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PREFACE 
 
 
 
Digital Image Processing, developed during last two and half decades, has become a 

very important subject in electronics and computer engineering. Image restoration is 

one of the many areas it encompasses. Image deblurring and image denoising are the 

two sub-areas of image restoration. 

 

 When an image gets corrupted with noise during the processes of acquisition, 

transmission, storage and retrieval, it becomes necessary to suppress the noise quite 

effectively without distorting the edges and the fine details in the image so that the 

filtered image becomes more useful for display and/or further processing. 

 

Many novel digital image filters are proposed in this doctoral thesis. An image is a 

highly correlated 2-D data (signal). The correlation lies in spatial domain among 

neighboring pixels. Thus, the neighborhood of a pixel tells much about the pixel. 

Therefore, spatial domain image filters, if properly designed, perform much better 

than any transform-domain image filter. Order Statistics (OS) filters are well-known 

for their simplicity and efficiency in suppressing various types of noise. Efforts are 

made in this research work to develop some novel nonlinear and adaptive digital 

image filters to suppress additive and substitutive noise. Specially, for low noise 

conditions (considering the practical noise levels), very highly efficient image filters 

are developed so that they may be used in online and real-time applications such as 

television, photo-phone, etc. 

 

Therefore, the present research work may be treated as  

(i) developmental work; and 

(ii) applied research work. 
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All filters developed here are nonlinear. Some of them are fixed and some others are 

adaptive. Therefore, the title is so. Otherwise, the title of the dissertation could have 

been “Development of Some Spatial Domain Digital Image Filters” to emphasize the 

spatial domain processing adopted here. 

 

I would be happy to see other researchers using the results reported in the thesis for 

developing better image filters. Moreover, I will be contended to find these filters 

implemented for practical applications in near future. 

 

Sukadev Meher 
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Abstract 
Some nonlinear and adaptive digital image filtering algorithms have been developed 

in this thesis to suppress additive white Gaussian noise (AWGN), bipolar fixed-valued 

impulse, also called salt and pepper noise (SPN), random-valued impulse noise 

(RVIN) and their combinations quite effectively. 

 

The present state-of-art technology offers high quality sensors, cameras, electronic 

circuitry: application specific integrated circuits (ASIC), system on chip (SOC), etc., 

and high quality communication channels. Therefore, the noise level in images has 

been reduced drastically. 

 

In literature, many efficient nonlinear image filters are found that perform well under 

high noise conditions. But their performance is not so good under low noise 

conditions as compared to the extremely high computational complexity involved 

therein. Thus, it is felt that there is sufficient scope to investigate and develop quite 

efficient but simple algorithms to suppress low-power noise in an image. 

 

When an analog image-signal is transmitted, it gets corrupted with AWGN in the 

channel. After thresholding at the receiver, the signal gets corrupted with SPN as well. 

Therefore, the image signal is usually corrupted with a mixed noise (AWGN + SPN). 

 

On the other hand, if a binary-coded digital image signal is transmitted through a 

linear, noisy and dispersive channel, then some of the bits may not be recognized 

properly due to the inter-symbol interference (ISI) and additive channel noise. Since 

the bits get corrupted at some arbitrary locations, it gives an effect of RVIN in an 

image. In present days, the noise is usually low (<5%) or very low (<1%). 

 

Taking this problem with communication systems, e.g. television, photo phone, etc., it 

is very important to realize that excellent nonlinear filters are required to suppress low 

noise power mixed noise (MN) and RVIN quite effectively without distorting the 
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edges and fine details of the image. The problem is taken up and efforts are made to 

develop quite efficient image filters for noise cancellation. 

 

The Rank-Ordered Mean (ROM) filter shows better performance than the moving 

average (MAV) and median (MED) filters under mixed noise conditions. Its 

performance is further improved by associating a weight vector to it. Thus, various 

weighted ROM (WROM) filters are proposed for AWGN, SPN and mixed noise 

conditions. 

 

Three types of decision-directed filters are developed to suppress impulse noise quite 

effectively. One scheme uses a second-order difference (derivative) based detection 

scheme; another uses a probability-based detection scheme; and the third implements 

a deviation based impulse detection scheme. 

 

Adaptive filters adapt themselves to the noise type and noise power level and, thus, 

they perform better than the fixed filters. Two types of adaptive images filters are 

proposed in this thesis. One is based on Order statistics and it employs LMS 

adaptation scheme. It performs much better than the L-filter. It may not need an on-

line training always. An off-line training is good enough. 

 

Another adaptive technique proposed here is based on fuzzy logic. Fuzzy WROM 

(FWROM) image filters are proposed and are seen to be quite efficient in filtering 

AWGN, SPN, RVIN and mixed noise. Two types of fuzzy membership functions, 

triangular and Gaussian, are taken and thus two types of filters FWROM-T and 

FQROM-G are developed.  FWROM-G works slightly better than the FWROM-T. 

But, its computational complexity is much higher than that of FWROM-T. Therefore, 

the FWROM-T will be more useful in real-time applications like television systems. 

 

Finally, it may be concluded that the proposed algorithms: WROM, PIND, DIND, 

OS-LMS and FWROM are the winners in their respective categories for suppressing 

low-power noise of various types in digital images. 
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CHAPTER-1 
 
 
 
 
 
 
 
 

Introduction 
 
 
 
 
 
 
 
 
 
 
 

Preview 
 

Digital Image Processing is a promising area of research in the fields of electronics 

and communication engineering, consumer and entertainment electronics, control and 

instrumentation, biomedical instrumentation, remote sensing, robotics and computer 

vision and computer aided manufacturing (CAM). For a meaningful and useful 

processing such as image segmentation and object recognition, and to have very good 

visual display in applications like television, photo-phone, etc., the acquired image 

signal must be deblurred and made noise free. The deblurring and noise suppression 

(filtering) come under a common class of image processing tasks known as image 

restoration.  



 
 

Chapter-1 Introduction 2

 

In this thesis, the various noise conditions are studied and many efficient nonlinear 

and adaptive digital image filters are designed to suppress additive white Gaussian 

noise (AWGN), bipolar fixed-valued impulse noise, also called salt and pepper noise 

(SPN), random-valued impulse noise (RVIN) and mixed noise (MN) quite effectively. 

The developed filters are meant for online and real-time applications like television, 

photo-phone, etc. 

 

The following topics are covered in this introductory chapter. 

•  Fundamentals of Digital Image Processing 

•  Noise in Digital Images 

•  Study of Image Filters Reported in the Literature 

•  Problem Statement 

•  Image Metrics 

•  Noise Conditions for Computer Simulation 

•  Chapter-wise Organization of the Thesis 

•  Conclusion 

 

1.1 Fundamentals of Digital Image Processing 

 
Digital image processing generally refers to the processing of a 2-dimensional (2-D) 

picture signal by a digital hardware. In a broader context, it implies processing of any 

signal using a dedicated hardware, e.g. an application specific integrated circuit 

(ASIC) or using a general-purpose computer implementing some algorithms 

developed for the purpose.  

 

An image is a 2-D function (signal), ( )nm,X , where m and n are the spatial (plane) 

coordinates. The magnitude of X  at any pair of coordinates (m,n) is the intensity or 

gray level of the image at that point. In a digital image, m,n, and the magnitude of X  



 
 

Chapter-1 Introduction 3

are all finite and discrete quantities. Each element of this matrix (2-D array) is called a 

picture element or pixel. 

 

It is a hard task to distinguish between the domains of image processing and any other 

related area such as computer vision. Though, essentially not correct, image 

processing may be defined as a process where both input and output are images. At 

the high level of processing and after some preliminary processing, it is very common 

to perform some analysis, judgment or decision making or perform some mechanical 

operation (robot motion). These areas are the domains of artificial intelligence (AI), 

computer vision, robotics, etc.  

 

Digital image processing has a broad spectrum of applications, such as digital 

television, photo-phone, remote sensing, image transmission, and storage for business 

applications, medical processing, radar, sonar, and acoustic image processing, 

robotics, and computer aided manufacturing (CAM) and automated quality control in 

industries. Fig. 1.1 depicts a typical image processing system [1,2].   

 
 

 
 

 

 

 

 

 

 

 

 

 

With the exception of image acquisition and display, most of the image processing 

functions are implemented in software. A significant amount of basic image 
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Fig.1.1 A typical digital image processing system 

Object 

 



 
 

Chapter-1 Introduction 4

processing software is obtained commercially. Major areas of image processing are 

[2]: 

(a) Image Representation and Modeling 

(b) Image Transform 

(c) Image Enhancement 

(d) Image Filtering and Restoration 

(e) Image Analysis and Recognition 

(f) Image Reconstruction  

(g) Image Data Compression 

(h) Color Image Processing, etc. 

 

Image processing may be performed in the spatial domain or in a transform domain. 

To perform a meaningful and useful task, a suitable transformer, e.g. discrete Fourier 

transform (DFT), discrete cosine transform (DCT), discrete wavelet transform 

(DWT), etc., may be employed. Depending on the application, a suitable transform is 

used. 

 

Image enhancement techniques are used to highlight certain features of interest in an 

image. Two important examples of image enhancement are (i) increasing the contrast, 

and (ii) changing the brightness level of an image so that the image looks better. It is a 

subjective area of image processing. On the other hand, image restoration is very 

much objective. The restoration techniques are based on mathematical and statistical 

models of image degradation. Denoising (filtering) and deblurring tasks come under 

this category. 

 

Image processing is characterized by specific solutions; hence a technique that works 

well in one area may totally be inadequate in another. The actual solution to a specific 

problem still requires a significant research and development. 

 

‘Image restoration and filtering’ is one of the prime areas of image processing and its 

objective is to recover the images from degraded observations. The techniques 
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involved in image restoration and filtering are oriented towards modeling the 

degradations and then applying an inverse procedure to obtain an approximation of 

the original image. 

 

There are various types of imaging systems. X-ray, Gamma ray, ultraviolet, and 

ultrasonic imaging systems are used in biomedical instrumentation. In astronomy, the 

ultraviolet, infrared and radio imaging systems are used. Sonic imaging is performed 

for geological exploration. Microwave imaging is employed for radar applications. 

But, the most commonly known imaging systems are visible light imaging. Such 

systems are employed for applications like remote sensing, microscopy, 

measurements, consumer electronics, entertainment electronics, etc. 

 

An image acquired by optical, electro-optical or electronic means is likely to be 

degraded by the sensing environment. The degradation may be in the form of sensor 

noise, blur due to camera misfocus, relative object camera motion, random 

atmospheric turbulence, and so on [1,2]. The noise in an image may be due to a noisy 

channel if the image is transmitted through a medium. It may also be due to electronic 

noise associated with a storage-retrieval system. 

 

Noise in an image is a serious problem. The noise could be AWGN, SPN, RVIN, or a 

mixed noise. Efficient suppression of noise in an image is a very important issue. 

Denoising finds extensive applications in many fields of image processing. 

Conventional techniques of image denoising using linear and nonlinear techniques 

have already been reported and sufficient literature is available in this area and has 

been reviewed in the next section. Recently, various nonlinear and adaptive filters 

have been suggested for the purpose. The objectives of these schemes are to reduce 

noise as well as to retain the edges and fine details of the original image in the 

restored image as much as possible. However, both the objectives conflict each other 

and the reported schemes are not able to perform satisfactorily in both aspects. Hence, 

still various research workers are actively engaged in developing better filtering 
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schemes using latest signal processing techniques.  In the present thesis, efforts have 

been made in developing some efficient noise removal schemes. 

 

 

 

 

1.2 Noise in Digital Images 

 
In this section, various types of noise corrupting an image signal are studied; the 

sources of noise are discussed, and mathematical models for the different types of 

noise are presented.  

 

An image signal gets corrupted with noise during acquisition, transmission, storage 

and retrieval processes. Acquisition noise is usually additive white Gaussian noise 

(AWGN) with very low variance. In many engineering applications, the acquisition 

noise is quite negligible. It is mainly due to very high quality sensors. In some 

applications like remote sensing, biomedical instrumentation, etc., the acquisition 

noise may be high enough. But in such a system, it is basically due to the fact that the 

image acquisition system itself comprises of a transmission channel. So if such noise 

problems are considered as transmission noise, then it may be concluded that 

acquisition noise is negligible. The acquisition noise is considered negligible due to 

another fact that the human visual system (HVS) can’t recognize a large dynamic 

range of image. That is why, an image is usually quantized at 256 levels. Thus, each 

pixel is represented by 8 bits (1 byte). The present-day technology offers very high 

quality sensors that don’t have noise level greater than half of the resolution of the 

analog-to-digital converter (ADC), i.e., noise magnitude in time domain, ( ) 822
1 Vtn ⋅< , 

where n(t) is the noise amplitude at any arbitrary instant of time t, and V is the 

maximum output of the sensor and is also equal to the maximum allowed input 

voltage level for the ADC. That is, for V = 3.3 volts, the noise amplitude should be 
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less than ~ 6.5 mV. In many practical applications, the acquisition noise level is much 

below this margin. Thus, the acquisition noise need not be considered. 

 

Therefore, the researchers are mainly concerned with the noise in a transmission 

system. Usually, the transmission channel is linear, but dispersive due to a limited 

bandwidth. The image signal may be transmitted either in analog form or in digital 

form.  

 

If an analog image signal is transmitted through a linear dispersive channel, then the 

image edges (step-like or pulse like signal) get blurred and the image signal gets 

contaminated with AWGN since no practical channel is noise free. If the channel is so 

poor that the noise variance is high enough to make the signal excurse to very high 

positive or high negative value, then the thresholding operation done at the front end 

of the receiver will contribute to saturated max and min values. Such noisy pixels will 

be seen as white and black spots. Therefore, this type of noise is known as salt and 

pepper noise (SPN). In essence, if analog image signal is transmitted, then the signal 

gets corrupted with AWGN and SPN as well. Thus, there is an effect of mixed noise. 

 

If the image signal is transmitted in digital form through a linear dispersive channel, 

then inter symbol interference (ISI) takes place. In addition, the presence of AWGN 

in a practical channel can’t be ignored. This makes the situation worse. Due to ISI and 

AWGN, it may so happen that a ‘1’ may be recognized as ‘0’ and vice-versa. Under 

such circumstances, the image pixel values have changed to some random values at 

random positions in the image frame. Such type of noise is known as random-valued 

impulse noise (RVIN). 

 

The AWGN, SPN, and RVIN are mathematically represented below. The Gaussian 

noise is given by, 

( )ttn GAWGN η=)(               (1.1) 

),(),(),( nmnmnm GAWGN η+=⇒ XX  (1.1a) 



 
 

Chapter-1 Introduction 8

where,  ( )tGη  is a random variable that has a Gaussian probability distribution. It is an 

additive noise that is characterized by its variance, 2σ , where, σ  represents its 

standard deviation. In (1.1a), the noisy image AWGNX  is represented as a sum of the 

original uncorrupted image and the Gaussian distributed random noise Gη . When the 

variance of the random noise Gη  is very low, ),( nmGη  is zero or very close to zero at 

many pixel locations. Under such circumstances, the noisy image ),( nmAWGNX  is 

same or very close to the original image ),( nmX  at many pixel locations ),( nm . 

 

 Let a digital image X (m,n), after being corrupted with SPN of density d, be 

represented by X SPN(m,n). Then, the noisy image X SPN(m,n) is mathematically 

represented as: 

 

               
2/
2/

1y,probabilitwith 

1
0),(XSPN









=
=

−=
=

dp
dp

dp(m,n)
nm

X
 (1.2) 

 

The impulse noise occurs at random locations ),( nm  with a probability of d. The SPN 

and RVIN are substitutive in nature.  A digital image corrupted with RVIN of density 

d, X RVIN(m,n), is mathematically represented as: 

 





=
−=

=
dpnm

dp(m,n)
nm

y,probabilitwith ),(
1y,probabilitwith X

),(XRVIN η
 (1.3) 

 

Here, ),( nmη  represents a uniformly distributed random variable, ranging from 0 to 

1, that replaces the original pixel value X (m,n). The noise magnitude at any noisy 

pixel location (m,n) is  independent of the original  pixel magnitude. Therefore, the 

RVIN is truly substitutive.  

 

Another type of noise that may corrupt an image signal is the speckle noise (SN). In 

some biomedical applications like ultrasonic imaging and a few engineering 
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applications like synthesis aperture radar (SAR) imaging, such a noise is encountered. 

The SN is a signal dependent noise, i.e., if the image pixel magnitude is high, then the 

noise is also high. Therefore, it is also known as multiplicative noise and is given by  

 

 ( ) ( )tSttnSN .)( η=   (1.4) 

 or, ( ) ( ) ( ) ( )nmXnmnmXnmX SN ,.,,, η+=        (1.4a) 

where, ( )tη  is a random variable and ( )tS  is the magnitude of the signal. The noisy 

digital image, X SN(m,n), is represented mathematically in (1.4a). The noise is 

multiplicative since the imaging system transmits a signal to the object and the 

reflected signal is recorded. In the forward transmission path, the signal gets 

contaminated with additive noise in the channel. Due to varying reflectance of the 

surface of the object, the reflected signal magnitude varies. So also the noise varies 

since the noise is also reflected by the surface of the object. Noise magnitude is, 

therefore, more when the signal magnitude is more. Thus, the speckle noise is 

multiplicative in nature. 

 

The speckle noise is encountered only in a few applications like ultrasonic imaging 

and SAR, whereas all other types of noise i.e., AWGN, SPN, and RVIN occur in 

almost all the applications. The AWGN is the most common among all. Under very 

low noise variance it may look like RVIN. In general, some combinations of AWGN, 

SPN, and RVIN may represent a practical noise. 

 

In summary, if the image signal is transmitted in analog form, then it is found to be 

corrupted with AWGN and SPN at the receiver; whereas, the image signal gets 

contaminated with RVIN if digital image-data is transmitted. 
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1.3 Study of Image Filters Reported in the Literature 
 

The following three topics are covered in this section. 

•  An Overview of Digital Image Filters 

•  A Critical Analysis on the Recent Development 

•  Conclusion 

1.3.1 An Overview of Digital Image Filters 
In early days, linear filters were the primary tools in signal and image processing. A 

linear filter may be described mathematically by using a linear operator ƒ(.) that maps 

an input signal, X  into an output signal, Y as: 

 

 

)(XY f=  (1.5) 

 

The operator ƒ(.) satisfies the superposition principles. Due to the mathematical 

simplicity of the linear filters, it is easy to design and implement them. However, 

linear filters have poor performance in the presence of noise that is not additive as 

well as in systems where system nonlinearities or non-Gaussian statistics are 

encountered. Linear filters tend to blur edges, do not remove impulsive noise 

effectively, and do not perform well in the presence of signal dependent noise [1-4].  

To overcome these shortcomings, various types of nonlinear filters have been 

proposed in the literature. For such filters, the operator ƒ(.), described in (1.5), is not a 

linear function. Different families of nonlinear filters having different characterization 

have been studied. Most of the currently available image-processing software 

packages include nonlinear filters.  The most popular nonlinear filter is the median 

(MED) filter. It is computationally efficient, but yields blurred and distorted outputs. 

Huang et al. [5] have proposed a 2-D median filtering that is based on sorting and 

updating gray level histogram of the picture elements in the window. Subsequently, a 

fast real-time algorithm has been reported for median filtering of signals and images 

[6]. In this method, noise filtering based on their local mean and variance for both the 

additive and multiplicative cases have been suggested. Recently, it has been shown 
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that the use of local statistics works better for removal of additive white and 

multiplicative noise [7]. However, it is not suitable for the removal of impulse noise 

as it employs optimal linear approximations. 

 

Another effective algorithm for noise filtering that does not require image modeling 

for both the additive and multiplicative noise cases has recently been reported [8]. 

