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PREFACE 

Digital Image Processing, developed during last three decades, has become a very 

important subject in all fields of engineering. Image filtering is one of the prime areas 

of image processing and its objective is to recover an image when it is corrupted with 

noise.  

 Impulsive noise is frequently encountered during the processes of acquisition, 

transmission and reception, and storage and retrieval. Usually median or a modified 

version of median is employed to suppress an impulsive noise. It is clear from the 

literature that the detection followed by filtering achieves better performance than the 

filters without detection. The noisy pixels are then replaced with estimated values. In 

this thesis, efforts are made to develop efficient filters for suppression of impulse 

noise under medium and high noise density conditions. 

Two models of impulsive noise are considered in this thesis. The first one is 

Salt-and-Pepper Noise (SPN) model, where the noise value may be either the 

minimum or maximum of the dynamic gray-scale range of the image. And, the second 

one is Random-Valued Impulsive Noise (RVIN) model, where the noise pixel value is 

bounded by the range of the dynamic gray-scale of the image. Some proposed 

schemes deal with SPN model of noise as well as RVIN, whereas some other 

proposed schemes deal with only SPN. A few schemes are also proposed for color 

image denoising. The filters are tested on low, medium and high noise densities and 

they are compared with some existing filters in terms of objective and subjective 

evaluation. There are a number of filters available at low and medium noise densities, 

but they fail to perform at high noise densities. Therefore, there is sufficient scope to 

explore and develop efficient filters for suppressing the impulsive noise at high noise 

densities. Hence efforts are made here to develop efficient filters for suppression of 

impulse noise for medium and high noise densities. The execution time is taken into 

account while developing the filters for online and real-time applications such as 

digital camera, television, photo-phone, etc.  

I hope the proposed filters in this thesis are helpful for other researchers 

working in this field for developing much better filters.  

                                                                  Ramesh Kulkarni
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Abstract 
Impulse noise is a most common noise which affects the image quality during 

acquisition or transmission, reception or storage and retrieval process. Impulse noise 

comes under two categories: (1) fixed-valued impulse noise, also known as salt-and-

pepper noise (SPN) due to its appearance, where the noise value may be either the 

minimum or maximum value of the dynamic gray-scale range of image and (2) 

random-valued impulse noise (RVIN), where the noisy pixel value is bounded by the 

range of the dynamic gray-scale of the image. 

In literature, many efficient filters are proposed to suppress the impulse noise. 

But their performance is not good under moderate and high noise conditions. Hence, 

there is sufficient scope to explore and develop efficient filters for suppressing the 

impulse noise at high noise densities. In the present research work, efforts are made to 

propose efficient filters that suppress the impulse noise and preserve the edges and 

fine details of an image in wide range of noise densities. 

It is clear from the literature that detection followed by filtering achieves 

better performance than filtering without detection. Hence, the proposed filters in this 

thesis are based on detection followed by filtering techniques.     

The filters which are proposed to suppress the SPN in this thesis are: 

 Adaptive Noise Detection and Suppression (ANDS) Filter 

 Robust Estimator based Impulse-Noise Reduction (REIR) Algorithm  

 Impulse Denoising Using Improved Progressive Switching Median Filter (IDPSM) 

 Impulse-Noise Removal by  Impulse Classification (IRIC) 

 A Novel Adaptive Switching Filter-I (ASF-I) for Suppression of High Density SPN 

 A Novel Adaptive Switching Filter-II (ASF-II) for Suppression of High Density SPN 

 Impulse Denoising Using Iterative Adaptive Switching Filter (IASF) 

 In the first method, ANDS, neighborhood difference is employed for pixel 

classification. Controlled by binary image, the noise is filtered by estimating the value 

of a pixel with an adaptive switching based median filter applied exclusively to 

neighborhood pixels that are labeled noise-free. The proposed filter performs better in 

retaining edges and fine details of an image at low-to-medium densities of fixed-

valued impulse noise. 
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 The REIR method is based on robust statistic technique, where adaptive 

window is used for pixel classification. The noisy pixel is replaced with Lorentzian 

estimator or average of the previously processed pixels. Because of adaptive 

windowing technique, the filter is able to suppress the noise at a density as high as 

90%. 

In the proposed method, IDPSM, the noisy pixel is replaced with median of 

uncorrupted pixels in an adaptive filtering window. The iterative nature of the filter 

makes it more efficient in noise detection and adaptive filtering window technique 

makes it robust enough to preserve edges and fine details of an image in wide range of 

noise densities.   

 The forth proposed method is IRIC. The noisy pixel is replaced with median 

of processed pixels in the filtering window. At high noise densities, the median 

filtering may not be able to reject outliers always. Under such circumstances, the 

processed left neighboring pixel is considered as the estimated output. The 

computational complexity of this method is equivalent to that of a median filter 

having a 3×3 window. The proposed algorithm requires simple physical realization 

structures. Therefore, this algorithm may be quite useful for online and real-time 

applications. 

 Two different adaptive switching filters: ASF-I and ASF-II are developed for 

suppressing SPN at high noise density. The noisy pixel is replaced with               

alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. 

Depending on noise estimation, a small filtering window size is initially selected and 

then the scheme adaptively changes the window size based on the number of noise-

free pixels. Therefore, the proposed method removes the noise much more effectively 

even at noise density as high as 90% and yields high image quality. 

 In the proposed method IASF, noisy pixel is replaced with alpha-trimmed 

mean value of uncorrupted pixels in the adaptive filtering window. Due to its iterative 

structure, the performance of this filter is better than existing order-statistic filters. 

Further, the adaptive filtering window makes it robust enough to preserve the edges 

and fine details of an image. 
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The filters which are proposed for suppressing random-valued impulse noise 

(RVIN) are:  

 Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm 

 Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm 

 The proposed method, Adaptive Window based Pixel-Wise MAD (AW-

PWMAD) Algorithm is a modified MAD (Median of the Absolute Deviations from 

the median) scheme alongwith a threshold employed for pixel-classification. The 

noisy pixel is replaced with median of uncorrupted pixels in adaptive filtering 

window.  

 Another proposed method for denoising the random-valued and fixed-valued 

impulse noise is ALT-MAD. A modified MAD based algorithm alongwith a local 

adaptive threshold is utilized for pixel-classification. The noisy pixel is replaced with 

median of uncorrupted pixels in the filtering window of adaptively varied size.  

 Three threshold functions are suggested and employed in this algorithm. Thus, 

three different versions, namely, ALT-MAD-1, ALT-MAD-2 and ALT-MAD-3 are 

developed. They are observed to be quite efficient in noise detection and filtering.   

 In the last part of the thesis, some efforts are made to develop filters for color 

image denoising. The filters which perform better in denoising gray-scale images are 

developed for suppression of impulsive noise from color images. Since the 

performance of denoising filters degrades in other color spaces, efforts are made to 

develop color image denoising filters in RGB color space only in this research work. 

The developed filters are: 

 Multi-Channel Robust Estimator based Impulse-Noise Reduction (MC-REIR) Algorithm              

 Multi-Channel Impulse-Noise Removal by Impulse Classification (MC-IRIC) 

 Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) 

 Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-MAD) Algorithm 

It is observed from the simulation results that the proposed filters perform 

better than the existing methods. The proposed methods: ASF-1 and IASF exhibit 

quite superior performance in suppressing SPN in high noise densities compared to 

other methods. Similarly ALT-MAD-3 exhibits much better performance in 

suppressing RVIN of low to medium noise densities. 
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Preview 

The aim of digital image processing is to improve the potential information for human 

interpretation and processing of image data for storage, transmission, and 

representation for autonomous machine perception. The quality of image degrades 

due to contamination of various types of noise. Additive white Gaussian noise, 

Rayleigh noise, Impulse noise etc. corrupt an image during the processes of 

acquisition, transmission and reception and storage and retrieval. For a meaningful 

and useful processing such as image segmentation and object recognition, and to have 

very good visual display in applications like television, photo-phone, etc., the 

acquired image signal must be noise-free and made deblurred.  Image deblurring and 

image denoising are the two sub-areas of image restoration. In the present research 

work, efforts are made to propose efficient filters that suppress the noise and preserve 

the edges and fine details of an image as far as possible in wide range of noise 

density. 
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The following topics are covered in this chapter. 

 Fundamentals of Digital Image Processing 

 Noises in Digital Images 

 Literature Review 

 Problem Statement 

 Basics of Spatial Filtering  

 Image Metrics 

 Chapter-wise Organization of the Thesis 

 Conclusion 

1.1 Fundamentals of Digital Image Processing 

A major portion of information received by a human being from the environment is 

visual. Hence, processing visual information by computer has been drawing a very 

significant attention of the researchers over the last few decades. The process of 

receiving and analyzing visual information by the human species is referred to as 

sight, perception and understanding. Similarly, the process of receiving and analyzing 

visual information by digital computer is called digital image processing [1]. 

An image may be described as a two-dimensional function , where i and 

j are spatial coordinates. Amplitude of f at any pair of coordinates , is called 

intensity or gray value of the image. When spatial coordinates and amplitude values 

are all finite, discrete quantities, the image is called digital image [2].  Each element 

of this matrix (2-D array) is referred as picture element or pixel. Image Processing 

(IP) is a branch of study where a 2-D image signal  is processed either directly 

(spatial-domain processing) or indirectly (transform-domain processing). IP and 

Computer vision are two separate fields with a narrow boundary between them. In 

case of IP, both input and output are 2-D images whereas the output of a Computer 

vision system is necessarily not an image rather some attributes of it.  

 In computer vision, the ultimate goal is to use computer to emulate human 

vision, including performing some analysis, judgment or decision making or 

performing some mechanical operation (robot motion) [11-14]. Fig. 1.1 shows a 

typical image processing system [1, 2]. 
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Fig. 1.1 Basic Block Diagram 

Following is the list of most common image processing functions. 

 Image Representation  

 Image Transformation 

 Image Enhancement 

 Image  Restoration 

 Color Image Processing 

 Transform-Domain Processing 

 Image  Compression 

 Morphological Image Processing 

 Image Representation and Description 

 Object Recognition 

For the first seven functions, the inputs and outputs are images whereas for the 

rest three the outputs are attributes of the input images. With the exception of image 

acquisition and display, most image processing functions are usually implemented in 

software. Image processing is characterized by specific solutions; hence the technique 

that works well in one area may be inadequate in another. 

Image processing begins with an image acquisition process. The two elements 

are required to acquire digital images. The first one is a sensor; it is a physical device 

that is sensitive to the energy radiated by the object that has to be imaged. The second 

part is called a digitizer. It is a device for converting the output of the sensing device 

into digital form. For example in a digital camera, the sensors produce an electrical 

output proportional to light intensity. The digitizer converts the outputs to digital data. 

During the process of image acquisition noises are introduced.  

Input 
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 Image processing may be performed in spatial or transform-domain. Different 

transforms (e.g. Discrete Fourier Transform (DFT) [1], Discrete Cosine Transform 

(DCT) [14, 16], Discrete Hartley Transform (DHT) [21], Discrete Wavelet Transform 

(DWT) [9-13, 17-20, 22], etc., are used for different applications.         

