37 research outputs found

    Development of Some Novel Nonlinear and Adaptive Digital Image Filters for Efficient Noise Suppression

    Get PDF
    Some nonlinear and adaptive digital image filtering algorithms have been developed in this thesis to suppress additive white Gaussian noise (AWGN), bipolar fixed-valued impulse, also called salt and pepper noise (SPN), random-valued impulse noise (RVIN) and their combinations quite effectively. The present state-of-art technology offers high quality sensors, cameras, electronic circuitry: application specific integrated circuits (ASIC), system on chip (SOC), etc., and high quality communication channels. Therefore, the noise level in images has been reduced drastically. In literature, many efficient nonlinear image filters are found that perform well under high noise conditions. But their performance is not so good under low noise conditions as compared to the extremely high computational complexity involved therein. Thus, it is felt that there is sufficient scope to investigate and develop quite efficient but simple algorithms to suppress low-power noise in an image. When..

    Effect of cooking time on physical properties of almond milk-based lemak cili api gravy

    Get PDF
    One of the crucial elements in developing or reformulating product is to maintain the quality throughout its entire shelf life. This study aims to determine the effect of different cooking time on the almond milk-based of lemak cili api gravy. Various cooking times of 5, 10, 15, 20, 25 and 30 minutes were employed to the almond milk-based lemak cili api gravy followed by determination of their effects on physical properties such as total soluble solids content, pH and colour. pH was determined by using a pH meter. Refractometer was used to evaluate the total soluble solids content of almond milk-based lemak cili api gravy. The colours were determined by using spectrophotometer which expressed as L*, a* and b* values. Results showed that almond milk-based lemak cili api gravy has constant values of total soluble solids with pH range of 5 to 6, which can be classified as low acid food. Colour analysis showed that the lightness (L*) and yellowness (b*) are significantly increased while redness (a*) decreased. In conclusion, this study shows that physical properties of almond milk-based lemak cili api gravy changes by increasing the cooking time

    Signal processing algorithms for enhanced image fusion performance and assessment

    Get PDF
    The dissertation presents several signal processing algorithms for image fusion in noisy multimodal conditions. It introduces a novel image fusion method which performs well for image sets heavily corrupted by noise. As opposed to current image fusion schemes, the method has no requirements for a priori knowledge of the noise component. The image is decomposed with Chebyshev polynomials (CP) being used as basis functions to perform fusion at feature level. The properties of CP, namely fast convergence and smooth approximation, renders it ideal for heuristic and indiscriminate denoising fusion tasks. Quantitative evaluation using objective fusion assessment methods show favourable performance of the proposed scheme compared to previous efforts on image fusion, notably in heavily corrupted images. The approach is further improved by incorporating the advantages of CP with a state-of-the-art fusion technique named independent component analysis (ICA), for joint-fusion processing based on region saliency. Whilst CP fusion is robust under severe noise conditions, it is prone to eliminating high frequency information of the images involved, thereby limiting image sharpness. Fusion using ICA, on the other hand, performs well in transferring edges and other salient features of the input images into the composite output. The combination of both methods, coupled with several mathematical morphological operations in an algorithm fusion framework, is considered a viable solution. Again, according to the quantitative metrics the results of our proposed approach are very encouraging as far as joint fusion and denoising are concerned. Another focus of this dissertation is on a novel metric for image fusion evaluation that is based on texture. The conservation of background textural details is considered important in many fusion applications as they help define the image depth and structure, which may prove crucial in many surveillance and remote sensing applications. Our work aims to evaluate the performance of image fusion algorithms based on their ability to retain textural details from the fusion process. This is done by utilising the gray-level co-occurrence matrix (GLCM) model to extract second-order statistical features for the derivation of an image textural measure, which is then used to replace the edge-based calculations in an objective-based fusion metric. Performance evaluation on established fusion methods verifies that the proposed metric is viable, especially for multimodal scenarios