Some statistical properties of a MED filter are analyzed in [9]. It is shown that the 

MED filter can suppress impulse and low variance Gaussian noise. Kundu et al., [10] 

have proposed a new approach of removing impulse noise from images using a mean 

filter. This filtering scheme is based on replacing the central pixel value by the 

general mean of all pixels inside a sliding window. As the probability of noise 

corruption increases, its performance decreases while that of the median filter remains 

constant. Besides, if both positive and negative types of impulses are present, the 

performance of generalized mean filter is unsatisfactory. This filter is also not suitable 

for simultaneous removal of impulsive and non-impulsive noises. It is reported in the 

literature [11] that the nonlinear filter based on nonlinear means works well under 

additive and impulsive noise conditions. Its performance in the presence of signal 

dependant noise is satisfactory. A novel class of nonlinear filter for image processing 

known as order statistics (OS) filter has been reported [12]. This filter is used for 

reduction of white noise, signal-dependent noise, and impulse noise. Another filter 

known as signal adaptive median filter has been developed [13] that performs better 

than other nonlinear adaptive filters for different kinds of noise. The adaptive 

averaging filter proposed in [14] shows poor performance in the presence of 

impulsive noise and does not remove noise close to the edges. The filtering scheme 

proposed in [15] cannot suppress the impulsive noise sufficiently, but can preserve the 

edge better than the mean filter. It is claimed that decision-based order statistics filters 

can reduce both impulsive and non-impulsive noise and can also enhance blurred 

edges better than many other OS filters [16].  An adaptive filtering algorithm for the 

class of stack filters has been proposed [17,18]. Adaptive neural filter [19] removes 

various kinds of noise such as Gaussian noise and impulsive noise. Adaptive median 

filters have also been proposed for removing impulse noise and preserving the image 
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sharpness [20]. Two such filters are: the rank-order based adaptive median filter 

(RAMF), and the size based adaptive median filter (SAMF). A fuzzy operator has 

been suggested in [21] for enhancement of blurred and noisy images. A new approach 

to spatial adaptive image restoration, which employs minimum additional 

computational load compared to the direct techniques, has been proposed [22]. The 

use of wavelet transform presents a new method for adaptive restoration and yields 

very good edge preservation in the restored images. A novel algorithm for removing 

impulse noise from images is presented [23] in which the nature of filtering operation 

is conditioned on a state variable. The key of the algorithm is a classifier that indicates 

the probability of impulse corruption by operating on the rank ordered differences 

within a sliding window. This technique significantly outperforms a number of well-

known techniques in the presence of impulsive, Gaussian and mixed type of noise. A 

reliable and efficient computational algorithm for restoring blurred and noisy images 

has been proposed by Li and Santosa [24]. By using inverse filtering technique 

blurred images can be restored. In a recent publication [25], Malladi and Sethian have 

suggested a unified approach for noise removal, image enhancement, and shape 

recovery. This approach relies on the level of set formulation of curves and surface 

motion, which leads to a class of PDE–based algorithm. Enhancement of medical 

images can be successfully achieved by this technique. Several adaptive Least Mean 

Square (LMS) filters have also been proposed [26] for noise suppression from images. 

 

A robust approach to image enhancement based on fuzzy logic has been proposed by 

Choi and Krishnapuram [27]. This approach uses weighted least square error criteria 

for selecting the filter. A new method for multi-dimensional median filtering is 

presented [28]. This method employs the reduced vector median filter (RVMF) to a 

vector data. It has been applied to colored images offering satisfactory performance. 

A fast algorithm called 1-Norm vector median filtering [29] is presented for filtering 

of natural images corrupted by spike noise. This algorithm is computationally 

efficient. An adaptive order statistics filter [30] is proposed for gamma corrupted 

image sequence. This technique estimates the weights of an adaptive order statistics 

estimator that adapts to the probability density function of the noise. This approach is 
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quite successful in handling the signal dependent noise. Impulse noise can also be 

removed using higher order statistics. But this method involves computation of higher 

order statistical terms, which are computationally expensive [31]. Filtering of impulse 

noise is also performed using Artificial Neural Network (ANN). It has been reported 

that a single layer neural network accurately detects the impulse noise of fixed 

amplitude [32]. However, it doesn’t perform well in case of random-valued impulse 

noise. A plethora of nonlinear and adaptive filtering schemes may be found in 

literature [32-44]. Many of them are simply some variants of the well-known MED 

filter. The demerits of these filters are their computational complexities.  

 

For most typical applications, image noise can be modeled with Gaussian, uniform, or 

impulsive distribution. Gaussian noise can be analytically described and its 

probability density function has a characteristic of bell shape. In uniform distribution, 

the gray level values of the noise are evenly distributed across a specific range. 

Impulsive noise generates pixels with gray level values not consistent with their local 

neighborhood. In the presence of impulsive noise, linear filters that work with 

convolution of image with a constant matrix to obtain a linear combination of 

neighborhood pixel values exhibit poor performance and produce blurred and 

distorted image output [33].  Popularly used nonlinear MED filter that is implemented 

across the image even if computationally efficient, suppresses impulse noise, and 

preserves edges, it removes desirable details in the restored images. To obtain 

improved performance, various generalized and modified median based filters have 

been proposed such as multi-stage median (MSM) filter [34], center weighted median 

(CWM) filter [35], and stack filter [36]. These methods produce good results at low 

noise conditions, but their performance deteriorates as the noise density increases. 

One possible solution is to use a filter that is capable of identifying the pixels 

contaminated by noise prior to filtering and leave noise-free pixels unaltered.  Such 

decision-based median filters realized by threshold operations have been suggested in 

literature [37-44]. Some of them perform at per with the median filter, whereas, others 

perform even better. But as the noise density increases, their performance too 

becomes inferior. 
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Similarly, removal of Gaussian noise from images is also an important problem in the 

real world and attempts have been made for developing new efficient methods for this 

purpose. Discrete Wavelet Transform (DWT) based schemes [45-47] using 

thresholding is a representative example to restore signals and images from their noisy 

versions. A novel approach, called ANN-threshold filtering scheme, has been 

proposed by Zhang [48]. It is an adaptive filter. Since it is based on a neural network, 

it needs training. Therefore, it is a computational-intensive scheme. 

 

Fuzzy sets and fuzzy logic are proposed by Zadeh [49,50]. The concept of fuzzy logic 

has revolutionized the research and development in the areas like signal processing, 

control, instrumentation, etc. [67-70]. Many researchers have used fuzzy logic to 

develop efficient image filters [81,83,84,93-99,103]. 

 

Neural network is another important tool used in signal processing [51,52,63]. Many 

neural network based noise detectors and noise filters are proposed in the literature 

[19,32,48,81,84]. A novel impulse detection scheme is proposed by Panda et al. [55]. 

 

Discrete Wavelet Transform (DWT) [57,58] is a very powerful signal analysis tool. 

Many researchers have used DWT to design efficient digital image filters [45-47,59, 

60]. But they are highly computational intensive algorithms. 

 

The SD-ROM filter of Abreu, et al. [43] and the MMEM filter of Han and Lin [71] 

are some of the landmarks in the field of image filtering. Many novel schemes have 

been suggested in the recent past. A critical analysis on some of the good filtering 

algorithms proposed recently is presented. 

 

1.3.2 A Critical Analysis on the Recent Development 
 

The min max exclusive mean (MMEM) [71] developed by W. K. Han and J. C. Lin 

shows a very good performance in suppressing SPN of high density. It first considers 
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a 3×3 window and rejects the pixels in very high and very low ranges. If nothing more 

is left, then the window size is increased to 5×5 and the same type of operation is 

performed. Whatever pixels are left, apart from the very high-valued and low-valued 

pixels, only these pixels are considered and their average value is calculated. If the 

average value differs from center pixel value by more than a threshold level, then the 

filter takes a decision to replace the center pixel with the average value; otherwise the 

filter keeps the original center pixel value. It may look like a decision-directed ROM 

filter. But, it is not so. The filtering algorithm is a bit different from the simple ROM. 

Table1.1 shows the performance of the MMEM filter and other standard filters for 

comparison purposes. 

 

Table-1.1 PSNR obtained by different filters for SPN corrupted image ‘Lena’ [71] 

SPN Density MED3××××3 MED3××××5 Fuzzy 
 [103 ] 

SD-ROM 
[43] 

MMEM 
[71] 

10 34.25 31.23 37.88 38.98 38.60 
20 29.25 30.60 34.19 36.55 36.76 
30 23.85 29.72 31.19 33.43 35.41 
40 19.18 28.21 28.00 29.88 34.32 
50 15.28 24.44 24.97 26.04 32.97 
60 12.31 19.09 21.66 21.97 31.76 
70 9.95 14.16 18.27 18.12 30.29 

 

This table gives a very serious result. Though the authors claim that the decisio

directed filter, MMEM, is very efficient, it shows slightly poorer performance at lo

SPN density as compared to the SD-ROM filter. This is what is very important 

visualize for a designer. Any system that works fine at one extreme end of the inp

type doesn’t work so well at the other extreme end. Thus, there is a scope 

investigate and develop very good image filters to suppress the low-density impul

noise. 

 

T. Chan, et al [38] have developed a nonlinear filter, called tri-state median (TSM

filter, for preserving image details while effectively suppressing impulse noise. T

standard median (MED) filter and the center weighted median (CWM) filter a
n-

w 

to 
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incorporated into a noise detection framework to determine whether a pixel is 

corrupted, before applying the filtering operation. 

 

F. Russo has developed an evolutionary neural fuzzy system for noise cancellation in 

image data [81]. The proposed approach combines the advantages of the fuzzy and 

neural paradigms. The network structure is designed to exploit the effectiveness of 

fuzzy reasoning in removing noise without destroying the useful information 

embedded in input data. The neuro-fuzzy approach is capable of automatic acquisition 

of knowledge for a given network structure.  

 

F. Farbiz, et al., have proposed a fuzzy logic filter for image enhancement [83]. It is 

able to remove impulse noise and smooth Gaussian noise. Also, it preserves edges and 

image details. Though it is claimed that this filter suppresses mixed noise quite 

effectively, the MSE at the output of this filter reduces to 0.0045 for input mixed 

noise of AWGN (σ2=0.0015) and impulse noise 5%. This doesn’t show a very high 

filtering performance. 

 

A data-dependent median filtering method is proposed by Okano, et al. to restore 

images corrupted with SPN [85]. For 20% SPN corrupted Lena image, the filter 

output has an MSE of 0.0026. Such a filtering performance may be classified in good 

(not very good) category. 

 

H-L Eng and K-K Ma have proposed a noise adaptive soft-switching median (NASM) 

filter [88]. A soft-switching noise-detection scheme is developed to classify each pixel 

to be uncorrupted pixel, isolated impulse noise, non-isolated impulse noise or image 

object’s edge pixel. ‘No filtering’, a standard median (MED) filter or the proposed 

fuzzy weighted median (FWM) filter is then employed according to respective 

characteristic type identified. The scheme changes the scrolling window size 

depending on the impulse noise density. For a ‘Lena’ image corrupted with 10% 

impulse noise, the NASM filter shows a PSNR of 42 dB i.e., an MSE of 6.3×10-5
. Its 

performance is very good as compared to fixed filters. But it is a highly 
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computational intensive algorithm. For 10% impulse noise density, it takes a 

computation time of 8.41 seconds when MED3×3 and CWM3×3 take 1.26 seconds 

and 1.82 seconds, respectively [88]. Since it is a multi-level decision system, it takes 

much more computation time. Therefore, it is inferred that there is sufficient scope for 

further research to develop such highly efficient image filters that don’t involve much 

computational complexity. 

 

T. Chen and H-R Wu have developed a scheme for adaptive impulse detection using 

CWM (AID-CWM) filters [89]. It suppresses SPN as well as RVIN. Its filtering 

performance is compared with standard filters, and the PSNR values are shown in 

Table 1.2. The input image is ‘Lena’ with 20% impulse noise. 

Table 1.2 The Filter Performance [89] 
(Peak Signal to Noise Ratio (PSNR) in dB) 
Filter RVIN (20%) SPN (20%)

MED 31.33 31.42 

CWM 32.42 30.39 

ROM 34.71 36.15 

TSM 34.13 31.84 

AID-CWM 34.76 36.54 

 

It may be seen that the performance of an ROM filter is comparable to that of the 

AID-CWM filter. Therefore, such an adaptive decision-directed filtering scheme may 

not be highly appreciated. 

 

T. Chen and H. R. Wu have designed a space variant median filter [90] for the 

restoration of impulse noise corrupted images. It is a generalized framework of 

median based switching scheme, called multi-state median (MSM) filter. By using 

simple thresholding logic, the output of the MSM filter is adaptively switched among 

those of a group of CWM filters that have different center weights. Thus, it is 

equivalent to an adaptive CWM filter with a space varying center weight that is 

dependent on local signal statistics. At 10% impulse noise density, it shows a PSNR 
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performance of 28 dB as against 22.5 dB for the MED filter. In other words, it gives 

an output MSE of 0.0016 while the MED filter gives 0.0056. 

 

T. Chen and H. R. Wu have reported a partition based median type filter [86] for 

suppressing noise in images. The observed sample vector at each pixel location is 

classified into one of M mutually exclusive partitions, each of which has a particular 

filtering operation. The observation signal space is partitioned based on differences 

defined between current pixel value and the output of CWM filters with variable 

center weights. It works satisfactorily in reducing AWGN as well as mixed noise. For 

a test image (‘Lena face’) with AWGN of σ2=0.12, the filter output has an output 

MSE of 0.0016, i.e. a PSNR of 27.88 dB. Thus, its performance is shown to be better 

than that of MED, FM, NLMS-L and PWS filters. This filter also successfully 

suppresses mixed noise and achieves a PSNR of 28.32 dB and is claimed to be better 

than MED, FM, NLMS-L and WOS filters. 

 

A recursive LMS L-filter is proposed by Chen and Wu [87] for noise removal in 

images. The coefficients derived for non-recursive filtering are not optimal for 

recursive implementation, where the estimate of current pixel depends on the past 

outputs of the filter. To combat this, analogous to the design of adaptive IIR filters, 

the optimization scheme referred to as equation error formulation is employed. The 

recursive filter performs better in suppressing noise than its non-recursive counter 

part. 

 

M. Ma, et al, have developed a fuzzy hybrid filter (FHF) [95] for removal of impulse 

noise from highly corrupted images. A noise ratio in the filter window is defined and 

detected. The FHF comprises of a novel detection scheme, a fuzzy decision based on 

fuzzy rules. The hybrid filter also makes use of MED filter and MMEM filter 

depending on the noise ratio. The filter works for SPN and mixed noise conditions. 

This filter achieves a PSNR of 30.87 dB for removing SPN (under mixed noise 

condition) from the ‘Lena’ image, while a MED3×3 filter achieves 28.10 dB.  
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Zhang and Karim have developed a new impulse detector [92] for switching median 

filter. It is based on the minimum absolute value of four convolutions obtained using 

one-dimensional Laplacian operators. For a ‘bridge’ image corrupted with 10 % 

impulse noise, this scheme achieves an output MSE of 0.0011 as compared to the 

MED filters performance of 0.0027. This may be classified as a good filter; not a very 

good filter. 

 

F. Russo [93] has developed a novel image enhancement technique combining image 

sharpening and noise reduction. The method is based on a multiple output system that 

adopts fuzzy models in order to prevent the noise increase during the sharpening of 

the image details. It shows good performance in suppressing AWGN. This filter gives 

an MSE of 0.0005. Thus, its performance is quite good. 

 

 D.V.D. Ville, et al. [97] have developed an image filter for the noise reduction of 

images corrupted with additive noise. The filter consists of two stages. The first stage 

computes a fuzzy derivative for 8 directions. The second stage uses these fuzzy 

derivatives to perform fuzzy smoothing by weighting the contributions of neighboring 

pixel values. Both the stages are based on fuzzy rules.  

 

F. Russo and A. Lazzari [98] have developed a robust filtering scheme, based on 

hybrid fuzzy networks, for suppression of impulse noise in images. This method 

combines rank ordering of the input data and noise correction based on fuzzy 

reasoning. This hybrid scheme works for SPN as well as RVIN. For SPN of density 

0.45, this filter gives an output MSE of 0.0045. 

 

F. Russo has proposed a new approach to the restoration of images corrupted with 

AWGN [99]. This method combines a nonlinear algorithm for detail preserving 

smoothing of noisy data and a technique for automatic parameter tuning based on 

noise estimation. As a key feature, this method doesn’t require any a priori 

knowledge about the amount of noise corruption. For AWGN of σ =0.0392, the MSE 

at the output of the filter is 41012.7 −× in case of ‘Boats’ image; and 5.97×10-4 in case 
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of ‘Cameraman’ image. It may be classified as a very good filter. But it is a highly 

computational intensive algorithm. 

 

M. Kazubek [101] has developed a wavelet-domain denoising algorithm using 

thresholding and Weiner filtering. It is shown that the denoising performance 

increases by pre-processing the images with a thresholding operation. For a ‘Lena’ 

image corrupted with AWGN of σ = 0.0196, it shows a PSNR of 30.1 dB, i.e. the 

MSE at this filter output is 9.77×10-4. This filter may be classified in good category. 

But it involves very high computational complexity as wavelet transform coefficients 

are to be calculated in each window. The improvement in the filter performance is not 

so high though it requires a large volume of computation.  

 

Aizenberg and Butakoff have developed a novel impulse detector based on rank-order 

criteria [100]. The scheme is called a differential rank impulse detector (DRID). At 

1%, 5% and 20 % of SPN, this DRID plus median filtering scheme gives a PSNR of 

49.4 dB, 43.84 dB and 36.64 dB respectively. This may be classified as a very good 

filter. Its performance is really very good at low noise density. Further, the 

computational complexity involved is also not so high. 

 

Another impulse detection scheme, based on pixel-wise MAD (median of absolute 

deviation from median), is proposed by Crnojevic, et al [106]. This algorithm is free 

of varying parameters, requires no previous training or optimization, and successfully 

removes all types of impulse noise. For ‘Lena’ image corrupted with 20% SPN, this 

scheme achieves a PSNR of 33.20 dB (slightly poorer than SD-ROM of Abreu, et al.). 

For the same test image corrupted with 20% RVIN, it achieves a PSNR of 32.82 dB 

(slightly better than SD-ROM). This shows that this scheme is better than the SD-

ROM only if the impulse noise is random-valued. This scheme may be classified as a 

good filter. 
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1.3.3 Conclusion 
 

It is observed that the researchers have adopted different methodologies: Order 

statistics, neighborhood relationship, fuzzy logic, neuro-fuzzy system, etc. Some 

filters are good at suppressing impulse noise whereas some others are good at 

suppressing additive Gaussian noise. Even, there is a third category of filters that are 

efficient in suppressing mixed noise. 

 

Many researchers have developed very good image filters to suppress impulse noise 

medium (10-20%), high (20-30%) and very high (30-40%) noise densities and even 

some have designed filters for reducing impulse noise of extremely high density 

(>40%). But these filters don’t show very good performance at low (<5%) and at very 

low (<1%) impulse noise densities. Therefore, there is a scope to develop efficient 

filters to suppress impulse noise of low and very low density. 

 

When good and very good filters designed to suppress AWGN are analyzed, it is felt 

that their filtering performance is not so high as compared to the extremely high 

computational complexity involvement. Therefore, there is sufficient scope to 

investigate further and develop more efficient digital image filters to suppress AWGN 

without involving high computational complexity. 

 

Thus, it may be concluded that there is enough scope to develop better filtering 

schemes, with very low computational complexity that may yield high noise reduction 

as well as preserve edges and fine details of the image under low and very low noise 

power conditions. 