Image enhancement is among the simplest and most appealing areas of digital 

image processing [114-120]. Basically, the idea behind enhancement techniques is to 

bring out detail that is obscured, or simply to highlight certain features of interest in 

an image. A familiar example of enhancement is when we increase the contrast of an 

image it looks better. It is important to keep in mind that image enhancement is a 

subjective area of image processing. On the other hand, image restoration is very 

much objective. The restoration techniques are based on mathematical and statistical 

models of image degradation. Denoising [121-133] and deblurring tasks come under 

this category. 

Image restoration and filtering is one of the prime areas of image processing 

and its objective is to recover the images from degraded observations. The techniques 

involved in image restoration and filtering are oriented towards modeling the 

degradations and then applying an inverse operation to obtain an approximation of the 

original image. The use of color in image processing is motivated by two principal 

factors. First, color is a powerful descriptor that often simplifies object identification 

and extraction from scene. Second, humans can discern thousands of color shades and 

intensities, compared to shades of gray. 

The first encounter with digital image restoration in the engineering 

community was in the area of astronomical imaging during 1950s and 1960s. The aim 

of the mission was to record many incredible images of solar system. However, the 

images obtained from the various planetary missions of the time were subject to much 

photographic degradation. This mission required huge amount of money. The 

degradations occurred due to substandard imaging environment, rapidly changing 

refractive index of the atmosphere and slow camera shutter speed relative to 

spacecraft. Any loss of information due to image degradation was devastating as it 

reduced the scientific value of these images. 
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In the area of medical imaging, image restoration has certainly played a very 

important role. Restoration has been used for filtering noise in X-ray, mammograms, 

and digital angiographic images.  

Another application of this field is the use of digital techniques to restore 

ageing and deteriorated films. The idea of motion picture restoration is probably most 

often associated with the digital techniques used not only to eliminate scratches and 

dust from celluloid films of old movies, but also to colorize black-and-white (gray- 

scale) films. 

 Digital image restoration is being used in many other applications as well. 

Just to name a few, restoration has been used to restore blurry X-ray images of aircraft 

wings to improve quality assessment procedures. It is used for restoring the motion 

induced effects present in still composite frames and more generally, for restoring 

uniformly blurred television pictures. Digital restoration is also used to restore images 

in automated assembly / manufacturing process. Many defense-oriented applications 

require restoration, such as guided missiles, which may obtain distorted images due to 

the effects of pressure differences around a camera mounted on the missile.  

Digital images, which are 2-D signals, are often corrupted with many types of 

noise, such as additive white Gaussian noise (AWGN) which is referred as additive 

noise and substitutive noise such as, salt-and-pepper noise (SPN), random-valued 

impulse noise (RVIN), multi-level noise during the processes of acquisition, 

transmission and reception, and storage and retrieval. The impulse noise is 

substitutive noise, i.e. the corrupted pixel value does not depend on the original pixel 

value, whereas additive Gaussian noise modifies the original pixel value with uniform 

power in the whole bandwidth and with Gaussian probability distribution. Impulse 

noise comes under two categories: (1) fixed-valued impulse noise and (2) random-

valued impulse noise. Under fixed-valued impulse noise, the noise may be unipolar or 

bipolar. In many occasions an image is observed to be corrupted with bipolar fixed 

value impulse noise. A fixed-valued bipolar impulse noise is called salt-and-pepper 

noise (SPN) due to its appearance. The malfunctioning pixels in camera sensors, 

faulty memory location in hardware, or transmission of the image in a noisy channel, 

are the some of the common causes for impulse noise [38, 58-61]. The intensity of 

impulse noise has the tendency of either being relatively high or low. Due to this, 
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when the signal is quantized to „L‟ intensity levels, the corrupted pixels are generally 

digitized into either minimum or maximum values in the dynamic range, these pixels 

appear as white or black dots in the image. This may severely degrade the image 

quality and cause some loss of image information. Keeping the image details and 

removing the noise from the digital image is a challenging part of image processing 

[29, 66-86]. 

It is difficult to suppress AWGN since it corrupts almost all pixels in an 

image. The arithmetic mean filter, commonly known as Mean filter [37-39], can be 

employed to suppress AWGN but it introduces a blurring effect [16-20, 22]. Efficient 

suppression of noise in an image is a very important issue. Conventional techniques of 

image denoising using linear and nonlinear techniques have already been reported and 

sufficient literatures are available in this area [1-6, 23-42]. 

A number of nonlinear and adaptive filters are proposed for denoising an 

image. The aim of these filters is to reduce the noise as well as to retain the edges and 

fine details of the images [23-28, 124-128]. But it is difficult to achieve both the 

objectives and the reported schemes are not able to perform in both aspects. Hence, 

still various research workers are actively engaged in developing better filtering 

schemes using latest signal processing techniques. The present doctoral research work 

is focused on developing quite efficient image denoising filters to suppress Impulse 

Noise quite effectively without yielding much distortion and blurring. 

1.2 Noise in Digital Images 

In this section, various types of noise corrupting an image signal are studied; the types 

of noise are discussed, and mathematical models for the different types of noise are 

presented. 

1.2.1 Types of Noise 

The principal sources of noise in digital images arise during image acquisition and/or 

transmission. The performance of image sensors is affected by a variety of factors 

such as environmental conditions during image acquisitions, and quality of sensing 

elements themselves. Images are corrupted during transmission principally due to 

electromagnetic interference in a channel employed for transmission. For example, an 
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image transmitted using a wireless network might be corrupted because of lightening 

or other atmospheric disturbances.    

When an analog image signal is transmitted through a linear dispersive 

channel, the image edges (step-like or pulse like signal) get blurred and the image 

signal gets contaminated with AWGN since no practical channel is noise free. If the 

channel is so poor that the noise variance is high enough to make the signal excurse to 

very high positive or high negative value, then the thresholding operation at the front 

end of the receiver will contribute saturated max and min values. Such noisy pixels 

will be seen as white and black spots in the image. Therefore, this type of noise is 

known as salt-and-pepper noise (SPN). So, if analog image signal is transmitted, then 

the signal gets corrupted with AWGN and SPN as well. Thus, there is an effect of 

mixed noise [158]. 

If the image signal is transmitted in digital form through a linear dispersive 

channel, then inter-symbol interference (ISI) takes place. In addition to this, the 

AWGN in a practical channel also comes into picture. This makes the situation very 

critical. Due to ISI and AWGN, it may so happen that a „1‟ may be recognized as „0‟ 

and vice-versa. Under such circumstances, the image pixel values have changed to 

some random values at random positions in the image frame. Such type of noise is 

known as random-valued impulse noise (RVIN). 

Another type of noise that may corrupt an image signal is the speckle noise 

(SN). In some biomedical applications like ultrasonic imaging and a few engineering 

applications like synthesis aperture radar (SAR) imaging, such a noise is encountered. 

The SN is a signal dependent noise, i.e., if the image pixel magnitude is high, then the 

noise is also high. The noise is multiplicative because initially a transmitting system 

transmits a signal to the object and the reflected signal is recorded. When the signal is 

transmitted, the signal may get contaminated with additive noise in the channel. Due 

to varying reflectance of the surface of the object, the reflected signal magnitude 

varies. So also the noise varies since the noise is also reflected by the surface of the 

object. Noise magnitude is, therefore, higher when the signal magnitude is higher. 

Thus, the speckle noise is multiplicative in nature. 
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The speckle noise is encountered only in a few applications like ultrasonic 

imaging and SAR, whereas all other types of noise like, AWGN, SPN, and RVIN 

occur in almost all the applications. 

1.2.2 Mathematical Models of Noise 

There are different types of noises which corrupt an image. The noise like Gaussian 

Noise, Rayleigh Noise, Gamma Noise, Speckle Noise and Impulse Noise are quite 

common. A few important noise models are presented in this section. 

Additive White Gaussian Noise: 

Let  be a noisy image formed due to addition of noise  to an 

original image , which is represented as 

                                                     (1.1) 

where, noise   is represented by a Gaussian Probability Density Function (PDF).  

The PDF of Gaussian random variable, t, is given by 

                                                      (1.2) 

where, t is gray level; μ is mean value of t; and σ is its standard deviation. 

When the variance, σ
2
 of the random noise   is very low, then  is 

zero or very close to zero at many pixel locations. Under such circumstances, the 

noisy image  is same or very close to the original image  at many pixel 

locations . 

Impulse Noise: 

The SPN and RVIN, which are generally categorized as impulse noise, are 

substitutive in nature. The impulse noise occurs at random locations .  

Let a digital image , after being corrupted with SPN of density d be 

represented as . Then, the noisy image  is mathematically represented as: 

 

                                    (1.3) 

 

If it is corrupted with RVIN of density d, it is mathematically represented as: 
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           (1.4) 

Here,  represents a uniformly distributed random variable, ranging from 

0 to 1, that replaces the original pixel value . The noise magnitude at any noisy 

pixel location  is independent of the original pixel magnitude. Therefore, the 

RVIN is truly substitutive.  

Speckle Noise: 

Let a digital image , after being corrupted with multiplicative noise, be 

represented as . Then, the noisy image  is mathematically represented as: 

                       (1.5) 

                                       (1.6) 

where,  is a random variable.  

The proposed filters developed in subsequent chapters are meant for 

suppression of low to high density impulse noise.  

1.3 Literature Review 

Noise in an image is a serious problem. Efficient suppression of noise in an image is a 

very important issue. Denoising finds extensive applications in many fields of image 

processing. Conventional techniques of image denoising using linear and nonlinear 

filters have already been reported and sufficient literature is available in this area. 

Recently, various nonlinear and adaptive filters have been suggested for the purpose. 

The objectives of these schemes are to reduce noise and to retain, as far as possible, 

the edges and fine details of the original image in the restored image as well. 

However, both the objectives conflict each other and the reported schemes are not 

able to perform satisfactorily in both aspects. Hence, still various research workers are 

actively engaged in developing better filtering schemes using latest signal processing 

techniques.  

1.3.1 Filters for Suppression of Additive Noise 

Traditionally, AWGN is suppressed using linear spatial domain filters such as Mean 

filter [1-7], Wiener filter [1, 2, 8, 15, 40-42] etc. The traditional linear techniques are 

very simple in implementation but they suffer from disadvantage of blurring effect. 

They also don‟t perform well in the presence of signal dependant noise.  To overcome 
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this limitation, nonlinear filters [4] are proposed. Some well known nonlinear mean 

filters are harmonic mean, geometric mean, Lp mean, contra-harmonic mean proposed 

by Pitas et al. [5] are found to be good in both preserving edges and suppressing the 

noise. Another good edge preserving filter is Lee filter [43] proposed by J.S. Lee. The 

performance of this filter is also good in suppressing noise as well as in preserve 

edges. Anisotropic diffusion [44, 45] is also a powerful filter where local image 

variation is measured at every point, and pixel values are averaged from 

neighborhoods whose size and shape depend on local variation. The basic principle of 

these methods is numbers of iterations. If more numbers of iterations are used it may 

lead to instability; in addition to edges, noise becomes prominent. Rudin et al. 

proposed total variation (TV) filter [46] which is also iterative in nature. In the later 

age of research, simple and non-iterative scheme of edge preserving smoothing filters 

are proposed. One of them is Bilateral filter [47]. Bilateral filter works on the 

principle of geometric closeness and photometric similarity of gray levels or colors. 

