. 

 

Figure 4.4:  Colour map of  𝑣𝑑  (U, F): the dependence of the drift velocity on the 

combination of the applied electric field,  𝐹 and wave amplitude, 𝑈 with the initial 

condition of  𝑥 = 0 and 𝑒 = 0. The dashed line shows 𝐹𝑐  against 𝑈. 

 The dash line shows the critical value of electric field  𝐹𝑐  , the value of the field 

when the dynamical change occurred against the wave amplitude, 𝑈 in Fig. 4.4. This can 

be calculated by finding the value of electric field when the drift velocity reaches its 

maximum. A critical value is the value of the field when the dynamical change occurred. 

In the previous chapter we find the critical value of the wave amplitude to equal 

approximately to the modified energy dispersion  𝐸′(𝑒𝑖)  that is  𝐸′(𝑒𝑖) ≈ 𝑈𝑐  .  
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The static electric field and acoustic wave jointly applied along the axis of SL 

produced an interesting result; the high drift velocity obtained implies a higher 

fundamental frequency of the current self-oscillations.  Therefore the electric field and 

acoustic wave combined produced much higher frequencies. The red colour indicates 

high drift velocity and the blue colour shows the drop in the value of drift velocity in 

Fig.4.4. The minibands allow the electron to perform terahertz frequency Bloch 

oscillation when a strong electric field is applied to the axis of SLs. The Bloch oscillations 

cause the electron drift velocity to decrease as the electric field increases, and trigger 

frequency oscillations accompanied by the emission of electromagnetic radiation [111]. 

The acoustic wave controls miniband electron transport by creating complex terahertz 

electron dynamics in superlattices which produce high-frequency current oscillations. 

When an electric field and acoustic wave are applied together along the axis of a SL, the 

electron behaviour depends on the wave amplitude of the acoustic wave and the 

strength of the electric field. Increasing the wave amplitude and electric field generate a 

high-frequency current oscillation. 

 

4.5 Phase portrait of electric field effect on acoustically 

driven superlattices 
  

 Knowing the equations of motion for the electron dynamics of the acoustically 

driven SL in the electric field, we analytically calculate and built the phase portrait to 

characterise the electron trajectory at each dynamical regime for different strength of 

wave amplitude and electric field applied along the axis of the SL. 

 

               𝑑𝑖
′

𝑑𝑑
  =        ∆𝑑

2ħ
sin 𝑝𝑥𝑑

ħ
− 𝑣𝑠                                                (4.4) 

       𝑑𝑝
𝑑𝑑

    =        𝑘𝑈 cos𝑘𝑥′ + 𝑒𝐹                                                  (4.5) 
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All the notations have the usual meaning, namely ∆ is the miniband, 𝑑 is the lattice 

constant, 𝑒𝑖is the momentum and the wave vector is 𝑘 . To make the analysis more 

convenient we write the equations (4.4) and (4.5) in dimensionless form, using the 

following substitution and expressing  𝜏 = 𝑤𝑑 , ∴ 𝑑𝜏 = 𝑤𝑑𝑑 . Therefore, we have 

                                     
𝑑𝑖′

𝑑𝑑
= 𝑑𝑖′

𝑑𝜏
𝑑𝜏
𝑑𝑑

                    ∴               𝑑𝑖
′

𝑑𝜏
 =  𝑑𝑖

′

𝑑𝑑
𝑑𝑑
𝑑𝜏

 

and 

                          𝑑𝑝
𝑑𝑑

= 𝑑𝑝
𝑑𝜏

𝑑𝜏
𝑑𝑑

                ∴           𝑑𝑝
𝑑𝜏

= 𝑑𝑝
𝑑𝑑

𝑑𝑑
𝑑𝜏

 

 

We obtain dimensionless differential equations as follows  

 