 

1.4 The Problem Statement 
 

In the present research work, efforts are made to develop many efficient filtering 

schemes to suppress AWGN, SPN, RVIN and MN. The speckle noise is not 
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considered in this work. Such a noise doesn’t appear in most of electronic applications 

and communication systems. The present work mainly focuses on efficient 

suppression of AWGN, SPN, RVIN and MN under low noise conditions. The present-

day state-of-art technology offers very high quality photo sensors, high quality 

electronic circuitry, e.g., system on chip (SOC), and high quality channel as well. 

Therefore, the noise level has drastically reduced. 

 

In the last two decades, many researchers have attempted to develop filters to 

suppress high variance AWGN and high density SPN. But the filters that are quite 

efficient at high noise levels don’t perform so well at low noise levels. Therefore, it is 

very important to design and develop highly efficient image filters that suppress low 

power noise quite effectively. Further, it is essential to develop efficient filters to 

suppress mixed noise since the practical systems suffer from such a type of noise. 

 

For real time applications like television, photo-phone, etc. it is essential to reduce the 

noise power as much as possible and to retain the fine details and the edges in the 

image as well. Moreover, it is very important to have very low computational 

complexity so that the filtering operation is performed in a short time for online and 

real-time applications.  

 

Thus, the problem taken for this doctoral research work is “Development of Efficient 

Image Filters to suppress (i) SPN and AWGN and (ii) RVIN for Online and Real-Time 

Applications”. 

 

Since linear filters don’t perform well, nonlinear filtering schemes are adopted for 

achieving better performance. In addition, various adaptive filtering techniques are 

employed that adapt to the noise type, the noise power level and the local statistics of 

the image. Therefore, the objective of this research work is to develop some novel 

nonlinear and adaptive digital image filters for efficient noise suppression under low 

and very low noise power conditions. 
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1.5 Image Metrics 
 

The quality of an image is examined by objective evaluation as well as subjective 

evaluation. For subjective evaluation, the image has to be observed by a human 

expert. The human visual system (HVS) is so complicated that it is not yet modeled 

properly. Therefore, in addition to objective evaluation, the image must be observed 

by a human expert to judge its quality. 

 

There are various metrics used for objective evaluation of an image. Some of them are 

mean squared error (MSE), root mean squared error (RMSE), mean absolute error 

(MAE) and peak signal to noise ratio (PSNR). 

 

Let the original noise-free image, noisy image, and the filtered image be represented 

by ),,( nmX ),,( nmY  and ),,(~ nmX  respectively.  Here, m and n represent the discrete 

spatial coordinates of the digital images. Let the images be of size M×N pixels, i.e. 

m=1,2,3,…,M, and n=1,2,3,…,N. Then, MSE and RMSE are defined as: 

 

( )
2

),(),(~

1 1
NM

nmXnmX
M

m

N

nMSE ×

−∑∑
= = =   (1.6) 

 

MSERMSE =  (1.7) 

 

The MAE is defined as: 
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The PSNR is defined in logarithmic scale, in dB. It is a ratio of peak signal power to 

noise power. Since the MSE represents the noise power and the peak signal power is 

unity in case of normalized image signal, the image metric PSNR is defined as: 
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)1(log.10 10 MSEPSNR =  (1.9) 

Another image metric, a noise reduction factor, usually expressed in dB, is the noise 

reduction in dB (NRDB). It is given by: 
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where, inMSE  and outMSE  are the mean squared error at the input and output of the 

filter. Equivalently, they are the noise power at the input and the output of the filter. 

Thus, the image metric, NRDB, is a very important parameter for objective evaluation 

of a filter’s performance. It is not important to find the MSE at the output. Rather, it is 

very important to see how much the noise power has been attenuated by the filter. 

This is what the parameter NRDB talks about. 

 
Though these image metrics are extensively used for evaluating the quality of a 

restored (filtered) image and thereby the capability and efficiency of a filtering 

process, none of them gives a true indication of noise in an image. It is very important 

to note that RMSE, MAE and PSNR are all related to MSE. Thus, an objective 

evaluation with only the MSE metric is sufficient enough. Many researchers have 

used PSNR as the image metric. But, for low noise conditions, the performance of 

many filters will almost be the same in dB range if PSNR is evaluated. Therefore, 

only MSE is used to examine the performance of an image filter in this thesis. 

Further, a slight modification to MSE is proposed to comply with HVS. If there is a 
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small dc offset in the restored image, then MSE metric gives a reasonably large error. 

In fact, the restored image may not have any noise. As far as HVS is concerned, a 

small dc offset does not contribute to any noise; rather it may be a better image, for 

instance, a dark image might have been enhanced by providing a positive dc offset. 

To nullify the effect of dc offset in a restored image, a new image metric, called mean 

restored mean squared error (MR-MSE), is suggested here. 

 

Let avg1 and avg2 represent the average pixel values in the original and the restored 

image. Then, the mean restored filtered signal, X ′~ , is given by: 

 

XavgavgX ~).2/1(~ =′  (1.12) 

 

The image metric MR-MSE is, then, given by: 

 (1.13) 

This proposed image metric alongwith MSE is used to evaluate the performance of 

various filters in this thesis. 

 

Another parameter that is usually employed in evaluating the performance of a digital 

image filter meant for impulse noise suppression is the percentage of spoiled pixels 

(PSP). It is defined as: 

 

image in the pixels  duncorrupte ofnumber  Total
operation filtering  the todue distorted being pixels duncorrupte ofNumber =PSP   

 (1.14) 

 

The image metrics: MSE, PSNR, PSP and the proposed metric MR-MSE are used in 

this thesis to evaluate the performance of a digital image filter. However, only the 

MSE and MR-MSE are used in most occasions in the present research work. Of 

course, the significance of PSP in evaluating an impulse noise filter is high enough 

MR-MSE(X, X) = MSE(X, X′) ~ ~ 
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and, thus, it can’t be ignored. But, when a filter is designed for AWGN, this parameter 

can’t be used. 

 

1.6 Noise Conditions for Computer Simulation 
 

The following topics are covered in this section. 

•  Choosing a Standard Test Image 

•  Noise Level Classification 

•  Conclusion 

 

1.6.1 Choosing a Standard Text Image 

 
It is very important to test the performance of a filter. Usually, a digital image filter is 

tested by computer simulation before a prototype is developed. There are various 

standard test images, used extensively in literature, for this purpose. They are ‘Lena’, 

‘Lisa’, ‘Boats’, ‘Cameraman’, ‘Clown’, ‘House’, etc. ‘Lena’ is the most widely used 

image among all. There are three types of images, derived from the original Lena, 

used in literature. They are: 

 

(i) Lena (512×512 pixels) 

(ii) Lena (256 ×256 pixels) 

(iii)Lena face (200×200 pixels) 

 

The first one is the original image with high resolution; whereas, the second one is a 

low resolution version of the original image. The third image, Lena face, is a 200×200 

slice taken from the original high resolution image showing the face portion. In the 

recent past, many researchers have used the ‘Lena face’ image as the test image. Its 

image complexity is moderate; neither as low as that of ‘House’ nor as high as that of 

‘Cameraman’. The ‘Lena face’ has high image complexity as compared to the original 

‘Lena’. Therefore, in the recent past, this image has gained much popularity. This 
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may be taken as a very good standard test image since there are many features and the 

feature sizes are not very small or very large. These properties of the ‘Lena face’ are 

well appreciated and mainly this image is used as the test image in this thesis. The 

original ‘Lena’ image and the selected test image ‘Lena face’ are shown in Fig.1.2. 

 

In literature, many researchers report the filter performance using various test images. 

It may be well understood that if a filter’s performance is very good for ‘House’ test 

image, then it is good for ‘Lena’ image and fair for ‘Cameraman’ image. It is due to 

low, moderate and high image complexity of the ‘House’, ‘Lena’, and ‘Cameraman’ 

images, respectively. So, there is no need to evaluate the performance of a filter 

taking different test images. Rather, the simulation may be carried out using only the 

‘Lena face’ image that has higher image complexity than the original ‘Lena’ image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2 (a) The original Lena image 
              (b) The ‘Lena face’ Test Image 

a b 
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1.6.2 Noise Level Classifications 
 

If the ‘Lena face’ is taken as the standard test image, then the next question arises: 

How much noise should be added to this image to simulate a practical noise 

condition? It is inferred in Section-1.2 that the most serious noise among all is the 

channel noise. Normally, the signal-to-noise ratio (SNR) is better than 20dB in a 

communication channel. Quite seldom, it becomes poorer than 10dB. That is why, an 

SNR poorer than 10dB represents a high noise condition whereas an SNR better than 

20dB represents a low noise condition. Table1.3 gives a comprehensive list of noise 

level classifications. 

Table-1.3 Noise Level Classifications 

Noise Level Signal-to-Noise Ratio (SNR) 

Very Low ≥ 30 dB 

Low ≥ 20 dB 

Medium ≥ 15 dB 

High ≥ 10 dB 

Very High ≥   5 dB 

Extremely High <   5 dB 

 

This table gives a rough and fuzzy classification. Yet, it represents practical noise 

conditions. Therefore, this classification may be used for simulation purposes. 

 

The standard test image ‘Lena face’ is taken for the simulation purpose. Various types 

of noise are added to it. In case of SPN and RVIN, the noise density is varied 

whereas; the noise variance is varied in case of AWGN. The noise power and the 

SNR are calculated in each case. The noise simulation results for salt and pepper 

noise are presented in Table-1.4. 
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Table-1.4 The Noise Levels at various SPN Densities 

SPN 
Density (%) 

Signal
Power

Noise Power SNR (dB) Noise Level 
Classification 

0.1 0.0002638 29.5891 Low (Very Low) 

0.5 0.0013 22.5527 Low 

1 0.0029 19.1781 Medium (Low) 

2 0.0060 16.0206 Medium 

3 0.0085 14.5079 Medium (High) 

4 0.0115 13.1951 High 

5 0.0151 12.0123 High 

6 0.0180 11.2494 High 

7 0.0210 10.5799 High 

8 0.0240 10.0000 High (Very High) 

9 0.0263 9.6026 Very High 

10 0.0300 9.0309 Very High 

15 0.0438 7.3874 Very High 

20 0.0586 6.1231 Very High 

25 0.0740 5.1098 Very High  
(Extremely High) 

30 0.0883 4.3425 Extremely High 

35 0.1020 3.7161 Extremely High 

40 

0.2400

0.1163 3.1463 Extremely High 
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These noise conditions are plotted in Fig.1.3. In most practical situations, the SNR is 

better than 20dB and seldom falls below 10 dB. That is why, SPN density of 1%-8% 

should usually be considered. To simulate low noise conditions SPN density below 

1% should be taken. In essence, it may be stated, in general, that  

 

(a) SPN of density below 0.1% may be regarded as very low noise condition 

(b) SPN of density 0.1-1% may be regarded as low noise condition 

(c) SPN of density 1-3% may be regarded as medium noise condition 

(d) SPN of density 3-10% may be regarded as high noise condition 

 

Therefore, the proposed filters are more often tested in subsequent chapters using 

SPN density below 10%. A plot of SNR versus the SPN density is given in Fig.1.3. 

This plot clearly indicates the fact that 10% SPN is a high noise condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The RVIN of varying density is simulated on the ‘Lena face’ test image. The results 

are presented in Table1.5. A plot of SNR versus the RVIN density is given in Fig.1.4. 

Fig.1.3 SNR versus Noise Density for Salt and Pepper Noise 
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Table 1.5 The Noise Levels at Various RVIN Densities 
RVIN  
Density (%) Signal Power Noise Power SNR (dB) Noise Level 

Classification 
0.1 0.000123 

32.9031 Very Low 

0.5 0.00073 25.1689 Low 

1 0.0013 22.6627 Low 

2 0.0026 19.6524 Medium (Low) 

3 0.0036 18.2391 Medium  

4 0.0049 16.9002 Medium 

5 0.0063 15.8087 Medium 

6 0.0071 15.2895 Medium (High)

7 0.0087 14.4069 High 

8 0.0102 13.7161 High  

9 0.0111 13.3489 High 

10 0.0129 12.6962 High 

15 0.0189 11.0375 High 

20 0.0240 10.0000 High  

25 0.0306 8.9449 Very High  

30 0.0375 8.0618 Very High 

35 0.0446 7.3088 Very High 

40 

0.2400 

0.0505 6.7692 Very High 

 

It may be observed that the noise power reduces to approximately 40%-45% of that 

for SPN with the same noise density. Therefore, a higher random-valued impulse 

noise density is required to have the same SNR as in the case of fixed valued impulse 

noise. In general, it may be stated that  

 

(a) RVIN of density below 0.1% may be regarded as very low noise condition 

(b) RVIN of density 0.1-1% may be regarded as low noise condition 

(c) RVIN of density 1-5% may be regarded as medium noise condition 

(d) RVIN of density 5-20% may be regarded as high noise condition 
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Therefore, the developed filters are tested in subsequent chapters using RVIN density 

below 20%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, the test image is corrupted with additive white Gaussian noise. The variance of 

AWGN is varied from 0.001 to 0.50 and the noise level in each case is found out. The 

results are presented in Table1.6. A plot of SNR versus noise variance is given in 

Fig.1.5. The test image with simulated additive white Gaussian noise of variance 

0.001, 0.01, 0.1 and 0.3 are shown in Fig.1.6.  

 

 

 

 

Fig.1.4 SNR versus Noise Density for Random-Valued Impulse Noise 



 
 

Chapter-1 Introduction 33

Table 1.6 The Noise Levels at Various AWGN Noise-Variance Values 

AWGN 
Variance

Signal 
Power 

Noise 
Power SNR (dB) Noise Level 

Classification Comment 

0.001 0.0098 13.8899 Medium-High 
0.002 0.0098 13.8899 Medium-High 

Similar to 

RVIN 

0.003 0.0098 
13.8899 Medium-High 

0.004 0.0098 
13.8899 Medium-High 

0.005 0.0098 
13.8899 Medium-High 

0.006 0.0099 
13.8458 Medium-High 

0.007 0.0099 
13.8458 Medium-High 

0.008 0.0099 
13.8458 Medium-High 

0.009 0.0099 
13.8458 Medium-High 

0.01 0.0100 13.8021 Medium-High 
0.02 0.0103 13.6737 Medium-High 
0.03 0.0107 13.5083 High  

0.04 0.0115 13.1951 High  

0.05 0.0124 12.8679 High  

0.06 0.0133 12.5636 High  

0.07 0.0146 12.1586 High  

0.08 0.0160 11.7609 High  

0.09 0.0177 11.3224 High  

0.10 0.0193 10.9465 High  

0.15 0.0314 8.8328 Very High 

0.20 0.0472 7.0627 Very High 
0.25 0.0672 5.5284 Very High 
0.30 0.0897 4.2742 Extremely High

True AWGN 

0.35 0.1145 3.2141 Extremely High

0.40 0.1405 2.3253 Extremely High

0.45 0.1659 1.6036 Extremely High

0.50 

0.2400 

0.1904 1.0054 Extremely High

Saturated Noise

(SPN) 
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The above table reveals many facts on the range of variance for AWGN to be used for 

simulation purposes. First of all, variance more than 0.3 gives saturated noise and, 

hence, it contributes to SPN. Even the image gets blurred. Such noise conditions don’t 

arise in any practical situation. In the other extreme end, the AWGN of variance less 

than 0.003 gives an effect similar to that of a random-valued impulse noise. Thus, to 

simulate a true AWGN, the noise variance should be between 0.003 and 0.3. It may 

be noted that there is no appreciable change in the net noise power when the variance 

of the added Gaussian noise is varied from 0.001 to 0.1. This happens so because of 

low precision (8-bit) image data. As far as the human visual system (HVS) is 

concerned, this much precision is enough. Thus, it is concluded that  

 

(a) AWGN of variance below 0.003 may be regarded as RVIN 

(b) AWGN of variance 0.003-0.03 may be regarded as medium-high noise 

condition 

(c) AWGN of variance 0.03-0.1 may be regarded as high noise condition 

(d) AWGN of variance 0.1-0.3 may be regarded as very high noise condition 

(e) AWGN of variance above 0.3 may be regarded as SPN 

 

Therefore, the noise variance should be varied from 0.003 to 0.3 to simulate the effect 

of a true AWGN. But a variance larger than 0.1 gives a very high noise condition 

(SNR less than 10dB). Such a situation seldom occurs in practice. Thus, the variance 

is restricted to a range, from 0.003 to 0.1, to simulate AWGN in the subsequent 

chapters. 
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The noisy images in Fig.1.6 give a lot of information. Fig1.6 (a) shows the image 

being corrupted with AWGN of variance, 0.001. Only a few pixels have been 

corrupted in this image. In addition, the noise level is so less that the overall effect 

seems to be that of a low density RVIN. Fig.1.6 (b) shows the image being corrupted 

with AWGN of variance, 0.01 and Fig.1.6 (c), the image being corrupted with AWGN 

of variance, 0.1. These two images show a good simulated result of additive noise 

corruption. The noisy image shown in Fig.1.6 (d) is the test image with AWGN of 

variance, 0.3. The noise level is high enough. The noise saturation effect has just 

started at this value of variance. Some of the pixels in this image have been corrupted 

with SPN. A little blurring effect is also seen in this image. So, this value of variance 

should be taken as a cutoff point. For all simulation purposes, AWGN of variance less 

than 0.3 should be taken. It is better if a variance less than or equal to 0.1 is taken to 

simulate AWGN so that a pure additive noise without any blurring is simulated. 

Fig.1.5 SNR versus Noise Variance for Additive White Gaussian Noise 
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Continued in the next page. 
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1.6.3 Conclusion 
 
The following conclusions are drawn. 

(i) ‘Lena face’ should be taken as a standard test image that has moderate image 
complexity. 

(ii) Considering practical channel noise levels, a rough and fuzzy noise level 

classification (low, medium, high, etc.) is presented. 

(iii) (a) SPN of density less than 10% should be used to simulate a practical situation. 

(b) SPN of density of less than 1% should be used to simulate a low noise system. 

(iv) (a) RVIN of density less than 20% should be used to simulate a practical 

situation. 

(b) RVIN of density less than 2% should be used to simulate a low noise system. 

(v) (a) Additive Gaussian noise of variance, from 0.003 to 0.30, should be used to 

simulate a true AWGN effect in an image. 

(b) AWGN of variance below 0.1 should be used to simulate a practical noisy 

system. 

(c) AWGN of variance, from 0.003 to 0.03, should be used to simulate a low 

noise system. 

 
1.7 Chapter-wise Organization of the Thesis 
 
The chapter-wise organization of the rest part of the thesis is outlined.  
 
Chapter-2: Order Statistics Filters 

•  Preview 

•  Fundamentals of OS Filters 

•  Mean and Median Filters 

•  ROM Filters 

•  L-filters 

•  WROM Filters 
Various WROM filters are developed for efficient noise suppression. They 

show high filtering performance as compared to MAV, MED and ROM filters 

without much computational complexity.  

•  Conclusion 
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Chapter-3: Development of Decision-Directed Filters for Impulse Noise 

Suppression 

•  Preview  

•  Introduction to Decision-Directed Filters 

•  Second Order Difference based Decision Directed Median  

Filter (SOD-DDMF) 

The second order difference (derivative) based decision directed filter 

proposed by Panda et al., [53] is modified to give better performance. The 

threshold value, required for the decision making, is made adaptive depending 

on the noise level. An empirical formula is also derived for the threshold value 

[P1]. 

•  Probability based Impulse Noise Detection (PIND) Algorithm 

A simple probability based impulse detection scheme is proposed. This 

algorithm shows excellent performance at low SPN density.  

•  Deviation based Impulse Noise Detection (DIND) Algorithm 

In the DIND algorithm, an absolute deviation from the expected value, 

computed with a WROM filter, is found. If the absolute deviation at the 

center (ADC) is found to be more than a threshold value, then an impulse 

is supposed to be present. This algorithm is robust enough to detect SPN in 

the presence of AWGN [P2]. 