Many variants of Bilateral filters are proposed in literature that exhibit better 

performance under high noise condensation [48, 49]. A filter named non-local means 

(NL-Means) [50] averages similar image pixels defined according to their local 

intensity similarity. Based on robust statistics, a number of filters are proposed. T. 

Rabie [51] proposed a simple blind denoising filter based on the theory of robust 

statistics. Robust statistics addresses the problem of estimation when the idealized 

assumptions about a system are occasionally violated. Another denoising method 

based on the bi-weight mid-regression is proposed by Hou et al. [52] is found to be 

effective in suppressing AWGN. Kernel regression is a nonparametric class of 

regression method used for image denoising [53]. 

Many filters based on Fuzzy logic are developed for suppression of additive 

noise [36, 37, 54]. Ville et al. [54] proposed a fuzzy filter for suppression of AWGN. 

The first stage computes a fuzzy derivative for eight different directions. The second 

stage uses these fuzzy derivatives to perform fuzzy smoothing by weighting the 

contributions of neighboring pixel values. By applying iteratively the filter effectively 

reduces high noise. 

Now-a-days, wavelet transform is employed as a powerful tool for image 

denoising [55-57]. Image denoising using wavelet techniques is effective because of 
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its ability to capture most of the energy of a signal in a few significant transform 

coefficients, when natural image is corrupted with Gaussian noise. 

1.3.2 Filters for Suppression of Impulsive Noise 

An impulsive noise of low and moderate noise densities can be removed easily by 

simple denoising schemes available in the literature. A simple median filter [58] 

works very nicely for suppressing impulsive noise of low density and is easy to 

implement. But the cost paid for it distorts edges and fine details of an image. The 

distortion increases as the filtering window size is increased to suppress high density 

noise. Specialized median filters such as weighted median filter [58-63, 86], center 

weighted median filter [64-66, 81, 82] and Recursive Weighted Median Filter 

(RWMF) [65] are proposed in literature to improve the performance of the median 

filter by giving more weight to some selected pixel(s) in the filtering window. But 

they are still implemented uniformly across an image without considering whether the 

current pixel is noisy or not. Additionally, they are prone to edge jitter in cases where 

the noise density is high. As a result, their effectiveness in noise suppression is often 

at the expense of blurred and distorted image features. 

Conventional median filtering approach applies the median operation 

everywhere without considering whether it is uncorrupted or not. As a result, image 

quality degrades severely. An intuitive solution to overcome this problem is to 

implement an impulse-noise detection mechanism prior to filtering; hence, only those 

pixels identified as corrupted would undergo the filtering process, while those 

identified as uncorrupted would remain intact. By incorporating such noise detection 

mechanism or intelligence into the median filtering framework, so-called switching 

median filters [68, 69, 72-76, 79] have shown significant performance improvement. 

A number of modified median filters have been proposed [82-84], e.g., minimum–

maximum exclusive mean (MMEM) filter [80] proposed by W.Y.Han et al., pre-

scanned minmax center-weighted (PMCW) filter [81] proposed by Wang, and 

decision-based median filter [69] proposed by D.A.Florencio et al.. In these methods, 

the filtering operation adapts to the local properties and structures in the image. In the 

decision-based filtering [82-85] for example, image pixels are first classified as 

corrupted and uncorrupted, and then passed through the median and identity filters, 

respectively.   The main issue of the decision-based filter lies in building a decision 



 

 

 
Introduction 

 

 Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise                         13 
 

 

rule, or a noise measure [106-109], that can discriminate the uncorrupted pixels from 

the corrupted ones as precisely as possible. 

In MMEM filter [80]; where the pixels that have values close to the maximum 

and minimum in a filter window are discarded, and the average of remaining pixels in 

the window is computed to estimate a pixel. If the difference between the   center 

pixel and average exceeds a threshold, the center pixel is replaced by average; 

otherwise, unchanged. The performance of this filter depends on the selection of 

threshold value. One simple switching filter Adaptive Center-Weighted Median 

(ACWM) [66] proposed by T.Chen et al, Center-Weighted Median (CWM) [64] has 

been used to detect noisy pixels in the first stage. The objective is to utilize the center-

weighted median filters that have varied center weights to define a more general 

operator, which realizes the impulse detection by using the differences defined 

between the outputs of CWM filters and the current pixel of concern. The ultimate 

output is switched between the median and the current pixel itself. While still using a 

simple thresholding operation, the proposed filter yields superior results to other 

switching schemes in suppressing both types of impulses with different noise ratios. 

But its estimation efficiency is poor. Florencio et al. [69] proposed a decision 

measure, based on a second order statistic called normalized deviation.  

The peak and valley filter [70] proposed by Windyga, is a highly efficient 

nonlinear non-iterative multidimensional filter. It identifies noisy pixels by inspecting 

their neighborhood, and then replaces their values with the most conservative ones out 

of the values of their neighbors. In this way, no new values are introduced into the 

neighborhood and the histogram distribution range is conserved. The main advantage 

of this filter is its simplicity and speed, which makes it very attractive for real time 

applications. A modified peak and valley filter, detail preserving impulsive noise 

removal [71] scheme has also been proposed by N. Alajlan. This filter provides better 

detail preservation performance; but it is slower than the original peak and valley 

filter. 

The tri-state median filter [86] proposed by T.Chen et al,  further improved 

switching median filters that are constructed by including an appropriate number of 

center-weighted median filters into the basic switching median filter structure. These 

filters exhibit better performance than the standard and the switching median filters at 
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the expense of increased computational complexity. Z.Wang et al. have proposed a 

progressive switching median filter (PSM) [72] for the removal of impulse noise from 

highly corrupted images where both the impulse detector and the noise filter are 

applied progressively in iterative manner. The noise pixels processed in the current 

iteration are used to help the process of the other pixels in the subsequent iterations. A 

main advantage of such a method is that some impulse pixels located in the middle of 

large noise blotches can also be properly detected and filtered. Therefore, better 

restoration results are expected, especially for the cases where the images are highly 

corrupted. A new impulse noise detection technique [73] for switching median filters 

proposed by S. Zhang et al. is based on the minimum absolute value of four 

convolutions obtained using one-dimensional Laplacian operators. It provides better 

performance than many of the existing switching median filters with comparable 

computational complexity. 

Early developed switching median filters are commonly found being non 

adaptive to a given, but unknown, noise density and prone to yielding pixel 

misclassifications especially at higher noise density interference. To address this 

issue, the noise adaptive soft-switching median (NASM) filter is proposed H.L. Eng et 

al. [74], which consists of a three-level hierarchical soft-switching noise detection 

process. The NASM achieves a fairly robust performance in removing impulse noise, 

while preserving signal details across a wide range of noise densities, ranging from 

10% to 50%. However, for those corrupted images with noise density greater than 

50%, the quality of the recovered images become significantly degraded, due to the 

sharply increased number of misclassified pixels. 

The signal-dependent rank-ordered mean filter [85] is a switching mean filter 

that exploits rank order information for impulse noise detection and removal. The 

structure of this filter is similar to that of the switching median filter except that the 

median filter is replaced with a rank-ordered mean of its surrounding pixels. This 

filter has been shown to exhibit better noise suppression and detail preservation 

performance than some conventional and state-of-the-art impulse noise cancellation 

filters for both grey scale [85] and color [34, 132-137] images. 

The adaptive two-pass rank order filter [87] has been proposed by X.Xu, to 

remove impulse noise from highly corrupted images. Between the passes of filtering, 
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an adaptive process detects irregularities in the spatial distribution of the estimated 

noise and selectively replaces some pixels changed by the first pass with their original 

values. These pixels are kept unchanged during the second filtering. Consequently, 

the reconstructed image maintains a higher degree of fidelity and has a smaller 

amount of noise. 

A variational approach to remove outliers and impulse noise [88] by 

M.Nikolova, is an edge and detail-preserving restoration technique to eliminate 

impulse noise efficiently. It uses a non-smooth data fitting term together with edge-

preserving regularization functions. A combination of this variational method [88] 

with an impulse detector has also been presented in an iterative procedure for 

removing random-valued impulse noise [89]. The filter offers good filtering 

performance but its implementation complexity is higher than most of the previously 

mentioned filters.  

The method proposed by I. Aizenberg et al.  [90], employs boolean functions 

for impulse noise removal. In this approach, the gray level noisy input image is 

decomposed into a number of binary images by gray level thresholding. Detection and 

removal of impulse noise are then performed on these binary images by utilizing 

specially designed boolean functions. Finally, the resulting boolean images are 

combined back to obtain a restored grey level image. 

 A number of filters utilize the histogram information of the input image. In 

image restoration using parametric adaptive fuzzy filter [91] and an adaptive fuzzy 

filter for restoring highly corrupted image by histogram estimation [92], the 

histogram information of the input image is used to determine the parameters of the 

membership functions of an adaptive fuzzy filter. The filter is then used for the 

restoration of noisy images. An adaptive vector filter exploiting histogram 

information is also proposed for the restoration of color images [136]. 

With boundary discriminative noise detection (BDND) algorithm proposed by 

Pei-Eng Ng et al. [106], a highly-accurate noise detection algorithm, an image 

corrupted even up to 70% noise density may be restored quite efficiently. But there is 

no remarkable improvement in the results at higher noise density.  

In addition to the median and the mean based filtering methods discussed 

above, a number of nonlinear impulse noise filtering operators based on soft 
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computing methodologies have also been presented [93-100]. These filters exhibit 

relatively better noise removal and detail preservation capability than the median and 

the mean based operators. However, the implementation complexities of these filters 

are generally too much and the required filtering window size is usually larger than 

the other methods. Indeed, neuro-fuzzy (NF) [101-105] systems inherit the ability of 

neural networks to learn from examples and derive the capability of fuzzy systems to 

model the uncertainty which is inevitably encountered in noisy environments. 

Therefore, neuro-fuzzy systems may be utilized to design line, edge, and detail 

preserving impulse noise removal operators provided that the appropriate network 

topologies and processing strategies are employed. The method proposed by Wenbin 

Luo et al. [113] uses a fuzzy classifier for pixel-classification and a simple median 

filter is employed for replacement of corrupted pixels. The methods proposed by 

F.Russo [30] and F. Farbiz et al. [31], uses neruo-fuzzy for filtering purpose. 