      𝑑𝑖
′

𝑑𝜏
= �∆𝑑

2ħ
sin 𝑝𝑥𝑑

ħ
− 𝑣𝑠�

𝑑𝑑
𝑑𝜏

                             ∴         𝑘 𝑑𝑖′ 
𝑑𝜏

   =    ∆𝑑
2ħ𝑑

sin 𝑝𝑥𝑑
ħ
− 1 

 

      𝑑𝑝
𝑑𝜏

= (𝑘𝑈 cos𝑘𝑥′ + 𝑒𝐹) 𝑑𝑑
𝑑𝜏

                    ∴             𝑑𝑝
𝑑𝜏

  =   𝑘𝑘
𝑑

cos𝑘𝑥′ + 𝑒𝐹
𝑤

 

 

if, we let     
∆𝑑
2ħ𝑑

 = 𝐴  ,            
𝑑
ħ
𝑘𝑘
𝑑

= 𝐵 ,           𝑃 = 𝑝𝑥𝑑
ħ

        and          𝑋 =  𝑘𝑥’   . 

                                                             𝑑𝑑
𝑑𝜏

= 𝐴 sin𝑃 − 1                                                           (4.6)           

 and                  

                                                               
𝑑𝑃
𝑑𝜏

=  𝐵 cos𝑋 + 𝑑𝐵
𝑑

                                               (4.7) 

where      

                                𝜔𝐵 = 𝑒𝐹𝑑
ħ

                 and taking                   
𝑑𝐵
𝑑

=  𝑐2 

To find the equations describing the phase trajectories we divide equation (4.7) by 

equation (4.6) and obtain         

                                                              
𝑑𝑃
𝑑𝑑

= 𝐵 cos𝑑  +  𝑐2
𝐴 sin𝑃  −   1  
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                              (𝐴 sin𝑃 − 1)𝑑𝑃 = (𝐵 cos𝑋 + 𝑐2) 𝑑𝑋                                                        (4.8) 

and integrating equation (4.8) gives        

   

                                             B sin𝑋 + 𝑋𝑐2  = 𝑐1 − 𝐴 cos𝑃 − 𝑃                                 (4.9) 

 

Equation (4.9) is a transcendental equation and the solution can only be found 

numerically and the constant  𝑐1 can be found from the initial condition.  

To determine the fixed points, we equate the equations of motion of the electron in the 

SL to zero,  

                                         ∆𝑑
2ħ

sin 𝑝𝑥𝑑
ħ
− 𝑣𝑠 = 0                                                                                 (4.10) 

                                     𝑘𝑈 cos 𝑘𝑥′ + 𝑒𝐹 = 0                                                                                  (4.11) 

∴             sin 𝑝𝑥𝑑
ħ

     =   2ħ𝑑𝑠
∆𝑑

                          and                          cos𝑘𝑥′ =  − 𝑒𝐹
𝑘𝑘

 

  Let         
𝑝𝑥𝑑
ħ

= 𝑒      and     𝑘𝑥′ = 𝑥 

Therefore, the fixed points are 

 

       𝑒 =  (−1)𝑛 sin−1 �2ħ𝑑𝑠
∆𝑑
�  + 𝜋𝑛                                                                       (4.12) 

                                         𝑛 = 0, ±1, ±2. 

     𝑥 = ± cos−1 �− 𝑒𝐹
𝑘𝑘
�  + 2𝜋𝑎                                                                               (4.13) 

                                       𝑎 = 0, ±1, ±2. 

 

The fixed points (𝑥, 𝑒) is classify according to the stability; in this system there are two 

types of fixed points: the centres and saddles as shown in Fig.4.5 where we take 

𝑈 = 10𝑚𝑒𝑉 and 𝐹 = 5 × 105𝑉𝑚−1. The fixed points will exist only when 𝐵 > 𝑐2 .  
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Figure 4.5: A typical phase portrait showing the fixed points: centres and saddles. The 

fixed points depend on miniband, lattice constant and velocity of the acoustic wave. It 

also depends on the values of the wave amplitude and the electric field. 