    Multiresolution neural networks for image edge detection and restoration

    Get PDF
    One of the methods for building an automatic visual system is to borrow the properties of the human visual system (HVS). Artificial neural networks are based on this doctrine and they have been applied to image processing and computer vision. This work focused on the plausibility of using a class of Hopfield neural networks for edge detection and image restoration. To this end, a quadratic energy minimization framework is presented. Central to this framework are relaxation operations, which can be implemented using the class of Hopfield neural networks. The role of the uncertainty principle in vision is described, which imposes a limit on the simultaneous localisation in both class and position space. It is shown how a multiresolution approach allows the trade off between position and class resolution and ensures both robustness in noise and efficiency of computation. As edge detection and image restoration are ill-posed, some a priori knowledge is needed to regularize these problems. A multiresolution network is proposed to tackle the uncertainty problem and the regularization of these ill-posed image processing problems. For edge detection, orientation information is used to construct a compatibility function for the strength of the links of the proposed Hopfield neural network. Edge detection 'results are presented for a number of synthetic and natural images which show that the iterative network gives robust results at low signal-to-noise ratios (0 dB) and is at least as good as many previous methods at capturing complex region shapes. For restoration, mean square error is used as the quadratic energy function of the Hopfield neural network. The results of the edge detection are used for adaptive restoration. Also shown are the results of restoration using the proposed iterative network framework

    Biologically inspired feature extraction for rotation and scale tolerant pattern analysis

    Get PDF
    Biologically motivated information processing has been an important area of scientific research for decades. The central topic addressed in this dissertation is utilization of lateral inhibition and more generally, linear networks with recurrent connectivity along with complex-log conformal mapping in machine based implementations of information encoding, feature extraction and pattern recognition. The reasoning behind and method for spatially uniform implementation of inhibitory/excitatory network model in the framework of non-uniform log-polar transform is presented. For the space invariant connectivity model characterized by Topelitz-Block-Toeplitz matrix, the overall network response is obtained without matrix inverse operations providing the connection matrix generating function is bound by unity. It was shown that for the network with the inter-neuron connection function expandable in a Fourier series in polar angle, the overall network response is steerable. The decorrelating/whitening characteristics of networks with lateral inhibition are used in order to develop space invariant pre-whitening kernels specialized for specific category of input signals. These filters have extremely small memory footprint and are successfully utilized in order to improve performance of adaptive neural whitening algorithms. Finally, the method for feature extraction based on localized Independent Component Analysis (ICA) transform in log-polar domain and aided by previously developed pre-whitening filters is implemented. Since output codes produced by ICA are very sparse, a small number of non-zero coefficients was sufficient to encode input data and obtain reliable pattern recognition performance

    Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise

    Get PDF
    Impulse noise is a most common noise which affects the image quality during acquisition or transmission, reception or storage and retrieval process. Impulse noise comes under two categories: (1) fixed-valued impulse noise, also known as salt-and-pepper noise (SPN) due to its appearance, where the noise value may be either the minimum or maximum value of the dynamic gray-scale range of image and (2) random-valued impulse noise (RVIN), where the noisy pixel value is bounded by the range of the dynamic gray-scale of the image. In literature, many efficient filters are proposed to suppress the impulse noise. But their performance is not good under moderate and high noise conditions. Hence, there is sufficient scope to explore and develop efficient filters for suppressing the impulse noise at high noise densities. In the present research work, efforts are made to propose efficient filters that suppress the impulse noise and preserve the edges and fine details of an image in wide range of noise densities. It is clear from the literature that detection followed by filtering achieves better performance than filtering without detection. Hence, the proposed filters in this thesis are based on detection followed by filtering techniques. The filters which are proposed to suppress the SPN in this thesis are: Adaptive Noise Detection and Suppression (ANDS) Filter Robust Estimator based Impulse-Noise Reduction (REIR) Algorithm Impulse Denoising Using Improved Progressive Switching Median Filter (IDPSM) Impulse-Noise Removal by Impulse Classification (IRIC) A Novel Adaptive Switching Filter-I (ASF-I) for Suppression of High Density SPN A Novel Adaptive Switching Filter-II (ASF-II) for Suppression of High Density SPN Impulse Denoising Using Iterative Adaptive Switching Filter (IASF) In the first method, ANDS, neighborhood difference is employed for pixel classification. Controlled by binary image, the noise is filtered by estimating the value of a pixel with an adaptive switching based median filter applied exclusively to neighborhood pixels that are labeled noise-free. The proposed filter performs better in retaining edges and fine details of an image at low-to-medium densities of fixed-valued impulse noise.The REIR method is based on robust statistic technique, where adaptive window is used for pixel classification. The noisy pixel is replaced with Lorentzian estimator or average of the previously processed pixels. Because of adaptive windowing technique, the filter is able to suppress the noise at a density as high as 90%. In the proposed method, IDPSM, the noisy pixel is replaced with median of uncorrupted pixels in an adaptive filtering window. The iterative nature of the filter makes it more efficient in noise detection and adaptive filtering window technique makes it robust enough to preserve edges and fine details of an image in wide range of noise densities. The forth proposed method is IRIC. The noisy pixel is replaced with median of processed pixels in the filtering window. At high noise densities, the median filtering may not be able to reject outliers always. Under such circumstances, the processed left neighboring pixel is considered as the estimated output. The computational complexity of this method is equivalent to that of a median filter having a 3×3 window. The proposed algorithm requires simple physical realization structures. Therefore, this algorithm may be quite useful for online and real-time applications. Two different adaptive switching filters: ASF-I and ASF-II are developed for suppressing SPN at high noise density. The noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Depending on noise estimation, a small filtering window size is initially selected and then the scheme adaptively changes the window size based on the number of noise-free pixels. Therefore, the proposed method removes the noise much more effectively even at noise density as high as 90% and yields high image quality. In the proposed method IASF, noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Due to its iterative structure, the performance of this filter is better than existing order-statistic filters. Further, the adaptive filtering window makes it robust enough to preserve the edges and fine details of an image. Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise x The filters which are proposed for suppressing random-valued impulse noise (RVIN) are: Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm The proposed method, Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm is a modified MAD (Median of the Absolute Deviations from the median) scheme alongwith a threshold employed for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in adaptive filtering window. Another proposed method for denoising the random-valued and fixed-valued impulse noise is ALT-MAD. A modified MAD based algorithm alongwith a local adaptive threshold is utilized for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in the filtering window of adaptively varied size. Three threshold functions are suggested and employed in this algorithm. Thus, three different versions, namely, ALT-MAD-1, ALT-MAD-2 and ALT-MAD-3 are developed. They are observed to be quite efficient in noise detection and filtering. In the last part of the thesis, some efforts are made to develop filters for color image denoising. The filters which perform better in denoising gray-scale images are developed for suppression of impulsive noise from color images. Since the performance of denoising filters degrades in other color spaces, efforts are made to develop color image denoising filters in RGB color space only in this research work. The developed filters are: Multi-Channel Robust Estimator based Impulse-Noise Reduction (MC-REIR) Algorithm Multi-Channel Impulse-Noise Removal by Impulse Classification (MC-IRIC) Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-MAD) Algorithm It is observed from the simulation results that the proposed filters perform better than the existing methods. The proposed methods: ASF-1 and IASF exhibit quite superior performance in suppressing SPN in high noise densities compared to other methods. Similarly ALT-MAD-3 exhibits much better performance in suppressing RVIN of low to medium noise densities.The REIR method is based on robust statistic technique, where adaptive window is used for pixel classification. The noisy pixel is replaced with Lorentzian estimator or average of the previously processed pixels. Because of adaptive windowing technique, the filter is able to suppress the noise at a density as high as 90%. In the proposed method, IDPSM, the noisy pixel is replaced with median of uncorrupted pixels in an adaptive filtering window. The iterative nature of the filter makes it more efficient in noise detection and adaptive filtering window technique makes it robust enough to preserve edges and fine details of an image in wide range of noise densities. The forth proposed method is IRIC. The noisy pixel is replaced with median of processed pixels in the filtering window. At high noise densities, the median filtering may not be able to reject outliers