In recent years, a number of methods have been proposed which work on both 

random-valued and salt-and-pepper noise [112,143-148]. The method proposed by 

V.Crnojevic et al, Advanced Impulse Detection Based on Pixel-Wise MAD, [122] is a 

modification of absolute deviation from median (MAD). MAD is used to estimate the 

presence of image details. An iterative pixel-wise modification of MAD is used here 

that provides a reliable removal of impulse noise. An improved method of this 

algorithm is impulse noise filter with adaptive MAD based threshold [129] proposed 

by Vladimir et al.. In this system the threshold value is changed from pixel to pixel 

based on local statistics. Since it is a non-iterative algorithm, its execution time is 

quite reasonable and less than that required by PWMAD. The performance of both the 

methods is quite good under low noise density. But they fail miserably at high noise 

densities. In the same category one more method proposed by Tzu–ChoLin is known 

as   progressive decision based mean type filter [130]. This is based on Dempster-

Shafer (D-S) evidence theory for pixel-classification. The mass functions are 

generated based on information available in the filtering window which are used for 

the D-S evidence theory. Decision rules can determine whether the pixel is noisy or 

not based on the noise-corrupted belief value. Both detection and filtering are applied 

progressively through several iterations. The corrupted pixels are replaced by the 

mean of the noise-free pixels in the filter window.  



 

 

 
Introduction 

 

 Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise                         17 
 

 

An efficient method developed by Jianjun Zhang [112] performs well for 

filtering random-valued noise. In this method, an adaptive center weighted median 

filter is used to identify pixels which are likely to be corrupted and restored by using 

median filter. 

A simple iteration procedure is used for noise detection and filtering purpose. 

In Iterative Adaptive Switching Median Filter [110] proposed by S.Saudia et. al,  a 

two-pass algorithm is employed for identification of a noisy pixel and replacing the 

corrupted pixel by a valid median. Another iterative filter is proposed by R.H.Chan et 

al [143] for effective suppression of random-valued noise. As it takes a large number 

of iterations, its execution time is too much. Further, it fails to retain the edges and 

fine details of an image at higher densities.  

The method proposed by Haindi Ibrahim et al. [111] is an adaptive median 

filter to remove impulse noise from highly corrupted images. In fact, it is a hybrid of 

adaptive median filter with switching median filter. The adaptive median filter 

changes its size according to local noise density estimated. The switching framework 

helps to speedup the process of filtering. This method preserves the local details and 

edges of an image at medium noise densities. But there is no remarkable improvement 

in the results at higher noise densities.  

Recently, a number of algorithms are proposed [138-142, 149-167, 172-174] 

for suppressing impulse noise. Different types of noise detection and correction 

techniques are proposed for filtering based on statistics, fuzzy logic and neural 

network. They work effectively; but, they fail to retain edges and fine details of an 

image at high noise densities even though they have high computational complexities. 

But, none of the filters available in literature is able to achieve very good restoration 

without distorting the edges and fine details. Further, there is a need to reduce 

computational complexity of a filtering algorithm for its use in real-time applications. 

Hence, it may be concluded that there is enough scope to develop better 

filtering schemes with very low computational complexity that may yield high noise 

reduction as well as preservation of edges and fine details in an image. 

1.4 The Problem Statement 

It is essential to suppress noise from an image as far as possible. At the same time, its 

fine-details and edges are to be retained as much as practicable. The filtering 
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algorithms to be developed must be of low computational complexity so that they can 

filter noise in short time, and hence will find themselves suitable for online and      

real-time applications. 

Thus, the problem taken for this doctoral research work is to develop efficient 

non-linear filters to suppress impulse noise: 

 with very high efficiency 

 yielding extremely low distortion 

 in wide range of noise densities 

 with less computational complexity and low run-time overhead  

 while retaining edges and fine details of an image 

This research work focuses mainly on salt-and-pepper impulse noise; in 

addition, some methods are developed to suppress both random-valued and salt-and-

pepper impulse noise.  

Usually, transform-domain filters consume much more time compared to the 

time taken by spatial-domain filers. Thus it is intended to develop efficient filters only 

in spatial-domain. 

Therefore, the following problem is taken. 

Problem: To develop some novel efficient restoration algorithms for images 

corrupted with high density impulse noise. 

 A brief overview of fundamentals of spatial-domain filtering is presented in 

the next section for ready reference. 

1.5 Basics of Spatial-Domain Filtering 

Let  represent an original noise free digital image with M-rows and N-columns 

with the spatial indices i and j ranging from 0 to M-1 and 0 to N-1 respectively. It is 

denoted as: 

 

Let  represent the noisy image with same dimension as that of  . 

Let us define  as a mask or window or kernel, , k and l are limited in 

the range of    and     , where Mw and Nw 

represent the number of rows and columns in the window. For example if it is (3×3) 
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then, the range of k and l is given by -1 ≤ k ≤ +1 and -1 ≤ l ≤ +1 respectively. A noisy 

sub-image  for (3×3) with  as a centre pixel is given by: 

 for -1 ≤ (k,l) ≤ +1. It is usually expressed, in matrix form, 

as:  

 

Similarly, a (5×5)  sub-image centered at  is given by: 

                       ,     -2 ≤ (k,l) ≤ +2. 

The filtering process consists simply of moving the filtering mask from point 

to point in the image. At each point , the response of the filter at that point is 

calculated using predefined relationships. For example, if it is mean filter, then, the 

centre pixel is replaced by mean value of pixels in the filtering window, if it is median 

filtering, centre pixel is replaced by median of sub-image pixels. 

Thus, a restored image is evaluated by convolving the noisy image  with 

filter kernel . The convolution process is mathematically represented as: 

 

where,  denotes the restored image. 

1.6 Image Metrics 

The performances of filters are evaluated by objective as well as subjective 

techniques. For subjective evaluation, the image has to be observed by a human 

expert [168] whereas objective evaluation of an image is performed by evaluating 

error and error-related parameters mathematically. 

There are various metrics used for objective evaluation of an image. The 

commonly used metrics are mean squared error (MSE), root mean squared error 

(RMSE), mean absolute error (MAE) and peak signal to noise ratio (PSNR) etc. 

[6,169]. 

The original noise-free image, noisy image, and the filtered image are 

represented by  and   respectively.  Let the images be of size 

M×N, i.e. i=1,2,3,…,M, and j=1,2,3,…,N. Then, MSE is defined as: 
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The PSNR is defined in logarithmic scale, and is expressed in dB. It is a ratio 

of peak signal power to noise power.  The PSNR is defined as: 

         
)1(log.10 10 MSE

PSNR dB     (1.8) 

provided the signal lies in the range [0,1]. On the other hand, if the signal is 

represented in the range of [0,255], the numerator in (1.8) will be (255)
2
 instead of 1. 

For the color image processing, the color peak signal to noise ratio (CPSNR) 

[36b] in dB is used as performance measure. The CPSNR is defined as: 
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where, MSEc is the mean squared error in a particular channel of the color space. 

Though these image metrics are extensively used for evaluating the quality of 

a restored image, none of them gives a true indication of performance of a filter.  In 

addition to these parameters, a new metric: universal quality index (UQI) [170] is 

used in literature to evaluate the quality of an image.  

Universal Quality Index: 

The universal quality index (UQI) is modeled by considering three different factors: 

(i) loss of correlation, (ii) luminance distortion and (iii) contrast distortion. It is 

defined by: 
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 The UQI consists of three components. The first component is the correlation 

coefficient between the original noise-free image, f and the restored image, f̂  that 

measures the degree of linear correlation between them, and its dynamic range is       

[-1,1]. The second component, with a range of [0, 1], measures the closeness between 

the average luminance of f and f̂ . It reaches the maximum value of 1 if and only if 

f  equals f̂ . The standard deviations of these two images, 
f
and 

f̂
are also 

regarded as estimates of their contrast levels. The value of contrast level ranges from 

0 to 1 and the optimum value of 1 is achieved only when 
f
=

f̂
. 

Hence, combining the three parameters: correlation, average luminance 

similarity and contrast-level similarity, the new image metric: universal quality index 

(UQI) becomes a very good performance measure.   

Image Enhancement Factor: 

The next most widely used quality metric for image quality measurement is Image 

Enhancement Factor (IEF) [171]. It indicates the performance of a filter under varying 

noise densities. Thus, IEF indicates qualitatively the relative quality improvement 

(noise-reduction) exhibited by a process (filter). The mathematical representation of 

IEF is given by, 

                                                                 (1.16) 

 The above metrics are extensively used to evaluate the restored image quality 

of filter, and none of them gives the indication of complexity of filter. Hence, another 

parameter, execution time, is employed to measure the complexity of filter.   
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Execution Time: 

Execution Time (TE) of a filter is defined as the time taken by a digital computing 

platform to execute the algorithm, when no other software except the operating 

system (OS) runs on it. 

Execution Time (TE) depends on the configuration of computer used for 

execution of algorithm. Based of complexity of filter the execution time varies. The 

filter with less complexity will take less time. The filter with low execution time is 

preferred for online and real-time applications. 

Hence, a filter with lower TE is better than a filter having higher TE value 

when all other performance-measures are identical. 

Since the execution time is platform dependant, some standard hardware 

computing platforms: SYSTEM-1, SYSTEM-2 and SYSTEM-3 presented in     

Table-1.1 are taken for the simulation work. Thus, the TE parameter values for the 

various existing and proposed filters are evaluated by running these filtering 

algorithms on these platforms.  

Table-1.1: Details of hardware platforms (along with their operating system) used for 

simulating the filters 

 

1.7 Chapter-wise Organization of the Thesis 

The chapter-wise organization of the thesis is given below. 

Chapter-1: Introduction 

Chapter-2: Study of Existing Filters 

Chapter-3: Development of Novel Filters for Suppression of Salt-and-Pepper Noise 

 

Chapter-4: Development of Novel Filters for Suppression of Random-Valued   

                    Impulse Noise 

Chapter-5: Development of Some Color Image Denoising Filters 

Chapter-6: Conclusion 

Hardware 

platforms 
Processor 

Clock 

(GHz) 

RAM (GB) 

(usable) 

Operating System 

(OS) 

SYSTEM-1 Pentium (R)D  Processor 2.80 0.99 Windows XP 32 bit OS 

SYSTEM-2 Intel(R),Core(TM) 2Duo 3 3.4 Windows XP 32 bit OS 

SYSTEM-3 Intel(R),Core(TM) i5 3.2 3.4 Windows XP 32 bit OS 
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1.8 Conclusion 

In this chapter, the basics of Digital Image Processing, sources of noise and different 

types of noise, review of some existing methods and some commonly used image 

metrics for performance measure of filters are discussed. After brief literature review, 

the doctoral research problem is evolved. 

Extensive studies of well known and high-performing image denoising filters 

available in literature are presented in the next chapter whereas the proposed 

algorithms are discussed in subsequent chapters. Finally, the dissertation is concluded 

in Chapter-6. 
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Preview 
 

Image noise suppression is a highly demanded approach in digital imaging systems 

design. Impulsive noise is frequently encountered during the processes of acquisition, 

transmission and storage and retrieval. In the area of image denoising many filters are 

proposed in literature. The main steps in this process are classification (detection) and 

reconstruction (filtering). Classification is used to separate uncorrupted pixels from 

corrupted pixels. Reconstruction involves replacing the corrupted pixels by an 

estimation technique.  