Whenever 𝑐2 > 𝐵 , the system collapsed, all the fixed points disappeared - this 

corresponds to global bifurcation. This indicates that the global bifurcation exists and 

the value of the static electric field when  𝑐2 > 𝐵 can be calculated. That is     
𝑑𝐵
𝑑

= 𝐵 

∴          𝐹 = 𝐹∗ = 𝑘𝑘
𝑒

 

Therefore, the electric field is a function of the wave amplitude, 𝐹∗ = 𝑓(𝑈). The 

value of electric field when global bifurcation occurs. To understand how bifurcation 

affects the electron trajectory , we analysis the phase portrait of the acoustically driven 

SLs in the electric field, we varied electric field strength to observe the change in the 

shape of phase trajectories and see what happened with the fixed points as the electric 

field, 𝐹 approaches 𝐹∗ and when  𝐹 ≫ 𝐹∗ . We examined the phase portraits for small 𝑈 , 

the wave amplitude close to transitions and faraway from transition (large 𝑈). We 

consider how changes in electric field affect phase trajectory instigating the symmetry 

breaking in the phase portrait. 
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                                                             (𝑎)  𝑈 = 1𝑚𝑒𝑉, 𝐹 = 1 × 102𝑉𝑚−1            

          

                                                                   (b)  𝑈 = 1𝑚𝑒𝑉 , 𝐹 = 7 × 104𝑉𝑚−1 

Figure 4.6: (𝑎) - (𝑏) Here, we are presenting the electron trajectories in the phase space. 

The phase portrait of the electron trajectories is the plot of the momentum against the 

position when 𝑈 = 1𝑚𝑒𝑉 for different electric fields values applied (𝑎) 𝐹 = 1 ×

102𝑉𝑚−1and (b) 𝐹 = 7 × 104𝑉𝑚−1 For low electric field we observed trajectories that 

are separated by the separatrix; there are fixed points and saddles,     . 
  



82 
 

     
 
                (c)    𝑈 = 1𝑚𝑒𝑉 , 𝐹 = 9 × 104𝑉𝑚−1 
 
 

             
 

                 (d)    𝑈 = 1𝑚𝑒𝑉 , 𝐹 = 2 × 105𝑉𝑚−1 
                                                                  

Figure 4.6: (𝑐) - (𝑑) Here, we are presenting the electron trajectories in the phase space, 

the phase portrait of the electron trajectories is the plot of the momentum against the 

position when 𝑈 = 1𝑚𝑒𝑉 for different electric fields values applied (𝑐)   𝐹 = 9 ×

104𝑉𝑚−1 and (𝑑) 𝐹 = 2 × 105𝑉𝑚−1 . When the electric field is increased, we observed 

that the fixed points collide with each other and there is evolution of phase trajectories.  
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The phase portraits for the different electric field applied are showed in Fig. 4.6 

when𝑈 = 1𝑚𝑒𝑉. At low electric field of 𝐹 = 1 × 102𝑉𝑚−1, 𝐹 ≪ 𝐹∗, we observed two 

types of trajectories: the localised and the unlocalised (unbounded) trajectories, which 

are separated by the separatrix, the separatrix connect the saddles in (a). The phase 

portrait is the same if we compared to Fig.3.10 in the previous chapter for low wave 

amplitude applied to the SL. But when we increase the electric field close to 𝐹∗ ,  

𝐹 = 7 × 104𝑉𝑚−1 in (b),  𝐹 ≤ 𝐹∗ the fixed points move toward each other and the shape 

of the electron trajectory changes and some saddles also exists.  When 𝐹 ≥ 𝐹∗ in (c), all 

the fixed points disappeared completely. The fixed points collide with each other. In 

Fig.4.6 (𝑑) for electric field of  2 × 105𝑉𝑚−1 which is  𝐹 ≫ 𝐹∗  the trajectories are 

meandering down and there are no fixed points. We have a change in momentum, but 

there is no change in the position over time. The value of electric field when global 

bifurcation can occur is approximately,  𝐹∗ ≈ 8 × 104𝑉𝑚−1 when 𝑈 = 1𝑚𝑒𝑉. 