always. Under such circumstances, the processed left neighboring pixel is considered as the estimated output. The computational complexity of this method is equivalent to that of a median filter having a 3×3 window. The proposed algorithm requires simple physical realization structures. Therefore, this algorithm may be quite useful for online and real-time applications. Two different adaptive switching filters: ASF-I and ASF-II are developed for suppressing SPN at high noise density. The noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Depending on noise estimation, a small filtering window size is initially selected and then the scheme adaptively changes the window size based on the number of noise-free pixels. Therefore, the proposed method removes the noise much more effectively even at noise density as high as 90% and yields high image quality. In the proposed method IASF, noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Due to its iterative structure, the performance of this filter is better than existing order-statistic filters. Further, the adaptive filtering window makes it robust enough to preserve the edges and fine details of an image. Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise x The filters which are proposed for suppressing random-valued impulse noise (RVIN) are: Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm The proposed method, Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm is a modified MAD (Median of the Absolute Deviations from the median) scheme alongwith a threshold employed for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in adaptive filtering window. Another proposed method for denoising the random-valued and fixed-valued impulse noise is ALT-MAD. A modified MAD based algorithm alongwith a local adaptive threshold is utilized for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in the filtering window of adaptively varied size. Three threshold functions are suggested and employed in this algorithm. Thus, three different versions, namely, ALT-MAD-1, ALT-MAD-2 and ALT-MAD-3 are developed. They are observed to be quite efficient in noise detection and filtering. In the last part of the thesis, some efforts are made to develop filters for color image denoising. The filters which perform better in denoising gray-scale images are developed for suppression of impulsive noise from color images. Since the performance of denoising filters degrades in other color spaces, efforts are made to develop color image denoising filters in RGB color space only in this research work. The developed filters are: Multi-Channel Robust Estimator based Impulse-Noise Reduction (MC-REIR) Algorithm Multi-Channel Impulse-Noise Removal by Impulse Classification (MC-IRIC) Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-MAD) Algorithm It is observed from the simulation results that the proposed filters perform better than the existing methods. The proposed methods: ASF-1 and IASF exhibit quite superior performance in suppressing SPN in high noise densities compared to other methods. Similarly ALT-MAD-3 exhibits much better performance in suppressing RVIN of low to medium noise densities.The REIR method is based on robust statistic technique, where adaptive window is used for pixel classification. The noisy pixel is replaced with Lorentzian estimator or average of the previously processed pixels. Because of adaptive windowing technique, the filter is able to suppress the noise at a density as high as 90%. In the proposed method, IDPSM, the noisy pixel is replaced with median of uncorrupted pixels in an adaptive filtering window. The iterative nature of the filter makes it more efficient in noise detection and adaptive filtering window technique makes it robust enough to preserve edges and fine details of an image in wide range of noise densities. The forth proposed method is IRIC. The noisy pixel is replaced with median of processed pixels in the filtering window. At high noise densities, the median filtering may not be able to reject outliers always. Under such circumstances, the processed left neighboring pixel is considered as the estimated output. The computational complexity of this method is equivalent to that of a median filter having a 3×3 window. The proposed algorithm requires simple physical realization structures. Therefore, this algorithm may be quite useful for online and real-time applications. Two different adaptive switching filters: ASF-I and ASF-II are developed for suppressing SPN at high noise density. The noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Depending on noise estimation, a small filtering window size is initially selected and then the scheme adaptively changes the window size based on the number of noise-free pixels. Therefore, the proposed method removes the noise much more effectively even at noise density as high as 90% and yields high image quality. In the proposed method IASF, noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Due to its iterative structure, the performance of this filter is better than existing order-statistic filters. Further, the adaptive filtering window makes it robust enough to preserve the edges and fine details of an image. Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise x The filters which are proposed for suppressing random-valued impulse noise (RVIN) are: Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm The proposed method, Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm is a modified MAD (Median of the Absolute Deviations from the median) scheme alongwith a threshold employed for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in adaptive filtering window. Another proposed method for denoising the random-valued and fixed-valued impulse noise is ALT-MAD. A modified MAD based algorithm alongwith a local adaptive threshold is utilized for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in the filtering window of adaptively varied size. Three threshold functions are suggested and employed in this algorithm. Thus, three different versions, namely, ALT-MAD-1, ALT-MAD-2 and ALT-MAD-3 are developed. They are observed to be quite efficient in noise detection and filtering. In the last part of the thesis, some efforts are made to develop filters for color image denoising. The filters which perform better in denoising gray-scale images are developed for suppression of impulsive noise from color images. Since the performance of denoising filters degrades in other color spaces, efforts are made to develop color image denoising filters in RGB color space only in this research work. The developed filters are: Multi-Channel Robust Estimator based Impulse-Noise Reduction (MC-REIR) Algorithm Multi-Channel Impulse-Noise Removal by Impulse Classification (MC-IRIC) Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-MAD) Algorithm It is observed from the simulation results that the proposed filters perform better than the existing methods. The proposed methods: ASF-1 and IASF exhibit quite superior performance in suppressing SPN in high noise densities compared to other methods. Similarly ALT-MAD-3 exhibits much better performance in suppressing RVIN of low to medium noise densities