There are various filters existing in literature, which are used for filtering salt-

and-pepper impulse noise and random-valued impulse noise. There are some special 

types of filters which are used for suppressing salt-and-pepper noise as well as 

random-valued impulse noise. In this chapter, some well-known, standard and 

benchmark filters, which are available in literature, are studied. Novel filters, 

designed and developed in this research work, are compared against these filters in 

subsequent chapters. Therefore, attempts are made here for detailed and critical 

analysis of these existing filters.  
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The organization of the chapter is given below. 

 Order Statistics Filters 

 Detection Followed By Filtering 

 A Brief Comparative Performance Analysis 

 Conclusion 

2.1 Order Statistics Filters 

Order statistic filters are non-linear spatial filters whose response is based on ordering 

(ranking) the pixels contained in the area encompassed by the filtering window. 

Usually, sliding window technique [1, 2, 6] is employed to perform pixel-by-pixel 

operation in a filtering algorithm. The local statistics obtained from the neighborhood 

of the center pixel give a lot of information about its expected value. If the 

neighborhood data are ordered (sorted), then ordered statistical information is 

obtained. The center pixel in the sliding window is replaced with the value determined 

by the ranking result. 

For example, if a 3×3 window is used for spatial sampling, then 9 pixel data 

are available at a time. First of all, the 2-D data is converted to a 1-D data, i.e. a 

vector. Let this vector of 9 data be sorted. Then, if the mid value (5
th

 position pixel 

value in the sorted vector of length = 9) is taken, it becomes median filtering with the 

filter weight vector [0 0 0 0 1 0 0 0 0]. The median, alpha-trimmed mean (ATM), 

min, max filters are some members of this interesting family.  

2.1.1 Median Filter 

The median filter is one of the most popular nonlinear filters [1, 2]. It is very simple to 

implement and much efficient as well. The median filter, especially with larger 

window size destroys the fine image details due to its rank ordering process.  It acts 

like a low pass filter which blocks all high frequency components of the image like 

edges and noise, thus blurs the image. 

As the noise density increases, the filtering window size is increased to have 

sufficient number of uncorrupted pixels in the neighborhood. Depending upon the 

sliding window mask, there may be many variations of median filters. In this thesis, 

Median filter with sliding window (3×3), (5×5) and (7×7) are reviewed. A centre 

pixel, irrespective of either being noisy or not, is replaced with the median value. Due 
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to this, its results are disappointing in many cases.   Applications of the median filter 

require caution because median filtering tends to remove image details such as thin 

lines and corners while reducing noise. 

2.1.2 Alpha-Trimmed Mean Filter 

The alpha-trimmed mean (ATM) filter [67] is based on order statistics and varies 

between a median and mean filter. It is so named because, rather than averaging the 

entire data set, a few data points are removed (trimmed) and the remainders are 

averaged. The points which are removed are most extreme values, both low and high, 

with an equal number of points dropped at each end (symmetric trimming). In 

practice, the alpha-trimmed mean is computed by sorting the data low to high and 

finding the average of the central part of the ordered array. The number of data values 

which are dropped from the average is controlled by trimming parameter  (alpha) 

and hence the name alpha-trimmed mean filter.  

Let be a sub-image of noisy image . For simplicity,  is 

referred as  . Suppose the  lowest and the  highest gray-level values of  are 

deleted from the neighborhood. Let  represent the remaining  pixels. A 

filter formed by averaging these remaining pixels is called alpha- trimmed mean filter 

whose output may be expressed as: 

                            

rg
mn

jif
1

),(ˆ
                                       (2.1) 

Choice of parameter  is very critical and it determines the filtering 

performance. Hence, the ATM filter is usually employed as an adaptive filter whose  

 may be varied depending on the local signal statistics. Therefore, it is a 

computation-intensive filter as compared to a simple median filter. Another problem 

of ATM is that the detailed behavior of the signal cannot be preserved when the filter 

window is large. 

2.1.3 Center Weighted Median Filter (CWM) 

The center weighted median (CWM) [64] filter is a special case of weighted median 

(WM) filters. This filter gives more weight only to the central pixel of a window and 

thus it is easy to design and implement. CWM filter preserves more details at the 

expense of less noise suppression like other non-adaptive detail preserving filters. 
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Let  be a noisy image. Consider a sub-image  of size P = Q = 

2L+1, centered at . The output of the CWM filter, in which a weight adjustment 

is applied to the centre pixel within the sliding window, can be described as 

 

                                                                                                                                  (2.2) 

For a (3×3) window, the median is computed based on those 8+  pixel values. 

Note that integer  is positive and odd, and the CWM filter becomes the 

median filter when  =1. On the other hand, when  is greater than or equal to the 

window size (e.g.,  for a (3×3) window), it becomes an identity filter, which 

always takes the origin pixel value as the output. A CWM filter with a large 

center weight performs better in detail preservation. But its performance is not 

acceptable at high noise densities.  

2.2 Detection Followed by Filtering 

The filters which are discussed in section 2.1 are the filters without noise detection 

stage. Thus, even non-noisy pixels are also replaced by some estimator. Because of 

this, the performance of these filters is not good. To overcome this problem, a new 

filtering technique is introduced. This type of filtering involves two steps. In first step 

it identifies noisy pixels and in second step it filters only those pixels that are 

identified as noisy. The performance of these filters depends on impulse detector and 

estimator by which noisy pixels are replaced in the filtering process. 

In this section some well-known, standard and benchmark   filters, available in 

literature, are studied. 

2.2.1 Tri-State Median Filtering (TSM) 

The tri-state median (TSM) filter [86] incorporates the median filter (MF) and the 

center weighted median (CWM) filter in a noise detection framework. Noise detection 

is realized by an impulse detector, which takes the outputs from the median and center 

weighted median filters and compares them with the center pixel value in order to 

make a tri-state decision. The switching logic is controlled by a threshold value. 

Depending on this threshold value, the center pixel value is replaced by the output of 
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either median filter (MF), CWM filter or identity filter. The output  of TSM is 

given by 

                                  (2.3) 

where,    and    are the outputs of CWM and MF filters 

respectively,  is noisy image and   and                       

 .  Note that the threshold T affects the performance of 

impulse detection. Usually, a threshold, T  [10, 30] is good enough [86]. Of course, 

its value should adaptively be chosen for better results.  

2.2.2 Adaptive Median Filters (AMF) [75] 

For good impulse classification it is preferred to remove the positive and negative 

impulse noise one after another. There are a number of algorithms which resolve this 

problem, but they are more complex. This algorithm is simple and better performing 

in removing a high density of impulse noise as well as non-impulse noise while 

preserving fine details. The size of filtering window of median filter is adjusted based 

on noise density.   

This algorithm is based on two level tests. In the first level of tests, the 

presence of residual impulse in a median filtered output is tested. If there is no 

impulse in the median filtered output, then the second level tests are carried out to 

check whether the center pixel itself is corrupted or not. If the center pixel is 

uncorrupted then it is retained at the output of filtered image. If not, the output pixel is 

replaced by the median filter output. On the other hand, if the first level detects an 

impulse, then the window size for median filter is increased and the first level tests are 

repeated. The maximum filtering window size taken is 11×11 if the noise density is of 

the order of 70% [75].  

2.2.3 Progressive Switching Median (PSM) Filter for the Removal of Impulse 

Noise from Highly Corrupted Images 

Progressive switching median (PSM) filter is median based filter [72]. It consists of 

two points (i) switching scheme – an impulse detection algorithm is used before 

filtering; thus only noisy pixels are filtered and (ii) progressive methods – both 
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impulse detection and progressive filtering are applied through several iterations one 

after the other. Hence, it is referred as PSM filter. 

In the first stage, an impulse detection algorithm is used to generate a 

sequence of binary flag images. This flag image indicates the location of noise in the 

input image. If the binary flag image pixel is 1, it indicates that the pixel in that 

position in the input image is noisy. On the other hand, if the binary flag is 0, then it is 

considered noise-free. In the second stage, filtering is applied based on binary flag 

image generated in the first stage. Both these steps are progressively applied through 

several iterations.  The noisy pixels processed in the current iteration are used to help 

the process of the other pixels in the subsequent iterations. Therefore, better 

restoration results are expected, even under high noise density conditions.  

2.2.4 A New Impulse Detector for Switching Median Filter (SMF) [73] 

An impulse detector which is proposed for switching median filter is based on the 

minimum absolute value of four convolutions obtained using one-dimensional 

Laplacian operators. 

The input image is first convolved with a set of convolution kernels. Here, 

four one-dimensional Laplacian operators as shown in Fig 2.1 are used, each of which 

is sensitive to edges in a different orientation. Then, the minimum absolute value of 

these four convolutions is used for impulse detection, which can be represented as:  

                                     (2.4) 

where  is the p
th

 kernel and the symbol, , denotes a convolution operation. 

The value of  detects impulses due to the following reasons. 

(1) is large when the current pixel is an isolated impulse because the four 

convolutions are large and almost the same. 

(2)  is small when the current pixel is a noise-free flat region pixel because the 

four convolutions are close to zero. 

(3)  is small even when the current pixel is an edge (including thin line) pixel 

because one of the convolutions is very small (close to zero) although the other 

three might be large. 

From the above analysis, it is evident that  is large when  is 

corrupted with an impulsive noise, and   is small when  is noise-free 
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whether or not it is a flat-region, edge, or thin-line pixel. So, the  is compared 

with a threshold to determine whether a pixel is corrupted or uncorrupted. The binary 

flag image  is given by, 

                                     (2.5) 

 The filtered image is given by 

                 (2.6) 

where  is median value of filtering window. Based on the number of 

simulations carried out on different test images, the threshold, T  [30, 50] [73]. The 

algorithm is tested with a threshold, T=40 and filtering window of size 5 × 5.  

 

 

 

 

 

 

 

 

 

Fig. 2.1Four 5×5 convolution kernels 

  

Fig.2.1. Four 5×5 convolution kernels 

2.2.5 Advanced Impulse Detection Based on Pixel-Wise MAD (PWMAD) [112] 

This method is used for filtering both random valued and salt-and-pepper valued 

impulse noise. In this method, median of the absolute deviations from the median, 

MAD [112] is modified and used to efficiently separate noisy pixels from the image 

details. An iterative pixel-wise modification of MAD, PWMAD provides reliable 

removal of arbitrarily distributed impulse noise. 