•  Conclusion 
 

Chapter-4: Development of Adaptive Image Filters 

In order to overcome the shortcomings of fixed filters, adaptive filters [61-65] are 

designed that adapt themselves to the changing conditions of signal and noise. The 

following two types of adaptive filters are developed for efficient noise suppression. 

•  Preview 

•  Fundamentals of LMS Adaptive Filters 

o Adaptive LMS L-Filter 

LMS adaptive L-filter is proposed by Kotropoulos and Pitas [26] to 

update the filter weight for online image processing. This filter needs 

a reference noise-free image frame. The reference image should be 
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very similar to the image that has to be filtered, i.e. a very high 

degree of correlation must be there between the reference frame and 

the image frame that has to be filtered 

•  Development of an Efficient OS-LMS Adaptive Image Filter 

 In the present research work, a novel LMS adaptive image filter is 

proposed that gets trained with totally a different type of image. 

Various order statistics are given as the input to the adaptive filter. 

The training may not be required always. Even an off-line training 

may give a very good filter performance. 

 
•  Fundamentals of Fuzzy Logic 

•  Designing Fuzzy Adaptive Image Filters 

In the recent past, fuzzy filters have gained high popularity 

[81,83,84,94,95,97,98]. Many fuzzy adaptive image filters have been 

developed during the last five years. But they involve high 

computational complexity and their performance is slightly better 

than the simple OS filters. Instead of having a fuzzy inference 

system, Kwan and Cai [94] designed fuzzy MAV and fuzzy MED 

filters by associating fuzzy weights with the order statistics.  

The WROM filters [P4], discussed in Chapter-2, show much better 

performance than any standard OS filters. Their performance can still 

be improved by associating fuzzy weights to the order statistics. Two 

different types of membership functions are chosen and thus the 

following two types of fuzzy adaptive filters are developed: 

•  FWROM with triangular membership function (FWROM-T) 

•  FWROM with Gaussian membership function (FWROM-G) 

The FWROM-G shows slightly better performance than the 

FWROM-T. Since the computational complexity for calculating 

Gaussian membership function is much more than that needed for a 

triangular membership function, it is suggested to use FWROM-T for 

real time applications [P5]. 
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•  Conclusion 

Chapter-5: Conclusion 

•  Preview 

•  A Comparative Study 

•  Conclusion 

The different filters developed are comparatively analyzed. Finally, 

it is concluded that many novel nonlinear and adaptive digital image 

filters are designed to suppress various types of noise under very 

low and low noise power conditions. 

•  Scope for Future Work 

 

1.8 Conclusion 
 

In this introductory chapter, the fundamentals of digital image processing, sources of 

noise and types of noise in an image, the existing filtering schemes and their merits 

and demerits and the various image metrics are studied. In communication 

applications like television and photo-phone, the noise power may be very low. 

Digital image filters performing quite well under such low noise conditions are not 

available in the literature. Therefore, it is decided to make efforts to develop efficient 

filters to suppress low-density impulse noise and low variance additive noise.  

 

A new image metric, the mean restored mean squared error (MR-MSE), is defined 

and the advantage of using such a metric for objective evaluation is discussed. The 

‘Lena face’ is taken as the standard test image since it possesses moderate image 

complexity. 

 

Extensive computer simulation is carried out to find what amount of impulse noise 

density and what variance of additive white Gaussian noise should be used to simulate 

very low, low, medium and high noise conditions. This idea enables a designer to 

simulate a practical noise condition and thus to test a filter for a practical application. 



 
 
 
  

CHAPTER-2 
 
 

 
 
 
 
 
 
 
 

Order Statistics Filters 
 
 

 

 

 

 

 

Preview 

Order statistics (OS) filters are an important class of nonlinear filters used in 1-D and 2-D 

signal processing. The MED filter is the most well-known member of this class. Various 

OS filters are studied in this chapter. Then, weighted rank-ordered mean (WROM) filters 

[P3] are developed for efficient suppression of RVIN, AWGN, SPN and mixed noise. 
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The following topics are presented in this chapter. 

•  Fundamentals of OS Filters 

•  Mean and Median Filters 

•  ROM Filters 

•  L-filters 

•  Development of WROM Filters 

•  Conclusion 

 

2.1 Fundamentals of OS Filters 
 
Order Statistics (OS) filters are a class of nonlinear digital filters which have been proved 

useful in applications where robust signal smoothing is required. OS filters may be 

viewed either as a modification to linear FIR (finite-impulse response) filters (the 

samples are algebraically ordered prior to linear filtering), or as a generalization of the 

median (MED) filter (all of the ordered samples are utilized instead of a single one) [73]. 

While there exist many signal processing domains where OS filters offer advantages over 

linear filters, there are some other situations where the converse holds, or where the 

filters produce similar results. 

 

The MED filter [74] was proposed by Tukey in 1971 as a smoothing device for discrete 

signals. In particular, he noted this filtering process to be quite effective in suppressing 

impulse noise as well as preserving the locally monotonic signal structures often 

containing significant information. The MED filter has been extensively used in image 

processing, particularly for suppressing impulse noise in an image. Many variants of the 

MED filter have also been proposed. One modified version of it is the center weighted 

median (CWM) filter [35]. The ranked-ordered mean (ROM) is another variant. 

 

Gallagher and Wise [75], and Tyan [76] have demonstrated certain deterministic 

properties of MED filter. They showed that certain signals, called root signals, are 
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invariant to median filtering if they possess a minimum degree of smoothness (local 

monotonicity), and that repeated application of the filter to any finite-length signal 

converges to a root in a finite number of passes. 

 

These results gave the median filter a theoretical ground work, and spurred the 

development of a number of extensions and generalizations, including rank-order filters 

(RO filters), where a single order statistics (generally other than the median) from the 

windowed data set is reproduced at each signal coordinate [77], and the more general 

order statistics (OS) filters (also called L-filter) [78,80,26], where a linear combination of 

the order statistics is taken as the filter output at each coordinate. 

 

OS filters are interesting because: 

a) they offer a compromise in performance between linear filters and MED filters; 

b) it is possible to design an optimal (among OS filters) MSE filter for estimating a 

signal immersed in noise, whose performance is superior to linear filtering. 

There exists a vast body of literature on use of order statistics for parameter estimation 

[80]. This provides a strong justification for using moving function of OS to recover 

smooth varying signals immersed in noise. 
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Fig. 2.1 Two Processes: 
(a) Linear FIR filtering 
(b) Order Statistics filtering 
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The similarity and differences between the linear FIR filtering and OS filtering can be 

understood from the block diagrams of the processes shown in Fig. 2.1. When both of 

them are compared, it is easily realized that the OS filtering process is similar to FIR 

filtering except the inclusion of an extra intermediate stage, the algebraic ordering. Thus, 

the OS and the linear filters are equivalent operations over sufficiently smooth regions of 

signal. On the other hand, these two processes must result in different outputs for the 

signals that are not sufficiently smooth. 

 

2.1.1 Some properties of OS filters 
Although an OS filter differs from a linear FIR filter only via the inclusion of an ordering 

element, it provides a very nonlinear characteristic that greatly affects the response of the 

filter. However, an OS filter does enjoy a limited number of linear properties, e.g., it is 

translation-invariant and it preserves linear trends. 

 

An erroneous property often attributed to a general OS filter is its tendency to preserve 

edges and suppress impulses. This idea has largely come about as a byproduct of the 

interpretation of OS filters as generalized median filters. The only OS filters that preserve 

ideal edges (step signals) up to a shift are RO filters. And the only OS filter which exactly 

preserves edges is the median filter. However, OS filters do a better job of simultaneously 

preserving edges and smoothing noise, at least for additive white noise of arbitrary 

distribution [79,80].  

 

2.1.2 OS Filters: 
Sliding windowing technique [2] is used to perform pixel-by-pixel operation in a filtering 

algorithm. The local statistics obtained from the neighborhood of the center pixel give a 

lot of information about its expected value. If the neighborhood data are ordered (sorted), 

then ordered statistical information is obtained. If this order statistics vector is applied to 

a finite impulse response (FIR) filter, then the overall scheme becomes an OS filter. 
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For example, if a 3×3 window is used for spatial sampling, then 9 pixel data are available 

at a time. First of all, the 2-D data is converted to a 1-D data, i.e. a vector. Let this vector 

of 9 data be sorted. Then, if the mid value (5th position pixel value in the sorted vector of 

length 9) is taken, it becomes median filtering with the filter weight vector [0 0 0 0 1 0 0 

0 0]. If all the order statistics are given equal weightage, then it becomes a mean or 

moving average (MAV) filter. Strictly speaking, the MAV filter is a simple linear filter 

and it has nothing to do with the ordered statistics. Since the MAV operation gives equal 

emphasis to each input data, it is immaterial whether the input vector is sorted or not. 

Thus, simply to have a generalization of OS filters, the MAV is considered a member of 

this class. Otherwise, it is quite different from all other members of this family of filters. 

The min, max, ROM are some members of this interesting family. The ROM could be of 

various types. For example, only 3, 5, or 7 mid-ordered statistics may be taken and their 

mean value may be computed; giving rise to ROM(3,3), ROM(3,5), or ROM(3,7) filter 

structure, respectively. Here, a filter nomenclature taken is ROM(p,q); p representing a 

p×p window and q representing the actual number of mid-ordered statistics taken for 

computation. If all ordered statistics are taken for computation and different weights (not 

necessarily equal weightage) are given to each input, then it is the general OS filter. It is 

also known as L-filter [26] since the output is a linear combination of all ordered 

statistics. 
 

The MAV filter removes Gaussian noise quite effectively but its performance is very 

poor in case of impulsive noise. On the other hand, the MED is a very good candidate for 

removal of impulsive noise. But it does not perform well if the image is corrupted with 

Gaussian noise. The ROM is another OS filter that is used for removing both AWGN and 

SPN impulsive noise. But it neither excels in suppressing AWGN nor in, SPN. 

 

Therefore, it needs further investigations to modify the ROM and the OS filters, in 

general, so that they perform very well in the presence of SPN, AWGN and mixed noise. 

In this chapter, this problem is dealt with and some novel filters are suggested for this 

purpose. Associating different weights with various ordered statistics, the weighted OS 
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(WOS) and the weighted ROM (WROM) filters are developed. These filters show 

superior performance over the standard filters for efficient suppression of various types of 

noise.  

 

In the next section, the performance of the MAV and the MED filters is studied. 

 
2.2 Mean and Median Filters  
 
2.2.1 Fundamentals of Mean and Median Filters 
The mean or moving average (MAV) filter is a simple linear filter [2]. All the input data 

are summed together and then the sum is divided with the number of data. It is very 

simple to implement in hardware and in software. The computational complexity is very 

little. It works fine for very low variance AWGN. As the noise power increases, its 

filtering performance degrades. If the noise power is high, then a larger window should 

be employed for spatial sampling to have better local statistical information. As the 

window size increases, the MAV filter produces a reasonably high blurring effect and 

thus the edges and the fine details in the image are lost. 

 

The MED [73-76], on the other hand, is a nonlinear filter. It is a very simple operation. 

Once, the sorting (ordering) operation is performed on the input vector, the job is done as 

the mid-value is taken as the output. Of course, if the length of the input vector is even, 

then the average of two mid-ordered statistical data is taken as the output. Usually, such a 

computation is not required in most of image processing applications as the window 

length is normally an odd number. Thus, the MED operation can be completed in a very 

short time. That is, a MED filter may be used for online and real time applications to 

suppress noise. 

 

What types of noise does a MED filter suppress? 
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In literature, the MED filter is described as a very good filter for suppressing SPN. It can 

even suppress RVIN of low density. If an image signal is corrupted with a very low 

variance AWGN, then also this filter can perform a good filtering operation. One very 

important merit of this MED filter is its edge-preserving characteristic. If an image is 

contaminated with low or medium density SPN, then a MED filter can do justice by 

rejecting the outliers very easily. But at some locations, the density of impulses could be 

very high. At those points, the simple MED filter fails. Even if the impulse noise density 

in an image is very low, the MED can never guarantee the true pixel replacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Fig.2.2 Performance of Mean filter in the presence of AWGN 
(a) Original Test Image, ‘Lena face’ 
(b) Noisy Image (corrupted with AWGN of variance=0.1) 
(c) Output of Mean Filter 
(d) Error in the output (magnified 4 times) 

a b 
c d 
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The MED operation changes the pixel value to the median of the neighborhood 

unnecessarily even if the center pixel is noise-free. Thus, there is some unwanted error in 

the output. To overcome this problem, decision-directed median filters [37,43] are 

proposed in the literature. Such filters are described in the next chapter. 

 

2.2.2 Performance Evaluation 
To illustrate the performance of MAV and MED filters in the presence of AWGN, SPN 

and RVIN the following simulation is carried out. The test image ‘Lena face’ is corrupted 

with: 

     Fig.2.3 Performance of Median filter in the presence of AWGN 
(a) Original Test Image, ‘Lena face’ 
(b) Noisy Image (corrupted with AWGN of variance=0.1) 
(c) Output of Median Filter 
(d) Error in the output (magnified 4 times) 

a b 
c d 



 
 
Chapter-2 Order Statistics Filters 

 

50

 

(a) AWGN of variance, σ2 varying from 0.003 to 0.1 

(b) SPN of density, d varying from 0.01 to 0.1 

(c) RVIN of density, d varying from 0.01 to 0.2 

(d) Mixed noise (MN) with  

(i) AWGN (σ2 = 0.003) + SPN (d = 0.003) 

(ii) AWGN (σ2 = 0.01) + SPN (d = 0.01) 

(iii) AWGN (σ2= 0.1) + SPN (d = 0.1) 

 

In online applications like television and photo-phones, for which novel efficient filters 

are to be designed, it is already observed that the noise level is very low. This is 

mentioned in Chapter-1. Therefore the noise levels, in this simulation work, are very low 

and low. It is interesting to observe the combinations of AWGN and SPN noise levels in 

part (d) mentioned above. The SPN density increases as the AWGN variance increases in 

a practical communication application. Such an effect is simulated in part (d). 

 

The performance of MAV and MED filters incase of AWGN, SPN, RVIN and MN is 

evaluated by finding the MSE, MR-MSE (defined in Section-1.5). The NRDB1 is the 

NRDB computed with output noise level MSEout, where as the NRDB2 is the NRDB 

computed with the output noise level MR-MSE. All the image metrics are tabulated in 

Table-2.1, Table-2.2, Table-2.3 and Table-2.4 for AWGN, SPN, RVIN and MN. To have 

a subjective evaluation of these filters, the original, noisy and filtered images are shown 

in Fig. 2.3, Fig. 2.4, Fig. 2.5, Fig. 2.6 and Fig. 2.7. The performance measure plots 

(NRDB or MSE) in Fig. 2.8, Fig. 2.9, Fig. 2.10 and Fig. 2.11 demonstrate the filtering 

performance of MAV and MED filters for suppressing AWGN, SPN and RVIN 

respectively. 
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2.2.3 Conclusion 

 
It is observed from the figures that the MAV is better than the MED in suppressing 

AWGN, whereas the MED performs better than the MAV in case of impulse noise (SPN 

and RVIN). These results are, in fact, in conformity with the established facts in 

literature. But, an interesting point that has to be noted here is that the MED is not a poor 

performer in case of low variance AWGN. Under such a condition, its performance is 

close to that of a MAV filter. On the other hand, the MAV severely fails in suppressing 

SPN. The MAV yields a considerable amount of blurring effect on the image. In addition, 

it shows poor performance, in terms of performance measure MSE, as compared to the 

MED. Moreover, the MED outperforms the MAV in suppressing RVIN. 

 

Therefore, it may be concluded that MED is a better filter than the MAV in image 

restoration. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
Chapter-2 Order Statistics Filters 

 

52

Table-2.1: Performance Evaluation for AWGN 
MAV MED 

σσσσ2 MSEin 
MSEout MR-MSE NRDB1 NRDB2 MSEout MR-MSE NRDB1 NRDB2 

0.003 0.0097 0.0026 0.0026 5.75 5.75 0.0029 0.0029 5.26 5.26 

0.01 0.0100 0.0026 0.0026 5.80 5.80 0.0030 0.0029 5.27 5.36 

0.02 0.0101 0.0028 0.0026 5.57 5.87 0.0031 0.0028 5.14 5.50 

0.03 0.0106 0.0032 0.0027 5.15 5.99 0.0036 0.0029 4.72 5.67 

0.06 0.0134 0.0057 0.0030 3.73 6.49 0.0063 0.0031 3.28 6.31 

0.1 0.0194 0.0115 0.0037 2.66 7.19 0.0124 0.0037 1.93 7.19 

 

Table-2.2: Performance Evaluation for SPN 
MAV MED 

d MSEin 
MSEout MR-MSE NRDB1 NRDB2 MSEout MR-MSE NRDB1 NRDB2 

0.01 0.0029 0.0018 0.0018 2.05 2.05 0.0010 0.0010 4.62 4.62 
0.03 0.0086 0.0025 0.0025 5.34 5.34 0.0011 0.0011 8.90 8.90 
0.05 0.0144 0.0032 0.0032 6.53 6.53 0.0011 0.0011 11.19 11.19 
0.1 0.0290 0.0052 0.0052 7.44 7.44 0.0015 0.0015 12.90 12.90 

 

Table-2.3: Performance Evaluation for RVIN 
MAV MED 

d MSEin 
MSEout MR-MSE NRDB1 NRDB2 MSEout MR-MSE NRDB1 NRDB2 

0.01 0.0012 0.0017 0.0016 -1.41 -1.35 0.0010 0.0010 0.73 0.73 
0.03 0.0040 0.0020 0.0020 2.92 2.92 0.0010 0.0010 5.77 5.77 
0.05 0.0057 0.0023 0.0023 3.99 3.99 0.0011 0.0011 7.19 7.19 
0.10 0.0125 0.0033 0.0034 5.70 5.70 0.0012 0.0012 10.07 10.07 
0.20 0.0254 0.0060 0.0061 6.24 6.19 0.0017 0.0017 11.79 11.79 

 

Table-2.4: Performance Evaluation for Mixed Noise (MN) 
 
 
 
 
 
 
 
 
 
 
 
 
 

AWGN, σσσσ2 = 0.003 
+  

SPN, d = 0.003 

AWGN, σσσσ2 = 0.01 
+  

SPN, d = 0.01 

AWGN, σσσσ2 = 0.1 
+  

SPN, d = 0.1  

MSEin MSEout NRDB MSEin MSEout NRDB MSEin MSEout NRDB 
MAV 0.0027 6.03 0.0030 6.26 0.0142 5.15 

MED 0.0029 5.72 0.0030 6.19 0.0127 5.61 

ROM33 0.0024 6.56 0.0025 6.97 0.0122 5.80 

ROM35 0.0023 6.75 0.0024 7.24 0.0122 5.80 

ROM37 0.0022 6.98 0.0023 7.32 0.0129 5.57 

ROM511 0.0023 6.75 0.0023 7.32 0.0114 6.08 

ROM513 0.0023 6.75 0.0024 7.28 0.0114 6.08 

ROM721 

0.0109 

0.0029 5.72 

0.0126 

0.0030 6.30 

0.0464 

0.0116 6.00 
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Fig.2.4 Performance of Median Filter in the presence of SPN 
(a) Original Test Image, ‘Lena face’ 
(b) Noisy Image (Image Corrupted with 10% SPN) 
(c) Output of Median Filter 
(d) Error in the Output Image (magnified 4times) 

a b 
c d 
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   Fig.2.5 Performance of Mean filter in the presence of RVIN 
(a) Original Test Image, ‘Lena face’ 
(b) Noisy Image (corrupted with RVIN of density=0.2) 
(c) Output of Mean Filter 
(d) Error in the Output Image (magnified 4times) 

a b 
c d 
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     Fig.2.6 Performance of Median filter in the presence of RVIN 
(a) Original Test Image, ‘Lena face’ 
(b) Noisy Image (corrupted with RVIN of density=0.2) 
(c) Output of Median Filter 
(d) Error in the output (magnified 4 times) 

a b 
c d 
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Fig.2.7 Performance of Various Filters under mixed noise condition 
(a) Original Test Image, ‘Lena Face’ 
(b)  Noisy Image (corrupted with AWGN of variance=0.01 and SPN of 

density=0.01) 
(c) Output of Mean Filter 
(d) Output of Median Filter 

Cont….

a b 
c d 
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Fig.2.7 Performance of Various Filters under mixed noise condition (cont…) 
(e) Output of ROM(3,3) Filter 
(f) Output of ROM(3,5) Filter 
(g) Output of ROM(5,11) Filter 
(h) Output of ROM(7,21) Filter 

 

e f 
g h 
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Fig.2.8 Performance of MAV filter 
 in case of AWGN 

Fig.2.10 Performance of MAV and MED 
filters in case of SPN 

Fig.2.11 Performance of MAV and MED 
filters in case of RVIN 

Fig.2.9 Performance of MED filter 
 in case of AWGN 
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2.3 ROM Filters  
 
The ROM filters are a good compromise between the two extreme candidates: the MAV 

and the MED. Thus, an ROM filter, if properly designed, can show very good 

performance in suppressing various types of noise. 