 Increasing 𝑈 to 4𝑚𝑒𝑉, the wave amplitude close to the transition, Fig.4.7 showed 

the phase portrait of electron motion. The strength of electric field when the global 

bifurcation may occur is approximately,  𝐹∗ ≈ 3 × 105𝑉𝑚−1.  

 

(a) 𝑈 = 4𝑚𝑒𝑉,𝐹 = 1 × 102𝑉𝑚−1      

Figure 4.7: (a) The phase portrait of electron trajectories when 𝑈 = 4𝑚𝑒𝑉  and the 

electric field is 𝐹 = 1 × 102𝑉𝑚−1 .There is more localised trajectories encircle several 

closed centres and ellipses. 
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                                               (b)         𝑈 =  4𝑚𝑒𝑉 ,𝐹 = 2 × 105𝑉𝑚−1    

 

                  

(c)    𝑈 =  4𝑚𝑒𝑉 ,   𝐹 = 4 × 105𝑉𝑚−1 
 

Figure 4.7 (c) and (d): The phase portrait of electron trajectories (the momentum 

plotted against the position) for 𝑈 = 4𝑚𝑒𝑉  with applied electric field strengths of  (b) 

𝐹 = 2 × 105𝑉𝑚−1 and (c) 𝐹 = 4 × 105𝑉𝑚−1. As we increase the electric field strength, 

the fixed points collide with one another.  
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(d)    𝑈 = 4𝑚𝑒𝑉 ,   𝐹 = 5 × 105𝑉𝑚−1 

 

Figure 4.7(d): The phase portrait of electron trajectories (the momentum plotted 

against the position) for 𝑈 = 4𝑚𝑒𝑉  with the applied electric field strengths of 

 𝐹 = 5 × 105𝑉𝑚−1 . As we increase the electric field strength, the fixed points disappear 

completely and the shape of phase trajectory changes. 

At very low electric field when 𝐹 ≪  𝐹∗,  𝐹 = 1 × 102𝑉𝑚−1 in (a), the phase portrait 

showed many localised central trajectories encompass many centres and ellipses as it 

occurred in Fig.3.15 in the previous chapter, with some saddles existing. Increasing the 

electric field, very close to 𝐹∗, 𝐹 ≤ 𝐹∗ in (b), the phase portrait tends toward a sort of 

symmetry breaking with localised trajectories in each form.  We observed more central 

localised trajectories and the fixed points approach each other as shown in(𝑏) , some 

saddles were also observed. When the electric field, 𝐹 ≥ 𝐹∗ that is 𝐹 = 4 × 105𝑉𝑚−1 in 

(c), the fixed points collide with each other and vanished totally. The phase trajectories’ 

shape changes and there are no localised trajectories. The symmetry breaking is more 

obvious with twisting trajectories in-between. When we increased the electric field 

further in (d),  𝐹 = 5 × 105𝑉𝑚−1 such that  𝐹 ≫ 𝐹∗,  the shape of trajectories change.  

The areas engaged by the twisting trajectories in-between the split increased.  

 

 

 

P 
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In Fig. 4.8, 𝑈 = 10𝑚𝑒𝑉 which is far away from the transition we applied varied value of 

the electric field, (a) is when 𝐹 ≪ 𝐹∗  , (b) is very close to 𝐹∗  and (c) & (d) are when the 

electric field is more than 𝐹∗ .  