Let , and represent pixels with coordinates (i, j) of noisy 

image, median image and absolute deviation image, respectively. Also, let (i,j), 

m(i,j)and d(i,j)denote matrices (sub-image) whose elements are pixels of the 

corresponding images contained within the (2L + 1) × (2L + 1) size window, centered 
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around at position (i, j). The median image and absolute deviation image may be 

defined as: 

=med( (i,j))                                                              (2.7) 

                                          d(i,j)= | − |                                                 (2.8) 

The median of the absolute deviations from the median, MAD, image is defined as:  

                       MAD(i, j)= med (| (i, j)− med ( )|)                                    (2.9) 

Note that a single median value is subtracted from all the pixels within (i, j). In 

order to make MAD consistent with definition of absolute deviation image, where its 

corresponding median image pixel  is subtracted from each pixel, a modified   

Pixel-Wise MAD (PWMAD) image is given by 

 PWMAD (i, j)= med (d(i, j)) =med (|  (i, j)− |)                       (2.10) 

The absolute deviation image d(i,j)consists of noise and image details eliminated from 

the noisy image by median filtered. If a median is applied to  (absolute 

deviation image), a PWMAD image is generated. By subtracting the PWMAD image 

from  , details are eliminated and only noise is left behind. If this process is 

repeated several times, then the image, obtained after the final iteration, consists of 

pixels that are corrupted with impulsive noise. This image can be used for generation 

of binary image. 

 The whole iteration procedure can be represented as:  

 

i.e.                      (2.11) 

where  is a primary absolute deviation image defined in (2.8). The iteration is 

terminated after n = N-1, and  , thus obtained, is used for generation of binary 

flag image, which is defined as 

                                                                               (2.12) 

The value of T is in the range [0 30]. The simulation is carried with T = 5 and number 

of iterations, N = 3 and the results are presented in the Chapter-3. 

The output image is given by (2.6), i.e. selective median filtering is performed. 
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2.2.6 Impulse Noise Filter with Adaptive MAD (AMAD)-Based Threshold [129] 

This is an improved method of PWMAD. This is also used for filtering both random 

valued and salt-and-pepper valued impulse noise. In this method, an extension to the 

switching scheme is used, where the threshold T is varying from pixel to pixel. The 

threshold value is modified in accordance with variance, estimated by using MAD. 

No iteration is used for impulse detection, which reduces run time with same quality 

as compared to PWMAD. The threshold  is given by  

                                                     (2.13) 

where a and b are varying parameters, a  [10, 30] ; b  [50, 100]   [129 ].The 

simulation is carried by taking a=15 and b=70, and the results are presented in 

Chapter-4. 

2.2.7 A Switching Median Filter with Boundary Discriminative Noise Detection 

for Extremely Corrupted Images [106] 

To determine whether a pixel is corrupted or not, the Boundary Discriminative Noise 

Detection (BDND) algorithm [106] first classifies the pixels of a localized window, 

centering on the current pixel, into three groups: lower intensity impulse noise, 

uncorrupted pixels, and higher intensity impulse noise. The center pixel will then be 

considered as uncorrupted, provided that it belongs to the uncorrupted pixel group, 

else it is considered corrupted. The grouping of pixels depends on two boundaries. 

The accurate determination of these boundaries yields very high noise detection 

accuracy even up to 70% noise corruption. 

The algorithm is applied to each pixel of the noisy image in order to identify 

whether the pixel is corrupted or uncorrupted. After such an application to the entire 

image, a binary decision map  is formed with 0s indicating the positions of 

uncorrupted pixels (i.e., ), and 1s for those corrupted ones                      

(i.e., ). To accomplish this objective, all the pixels within a pre-defined 

window that centers at the considered pixel are grouped into three clusters, low-

intensity cluster, medium-intensity cluster and high-intensity cluster. For each pixel 

 being considered, if 0 ≤   ≤ b1, the pixel will be assigned to the lower-

intensity cluster; otherwise, to the medium-intensity cluster for b1< ≤b2 or to the 
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high-intensity cluster for b2 <  ≤ 255. The current pixel is identified as 

uncorrupted only if it falls into the medium-intensity cluster; otherwise it is classified 

as corrupted.  

The boundary discriminative process consists of two iterations in which the 

second iteration will only be invoked conditionally. In the first iteration, a local 

window with a size of 21×21 is used to examine whether the center pixel is an 

uncorrupted one [106]. If the pixel fails to meet the condition to be classified as 

uncorrupted, the second iteration will be invoked to further examine the pixel based 

on a more confined local statistics by using a 3×3 window. In summary, the steps of 

the BDND are: 

Step-1. A sliding window of size 21×21 is centered around the current pixel. 

Step-2. Sort the pixels in the window according to the ascending order and find the       

median, , of the sorted vector Vo. 

Step-3. Compute the intensity difference between each pair of adjacent pixels across 

the sorted vector Vo and a difference vector Vd is obtained. 

Step-4. For the pixel intensities between 0 and med in the Vo, find the maximum 

intensity difference in the Vd of the same range and mark its corresponding 

pixel in the Vo as the boundary b1 . 

Step-5. Likewise, the boundary b2 is identified for pixel intensities between med and 

255; three clusters are, thus, formed. 

Step-6. If the pixel belongs to the middle cluster, it is classified as uncorrupted pixel, 

and the classification process stops; else, the second iteration will be invoked 

which is given by step-7 and step-8. 

Step-7. Impose a 3×3 window, being centered around the concerned pixel and repeat 

the steps: Step-2 through Step-5. 

Step -8. If the pixel under consideration belongs to the middle cluster, it is classified 

as uncorrupted pixel; otherwise, corrupted. 

Adaptive Filtering Scheme: 

In the filtering process a binary flag image is used. The pixel which is declared 

as noisy (i.e. ), is replaced with median of uncorrupted pixels in the filtering 

window. If the pixel is noise-free (i.e. ), it is retained in the reconstructed 
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image . Thus, it passes through a selective median filtering process and hence 

the output image is represented by (2.6). 

Now,  is median of only the uncorrupted pixels in the adaptive window, . 

Starting the filtering process with =3×3, the filtering window iteratively extends 

outward by one pixel in all the four sides of the window, provided that the number of 

uncorrupted pixels are less than half of the total number of pixels within the filtering 

window, while W<WD or number of uncorrupted pixels is equal to zero, WD is 

maximum filtering window size. In this work, an additional reliability condition is 

further imposed such that the filtering window will also be extended when the number 

of uncorrupted pixels is equal to zero.  

The performances of all the above algorithms are tested with different gray 

scale images, with their dynamic range of values (0, 255). In each simulation, image 

is corrupted by impulse noise with equal probability at different noise densities. The 

restoration performances are quantitatively measured by using different image metrics 

like PSNR, MSE, IEF and UQI. All the simulation results are presented in next 

chapters. The salt-and-pepper noise related filters are analysed in Chapter-3 and 

random-valued impulse noise filters are analysed in Chapter-4.  

 Though the detail performances of these filters are presented in subsequent 

chapters, a brief comparative performance analysis is presented below for ready 

reference. 
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2.3 A Brief Comparative Performance Analysis 

A brief comparative performance analysis is presented, in terms of PSNR, as a ready 

reference. The existing well known filters are simulated on MATLAB 7.4 platform. 

The Lena image of size 512×512, an 8 bit gray-scale image, is employed as test 

image. The input image is corrupted with salt-and-pepper and random-value impulse 

noise with noise density ranging from 10% to 90% and 5% to 30% respectively. The 

peak-signal-to-noise ratio (PSNR) is used as performance measure. The highest (best) 

PSNR value for a particular noise density is highlighted to show the best performance. 

From Table 2.1, it is observed that the filter BDND performs better in terms of 

PSNR in complete range of noise density. Still, the no filter shows the best perform in 

the range of 50% to 90%. The filter PSM and simple MF [3×3] perform second best, 

but fail to perform well under high noise density. ATM [7×7] gives second best 

performance in medium range (50% to 70%) of noise density. 

 

 

 

Table-2.1:  Filtering performance of various filters in terms of PSNR (dB)  

Test image: Lena  

 
 

Sl.No 

 

Filters 

% of Noise (Salt-and-Pepper) 

10 20 30 50 70 90 

1 MF [3×3] 33.74 27.28 21.75 14.12 9.6 6.54 

2 MF [5×5] 31.44 30.67 29.11 20.32 12.88 7.29 

3 MF [7×7] 29.41 28.99 28.49 25.91 16.54 8.09 

4 ATM[3×3] 31.99 27.72 23.06 15.97 11.31 8.45 

5 ATM[5×5] 29.11 27.61 25.96 20.68 14.57 10.92 

6 ATM[7×7] 29.2 28.88 28.46 27.11 18.92 8.62 

7 CWM 34.49 30.11 24.01 15.55 10.03 6.69 

8 TSM 35.49 29.31 23.48 15.02 9.58 6.27 

9 AMF 33.76 29.51 24.65 16.37 10.87 6.92 

10 PSM 37.27 32.81 29.21 9.95 8.11 6.61 

11 SMF 29.24 27.51 25.94 21.12 13.38 7.36 

12 BDND 39.09 36.53 34.22 29.66 25.62 16.81 

 

Sl.No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 33.95 29.86 24.56 20.57 17.31 14.85 

2 ATM[3×3] 33.66 30.02 25.81 22.22 18.86 16.15 

3 TSM 34.86 30.10 24.23 21.22 17.63 15.10 

4 PSM 34.93 31.55 28.13 24.19 20.89 17.36 

5 PWMAD 33.52 28.28 22.28 19.01 15.84 15.84 

6 AMAD 36.01 31.94 27.01 24.22 21.05 17.56 
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From second part of Table 2.1, it is evident that AMAD performs best at low 

density of random noise. Even MF [3×3], PSM and ATM are also exhibiting 

reasonably good performance in this range of noise density. But all filters fail to 

perform in high range of RVIN. 

 

2.4 Conclusion 

This chapter aims to provide a complete scenario of some existing filters. Because of 

space limit, only a few important filters are presented in this chapter. 

From Table-2.1 it is observed that the BDND filter performs best for SPN of 

low, medium and high noise densities. The performances of other filters are restricted 

to either low range (i.e., 10% to 30%) or medium range (i.e., 30% to 50%). The 

performances of filters available in literature for RVIN are also observed in this table. 

These filters don‟t exhibit any promising results. Some of them perform well at low 

noise density whereas some other show better results at medium or high noise 

densities.    

Hence, there is sufficient scope to develop more efficient filters to suppress 

SPN and RVIN of wide noise densities. The filters, whose performances are studied 

through Table-2.1, will be employed as references in subsequent chapters where new 

filters developed will be compared against them. 
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Preview 

In this chapter some new filters for suppressing salt-and-pepper impulse noise are 

proposed that works based on decision-based techniques. The simulation results, 

presented at the end of the chapter, are quite encouraging. The developed efficient 

spatial-domain image denoising algorithms that are presented here are:   

 Adaptive Noise Detection and Suppression (ANDS) Filter 

 Robust Estimator based Impulse-Noise Reduction (REIR) Algorithm  

 Impulse Denoising Using Improved Progressive Switching Median Filter 

(IDPSM) 

 Impulse-Noise Removal  by  Impulse Classification (IRIC) 

 A Novel Adaptive Switching Filter-I (ASF-I) for Suppression of High Density 

SPN 

 A Novel Adaptive Switching Filter-II (ASF-II) for Suppression of High Density 

SPN 

 Impulse Denoising Using Iterative Adaptive Switching Filter (IASF) 

Before describing the newly developed filters, Basic Filter Paradigms are discussed in 

the next section. 