 

As mentioned in Section 2.1, there are many types of ROM filters. The ROM(3,3), 

ROM(3,5), ROM(3,7),ROM(5,13), ROM(5,11) are some important members of this 

family. It is very important to understand the fact that the performance of ROM(3,7) is 

very close to that of the MAV. Similarly, the performance of ROM(3,3) is very close to 

that of MED. Therefore, all ROM filters can suppress mixed noise quite effectively and 

their performance is much better than the MAV and the MED in this respect. If the 

additive noise is high and the impulse density is low, then ROM(3,7) performs better than 

ROM(3,3) and ROM(3,5). On the other hand, if the impulse noise density is high, then 

the ROM(3,5) and ROM(3,3) may show better performance. 

 
2.4 L-Filters  
 

The general OS filter is known as L-filter [26]. All the sorted neighborhood pixel values 

are used for computing the filter output. Usually, an L-filter is used with an LMS 

adaptive algorithm so that the FIR filter weights vary depending on the noise type and 

noise power level. This is a highly computational intensive operation since the adaptive 

filter needs training always to update itself. One more problem with this filter is that it 

needs a noise-free reference image for training. Such a reference image is not available in 

many situations. 

 

To avoid high computational complexity as well as to achieve high level of filtering 

performance, various types of weighted ROM (WROM) filters are developed [P3] and 

presented in the next section. 
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2.5 Development of WROM Filters 
 

A simple ROM(p,q)  filter gives equal emphasis to all the q number of order statistics 

taken out of a total p2 number of inputs. If the noise behavior is clearly understood, then 

some intuitive decisions may be taken to find a suitable weight vector that may give a 

very good filtering performance. 

 

In fact, a WROM filter is a modification to the simple ROM that performs better than the 

latter. Its output ( )nmX ,~ is given by, 

 

( ) ( )[ ] ( ){ }xX ϕ== nmMNfnmX ,,~            (2.1) 

 

where, ( )nmMN ,X , the input noisy digital image (corrupted with mixed noise, a 

combination of AWGN and SPN), is a 2-D array of gray scale values of pixels ranging 

from 0 to 2B-1 for a B-bit system or, equivalently, from 0 to 1 in the normalized scale; 

(It may be noted that the noise type could be RVIN, AWGN, SPN or MN. Therefore, the 

input digital image could be XRVIN, XAWGN, XAWGN or XMN in (2.1). The general noise 

condition in many practical applications is a mixed noise. Thus, for simplicity, the input 

image is expressed as XMN in this equation.) 

 

f(.) is the filter function operated on XMN; 

( )⋅ϕ  is the sub-function, the true WROM, that is applied to a small region of image 

(called a window), 

x, centered at a pixel x(m,n) to get an estimate of the original pixel  ( )nmx ,ˆ0 . This 

function is defined as: 
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( )
∑

∑
= =

k

N

1k
(k)k

x
w

xw
MNϕ

            (2.2) 

 

where, 

( )kx  is the kth order statistics of MNx   such that )1()()1( +− ≤≤ kkk xxx   for  12 −≤≤ Nk ; 

 

kw  is the weight associated with ( )kx ; 

 

N is the size of order statistics taken (N=p×p). 

 

The order statistics is a 1-D array. Let it be a column vector represented by ( )x . Let the 

weight be represented by another column vector w. Then, (2.2) is modified as: 

 

( ) ( ) ( )nmx
T

MN ,~
w
xw

x =
∑

⋅
=ϕ           (2.3) 

 

If the weight vector is normalized, i.e. 1=∑w , then the WROM formula, in matrix 

representation, is given by: 

 

( ) ( )xw T ×=nmx ,~              (2.4) 

 

where, × is a matrix multiplication operation. 
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In an ROM filter, some of the extreme-ended order statistics are not considered. But in 

case of a general OS filter all the order statistics are taken into consideration. Thus, the 

weight vector, w, associated with a weighted ROM (WROM) filter will have necessarily 

some zeros at extreme ends, whereas it is not so for a general weighted OS (WOS) filter.  

Now the main issue is to choose a suitable weight vector w that operates on the ordered 

input vector ( )x  so that a good quality image output is achieved. 

 

If different weights are taken, i.e. wi not necessarily equal to wj for ji ≠ , then the filter 

becomes a WROM filter. This type of filter is different from L-filters [26] that consider 

all the ordered statistics of the neighborhood though the weights are different. Such filters 

may be made adaptive. Otherwise, some fixed weights may be taken. 

 

A simple intuitive decision works out to be fruitful to some extent to suppress RVIN, and 

AWGN, SPN and mixed noise.  

 
Proposed WOS and WROM Filters 
 
Four WOS filters and eight WROM filters for suppression of AWGN, SPN, and mixed 

noise in digital images are proposed. The choice of the weights is intuitive. The weight 

vector should be symmetric. To eliminate the outliers in the image, for SPN and mixed 

noise conditions, the extreme-end weights must be zero and the central weight (weight 

associated with the median) must be the maximum. Thus, the weights are tapered from 

maximum (central) to zero (extreme-end) for WROM filters, whereas they are tapered 

from maximum to a minimum non-zero value for WOS filters. This is so for the WOS 

filter, which is designed to suppress AWGN, since there are no outliers if an image is 

corrupted with AWGN only. This is how the weights are selected in (2.5)-(2.16). 

 
The proposed four WOS filters have weight vectors W1, W2, W3, W4, respectively, to 

suppress Gaussian noise effectively. The weight vectors are given by: 
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∑ ′

′
=

1

1
1

W

W
W ,    where,   [ ]TW 5  7  8  9  10  9  8  7  51 =′         (2.5) 

∑ ′
′

=
2

22
W

WW ,  where,   [ ]TW 4  4  4  4  5  4  4  4  42 =′         (2.6) 

∑ ′
′

=
3

33
W

WW ,  where,   [ ]TW 2  3  3  4  4  4  3  3  23 =′         (2.7) 

∑ ′
′

=
4

44
W

WW ,  where,   [ ]TW 3  3  4  4  5  4  4  3  34 =′         (2.8) 

 
These filters perform better than the MAV and the ROM filters for Gaussian noise 
removal. 
 
Similarly, four WROM filters with weight vectors W5, W6, W7, W8 respectively, have 

been proposed to eliminate SPN from digital images. The weight vectors are given by: 

 

∑ ′
′

=
5

55
W

WW ,   where,  [ ]TW 0  0  0  1  2  1  0  0  05 =′         (2.9) 

∑ ′
′

=
6

66
W

WW ,   where,  [ ]TW 0  0  0  1  3  1  0  0  06 =′         (2.10) 

∑ ′
′

=
7

77
W

WW ,   where,  [ ]TW 0  0  0  1  4  1  0  0  07 =′         (2.11) 

∑ ′
′

=
8

88
W

WW ,   where,  [ ]TW 0  0  0  1  5  1  0  0  08 =′         (2.12) 

 
These filters work effectively as compared to MED and ROM filters for removing SPN 

noise.  Though MED is quite effective in removing SPN, it spoils the pixel values 

unnecessarily and doesn’t consider any other pixel(s) except the median value in the 

neighborhood. The ROM filter also removes SPN effectively. But its performance is not 

very good as it gives equal emphasis to all the q number of order statistics taken out of a 

total p2 number of data in the neighborhood.  

 

Though the performance of the MED filter is very good, it doesn’t excel in removing 

SPN because any other quite likely order statistics are not considered. Therefore, a 

compromise between the MED and the ROM filters is needed. In a 3×3 window, if more 
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than 3 order statistics are taken, then the ROM filter gives a lot of blurring effect. Thus, 3 

numbers of order-statistics may be taken at best.  

 

Now, the question arises: ‘Should equal emphasis be given to all of them?’ If equal 

emphasis is given, then it becomes a simple ROM filter and its performance is poorer 

than the MED in removing SPN. Therefore, the central order statistics must be given 

more weightage than the other two order statistics. This is the reasoning behind choosing 

the various weight vectors W5, W6, W7 and W8.    

 

Also, four different types of WROM filters: WROM-V, WROM-VI, WROM-VII and 

WROM-VIII are proposed for efficient suppression of mixed noise in digital images. 

These filters have weights W9, W10, W11 and W12 respectively, given by: 

 

∑ ′
′

=
9

99
W

WW ,   where,  [ ]TW 0  1  2  4  5  4  2  1  09 =′         (2.13) 

∑ ′
′

=
01

0110
W

WW , where,  [ ]TW 0  0  1  2  3  2  1  0  001 =′         (2.14) 

∑ ′
′

=
11

1111
W

WW , where,  [ ]TW 0  0  0  2  3  2  0  0  011 =′         (2.15) 

∑ ′
′

=
21

2112
W

WW , where,  [ ]TW 0  0  0  1  2  1  0  0  021 =′         (2.16) 

 
To suppress the mixed noise, an efficient filter structure must be a compromise between 

the WOS and the WROM. Further, it signifies the fact that the number of order statistics 

to be considered has to be more than or equal to 3 and less than 9. So it has to be either 7 

or 5 or 3. Thus, various WROM filter structures: WROM-V, WROM-VI, WROM-VII 

and WROM-VIII taking different number of order statistics are proposed. 
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Simulation and Results 
 
Extensive computer simulations are carried out to assess the performance of the proposed 

filters and to compare the same with the standard MAV, MED and ROM filters. A 

selected slice of size 200×200 pixels (face portion) from the standard Lena image is taken 

as the reference image. The image is corrupted with noise, for three different types of 

noise conditions, as described below: 

 

i.) AWGN :  Gaussian noise of variance varying from 0.006 to 0.012 is added.  

ii.) SPN :  Impulse noise of density 1% to 15% is added. 

iii.) Mixed noise:  Gaussian noise of variance, as in (i), with 1% SPN noise. 

 
The performance of the standard MAV, MED, ROM filters and the proposed filters is 

summarized in Table-1, Table-2, and Table-3 for AWGN, SPN and mixed noise 

condition respectively. The MSE is taken as the performance measure. The MSE values 

for the various filters obtained from simulation are listed in Table-2.5, Table-2.6 and 

Table-2.7. Since the MSE values are very small, they are multiplied with 104 and the 

product values are shown in the tables. The MSE values are plotted in Fig. 2.12, Fig. 2.13 

for MN and AWGN respectively. The various filter-output images are shown in Fig. 2.14 

for subjective evaluation. 

 
Table-2.5: Performance Comparison of WOS Filters with other standard filters for AWGN 

MSE out(×10-4) Gaussian 
Noise  
Variance 
σσσσ2 

MSEin 
(×10-4) MAV MED ROM33 ROM35 WOS-I WOS-

II 
WOS-
III 

WOS-
IV 

0.006 59.2925 53.075 56.065 54.1275 53.2075 52.7875 53.02 52.78 52.8475 

0.007 69.8975 54.2575 57.5725 55.3975 54.4375 53.955 54.1975 53.9425 54.0125 

0.008 77.815 55.0225 59.245 56.7875 55.64 54.815 54.975 54.8075 54.85 

0.009 89.2225 56.385 61.485 57.64 57.24 56.2125 56.345 56.21 56.2375 

0.01 96.8875 57.2025 62.62 59.685 58.2225 57.0525 57.1675 57.05 57.0675 

0.011 105.79 58.205 64.5225 61.345 59.6325 58.1275 58.175 58.13 58.12 

0.012 117.1075 59.3775 66.375 62.9175 61.025 59.3175 59.35 59.325 59.305 
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Table-2.6: Performance Comparison of WROM Filters with other standard filters for SPN 
MSE out(×10-4) SPN 

Density 
MSEin 
(×10-4) MAV MED ROM33 ROM35 WROM-

I 
WROM-

II 
WROM-

III 
WROM-

IV 
1% 26.025 49.615 45.33 44.6975 44.8575 44.68 44.7275 44.78 44.83 
5% 146.33 64.135 46.39 45.645 46.0975 45.625 45.68 45.7325 45.8025 
10% 286.775 83.175 47.8 47.25 49.6 45.1 45.1 45.15 45.2 
15% 434.8 103.75 49.6 49.975 56.025 49.375 49.175 49.1 49.1 

 
 
 
 
 

Table-2.7: Performance Comparison of WROM Filters with other standard filters for MN 
(1% SPN along with AWGN of variance, σσσσ2) 

MSE out(×10-4) Gaussian 
Noise 

Variance, 
σσσσ2 

MSE 
in 

(×10-4) 
MAV MED ROM33 ROM35 WROM-

V 
WROM-

VI 
WROM-

VII 
WROM-

VIII 

0.006 
88.0775 56.6425 56.4775 54.5275 53.64 53.5825 53.9225 54.6375 54.755 

0.007 
95.6725 57.325 58.02 55.8025 54.78 54.6925 55.1175 55.9325 56.07 

0.008 
107.5875 58.7675 60.2075 57.775 56.5825 56.4675 56.99 57.9175 58.07 

0.009 
121.5175 59.9575 61.6 58.8625 57.52 57.405 57.9875 59.03 59.205 

0.01 
126.9575 60.52 63.0525 60.23 58.8075 58.63 59.295 60.3925 60.565 

0.011 
136.2225 62.0125 65.365 62.1725 60.535 60.345 61.11 62.36 62.5625 

0.012 
146.5475 63.0675 66.3725 63.05 61.45 61.245 62.0075 63.25 63.4575 
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Fig. 2.12 Performance of various filters under mixed noise conditions. 

Fig. 2.13 Performance of various filters for additive Gaussian noise. 
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Continued in the next page. 
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Continued from the previous page. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.14 Images for visual performance comparison
(a) The original Lena face image 
(b) Noisy Lena face with Gaussian noise (σ2=.01) 

and SPN  (d=1%) 
(c), (d), (e), (f),(g), (h), (i) and (j): The various 

filter-output images. 

WROM-IWROM-V WROM-IIWROM-VI 

WROM-IIIWROM-VII WROM-IVWROM-VIII 

a b 

c d 

e f 

g h 

j i 
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2.6. Conclusion 
 
It is observed that the proposed WOS and WROM filters excel in removing various 

noises from an image. The proposed WOS-III and WOS-IV excel in removing AWGN 

under low and high noise variances respectively. Different WROM filters show good 

performance under various impulse noise densities. The WROM-I, WROM-II, and 

WROM-III & WROM-IV perform much better than the MAV, MED and ROM filters 

under very low (<5%), low (5-10%) and medium (15%) impulse noise density, 

respectively. To remove mixed noise, the proposed filter WROM-V shows much superior 

performance over all standard MAV, MED and ROM filters. 

 

Thus, the proposed filters: WOS-III, WROM-I and WROM-V are excellent in removing 

Gaussian, impulse and mixed noise respectively. These weighted filters show very high 

performance without requiring high computation.  

 

The proposed WOS and WROM filters show better performance than the standard OS 

filters under various noise conditions. But their performance is not as good as adaptive 

filters. However, such filters may be employed in time-invariant systems.  



 

 
CHAPTER-3 

 

 
 
 
 

Development of Decision-Directed 
Filters for Impulse Noise 

Suppression 
 

 

 

 

 

 

Preview 

Median (MED) and Center-Weighted Median (CWM) [35] filters suppress impulse 

noise in an image quite effectively. But, applying a filtering operation to each pixel of 

the image gives distortion and edge-blurring unnecessarily. Therefore, it is always 

better to detect an impulse first. If an impulse noise is found at a pixel, then only some 

filtering operation may be applied. This way, unwanted distortion and blurring can be 

reduced. Such schemes are called decision-directed filters as a filtering operation is 
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directed by a decision of an impulse detector [37-44,86-92]. Since the filtering 

operation that follows the detector is usually a median operation, many decision-

directed median filters (DDMF) are proposed by researchers. The NASM filter 

proposed by Eng and Ma [88], the AID-CWM filter proposed by Chen and Wu [89] 

and the DRID algorithm proposed by Aizenberg and Butakoff  [100] show very good 

filtering performance. But, they are quite computational intensive algorithms. In this 

chapter, many novel impulse detection schemes are proposed.  

 

The second-order difference (SOD) based decision-directed filter [P1] developed here 

is a very good scheme to suppress impulse noise up to 40% noise density. The 

probability-based impulse noise detection (PIND) algorithm is a very simple 

algorithm that can be applied in any real-time application. The deviation-based 

impulse noise detection (DIND) algorithm, proposed here, is a robust impulse noise 

detector. It can detect an impulse under mixed noise (MN) conditions. In addition, it 

can suppress low-density RVIN. That is why, it is more useful in real-time 

applications like television systems where the noise could be low-power MN or 

RVIN. 

 

The following topics are covered in this chapter. 

•  Introduction to Decision-Directed Filters 

•  Second-Order Difference (SOD) based Decision-Directed Median 

Filter (SOD-DDMF) 

•  Probability-based Impulse Noise Detection (PIND) Algorithm 

•  Deviation-based Impulse Noise Detection (DIND) Algorithm 

•  Conclusion 



 
 
Chapter-3 Development of Decision-Directed Filters for Impulse Noise Suppression 

 

73

3.1 Introduction to Decision-Directed Filters 
 

In a practical situation, since the probability of having an impulse noise is less than 1, 

all the pixels of a digital image are not corrupted with the impulse noise. Therefore, it 

is expected that a noisy pixel is surrounded by at least some non-noisy pixels. 

However, this assumption is not always true when the noise density is very high. In 

any case, the total number of corrupted pixels is less than the total number of pixels in 

the image. Hence, it is not required to perform filtering operation on every pixel for 

eliminating the impulse noise. Rather, it is computationally economical to filter only 

the corrupted pixels leaving the non-noisy pixels unchanged. This approach reduces 

the blurring effect in the restored image, as the magnitude of a non-noisy pixel is not 

affected by filtering.  

 

Basically, the noise removal method proposed here constitutes two tasks: 

identification of corrupted pixels and filtering operation only on those corrupted 

pixels. Thus, the effectiveness of this scheme lies on the accuracy and robustness of 

detection of noisy pixels and efficiency of the filtering methodology employed. Many 

researchers [12-15] have suggested various methods for locating the distorted pixels 

as well as filtering techniques. Each of these methods has different shortcomings and 

hence fails to reproduce images very close to original ones. It is over-filtering 

distortion, blurring effect or high computational involvement. In addition, as the 

density of the impulse noise is gradually increased, the quality of the image recovered 

by the existing methods correspondingly degrades. A decision directed filter is 

represented by a block schematic as shown in Fig. 3.1. 
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Fig. 3.1 Block Schematic of a Decision-Directed Filter 
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The input image is a 2-D matrix. It is spatially sampled and a windowed data, usually 

3×3 or 5×5, comes to the processing system at an instant. To take a decision on a 

pixel its neighborhood pixels are considered. That is why, the spatial windowing is 

employed to sample the image data. The impulse noise detector must precede the 

filter (may be MED or some variant of MED or any special filter) as shown in Fig.3.1. 