                    
(a)  𝑈 = 10𝑚𝑒𝑉 , 𝐹 = 2 × 105𝑉𝑚−1 

 

 
 

(𝑏)     𝑈 = 10𝑚𝑒𝑉 ,   𝐹 = 7 × 105𝑉𝑚−1 
 

Figure 4.8(a) and (b): The phase portrait of the electron trajectory present in the phase 

space consisting of the momentum against the position when 𝑈 = 10𝑚𝑒𝑉  in (a) - (b) 

for different electric field strengths applied (a) 𝐹 = 2 × 105𝑉𝑚−1 and (b) 𝐹 = 7 ×

105𝑉𝑚−1   .  
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                                                      (𝑐)        𝑈 = 10𝑚𝑒𝑉 ,𝐹 = 9 × 105𝑉𝑚−1 

 

 

 (d)  𝑈 = 10𝑚𝑒𝑉 ,𝐹 = 5 × 106𝑉𝑚−1 

 Figure 4.8 (c) and (d): The phase portrait of the electron trajectory present in the phase 

space consisting of the momentum against the position when 𝑈 = 10𝑚𝑒𝑉  in (a) - (d) 

for different electric field strengths applied (a) 𝐹 = 2 × 105𝑉𝑚−1  (b)    𝐹 = 7 ×

105𝑉𝑚−1, (c) 𝐹 = 9 × 105𝑉𝑚−1, and (d) 𝐹 = 1 × 106𝑉𝑚−1  . For the high value of the 

wave amplitude and electric field, the shape of localised trajectory changed and the 

fixed points collide with one another. 
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When 𝐹 ≪ 𝐹∗, 𝐹 = 2 × 105𝑉𝑚−1 there are localised trajecrories which encompasses 

several centres and saddles. The trajectories inclines into splitting into equal areas in 

(a), and a twisty trajectroies in-between and there are many central trajectories in each 

form. In (b), 𝐹 = 7 × 105𝑉𝑚−1, the electric field is very close to  𝐹∗ , the shape of phase 

trajectories change and the fixed points tend to bump into each other and the saddles 

still exist. The trajectories bifurcate into two equal forms and the area in-between the 

form increased with more twisting trajectories. As we increased the electric 

field, 𝐹 = 9 × 105𝑉𝑚−1 𝐹 ≥ 𝐹∗ in (c), the twisting trajectories in-between the forms 

engaged more areas. The fixed points collide with each other and disappeared 

completely, changing the shape of phase trajectory. There are no more localised 

trajectories. And when we increased the electric field further as shown in (d),  the 

trajectories drift down; the electric field is 1 × 106𝑉𝑚−1 such that 𝐹 ≫ 𝐹∗. The value of 

electric field when global bifurcation can occur at 𝑈 = 10𝑚𝑒𝑉 is approximately,  𝐹∗ =

8 × 105𝑉𝑚−1. 

  

 

Conclusion 
 

 
When a static electric field was applied to the acoustically driven electron in the 

SL, a much higher drift velocity was obtained as illustrated in Fig 4.5. The peak of  drift 

velocity  is  reached  at the critical values of both the static electric field and the wave 

amplitude. This is the value when dynamical change occurred.  

We use phase portraits to explain the path of the electron. This gives an insight 

into the electron trajectory when both electric field and wave amplitude are applied. 

The electric field introduces another type of phase portrait which is different from the 

phase portrait when the acoustic wave alone was applied along the axis of SL. There is 

evolution of phase trajectories in the phase space that caused the stability of 

equilibrium (fixed points) to change. The fixed points collide with one another as the 

electric field increases. When 𝑈 = 1𝑚𝑒𝑉 and  𝐹∗ ≈ 8 × 104𝑉𝑚−1 , the phase trajectories 

cross through the fixed points and the fixed points disappeared. When the wave 

amplitude, 𝑈 increased to 4𝑚𝑒𝑉 and electric field is approximately, 𝐹∗ ≈ 3 × 105𝑉𝑚−1 
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the shape of the phase trajectory changes and the fixed points collide with each other. 