3 
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3.1. Basic Filter Paradigms 

The filters, developed in this doctoral research work, are basically decision-directed 

filters. Decision directed filters are also known as Classifier-Filter (CF) algorithms 

since the input data is first classified as either noisy or noise-free and then filtering 

operation is performed only if the input data has been classified noisy. The CFs come 

under four basic paradigms shown in Fig. 3.1.The earliest in the history is the 

switching filter (SF) paradigm, depicted in Fig. 3.1(a), whereas the basic classifier 

filter (BCF), shown in Fig. 3.1(b), is a slight modified version of it. In the BCF 

framework, an algorithm needs to develop a binary flag image, . On the other 

hand, an SF paradigm doesn‟t produce any such intermediate image and thus the 

classification and the filtering operation are concurrently performed. The third and the 

fourth paradigms: iterative classifier filters, namely, ICF-1 and ICF-2, perform the 

classification iteratively. While ICF-1 doesn‟t employ adaptive windowing, ICF-2 

does employ for much better classification at very high noise densities. The ICF-1 and 

ICF-2 paradigms are illustrated in Fig. 3.1(c) and Fig. 3.1(d) respectively. Novel 

spatial domain filters are developed, in this research work, on the last three basic 

frameworks, namely, BCF, ICF-1 and ICF-2. The proposed algorithms and the 

underlying paradigms are listed in the Table-3.1. 

 

 

Table-3.1: Proposed algorithms with basic paradigms 

Sl. 

No. 
Algorithm Paradigm 

1 
Adaptive Noise Detection and Suppression (ANDS) Filter 

 
BCF 

2 
Robust Estimator Based Impulse-noise Reduction Algorithm (REIRA) 

 
ICF-2 

3 
Impulse Denoising Using Improved Progressive Switching Median 

Filter (IDPSM)  
ICF-1 

4 
Impulse Noise Removal in Highly Corrupted Image by Impulse 

Classification (IRIC)  
SF 

5 
A Novel Adaptive Switching Filter-I (ASF-I) for suppression of High 

Density SPN 
BCF 

6 
A Novel Adaptive Switching Filter-II (ASF-II) for suppression of High 

Density SPN 
BCF 

7 
Impulse Denoising Using Iterative Adaptive Switching Filter (IASF)  

 
ICF-1 
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       Fig. 3.1  Block Diagrams of Basic Paradigms 

         

                     (a)  Switching-Filter (SF)    

        (b)  Basic Classifier-Filter (BCF) 

        (c)   Iterative Classifier-Filter-1 (ICF-1) 

        (d)  Iterative Classifier-Filter-2 (ICF-2) 

a 
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c 
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3.2. Adaptive Noise Detection and Suppression (ANDS) Filter [P1] 

This method is based on the BCF paradigm shown in Fig. 3.1(b). Neighborhood 

difference is employed for pixel classification. Controlled by binary image, , the 

noise is filtered by estimating the value of a pixel with an adaptive switching based 

median filter applied exclusively to neighborhood pixels that are labeled noise-free. 

The proposed filter performs better in retaining edges and fine details of an image at 

low-to-medium densities of fixed-valued impulse noise. 

3.2.1 Adaptive Noise Detection Algorithm 

Fig. 3.2 shows the flowchart for noise detection algorithm. The following steps 

explain the noise detection algorithm.   

Step-1. Neighborhood Preprocessing. 

A 3×3 window of the noisy input image is taken around a pixel  that is, 

 for . The sub-image ,  and 

 are denoted as ,  and  respectively. The difference image, 

 is then evaluated as:   

 

Step 2: Neighborhood Replacement 

Replace all neighboring pixels with the corresponding difference values, i.e. 

 

Step-3. Correlation Map using Adaptive Thresholding 

In this step correlation map to eight neighborhood of  is developed. 

Mapped image is formed according to the following rule:       

                                                              (3.1)   

where  1≤ i ≤ 3, and 1 ≤ j ≤ 3, (i, j) ≠ (2, 2).  

The threshold parameter is adaptive and is given by,  

                                   (3.2) 

In case of salt-and-pepper noise, maximum and minimum pixel values are 255 and 0 

respectively. If a center pixel has maximum or minimum value, then  value reaches 

to its minimum value.  
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Fig. 3.2 Flow chart for noise detection 
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Step 3: Classification of Pixel  

Initially all pixels of  are labeled as noise-free pixels in a binary flag 

image  of size M×N, that is all values are set to zero initially. From the 

correlation map  central pixel will be classified as noisy or noise-free, based on 

the number of zeros (Z) in the eight neighborhood of . If 3Z then current 

pixel   is classified as a noise free and   otherwise . On the 

other hand, Z will be small when the noise density is high. 

Step 4: Refinement 

Elements of  give information whether a pixel has been classified as 

noisy or noise-free. Since salt-and-pepper corrupted pixels have values 0 and 255 

respectively, then the binary flag matrix  will be subjected to further verification 

as per the proposition given below.  

Proposition: If a pixel  satisfies the condition 

                                                        (3.3) 

Then the pixel is declared as noise-free and thus  will be retained as 0 if it is 

assigned a value 1 in the previous stage.  

3.2.2 Adaptive Noise Filtering 

Fig. 3.3 shows the flowchart for adaptive noise filtering. Based on the binary flag, no 

filtering is applied to those uncorrupted pixels (i.e.  while the SM 

(switching median) with an adaptively determined window size is applied to each 

corrupted one (i.e. ). 

The maximum window size is limited to (7×7) in order to avoid severe blurring 

of image details at high noise density cases. Starting with (3×3) filtering window 

iteratively extends outward by one pixel in all the four sides of the window, provided 

that the number of uncorrupted pixels is less than half of the total number of pixels 

within the filtering window. Only the pixels that are classified as noise free in filtering 

window will participate in median filtering process. This will, in turn, yield a better 

filtering result with less distortion. 

Intensive simulations are carried out using several monochrome test images, 

which are corrupted with impulse noise of various noise densities. The simulation 

results are presented in Section-3.8. 
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Fig. 3.3 Flow chart for adaptive filtering 
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3.3. Robust Estimator based Impulse-Noise Reduction (REIR) 

Algorithm [P2] 

A robust statistical estimator, Lorentzian estimator [78], is employed in ICF-2 

paradigm as shown in Fig. 3.1(d) in Section3.1, where adaptive window is used for 

pixel classification. The noisy pixel is replaced with Lorentzian estimator or average 

of the previously processed pixels. Because of adaptive windowing technique, the 

filter is able to suppress the noise at a density as high as 90%. 

3.3.1 Background 

 In recent times, nonlinear estimation techniques have been gaining popularity in 

image denoising problems.  But they fail to remove noise in high frequency regions 

such as edges and fine details in the image. 

To overcome this problem a nonlinear estimation technique has been 

developed based on robust statistics. The contaminating noise in an image is 

considered as a violation of assumption of spatial coherence of the image intensities 

and is treated as an outlier random variable [51, 77]. When the ideal assumptions of a 

system are violated, problem of estimation can be solved by robust statistics 

techniques. A robust estimation based filter [51] is available in literature that 

suppresses the low-to-medium density additive noise quite efficiently. Being 

encouraged with its performance, the same basic concept of robust estimation filter 

[51] is modified and implemented in an adaptive windowing framework to suit the 

fixed-valued impulse noise suppression application. 

Robustness is measured using two parameters: influence curves and 

breakdown point. The influence curves tell us how an infinitesimal proportion of 

contamination affects the estimate in large samples. The breakdown point is the 

largest possible fraction of observations for which there is a bound on the change of 

the estimate when that fraction of the sample is changed without restrictions. 

If an estimator is more forgiving about outlying measurements, then 

robustness increases. In the proposed method, a re-descending estimator is considered 

for which the influence of outliers tends to zero with increasing distance. A 

Lorentzian estimator [78] has an influence function which tends to zero for increasing 

estimation distance and maximum breakdown value. Therefore, it is employed to 

estimate an original image pixel from noise corrupted pixel in the proposed filer. 
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The Lorentzian estimator and its influence function are given by:  

                                                  (3.4)   

                                                           (3.5)  

where x  is Lorentzian estimation distance and σ is standard deviation.  

An image is assumed to be non-stationary. Hence, the image pixels are 

sampled with small spatial windows (3×3, 5×5 or 7×7) and this estimation algorithm 

is applied to each window. 

3.3.2 Proposed Algorithm 

Fig. 3.4 shows the flowchart of the proposed algorithm. Let  denotes a 

corrupted image. For each pixel , a 2-D sliding window  is selected such 

that the current pixel  lies at the center of the sliding window. Let ,  

and  be the minimum, median and maximum gray level in the selected window. 

Let (P×Q) be the window size. In this case a square window is used where P = Q. 

The proposed algorithm is as follows: 

Step-1.  Initialize the sliding window size, P to 3.   
Step-2.  Determine  ,   and  in . 

Step-3. IF <  < , 

                GO TO Step-5 

ELSE increment window size, P to P+2, provided P ≤ 7. 

Step-4.  IF  P ≤ 7,  

               GO TO step 2, 

ELSE replace the center pixel with the mean of the processed neighborhood 

pixel values.  
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Fig. 3.4 Flowchart for REIR 

 

 

Restored image  

Initialization 

No   

  Yes 

No 

Yes 

Yes 

INPUT 

OUTPUT 

Noisy Image 

 

No 

Restoration 

No 
Filtering 

P 

 

R 

 

O 

 

C 

 

E 

 

S 

 

S 

 

Is 

< m(i,j) <  

? 

Is 

< <  

? 

 

Windowing  

(P×P) 

Determine                      

, and m(i, j) 

P = P+2 

 

Is 

P ≤ 5 

? 

 

 

 

 

k

k

k

kk

w

jiw

jif

),(

),(ˆ
g

 

P=3 



 

 
Development of Novel Filters for Suppression of Salt-and-Pepper Noise 

 

 Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise                         49 
 

 

Step-5.  IF < < ,  

                    THEN  is considered a noise-free pixel, 

             ELSE select a pixel in the window such that  < <  

Step-6. Compute Absolute Deviation from Median (ADM), dk ,k = (k,l), defined by 

                            
mjid lk, ),(gk .

                                                             (3.6) 

Step-7. Compute influence function ψ(.) as follows.    

 

                                

2
d22σ

d2
)dψ(

k

k
k

                                              (3.7)    

where σ is outlier rejection point, given by, 

                                    2

s
                                                                   (3.8)                                                                              

where s is maximum expected outlier, which is calculated as, 

                                    Ns                                                                    (3.9) 

where N is the local estimation of the image standard deviation, where ζ is a 

smoothening factor and is chosen as 0.3 for low to medium smoothing. 