If the impulse detector has detected an impulse (output state of detector = ‘YES’) at a 

particular instant, then only control signal is passed to the filter unit to perform 

filtering operation on the windowed data set. On the other hand, if the impulse 

detector doesn’t find any noise, then no control signal is given to the filter unit; rather, 

the window sampler is enabled to take the next data sample.  

 

3.2 Second-Order Difference (SOD) based Decision-Directed 
Median Filter (SOD-DDMF)  

 

A novel scheme is developed here to detect an impulse noise in a digital image [P1]. 

The proposed scheme employs a second order difference based impulse detection 

mechanism at the location of a test pixel. The mathematical formulation of the 

proposed method is presented in (3.1). 








=Υ
=Χ

=Χ                                  0   if              ),(
~

1   if              ),(
   )(

~ d(n) n
d(n)n

n  (3.1) 

where, d(n) is the decision index that controls the filtering operation and estimates the 

filtered output )(
~

nΧ from the observed image )(nΧ , and )(
~

nΥ  is the filtered pixel 

value. If the impulse detector determines that the center pixel of test window is noisy, 

then d(n)= 0, otherwise d(n)=1. If d(n)=0, then the corrupted pixel undergoes median 

filtering. On the other hand (d(n)=1), the window is skipped and the process is 

repeated . Unlike in other conventional methods, the filtering operation is performed 

selectively based on the decision of the impulse detector. Hence the proposed method 

is named as Decision Directed Median Filter (DDMF).  
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The schematic diagram of the proposed filtering scheme is shown in Fig. 3.2. The 

impulse detector takes an input of size 3×5 pixels and makes one decision on the 

corrupted pixel at each step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed algorithm works in two phases: the detection of impulsive noise at the 

center pixel of a window followed by selective median filtering. The detailed 

algorithm for impulse detection and filtering is described here.  
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Fig. 3.2 Schematic Representation of Second-Order Difference based 
Decision-Directed Median Filter (SOD-DDMF) 



 
 
Chapter-3 Development of Decision-Directed Filters for Impulse Noise Suppression 

 

76

 

3.2.1 Algorithm for Impulse Noise Detection  

 
Step 1: Choose a test window XT of size 3×5 located at the topmost left corner 

of the observed image  X. 

















+++++−+−+
++−−

+−+−−−−−−
=

)2,1()1,1(),1()1,1()2,1(
)2,()1,(),()1,()2,(

)2,1()1,1(),1()1,1()2,1(

nmxnmxnmxnmxnmx
nmxnmxnmxnmxnmx

nmxnmxnmxnmxnmx

TΧ  (3.2) 

Consider a 3×3 sub-window XW from XT defined as: 

















+++−+
+−

+−−−−
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WΧ  (3.3) 

 

Step 2:  Compute the first order 3×4 difference matrix fd from XT : 

















+++++−+
++−
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where an element of window, fd is obtained as: 

2,1,0,1,1,0,1),1,(),(),( −=−=−++−++=++ lklnkmlnkmlnkmfd        ΧΧ  

 

Step 3:  Compute the second order 3×3 difference matrix sd from fd: 











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+++−+
+−

+−−−−
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sd  (3.5) 

 

where an element of window, sd is given by: 

1,0,1   ,1,0,1      ),,()1,(),( −=−=++−+++=++ srsnrmfdsnrmfdsnrmsd  
 

Step 4:  Apply the following rule for impulse detection at pixel X(m,n) as: 

•  If ),( nmsd  is a high magnitude negative quantity then (m,n)Χ  is 

corrupted by a positive impulse noise.  
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•  If ),( nmsd   is a high magnitude positive quantity then (m,n)Χ  is 

corrupted by a negative impulse noise.  

 

Since the objective is to detect the presence of an impulse noise rather 

than its type, compute the absolute value of the second order difference 

sd i.e. |sd|. 

 

Step 5: Obtain a matrix d by passing the magnitude of each element of sd 

through a hard limiter (H) that saturates at a threshold value 1γ , chosen 

from (3.7) (see Section-3.2.2). The output of the hard limiter is given 

by: 

( )


 >++

=++=++
otherwise,1

, if,0
|)),((|),(

Tsnrmsd
snrmsdHsnrmd  (3.6) 

 
Step 6:  Apply the binary decision rule for impulse detection at (m,n)Χ  as: 

•  If ),( nmd  is zero, then the test pixel (m,n)Χ  is corrupted by 

impulse noise and invoke the filtering operation to substitute the 

gray level of the test pixel with a filtered gray value. Then go to 

Step 7. 

•  If ),( nmd  equals to one, then the test pixel is healthy. Skip the test 

window and go to Step 7. 

 
Step 7: Shift the moving window XT by one column from left to right and top 

to bottom as shown in Fig. 3.2. 

Step 8:  Repeat Steps 2 through 6 for all the windows in the row. 
 
Step 9:  Obtain the next moving window by shifting it by one row. 
 
Step 10: Repeat Steps 2 through 7 till the complete image is covered. 
 
Step 11: Repeat steps 1 through 10 in the vertical direction with a different 

threshold value, 2γ , chosen from (3.8) (see Section-3.2.2). 
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3.2.2 Threshold Selection 
 
Zhang and Karim [92] have demonstrated a method to choose an optimal threshold 

value for an impulse detector. Adopting the same procedure, the filter performance is 

simulated varying the threshold values from 0.01 to 0.50 for various test images. It is 

Fig. 3.3 Typical window selection for an N××××N image in horizontal direction 
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Fig. 3.4 Typical window selection for an N××××N image in vertical direction 
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observed that the threshold value depends on the mean and variance of the noisy 

image. Empirical formulae for the optimal threshold values are developed to fit to the 

data obtained from the simulation. Two thresholds 1γ  and 2γ , required for the first-

pass and second-pass of the proposed impulse detection scheme, respectively are 

given by: 

25.2170
1 225

1

xe x +−= − σγ  (3.7) 

where 2
xσ  is the variance and x  is the mean of the noisy image, 

and 

7.0
1

2

γγ = . (3.8) 

 
Using these empirical formulae, optimal threshold values are calculated for each noisy 

image. Such optimal threshold values enhance the filtering performance to a great 

extent. 
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3.2.3 Filtering Algorithms 
 
Based on the algorithm depicted in Section-3.2.1, the corrupted pixels are identified 

throughout the image. In the first pass 1γ  and in the second pass 2γ  is used to identify 

the corrupted pixels. The filtering operation is carried out only on those distorted 

pixels once in each pass. The proposed filtering algorithm proceeds as follows: 

 

The filtering operation computes the median value of a 3×3 window XW surrounding 

the corrupted center pixel and substitutes this value at the location of the faulty pixel 

like the conventional median filter. In the next adjacent window, the healthiness of its 

center pixel is tested considering the gray level of the already filtered pixel rather than 

that of the original one. 

Mathematically,  

)(),(~
Wmediannm(m,n) ΧΧΧ ==  (3.9) 

 

3.2.4. Simulation Results  
 

The performance of the proposed filtering scheme is evaluated by conducting three 

simulation experiments. Various standard gray level images are used for the purpose. 

The noisy images are generated by corrupting them with SPN with equal probability. 

Various standard methods, such as median with 3×3 and 5×5 window size, Center 

Weighted Median (CWM) with center weight k = 1 and 3, Rank-Ordered Mean 

(ROM), Peak and Valley (pkvly), Rank-Ordered Mean-Switching Median (ROM-SM) 

are also simulated along with DDMF to compare their performance with the proposed 

one. 

 

Experiment 1:  

Experiment 1 is conducted to show the image quality which are retained after filtering 

at different noise conditions. In this experiment Boat image is selected and its noisy 

version are generated by adding SPN noise of densities 5 to 30. The noisy images are 
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filtered by the proposed SOD-DDMF as well as other standard methods. In each case 

PSNR (dB) and PSP (%) are obtained from the simulation and plotted in Fig. 3.5(a) 

and (b). These two plots show that the SOD-DDMF scheme is superior to all other 

standard methods as it offers highest PSNR (dB) and lowest PSP (%) for all noise 

conditions. 

 

Experiment 2:  

In this experiment, seven different standard images are selected and each one is 

corrupted with 15% SPN. Many standard techniques are simulated to filter the noise 

component from this noisy image. From the filtered images the PSNR (dB) and PSP 

(%) are computed and have been listed in Table-3.1. The tabular data clearly indicates 

that the filtering performance of the SOD-DDMF is the best with respect to the 

parameters in all cases.  

 

Experiment 3:  

The performance of the proposed SOD-DDMF is further checked for RVIN. The 

‘Lena’ image is corrupted with RVIN of varying noise density and then the proposed 

filtering scheme is applied. The simulation results are given in Table-3.2. The results 

are quite satisfactory for RVIN of density upto 20%. 

 

3.2.5 Conclusion 
 
The proposed filter is a novel scheme for filtering impulse noise from corrupted 

images under varying noise densities. Unlike the standard reported methods of 

filtering, the proposed SOD-DDMF method detects the presence of an impulse noise 

at every pixel location. However, the filtering operation (median filtering) is 

performed selectively on the detected noisy pixels. Hence, the filtering time is 

reduced and undue distortion is eliminated in restored images. On exhaustive 

computer simulation on different images under various noise conditions, it is observed 

that the proposed SOD-DDMF scheme exhibits superior performance over other 

standard methods. This scheme also shows better performance, in terms of PSNR, 
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than the Rank-Ordered Mean (ROM) based Switching Median scheme proposed by 

Zhang and Karim [92] as seen in Fig. 3.4(a). It also shows a moderate performance 

suppressing RVIN as illustrated in Table-3.2. 

 

At 15% noise density, this filter yields a PSNR of 34.5 dB and 30.82 dB in case of 

SPN and RVIN respectively for the same ‘Lena’ image. Thus, it is observed that this 

filter is a very good scheme for suppressing SPN and its performance is good in 

filtering RVIN. It performs well for low density RVIN. In real-time applications like 

digital television systems, where RVIN density is usually below 20%, such a filter 

may be employed. 

Table 3.1: Comparison of PSNR (dB) and PSP (%) computed from different 

filtered images at 15% noise 
PSNR(dB) PSP(%) 

Filters 
Lena Lisa Girl Clown Gatlin Lena Lisa Girl Clown Gatlin 

Median(3x3) 32.2 35.6 34.0 31.8 39.2 68.4 41.6 69.2 52.6 36.4 

Median(5x5) 30.5 33.5 33.8 31.0 41.8 80.3 53.3 80.1 58.5 48.2 

CWM (k=1) 29.8 30.3 30.0 32.9 33.7 38.1 19.4 38.5 33.0 17.6 

CWM(k=3) 22.7 23.1 22.7 28.2 24.9 18.5 8.1 18.1 19.6 7.7 

Pkvly 28.2 32.1 30.4 30.9 39.2 51.9 29.5 51.0 46.7 26.6 

ROM 30.6 35.0 33.6 30.9 41.5 85.2 70.2 85.2 73.2 58.4 

DDMF 34.5  41.5 38.2 34.23 41.4 13.1 6.1 11.15 12.0 3.8 

 

 

 

 

Rando e 

Table 3.2: PSNR (dB) at different  
m-Valued Impulse Noise for Lena Imag
RVIN 

d (%) 
PSNR (dB)

01 38.87 

05 35.24 

10 32.60 

15 30.82 

20 29.59 
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Fig. 3.5  Performance comparison of different methods for filtering on 
Corrupted Boat image 
(a)  Variation of PSNR (dB) with Impulse Noise Density 
(b)  Variation of PSP with Impulse Noise Density 
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3.3 Probability based Impulse Noise Detection (PIND) 
Algorithm 

 
This algorithm is based on the theory of probability. It believes that under low density 

SPN it is very less probable to find all pixels black or all pixels white in a sampled 

window if the original image pixels are not so. 

 

It is already mentioned in Section-3.1 that filtering operation on every pixel is not 

required for eliminating the impulse noise. Rather, it is computationally economical to 

filter only the corrupted pixels leaving the non-noisy pixels unchanged. This approach 

reduces the blurring effect in the restored image since the magnitude of a non-noisy 

pixel is not affected by filtering. The most common OS filter MED is employed after 

detecting an impulse. 

 
The organization of this section is outlined below. 

•  The PIND Algorithm 

•  An Analysis on the PIND Algorithm 

•  Simulation Results 

•  Conclusion 

 
3.3.1 The PIND Algorithm 
 
Let a 3×3 window be taken for sampling the image data. The detection algorithm and 

the filtering operation are applied on this data set {xi} to detect an impulse and to 

filter the pixel at the center of the window, i.e. the center-pixel.  

 
Let  cp = gray-scale magnitude of the center pixel. 

= xi   for i = (m0, n0) where m0 and n0 are two integers representing the 

coordinates of the center-pixel. 

Let  s = sum of gray-scale magnitudes of all the pixels in the 3×3 neighborhood. 

= ∑
i

ix  for i = (m, n) = (m0 −1: m0+1, n0 −1: n0+1). 
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Then, the proposed detection algorithm is: 

   

 

 

 

 (3.10) 

 

3.3.2 An Analysi
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PIND Algorithm 
 

 OR cp=1 ) AND (s≠≠≠≠9×pc) 
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E  impulse_detected==NO 
s on the PIND Algorithm 

) of salt (cp = 0) and pepper (cp = 1), i.e. d ≤ 0.1, if all xi’s 

ither 0 or 1, in a 3×3 windowed sample, then most probably, it 

impulse. It is so because the probability of all xi’s being 0 or 1 in 

 p = 2×(0.1/2)9 <<1. This is an optimistic estimation. In fact, the 

ifferent in case of a practical image signal. This may be very well 

l example, as shown in Fig.3.6, is taken. 

ge in an image. If all the three pixels (each having value ‘1’) are 

er’ noise so that their values become ‘0’, then all the pixels in the 

e gray-scale value. Thus, the proposed PIND algorithm fails to 

ise here. This is a pessimistic estimation. Such conditions occur 

. Even under such circumstances, the probability of such an 

3=0.00025=0.025% (3.11) 
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There is a multiplying factor ‘2’ in (3.11) to represent the effect of both ‘salt’ and 

‘pepper’.  

 
Thus, even the pessimistic estimation of detection failure rate is very less under low 

density (≤ 0.1) SPN. Therefore, the proposed PIND algorithm is an excellent impulse 

noise detector under low density SPN. It is a very simple algorithm. Its computational 

complexity is extremely low. So such an algorithm may be employed for any real-

time application where the impulse noise density seldom exceeds 10%.  

 

3.3.3 Simulation Results 

 
Extensive simulation is carried out to study the filtering performance of the proposed 

PIND algorithm and to have a comparative study of this scheme vis-à-vis some 

standard schemes available in literature. The standard test image, ‘Lena face’ is 

corrupted with SPN of density 0%, 5%, 10%, 15% and 20%. The performance 

measures: MAE, MSE, PSNR and PNEP are obtained for this filter. The percentage of 

no-error pixels (PNEP) indicates what percentage of pixels in a filtered image has 

been perfectly recovered. These values are listed in Table-3.3. This table clearly 

indicates a superb performance of the proposed scheme under low noise density. A 

plot MSE versus SPN density is given Fig. 3.7. To have a subjective evaluation, the 

noisy and the recovered images for low and high noise densities are shown in Fig. 3.8 

and Fig. 3.9 respectively. These figures clearly show the high quality of the recovered 

images. The restored image quality is excellent upto 10% impulse density. 

 

Most important point here is the PNEP. The PIND algorithm yields extremely high 

PNEP at low SPN density. When there is no noise, this scheme doesn’t distort the 

image at all and it yields 100% PNEP, whereas the MED and CWM filters yield 

49.4% and 68% PNEP, respectively. Thus the proposed PIND algorithm is an 

excellent scheme for removal of low density SPN.  
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3.3.4 Conclusion 

 
The proposed PIND algorithm followed by MED filtering is an excellent scheme to 

suppress low density SPN. Its performance is extremely high compared to standard 

filters like MED, CWM, etc. 

 

Recently, three very nice schemes have been proposed by researchers. The MAD 

algorithm developed by Crnojevic et al. [106], the SWM algorithm proposed by 

Zhang and Karim [92] and the DRID algorithm developed by Aizenberg and Butakoff 

[100] are very good impulse noise detectors. The SWM algorithm yields a PSNR of 

29.59 dB when the PIND algorithm yields 37.58 dB at 10% SPN. The MAD and the 

proposed PIND algorithms show almost the same quality in restoration. Both of them 

yield approximately 32 dB PSNR at 20% SPN. The PIND and DRID algorithms yield 

PSNR of 41.2 dB and 43.8 dB respectively at 5% SPN.  

 

Thus, it is observed that the proposed PIND algorithm shows slightly poor 

performance as compared only to DRID algorithm. However, it is its simplicity and 

very low computational complexity that can’t be challenged by any of these three 

recently reported filters. Therefore, the PIND is highly suited for real-time 

applications where the low computational complexity is an advantage. 

 

The whole scheme of PIND followed by MED may be made recursive, similar to the 

algorithm presented in Section-3.2, to yield better performance at higher noise 

density. It is observed that the recursive scheme performs well up to 30% SPN 

density. 

 

 

 

 

 

 



 
 
Chapter-3 Development of Decision-Directed Filters for Impulse Noise Suppression 

 

88

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 Mean Squared Error (MSE) Performance of Various Filters 
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Table-3.3 Performance Parameters calculated under various noise conditions 
   
 

(a) At 0% noise density 
Parameters MED CWM pkvly 

PIND+Filter 
MAE 0.0150 0.0087 0.0123 0 
MSE 0.0007 0.0004 0.0006 0 
PSNR(dB) 31.3975 34.1599 32.1930 ∞∞∞∞ 
PNEP 49.4350 68.0737 58.5632 100 

 
   
 

(b) At 5% noise density 
Parameters MED CWM pkvly 

PIND+Filter 
MAE 0.0158 0.0098 0.0134 0.0011 
MSE 0.0008 0.0006 0.0008 0.0001 
PSNR(dB) 30.7203 32.1137 31.2266 42.1502 
PNEP 48.4474 66.8602 57.2994 96.8006 

 
 
 
(c) At 10% noise density 

Parameters MED CWM pkvly 
PIND+Filter 

MAE 0.0167 0.0110 0.0151 0.0023 
MSE 0.0010 0.0009 0.0012 0.0001 
PSNR(dB) 29.9342 30.2891 29.2832 38.2587 
PNEP 47.4869 65.5613 55.8064 93.4528 

 
 
 
(d) At 15% noise density 

Parameters MED CWM pkvly 
PIND+Filter 

MAE 0.0178 0.0132 0.0173 0.0037 
MSE 0.0013 0.0017 0.0020 0.0003 
PSNR(dB) 28.8542 27.5849 27.0567 34.7619 
PNEP 46.5649 24.8817 54.1882 90.0739 

 
 
 
(e) At 20% noise density 

Parameters MED CWM pkvly 
PIND+Filter 

MAE 0.0194 0.0167 0.0219 0.0053 
MSE 0.0018 0.0033 0.0039 0.0006 
PSNR(dB) 27.3322 24.8117 24.0656 32.2341 
PNEP 45.6337 62.5679 52.4151 86.7039 
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Fig. 3.8 Performance of PIND Algorithm under low density SPN 
(a) Noisy ‘Lena face’ with 5% SPN  
(b) Recovered Image for input Image (a) 
(c) Noisy ‘Lena face’ with 8% SPN 
(d) Recovered Image for input Image (c) 

a 
c 

b 
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Fig.3.9 Performance of PIND Algorithm under SPN 
(a) The Test Image, ‘Lena face’ corrupted with 10% SPN 
(b) The Restored Image for Input Image in (a) 
(c) The Test Image, ‘Lena face’ corrupted with 15% SPN 
(d) The Restored Image for Input Image in (c) 

a c 
b d 
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3.4 Deviation based Impulse Noise Detection (DIND) 

Algorithm 
 
A novel impulse detection scheme, deviation based impulse noise detection (DIND) 

algorithm, is proposed for detecting impulses quite effectively. The algorithm, 

presented here, shows very good performance in case of SPN and RVIN. A slightly 

modified version performs well even under mixed noise conditions. 