The same thing happens at high value of wave amplitude,𝑈 = 10𝑚𝑒𝑉, and the electric 

field is approximately, 𝐹∗ ≈ 8 × 105𝑉𝑚−1. When the fixed points disappear and the 

shape of phase trajectories changed completely global bifurcation occurs.  Therefore, 

the value of electric field when global bifurcation occurs depends on the strength of 

wave amplitude. The electric field applied to the acoustically driven SL affect the 

electron trajectory in the SL. 
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Chapter 5 
 

Summary and conclusions 
 

In this work, we investigated systems which control and enhance the dynamics 

of electrons in the SL. This thesis has investigated a SL that is driven by an acoustic 

wave alone, to ascertain how a propagating acoustic wave will affect the electron 

dynamics in the SL. An acoustic wave propagating through a SL is an example of a 

moving lattice propagating through a static lattice. The dynamics of the electron are 

affected by the magnitude of the wave amplitude applied along the axis of the SL. We 

also examined the effect of an electric field on an acoustically driven SL when 

simultaneously applying to the axis of the SL both an acoustic wave and static electric 

field. 

Chapters One and Two reviewed some of the fundamental theories of electron 

conduction in a crystal. The electron was considered in a periodic potential and cold 

atom in optical lattices. Chapter Three explored the dynamics of the electron in a SL 

when an acoustic wave is applied. A phase portrait was built to characterize the 

transition observed in the system for different wave amplitudes. The phase space gives 

a detailed insight into the system’s dynamics. From the momentum and position curves, 

the paths of the electron are localized in all the transitions and the electrons move in 
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both positive and negative directions. This shows that there is a qualitative change in 

the dynamics. The dynamics of the electron in a SL depend on the wave amplitude. We 

observed different phase trajectories for varied values of wave amplitude; therefore 

transitions exist between the distinct dynamical regimes. 

Chapter Four investigated the effect of a static electric field on an acoustically 

driven SL. The static electric field and acoustic wave jointly applied to the axis of SL 

produce high-frequency current oscillations. The phase portrait shows that the path of 

the electron when an electric field and acoustic wave are applied together along the axis 

of a SL is different to when the acoustic wave alone is applied. More localized 

trajectories were observed, but the saddles were lost as we increase the wave 

amplitude and the electric field. When fixed points and saddles cannot be determined, 

the system collapsed. This happens whenever 𝑐2 > 𝐵, the fixed points disappeared as 

𝐹 → 𝐹∗, the value of electric field when the bifurcation occurred and it depends on the 

value of wave amplitude applied. Therefore, when 𝐹 = 𝐹∗ , the fixed points collide with 

each other. The fixed point disappeared and there are no more localised trajectories. 

When the electric field is very high, far away from  𝐹∗, 𝐹 ≫ 𝐹∗ the meandering 

trajectories are straighten up as we have in Fig.4.8 (d). This suggests that at very high 

electric fields and acoustic wave, global catastrophes may occur: this could be another 

interesting work to consider in the future. Therefore, an acoustic wave can be used to 

control electron transport in a SL when an electric field is applied; since  𝐹∗ = 𝑓(𝑈) , 

applying moderate value of the wave amplitude will impede the occurrence of global 

catastrophe. When static electric field and acoustic wave are applied to the SL high 

frequency oscillations are obtained. The high frequency has applications in medical 

imaging, wireless data transfer, security scanning, water quality monitoring and so on.  

The colour map of 𝑣𝑑  (U, F), in Fig.4.4 shows a monotonic increase in the drift 

velocity. When the electric field is 𝐹 =  2 × 105𝑉𝑚−1 , the maximum of drift velocity 

was reached. The origin of this maximum required further investigation. What is the 

effect of increasing the drift velocity, and how a large drift velocity will affect the phase 

portrait? The evolution of electron trajectory, the shape and frequency of electron 

trajectory are topics for further studies. Also, the analysis in this work is based on the 

single electron transport, and then an extension will be to consider the effect of 

applying electric field and acoustic wave jointly on the collective transport, for example, 

the charge domain dynamics.  
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