    Multiresolution image models and estimation techniques

    Get PDF

    Multi-scale texture segmentation of synthetic aperture radar images

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Quality Assessment and Variance Reduction in Monte Carlo Rendering Algorithms

    Get PDF
    Over the past few decades much work has been focused on the area of physically based rendering which attempts to produce images that are indistinguishable from natural images such as photographs. Physically based rendering algorithms simulate the complex interactions of light with physically based material, light source, and camera models by structuring it as complex high dimensional integrals [Kaj86] which do not have a closed form solution. Stochastic processes such as Monte Carlo methods can be structured to approximate the expectation of these integrals, producing algorithms which converge to the true rendering solution as the amount of computation is increased in the limit.When a finite amount of computation is used to approximate the rendering solution, images will contain undesirable distortions in the form of noise from under-sampling in image regions with complex light interactions. An important aspect of developing algorithms in this domain is to have a means of accurately comparing and contrasting the relative performance gains between different approaches. Image Quality Assessment (IQA) measures provide a way of condensing the high dimensionality of image data to a single scalar value which can be used as a representative measure of image quality and fidelity. These measures are largely developed in the context of image datasets containing natural images (photographs) coupled with their synthetically distorted versions, and quality assessment scores given by human observers under controlled viewing conditions. Inference using these measures therefore relies on whether the synthetic distortions used to develop the IQA measures are representative of the natural distortions that will be seen in images from domain being assessed.When we consider images generated through stochastic rendering processes, the structure of visible distortions that are present in un-converged images is highly complex and spatially varying based on lighting and scene composition. In this domain the simple synthetic distortions used commonly to train and evaluate IQA measures are not representative of the complex natural distortions from the rendering process. This raises a question of how robust IQA measures are when applied to physically based rendered images.In this thesis we summarize the classical and recent works in the area of physicallybased rendering using stochastic approaches such as Monte Carlo methods. We develop a modern C++ framework wrapping MPI for managing and running code on large scale distributed computing environments. With this framework we use high performance computing to generate a dataset of Monte Carlo images. From this we provide a study on the effectiveness of modern and classical IQA measures and their robustness when evaluating images generated through stochastic rendering processes. Finally, we build on the strengths of these IQA measures and apply modern deep-learning methods to the No Reference IQA problem, where we wish to assess the quality of a rendered image without knowing its true value
    corecore