 

The DIND algorithm may look similar to the MAD algorithm proposed by Crnojevic 

et al.[106]. However, they are quite different. The DIND algorithm is based on a 

robust OS estimation operation, the ROM(5,11), whereas the MAD is based on the 

most common OS operation, the median (MED). That is why, the DIND performs 

well under mixed noise conditions. 

 

The organization of this section is outlined below. 

•  The DIND Algorithm 

•  Simulation Results 

•  Conclusion 

 

3.4.1 The DIND Algorithm 

 
It is seen that ROM(5,11) is a very good estimator of the expected value under mixed 

noise condition. The filter: ROM(5,11) takes a 5×5 window, centered at the pixel to 

be filtered, and considers only 11 intermediate order statistics rejecting 7 very low and 

7 very high values. Let this order statistics (OS) estimation operation be represented 

by E1(.).Similarly, two more OS estimators are defined: E2(.) = ROM(5,3) and 

E3(.)=ROM(3,3). The ROM(5,3) considers only 3 intermediate order statistics 

rejecting 11 low  and 11 high values. On the other hand, the ROM(3,3) estimation 

operation takes a 3×3 window and considers only 3 intermediate order statistics 

rejecting 3 low and 3 high values. 
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Let {xi} represent the gray scale values of the center pixel, the pixel to be filtered, and 

the pixels in its 5×5 neighborhood. Then, the ROM(5,11) applied on {xi} gives a 

robust estimate of the expected value, E1({xi}). Corresponding to each pixel in the 

window, a pixel-deviation, ∆i, is computed: 

∆i = xi − E1 ({xi}) (3.12) 

The gray-scale value, x13, represents the center pixel. Now, a parameter called the 

absolute value of the deviation at the center pixel, ADC is defined by:  

ADC = |∆13 | = | x13 − E1 ({xi}) |  (3.13) 

 

The detection algorithm is given by (3.14) and the filtering algorithm, by (3.15). 

 

 

 

        

 

(3.14) 

 

 

 

 

 

    

 

 

 

 
IF ADC ≥
THEN 

 im  
ELSE   

 imp
END. 

IF  impuls
filt

ELSE   

filt
END. 

 

   

Detection Algorithm:
 γγγγ, 

pulse_detected  = YES,

ulse_detected  = NO 
  

(3.15) 

e

e

     

Filtering Algorithm: 
e_detected  = YES 
r-output, xo= E1({xi})  + E2 ({∆i})  

r-output, xo = x13  
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where, γγγγ is a threshold parameter.  A threshold value of 0.15 is taken. This value 

works fine for detecting impulses of density 0 to 30%. Of course, this value can be 

made adaptive as it is done in Section-3.2. The filtering algorithm, presented in (3.15), 

is applied after the detection.  Under mixed noise conditions, the impulse detection 

algorithm is slightly modified. 

 
Modified Algorithm 
Let a new expectation operation, E(.) ,a linear combination of E1(.) and E2(.), be 

defined as: 

E({xi}) = [ E1({xi})+2·E2({xi})] / 3 (3.16) 

Then, the ADC is computed with the help of (3.12) and (3.13) where the expectation 

operation is E(.) in place of E1(.). The detection methodology now uses the same 

DIND algorithm of (3.14). But, the associated filtering algorithm, for use under mixed 

noise condition, is given by (3.17). 

 

 

 

 

 (3.17) 

 

3.4.2 Simulation and Results 
 
Taking the standard ‘Lena face’ image and adding SPN of varying density, the 

performance of MED, ROM and the proposed filter is found. The MSE is taken as the 

performance measure. The MSE values are given in Table-3.4. The last column in the 

table shows the performance parameter, NRDB for the proposed filter. The MSE 

values for RVIN and SPN are given in Table-3.5 and Table-3.6. Plots of MSE versus 

SPN density, MSE versus RVIN density and MSE versus input noise power (under 

MN) are shown in Fig.3.10, Fig.3.11 and Fig. 3.12. The original, noisy, and recovered 

images are shown in Fig.3.13, Fig.3.14 and Fig.3.15 for subjective evaluation of the 

filters. 

Filtering Algorithm (under MN condition): 
IF  impulse_detected  = YES 

filter_output, xo= E({xi})   + E2 ({∆i})   
ELSE   

filter_output, xo = E({xi})    
END       
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Table-3.4 Performance of Various Filters under SPN of Varying Density 

MSEout SPN  
d(%) MSEin MED3×3 

 
MED5×5

 
ROM(5,11)

 
DIND+Filter 

 

NRDB (dB) 
(proposed 
scheme) 

0 0 .00089 .0016 .0016 .00033 -- -- 

1 .0029 .00091 .0017 .0016 .00036 9.09 

2 .0056 .00093 .0017 .0016 .00037 11.78 

3 .0086 .00097 .0017 .0016 .00040 13.27 

4 .0117 .00098 .0017 .0016 .00042 14.43 

5 .0140 .0010 .0017 .0017 .00046 14.84 

10 .0292 .0011 .0018 .0017 .00054 17.36 

15 .0441 .0015 .0019 .0019 .00074 17.76 

20 .0579 .0023 .0020 .0020 .00089 18.13 

25 .0732 .0030 .0020 .0021 .00094 18.91 

30 .0899 .0051 .0022 .0025 .0012 18.62 

 
Table: 3.5 Performance (MSE) of various filters under RVIN 

MSEout RVIN, d % MSEin MED3×3 MED5×5 ROM(5,11) DIND+Filter
5 0.0063 9.98×10-4 0.0017 0.0017 5.47×10-4 
10 0.0130 0.0011 0.0018 0.0017 7.52×10-4 
15 0.0187 0.0013 0.0019 0.0019 9.789×10-4 
20 0.0247 0.0015 0.0020 0.0020 0.0013 
25 0.0314 0.0019 0.0022 0.0020 0.0016 
30 0.0384 0.0027 0.0024 0.0025 0.0019 

 
Table: 3.6 Performance (MSE) of various filters under MN 

(AWGN, σ2=0.001 with SPN of density, d) 
MSEout SPN, 

d % MSEin MED3 MED5×5 ROM(5,11) MAV3×3 MAV5×5 DIND+Filter
1 0.0063 0.0127 0.0027 0.0023 0.0024 0.0027 0.0020 
2 0.0130 0.0154 0.0027 0.0023 0.0027 0.0027 0.0020 
3 0.0187 0.0179 0.0028 0.0024 0.0030 0.0029 0.0021 
5 0.0247 0.0246 0.0030 0.0024 0.0039 0.0033 0.0022 

10 0.0314 0.0378 0.0033 0.0025 0.0056 0.0042 0.0023 
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Fig. 3.10 Performance (MSE) of Various Filters under SPN 
of varying noise density. 

 

Fig. 3.11 Performance (MSE) of Various Filters under RVIN of 
Varying Noise Density.
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Fig.3.12 A Plot of MSEout versus MSEin for Performance Evaluation of Various 
Filters under Mixed Noise Conditions. 
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a b 
c d 

Fig. 3.13 Performance of Various Filters for SPN (d = 5%) 
 

(a) Original ‘Lena face’ Image 
(b) Noisy ‘Lena face’ Image 
(c) ROM(5, 11) Filter Output Image 
(d) DIND + Filter 
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a b 
c d 

Fig. 3.14 Performance of Various Filters for RVIN (d = 10%) 
 

(a) Original ‘Lena face’ Image 
(b) Noisy ‘Lena face’ Image 
(c) ROM (5, 11) Filter Output Image 
(d) DIND + Filter 
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a b 
c d 
e f 
Fig. 3.15 Performance of Various Filters under Mixed Noise 
Condition (AWGN, σ2 =0.005 with SPN, d = 1%). 

(a) Original ‘Lena face’ Image 
(b) Noisy ‘Lena face’ Image 
(c) MAV5×5 Filter Output Image 
(d) MED5×5 Filter Output Image 
(e) ROM(5, 11) Filter Output Image 
(f) DIND + Filter
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3.4.3 Conclusion 

 
It is observed from Fig.3.10 and Fig. 3.11 that the proposed scheme shows excellent 

performance and is much superior to the standard filters for removing impulse noise 

(both SPN and RVIN) from an image. Fig.3.12 shows its superior performance in 

suppressing SPN under mixed noise condition when all other standard OS filters fail. 

The images, shown in Fig.3.13, Fig.3.14 and Fig.3.15 clearly indicate a superb noise 

rejection and image edge-retention capability of the DIND algorithm-based filter. 

Therefore, the proposed filter will be highly useful in real-time applications like 

television, photo-phone, etc.  

 

 

 

 

3.5 Conclusion 
 

In this chapter, many novel impulse detectors are proposed. The SOD-DDMF [P1] is 

a very good filter to suppress SPN. It works fine for low density RVIN (upto 20%) as 

well. The probability based algorithm PIND is an excellent SPN detector at low 

density and its performance is seen to be excellent. Though it is a very simple 

algorithm, its performance is next only to the recently reported DRID algorithm [100]. 

Since the PIND is a very simple algorithm, it may be used for real-time applications. 

 

The third scheme proposed here is the DIND algorithm. A simple DIND algorithm is 

presented for removal of SPN and RVIN. Further, a slight modification to this 

algorithm is proposed to detect SPN under mixed noise condition (AWGN+SPN). 

Such a scheme very well detects an impulse under MN condition. Therefore, this 

algorithm is highly suited for real-time applications where the image gets 

contaminated with MN. 
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In Chapter-1, the various practical noise conditions have been studied for 

communication applications like television systems. For analog transmission the 

received image signal gets contaminated with AWGN and SPN, i.e., a mixed noise 

(MN). On the other hand, the image signal gets corrupted with RVIN for a digital 

transmission system. Therefore, the proposed DIND with the filtering scheme will be 

very much useful in television systems where the effective noise could be MN or 

RVIN. Depending on the transmission system, a user may switch between the two 

different filtering schemes designed for RVIN and MN. 



 
 

CHAPTER-4 
 
 
 
 
 
 
 
 
 
 

Development of Adaptive Image 
Filters 

 
 
 
 
 
 
Preview 
 
 
To overcome the shortcomings of fixed filters, adaptive filters are designed that adapt 

themselves to the changing conditions of signal and noise. The filter characteristics 

change as the signal statistics, noise type, and noise power level vary from time to 

time. The two broad categories of adaptive image filters proposed, for efficient noise 

suppression, and presented in this chapter are: (i) Order Statistics LMS Adaptive 

Filter, and (ii) Fuzzy Adaptive Filters. They show high filtering performance as 

compared to the fixed filters. But, they are computational intensive algorithms. 

 

It is a well known fact that to achieve something, one has to sacrifice something else. 

Thus, to achieve high noise filtering capability as well as to preserve the image 

integrity, an image filter has to perform some extra computation as compared to 

simple filters like MAV, MED, CWM, ROM, WROM etc. Such simple filters are 
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good for offline applications where an image may be filtered by an expert using a 

computer and some software algorithm. Since the human expert understands the type 

of noise and the noise power level looking at the noisy image frame, he (she) can 

apply the specific filtering operation depending on the requirement. Even the expert 

may change the filtering operation from one type to another, if he (she) is not satisfied 

with the filtered image output. But, such human decision can’t be taken for an online 

and real-time application. For example, if a digital television system is considered, the 

channel noise produces the effect of RVIN. The amount of noise varies from time to 

time. A frame comes after another just after a few milliseconds. A human expert can’t 

take a decision to choose a filter at that high speed. After all, it becomes an open-loop 

control that needs a human expert to make a judgment always. If the whole process 

has to be fully automated, then an adaptive image filter must be used. In such an 

application, the image filter must adapt to the image local statistics, the noise type, 

and the noise power level and, thereby, it must adjust itself to change its 

characteristics so that the overall filtering performance has been enhanced to a high 

level. 

 

The adaptation could be based on a simple LMS algorithm, a neural network, or fuzzy 

logic. In the last decade, many researchers have developed various adaptive image 

filters using LMS adaptive filtering [26], neural network structures [48,55], and fuzzy 

logic [81,83,84,94,95,97,98].  

 

In real life situations, an image gets corrupted with RVIN or a mixed version of 

AWGN and SPN depending on whether the image signal has been transmitted in 

digital or analog form, respectively. The reported adaptive filters don’t show good 

filtering capability in case of RVIN even though they may be quite efficient in 

filtering SPN. Similarly, there are many good filters designed for AWGN and for SPN 

separately. But, a few have been developed for a mixed noise condition. It is very 

important in engineering to analyze a real life problem. Then only, a researcher can 

find a solution to it. 
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Since the noise in a practical system could be RVIN or a mixed version of AWGN 

and SPN, efforts are made in the present research work to develop efficient adaptive 

image filters under such noise conditions. 

 

This organization of this chapter is outlined below. 

 

•  Fundamentals of LMS Adaptive Filters 

•  Development of an Efficient OS LMS Adaptive  Image Filter 

•  Fundamentals of Fuzzy Logic 

•  Designing Fuzzy Weighted ROM (FWROM)  Image Filters 

•  Conclusion 

 

4.1 Fundamentals of LMS Adaptive Filters 

 
There are various types of adaptive filters used in signal processing. In 1960, Widrow 

and Hoff developed a least mean square (LMS) algorithm [62]. The LMS algorithm 

is an important member of the family of stochastic gradient algorithms. A stochastic 

gradient method differs from a deterministic gradient approach such as steepest 

descent method [61]. There is a plethora of LMS adaptive filters in literature [61-66]. 

 

An LMS algorithm doesn’t need the computation of a convolution matrix, nor does it 

require a matrix inversion. It is a very simple algorithm. In fact, it is the simplicity of 

the LMS algorithm that has made it the standard against which other linear adaptive 

filtering algorithms are benchmarked. 

 

The LMS algorithm is a linear filtering algorithm. It comprises of two basic 

processes: 

(a) a filtering process that involves (i) computing the output of a linear filter 

in response to an input signal, and (ii) generating an estimation error by 

comparing the output with a desired response;  
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and 

(b) an adaptive process that performs an automatic adjustment of the 

parameters of the filter in accordance with the estimation error. 

These two processes work together. Their combination constitutes a feedback 

loop. The whole process is shown, in block diagrammatic form, in Fig. 4.1. 

The adaptive control mechanism changes the filter weights, in each iteration, 

depending on the sign and magnitude of the error, e(n), and the input vector, 

u(n). The error at the nth iteration is the difference between the desired output, 

d(n) and the estimated filter output, ( )nd~ . Since the filter tap weight vector 

w(n) changes at each iteration depending on the error, the weight vector will 

converge to the desired value w0 when the error is zero or extremely low.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The filter weight vector updating formula, i.e. the LMS algorithm [61], is given by: 

 )().()()1( nnenn uww ⋅+=+ µ      (4.1) 

where, µ is learning rate, also known as the step size, for the LMS algorithm. The step 

size is greater than 0 and less than 1. If the step size is more, then the learning speed is 

high and the algorithm may converge fast. But, such convergence may not provide 

 

+

_ 

+

d(n) 

)(~ ndinput 

u(n) 

 

LMS  
Adaptive 
Control e(n) 

Fig. 4.1 The Block Schematic of an LMS Adaptive Filter 
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good precision w . On the other hand, a small value of µ usually guarantees a high 

precision convergence, though it takes a longer adaptation (training) time. Therefore, 

it is always very important to take a particular step size that provides a compromise 

between a short adaptation time and a high precision convergence in a specific 

application for a particular type of input. Of course, many new modifications have 

been proposed to this basic adaptive filter structure using variable and adaptive step 

size schemes. Such filters achieve much faster and high precision convergence. 

 

Adaptive LMS L-Filter 

 
Based on the simple LMS updation scheme, an adaptive image filter has been 

proposed by Kotropoulos and Pitas [26]. This is known as Adaptive LMS L-Filter. 

The windowed data set is applied to the input of this adaptive system. The filter trains 

itself using the LMS updation rule. Thus, it is basically an adaptive WOS filter. This 

filter does not possess a good training capability. It needs a reference image that is 

very similar to the image to be filtered. Thus, such a filter is not very useful. 

 

 

4.2 Development of an Efficient OS-LMS 
Adaptive Image Filter 

 

In the present research work, a novel OS-LMS adaptive filter is proposed that gets 

trained with totally a different type of image. Various order statistics are given as the 

input to the adaptive filter. The training may not be required always. Even an off-line 

training may give a very good filter performance. 
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4.2.1 The Proposed OS-LMS Adaptive Image Filter Structure 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 shows the schematic of the proposed OS-LMS adaptive image filter. From the 

sliding windowed data, various OS expectations: mean, median, ROM(3,3), 

ROM(3,5) and ROM(3,7) are calculated. These five OS expectations along with the 

center pixel, cp, are taken as the input to the adaptive filter. The rest is common to any 

LMS adaptive filter. The rest is common to any LMS adaptive filter. The desired 

output, during the training, is the cp itself. Once the filter is trained, there is no need 

of the desired output, d(n). Now the trained filter w can compute the filter output 

( )nd
~

.  

Fig. 4.2. OS-LMS Adaptive Image Filter 
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The windowed data may be represented as a vector, 

x = [ ]Txxxxxxxxx 987654321     (4.2) 

Let the input vector be represented by z . 

 Then  z = [ ]Tzzzzzz 654321     (4.3) 

 where 1z =cp 

  2z = f1( x ) 

  3z = f2( x ) 

  4z = f3( x ) 

  5z = f4( x ) 

  6z = f5( x ) 

where  f1( x ), f2( x ), f3( x ), f4( x ), f5( x ) are the various OS expectation 

functions: mean, median, ROM(3,3), ROM(3,5), and ROM(3,7) respectively.  

 

4.2.2 Simulation Results 

 
The OS-LMS adaptive filter is trained with a reference image, ‘Lena face’ with the 

following noise added to it. 

(i) RVIN of density, d=10% 

(ii) AWGN of variance, σ2=0.01 

(iii) MN: AWGN, σ2=0.1 + SPN, d=0.05 

The corresponding weight vectors obtained after the training are given by: 

(i)  w = [ ]2613.03380.00000.03562.0159.0. −6030  for RVIN 

(ii)  w = [ ]151201840010040068503614013450 ......  for AWGN 

(iii) w = [ ]528003482015620151802411005680 ...... −  for MN 

Then the corresponding trained filters are used to filter another noisy image. For this 

purpose, the ‘tree’ image shown in Fig. 4.3, is used. It is very important to note that 

the tree image doesn’t have any correlation with the reference image ‘Lena face’. 

(4.4) 
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 Fig. 4.3 The Reference Image, ‘trees’ Required for Training 



 
 
Chapter-4 Development of Adaptive Image Filters  

 

111

Table-4.1 Performance (MSE and NRDB) of OS-LMS Adaptive Image Filter 

(a) For Random-Valued Impulse Noise 
RVIN  

density, d 
MSEin MSEout NRDB 

0.05 0.0113 0.0075 1.8230 

0.1 0.0224 0.0078 4.5839 

0.15 0.0332 0.0034 5.9520 

0.2 0.0448 0.0094 6.7649 

 

(b) For Additive White Gaussian Noise  
AWGN  

variance σ2 MSEin MSEout NRDB 

0.03 0.0087 0.0054 2.1039 

0.07 0.0122 0.0060 3.1231 

0.10 0.0164 0.0080 3.1380 

0.15 0.0264 0.0139 2.7714 

0.2 0.0399 0.0232 2.3555 

 

(c) For Salt and Pepper Noise 

SPN  
density, d 

AWGN  
variance σ2 MSEin MSEout NRDB 

0.025 0.07 0.0223 0.0073 4.8777 

0.05 0.05 0.0284 0.0074 5.8759 

0.1 0.03 0.465 0.0083 7.4650 

 

4.2.3 Conclusion 
The proposed OS-LMS adaptive image filter shows superior performance as 

compared to the adaptive LMS L-filter proposed by Kotropoulos and Pitas [26]. The 

proposed filter very easily adapts to any noise type. The reference image used during 

training needn’t have any correlation with the image to be filtered. Thus, an off-line 

training is also good enough. Therefore, such a scheme reduces the overall 

computation time (needed for training and filtering) drastically. Thus, it is highly 

suitable for a real-time application. 

Though its noise reduction capability is not very encouraging, the OS-LMS adaptive 

image filter will receive high appreciation for its nice noise adaptive behaviour. 
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4.3 Fundamentals of Fuzzy Logic 
 

Prior to developing some efficient fuzzy filters, the fundamentals of a fuzzy system 

[49,50] are discussed here.  

 

A fuzzy system is represented by fuzzy variables that are members of a fuzzy set. A 

fuzzy set is a generalization of a classical set based on the concept of partial 

membership. Let F be a fuzzy set defined on universe of discourse U. The fuzzy set is 

described by the membership µF(u) that maps U to the real interval [0,1] i.e. the 

membership µ varying from 0 to 1: a membership of value 0 signifying the fact that 

the element Uu ∈ does not belong to the set F; a membership of value 1 signifying 

that the element Uu ∈ belongs to the set F with full certainty; a membership of any 

other value from 0 to 1 representing the element u to be a partial member of the set F. 

Fuzzy sets are identified by linguistic labels e.g. low, medium, high, very high, tall, 

very tall, cool, hot, very hot, etc. The knowledge of a human expert can very well be 

implemented, in an engineering system, by using fuzzy rules.  

 

Fuzzy image filters are already proposed by many researchers for suppressing various 

types of noises [81,83,84]. Simple fuzzy moving average (TMAV) filters [94] are 

proposed using triangular membership function as shown in Fig. 4.4. The membership 

equals zero at some minimum and maximum gray values of the pixels in the 

neighborhood of the center pixel under consideration.  

 

 

 

 

 

 

 

µ 
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xmax xmin c x 

c= (xmin+ xmax)/2 

Fig.4.4 Fuzzy Membership for an image filter. 
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4.4 Designing Fuzzy Weighted ROM (FWROM) Image Filters  
The basic structure of the proposed filters is shown in Fig.4.5 (a). The order statistics 

of the 3×3 neighborhood of the pixel x(m,n), to be filtered, are taken into 

consideration. Only three/five mid-ordered statistics are the actual inputs for WROM 

(3,3)/WROM (3,5) filters. The filter weights are computed from fuzzy membership 

functions. Two fuzzy membership functions: triangular and Gaussian are proposed 

here. These functions are graphically shown in Fig. 4.5(b) and (c), respectively. First 

the FWROM filter using triangular fuzzy membership function is discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.5 (a) Structure of Fuzzy Weighted Rank Ordered Mean Filter 
(b) Triangular fuzzy membership associated with the order statistics 
(c) Gaussian Fuzzy membership 
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4.4.1 FWROM-T 

 
The triangular fuzzy membership function ( )xFµ for WROM (3,5) is given by: 
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where ( )
2

)8()2( xxc += . 

 

Similarly, for WROM(3,3), the triangular fuzzy membership function may be defined 

replacing )2(x with )3(x and, )8(x with )7(x in (4.5). This type of fuzzy membership 

function is self-tunable since the base of the triangle varies depending on the local 

ordered statistics. So, there is no need of any further fuzzy rule base. The membership 

µF(x(i)) represents how close the ordered statistics x(i) is to the center value c. And, this 

is the fuzzy weight w(i) that is associated with x(i) to compute the fuzzy weighted rank-

ordered mean (FWROM) filter output. The rest part of the filter, aggregation and 

normalization is self-explanatory. Such fuzzy weighted filters are named as FWROM-

T(3,5) and  FWROM-T(3,3). Similarly for a 5×5 window, various filters e.g. 

FWROM-T(5,11), FWROM-T(5,13), etc. may be defined. Next, the development of 

the FWROM-G filter, using a Gaussian fuzzy membership function, is discussed. 

 
 
4.4.2 FWROM-G 
 
 
This filter uses a Gaussian fuzzy membership function. In all other respects, it is same 

as FWROM-T. The Gaussian fuzzy membership function is given by:  

( )
( )

2

2
)(

)(
σµ

cx

iF

i

ex
−−

=         (4.6) 

where σ = the standard deviation of the selected ordered statistics x( ), e.g. x(2) to x(8)  ,  

or x(3) to x(7)  for the Gaussian fuzzy weighted ROM filters: FWROM-G(3,7) or 
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FWROM-G(3,5) respectively. Similarly, filters for a 5×5 window, such as FWROM-

G(5,11), FWROM-G(5,13), etc may be defined. 

 
 
4.4.3 Simulation and Results 
 
Extensive computer simulations are carried out to assess the performance of the 

proposed filters and to compare the same with the standard MAV, MED and ROM 

filters, and the fuzzy TMAV filter. ‘Lena face’ image is taken as the test image. 

Gaussian noise with variance, varying from 0.03 to 0.09, is added to this image. Fixed 

valued impulse noise, SPN of density 1% is further applied to this image to simulate a 

mixed noise condition. MSE is taken as the performance measure. The performance 

of the various filters obtained from simulation is listed in Table-4.2.  

 
Table-4.2 Performance Comparison of FWROM-T and FWROM-G with other 

Standard Filters under Mixed Noise Condition 
(1% SPN alongwith AWGN of variance, σσσσ2) 

MSE  Filter 
σσσσ2=0.03 σσσσ2=0.05 σσσσ2=0.07 σσσσ2=0.09 

ROM(3,3) 0.0034 0.0048 0.0071 0.0100 
ROM(3,5) 0.0033 0.0047 0.0070 0.0099 
ROM(5,11) 0.0031 0.0046 0.0069 0.0097 
ROM(5,13) 0.0035 0.0050 0.0069 0.0098 
MAV3×3 0.0034 0.0048 0.0071 0.0100 
MAV5×5 0.0035 0.0050 0.0073 0.0103 
TMAV 0.0035 0.0050 0.0072 0.0102 
FWROM-T (3,5) 0.0026 0.0028 0.0029 0.0032 
FWROM-T (5,11) 0.0026 0.0028 0.0032 0.0038 
FWROM-T (5,13) 0.0026 0.0029 0.0034 0.0042 
FWROM-G (3,5) 0.0029 0.0029 0.0029 0.0030 
FWROM-G (5,11) 0.0029 0.0030 0.0031 0.0036 
FWROM-G (5,13) 0.0026 0.0027 0.0030 0.0037 

 
Next, the ‘Lena face’ image is corrupted with Gaussian noise of variance σ2=0.1 

alongwith SPN of density 1%. The output images of some standard filters and the 

proposed filters are shown in Fig. 4.6. It is observed, by visual inspection, that: (i) the 

performance of MAV3×3 is very poor; (ii) TMAV performs slightly well; and (iii) the 

proposed filters FWROM-T(3,5) and FWROM-G(3,5)  perform much better than all 

other filters.  
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Fig. 4.6 Images for Visual Performance Comparison: 
(a) the original Lena face image 
(b)  noisy Lena face with AWGN(σ2 =0.1) and SPN(d=1%) 
(c) output image of  MAV3×3 filter  
(d) output image of  TMAV filter[94]  
(e) output image of  FWROM-T(3,5) 
(f) output image of  FWROM-G(3,5) 
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The Mean Squared Errors (MSE) for the filters: MAV3×3, TMAV, FWROM-G(3,5) 

and FWROM-T(3,5) are plotted in Fig. 4.7. It is observed that both the filters: 

FWROM-G(3,5) and FWROM-T(3,5) show almost the same performance and they 

are quite superior to the other standard filters. One more interesting point to be noted 

here is: the MSE increases rapidly with AWGN variance for the MAV and TMAV 

filters, whereas it remains almost constant in case of the proposed filters FWROM-

T(3,5) and FWROM-G(3,5). 

 
 
4.4.4 VLSI Implementation 
 
FWROM filters are quite computational intensive algorithms. To reduce the 

computation time, for real-time applications, these filters should be implemented in 

VLSI in the form of ASICs. Pipelined architecture [72] should be adopted to further 

reduce the overall time requirement. Such a scheme for FWROM-T(3,5) is shown in 

Fig. 4.7. 

 

Since sorting nine data takes a lot time (as multi-level comparison processes are 

involved), the first stage in the pipeline performs only the sorting operations. The 

weight computation involves center (mean) value, c and slopes, s1 and s2 given by: 
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Fig. 4.7 Plot of Mean Squared Error for MAV33, TMAV, FWROM-G(3,5), 
FWROM-T(3,5) Filters  under Additive White Gaussian Noise Condition 
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The second stage in the pipeline includes the computation units for computing c, s1 

and s2. It may be noted that computing the slopes requires the value of c. Therefore, 

this stage is basically a multi-state computing unit. That is why, one stage in the 

pipeline is dedicated for this purpose, even though the computations are very simple.  

 

The third stage includes the computation units to compute the fuzzy weights w(3), 

w(4),…… w(7) for FWROM-T(3,5). The forth stage multiplies the chosen order 

statistics with the fuzzy weights computed in the previous stage. For this purpose five 
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multipliers are used. The last stage, i.e. the addition unit comprises of four adders 

arranged in a hierarchical tree structure as shown in Fig. 4.8. Each adder computes a 

partial sum. Such a hierarchical addition unit reduces the overall addition time 

requirement drastically if the number of addenda is large. In this case, the addition 

time reduces by 25%.  

 

 

 

 

 

 

 

 

 

Let t1, t2, t3, t4 and t5 be the time required for the pipeline stages 1, 2, 3, 4 and 5, 

respectively. Then the overall time, t, for computing the FWROM-T (3,5) (for a single 

window operation) is given by : 

 
t=max({t1, t2, t3, t4, t5})       (4.10) 

 
since all the stages are in pipeline[72]. Otherwise, the time requirement would have 

been the sum of all these time values. Such a VLSI scheme may highly be appreciated 

for implementing a FWROM filter in real-time applications. 

 
4.4.5 Conclusion 
 

The filters: FWROM-T(3,5) and FWROM-G(3,5) show much superior performance, 

for suppressing mixed noise, over the other standard ROM filters, the MAV filters, 

and  the fuzzy filter, TMAV [94] The filter: FWROM-T(3,5) performs better than the 

filter: FWROM-G(3,5) under low noise variance (σ2 < 0.07) and slightly degrades at 

high noise variance (σ2 > 0.07); the performance measure, MSE for both the filters 

being the same at σ2 = 0.07. But the Gaussian membership function is much more 
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Fig.4.8 A Fast Adder with Hierarchical Tree Structure 
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computational intensive than the triangular membership function. Therefore, the filter 

FWROM-T(3,5) is be preferred to FWROM-G(3,5) for real time applications, e.g. in 

television systems. 

 
The proposed pipelined VLSI architecture for FWROM-T(3,5) is highly suitable for 

real-time applications since such a structure computes the filter output very fast. 

 

4.5 Conclusion 
 
In this chapter, many novel adaptive filters are developed for efficient suppression of 

noise in an image. The proposed OS-LMS adaptive image filter trains itself with the 

type of noise and the noise power level very nicely. Thus, it possesses very good 

noise adaptive behavior. In real-time applications like television systems, the noise 

type and the noise power level varies from time to time. Therefore, the proposed 

scheme is highly useful for such an application. 

 

Another class of adaptive filters based on fuzzy logic is proposed in this chapter. Two 

types of fuzzy WROM filters using triangular and Gaussian membership functions: 

FWROM-T and FWROM-G are proposed. They show very good filtering 

performance for various noise types and noise power levels. Since the FWROM filters 

get themselves trained for each windowed data set, their filtering performance is very 

good. But, they are highly computational intensive algorithms. Therefore, they take a 

long processing time. The FWROM-T(3,5) is less computational intensive as 

compared to the FWROM-G(3,5) as it is easier to compute the triangular membership 

than the Gaussian membership.  

 

To enhance the filtering speed, a pipelined VLSI architecture is proposed in Section-

4.4.4 for the FWROM-T(3,5) filter. The effective computation time is only the time 

required to sorting the data vector. Therefore, it becomes as fast as the simple OS 

filter MED. Thus, the FWROM-T(3,5) implemented in an ASIC is a nice image filter 

for real-time applications. 
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Preview 

 

In this thesis, various types of noise in a digital image and their sources, the practical 

noise levels, and the range of noise power in a practical image are studied. Then, the 

types of noise and noise levels are studied for communication applications like 

television and photo-phones. For such real-time applications, efforts have been made 

to develop efficient nonlinear filters to suppress AWGN, SPN, RVIN and MN. If an 
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image signal is transmitted in analog form, the noise may be a mixed version of 

AWGN and SPN. On the other hand, if the image signal is transmitted in digital form, 

then the received signal is corrupted with RVIN. Therefore, many efficient filters are 

proposed to suppress MN and RVIN quite effectively without blurring the edges and 

without distorting the fine-details of the image. The proposed filtering schemes are 

meant for real-time applications. 

 

Various approaches adopted to achieve these goals are:  

i) WROM filters to suppress mixed noise quite effectively with very little 

computational complexity 

ii) Three novel impulse detection schemes to detect impulse noise quite 

effectively 

iii) Adaptive OS LMS and Fuzzy WROM filters to adapt themselves to noise 

type and noise level for better filter performance under varying noise 

conditions 

 

The following topics are covered in this chapter. 

•  A Comparative Study 

•  Conclusion 

•  Scope for Future Work. 
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5.1 A Comparative study 
 

Table-5.1 shows the performance of the various proposed filters and some standard 

filters available in literature. The ‘Lena face’ is the test image taken for simulation. 

The NRDB is taken as the performance measure and is listed in the table. 

 

TABLE- 5.1 Performance (NRDB) of Various Filters  

Noise Type Filter Noise Power (MSEin) 
(at the input of the filter) NRDB (dB) 

MAV3 3.2176 

MED3 3.0396 

ROM(3,3) 3.2385 

WROM(3,7)         [P3] 3.3554 

FWROM-T(5,13) [P4] 4.3573 

AWGN 

(variance=0.01) 

FWROM-G(5,11)[P4] 

0.0097 

5.1098 

MAV3 3.2176 

MED3 3.0396 

ROM(3,3) 3.2385 

WROM(3,7)         [P3] 3.3554 

FWROM-T(3,5)   [P4] 5.9865 

FWROM-G(3,5)  [P4] 6.2668 

AWGN+SPN 

(variance=0.01; 

Impulse   

density=0.01) 

DIND + Filter       [P2] 

0.0127 

7.8158 

MAV3 5.3755 

MED3 7.7811 

ROM(3,3) 7.8314 

WROM(3,3)        [P3] 8.0336 

PIND + Filter 24.5788 

DIND + Filter     [P2] 12.1230 

SPN 

(10%) 

SOD-DDMF       [P1] 

0.0287 

 8.5106 

MAV3 10.3709 

MED3  6.9115 

DIND + Filter      [P2] 12.3012 

RVIN  

(10%) 

FWROM-G(3,7)  [P4] 

0.01301 

4.4491 
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The results of the Table-5.1 may be summarized as: 

 

(a) The proposed fuzzy filter FWROM-G(5,11) performs better than other 

standard OS filters in suppressing low variance AWGN. 

 

(b)  The proposed DIND plus filtering scheme performs much better than other 

standard OS filters in suppressing low power MN. 

 

 

(c) The proposed PIND algorithm followed by median filtering performs much 

better than other standard filters in suppressing low and medium density SPN. 

 

(d) The proposed DIND plus filtering scheme performs much better than other 

standard filters in suppressing low and medium density RVIN. 

 

Thus, it is observed that many novel filtering schemes are developed in this thesis to 

suppress various types of noise in an image. 

 

5.2 Conclusion 
 

The following conclusions may be drawn. 

 

 

•  The WROM filters show very good performance as compared to the 

standard OS filters. They don’t have much computational complexity since 

the filter weights are fixed. 

 

•  The SOD-DDMF performs well in the presence of SPN and RVIN. Its 

performance is very good for SPN (upto 40%) and is good for RVIN (upto 

20%).  
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• PIND and DIND algorithms are very good impulse noise detectors. They 

perform very well under low noise density. The DIND algorithm is a 

robust impulse noise detector since it can very easily detect impulse noise 

under mixed noise condition. The DIND algorithm shows very good 

performance for RVIN as well. 

 

• The performance of the PIND algorithm is excellent in suppressing low 

density SPN. Its performance is better than many recently reported filters 

in the literature.  

 

 

 

 

• Two different types of adaptive filters are proposed. The OS LMS adaptive 

filter is a better candidate than the LMS adaptive L-filter [26] since the 

former doesn’t need a very similar image frame for training. The fuzzy 

weighted ROM (FWROM) filters show very good performance since the 

filter weights get updated in each window. No previous training is required 

for the proposed FWROM filters. As the filter adapts itself during each 

pixel processing, its computational complexity is very high. But such a 

filter can very well be implemented in an application specific integrated 

circuit (ASIC) to provide high throughput so that it may be used in real 

time applications. A pipelined architecture is proposed for VLSI 

implementation of FWROM-T(3,5) in Section-4.4.4. Such a hardware 

implementation of the proposed fuzzy filter enhances the overall 

throughput and makes it suitable for a real-time application.   

 

• The FWROM filters show very good performance under different types of 

noise. It is the self-adaptive nature of a fuzzy system that has made the 

filter effective in all conditions. Though this filter can’t reduce the noise 
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level drastically, it retains image-integrity to a high extent. This is very 

much desired in a real-time application like television system. 

 

Finally, it may be concluded that many efficient nonlinear and adaptive digital image 

filtering schemes have been developed in this present research work to suppress 

various types of noise encountered in an image.  

 

5.3 Scope for Future Work 
 

Some new directions of research in the field of image denoising are not yet fully 

explored. There is sufficient scope to develop very good filters in the directions 

mentioned below. 

 

(a) Neural Networks (NN) are very good adaptive systems. But, there are only a 

few neural image filters reported in literature. The performance of a neural 

image filter can very well be enhanced by associating order statistics (OS) 

with it. It is expected that many researchers will develop very good filters 

using OS-NN techniques (presently under investigation). 

 

(b) Fuzzy inference systems (FIS) are very nice adaptive systems. Much more 

research is expected in the direction of fuzzy image filters in future. 

 

(c) Discrete Wavelet Transform (DWT) is a very good tool for signal processing. 

Many are expected to carry research in developing very high quality DWT-

based image filters in the next 5-10 years. 

 

(d) Since an image is a highly correlated 2-D signal, spatial domain decision-

based filters show very high filtering performance. The OS plays an important 

role in spatial domain filtering. Therefore, many new hybrid filters employing 

OS and DWT are expected in near future. Such schemes will have the 

advantages of both the spatial domain and the frequency domain analyses. 
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(e) Further, many researchers are expected to explore the use of NN and FIS in a 

hybrid OS-DWT system so that the overall system becomes adaptive to the 

noise type, noise power level and the spatial image variation. 
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