Step-8.filtered image is estimated by  

                          k

k

k

kk

w

jiw

jif

),(

),(ˆ
g

                                                  (3.10)  

                            where  
k

k

k
d

d
w

)(
 

An exhaustive simulation work is carried out and results are presented in 

Section-3.8.   
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3.4. Impulse Denoising Using Improved Progressive Switching 

           Median Filter (IDPSM) [P3] 

The proposed algorithm is developed based on ICF-1 paradigm as shown in Fig. 

3.1(c) in Section 3.1. The noisy pixel is replaced with median of uncorrupted pixels in 

an adaptive filtering window. The iterative nature of the filter makes it more efficient 

in noise detection and adaptive filtering window technique makes it robust enough to 

preserve edges and fine details of an image in wide range of noise densities. 

3.4.1 Impulse Noise Detection 

Fig 3.5 shows the flowchart for noise detection algorithm. The flowchart itself 

explains the complete noise detection processes. After n-iterations the algorithm 

generates binary flag image . Where n is positive integer (n Z+
 ). 

 Let  be the input noisy image. For each pixel , a 2-D sliding 

window  of size 3×3 is selected such that the central pixel  lies at the 

center of the sliding window. The algorithm is explained as follows: 

Let n be the number of iteration. Initialize the iteration index I=1, and binary flag 

image . Calculate ,  and  for selected window .  

IF –  

        THEN  

ELSE  . 

This process is repeated for complete image, and the complete algorithm is repeated 

until iteration index I = n (i.e., up to n-iterations).  

3.4.2 Refinement 

Elements of  give the information whether the pixel has been classified as 

noisy or noise-free. Since salt-and-pepper has minimum and maximum pixel values   

0 and 255 respectively, the binary flag image is cross-checked. If any pixel has been 

classified as noisy but its value will be in the range (0,255), then the corresponding 

flag is changed from 1 to 0.  This improves the performance of filtering algorithm.  
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Fig. 3.5 Flowchart for noise detection 
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3.4.3 Noise Filtering 

Fig 3.6 explains the filtering algorithm. The filtering algorithm takes two 2-D signals 

as its input. In addition to the noisy image , it also accepts the binary flag image 

. In fact, binary flag image  controls the filtering process and, therefore, 

may be considered as a control signal. Let us introduce the filtering window 

 with size , and   , where x = 0,1 and 2. Initialize        

x = 0 and calculate . Let   be the median of noise-free pixels and Cw2 be 

the number of noise-free pixels in the filtering window. If Cw2 ≥ , then replace the 

noisy pixel with  in the filtered image . Otherwise increment the x by 1. 

If x > 2, then replace the noisy pixel with left neighboring pixel of center pixel in the 

output image . Otherwise recalculate ,   and Cw2 for new filtering 

window and repeat the above process. 

 The value of threshold  is important whose optimum value is evaluated 

searching for best performance in terms of PSNR in separate experiment, discussed in 

Section-3.4.4. The noise ratio  is given by: 

                                                           (3.11) 

where is total number of noisy pixels and  is total number of noise-free pixels in 

the image. Thus, the total number of pixels is represented by (C1+C2). The value of   

lies between 0 and 1 (i.e., ). The parameter,   for x = 0, 1, 2 are defined 

as:                                                

                                           (3.12)   

                                                                                                 (3.13)   

                                            (3.14)   

The other parameters are given by, .  

3.4.4 Optimizing the Threshold 

In order to optimize the value of threshold, a number of simulation experiments are 

conducted on standard test images, corrupted with SPN of different noise densities. 

The performance is evaluated in terms of PSNR. The simulated results of Lena test 

image is tabulated in table Table-3.1. It is observed that the proposed system yields 

high performance, in terms of PSNR, for the threshold, T  [40, 50]. Thus, an 

optimized value of threshold, T, i.e., Toptimal taken is 45. 
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Extensive simulations are conducted on the different gray scale test images 

and simulation results are presented in Section 3.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table-3.2: Performance of IDPSM filter in terms of PSNR for different Threshold, T operated 

on Lena image corrupted with SPN under various noise densities 

 

Sr.No Threshold T 
SPN Noise (%) 

20 30 40 

1 10 30.63 29.03 28.07 

2 20 33.85 31.41 29.56 

3 30 37.02 33.31 30.41 

4 40 38.19 34.96 30.97 

5 45 38.24 35.12 31.62 

6 50 38.22 35.10 31.59 

7 60 37.02 34.74 30.79 

8 70 35.63 32.77 30.01 

 

Fig. 3.6 Flowchart for filtering 
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3.5. Impulse-Noise Removal by Impulse Classification (IRIC) [P4] 

This algorithm is developed under the framework of SF paradigm as shown in            

Fig. 3.1(a) in Section-3.1. The noisy pixel is replaced with median of processed pixels 

in the filtering window. At high noise densities, the median filtering may not be able 

to reject outliers always. Under such circumstances, the processed left neighboring 

pixel is considered as the estimated output. The computational complexity of this 

method is equivalent to that of a median filter having a 3×3 window. The proposed 

algorithm requires simple physical realization structures. Therefore, this algorithm 

may be quite useful for online and real-time applications.   

3.5.1 Proposed Algorithm  

The algorithm is explained below. 

Step-1. Select a window , .  

Step-2. IF  <  <  

                  GO TO Step-3   

             ELSE GO TO Step-4.  

Step-3. No Filtering:  

                 

            EXIT. 

Step-4. Estimation: 

            Determine median, . 

Step-5. Filtering Process: 

            IF0< <255  

                 

            ELSE  . 

Step-6. Repeat Step-1 to Step-5 for all locations, 

            END. 

The flowchart of the proposed algorithm is depicted in Fig. 3.7. 

The performance of the algorithm is tested with different gray scale images. 

The simulated results are presented in Section-3.8. 
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Fig. 3.7 Flowchart for IRIC algorithm 
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3.6. Adaptive Switching Filter (ASF) [P5-P6] 

Two different adaptive switching filters: ASF-I and ASF-II are developed by using 

BCF paradigm, as shown in Fig. 3.1(b) in Section-3.1, for suppressing high density 

SPN. The noisy pixel is replaced with alpha-trimmed mean value of uncorrupted 

pixels in the adaptive filtering window. Depending on noise estimation, a small 

filtering window size is initially selected and then the scheme adaptively changes the 

window size based on the number of noise-free pixels. Therefore, the proposed 

method removes the noise much more effectively even at noise density as high as 

90% and yields high image quality. 

3.6.1 A Novel Adaptive Switching Filter (ASF-I) [P5] for Suppression of High 

Density SPN 

The proposed method uses fixed window size, 3×3, for noise detection and an 

adaptive window for filtering.  

Noise Classification: 

Fig. 3.8 shows the flowchart for noise detection which is self explanatory. The noise 

detection algorithm can be glanced as follows: 

IF  

         THEN  

ELSE  

        THEN  

ELSE  

        THEN  

ELSE  

END. 

Filtering: 

The estimation (filtering) process adopted in this algorithm is given by (2.6). 

Here,  is the alpha-trimmed mean value obtained from adaptive filtering 

window. 
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Fig. 3.9 represents the flowchart for image restoration process. Square filtering 

window (i.e. P = Q) with odd dimension employed here is given by,      

                                   ,  where, .                                       (3.15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Flowchart for noise detection 
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Fig. 3.9 Flowchart for restoration 

To determine the value of  a rule is set that the minimum number of noise-free 

pixels needed for this calculation must be greater or equal to eight pixels. If a small 

sample size is taken, where the total noise-free pixels are less than eight, these 

samples are not good enough to present the local information of the image properly 

when the noise level is high. If the size is too big that is also not enough to present the 

local information of the image properly.  

The   (minimum size of filtering window) is calculated as follows. 

Let C1 be the number of noisy pixels that have been detected (i.e., number of 1s 

present in the binary flag image ) and C2 be the number of noise-free pixels in 

the image. Thus, the total number of pixels is represented by C1+C2. The impulse 

noise density γ is estimated as, 
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                                                                                                                (3.16) 

The value of γ lies between 0 and 1 (i.e., 0 ≤ γ ≤ 1). 

In order to minimize the number of trials needed to find the correct filter size, the 

value of is calculated by using following equation, 

                                                                                                                                    (3.17) 

The symbol  represents floor operation. By using , the algorithm converges 

faster, because less iterations are needed to find the correct window size for filtering.  

 The novel adaptive method for finding is described as follows.                                                                    

Step-1. Initialize the size of filtering window, , where  is a small 

integer value, defined by (3.17). 

Step-2. Compute the noise-free pixels Cw2 in the filtering window  of  

           size P x P. 

Step-3. IF Cw2< 8, 

                  P = P+2 

                  GO TO Step-2 

            ELSE, GO TO Step-4 

Step-4. Compute  

            where  ATM (.) is the alpha-trimmed mean ( 2.1) 

Step-5 Update the value of by using (3.15). 

The simulated results are presented in Section 3.8.  

3.6.2 A Novel Adaptive Switching Filter (ASF-II) [P6] for Suppression of High 

Density SPN 

This is a modified version of the adaptive switching filter, ASF-I, presented in 

Section-3.5.1. A different filtering process is adopted here so that the algorithm suits 

well for high-density SPN. To determine the value of  a condition is set such 

that, the minimum number of noise-free pixels, Cw2, needed for this calculation must 

be greater than or equal to half of the total number of pixels in the filtering window. 

The small number of samples is not good enough to present the local information of 

the image when the noise density is high. If the number of samples are increased, the 
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size of filtering window increases, which introduces blurring effect in an image. On 

the other hand, if less samples are taken, the size of filtering window reduces, which 

may not filter the noise properly. Fig. 3.10 shows the flowchart for the filtering 

process. The simulation results are presented in Section-3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 Flowchart for restoration 
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3.7. Impulse Denoising Using Iterative Adaptive Switching Filter (IASF) 

[P7] 

The developed algorithm employs the framework of ICF-1 as shown in Fig. 3.1(c) in 

Section-3.1. The noisy pixel is replaced with alpha-trim mean value of uncorrupted 

pixels in the adaptive filtering window. Due to its iterative structure, the performance 

of this filter is better than existing order-statistic filters. Further, the adaptive filtering 

window makes it robust enough to preserve the edges and fine details of an image. 

3.7.1 Detection of noisy pixels 

Let  and be the noisy input image and binary flag image respectively. Let 

them be of size (M×N).The noisy pixel is represented by binary flag =1 and 

noise-free pixel is represented by = 0. A variable C2, which is non-negative 

integer initialized to zero, is used to determine the number of valid non-impulsive 

pixels in the current iteration. Initially, all the pixels are assumed to be impulse, so the 

binary flag image is set to unity. 

 The flowchart for proposed algorithm is shown in Fig. 3.11 and it is explained 

below:  

Step-1. Initialize: = ones (M×N), C2 = 0, and variable flag = 0. 

Step-2.Select a window , . 

Step-3. Determine  (minimum) and  (maximum) in the selected window. 

Step-4. Compute the parameters: 

             A1 =  ;   A2 =  

Step-5. IF A1 > 0 and A2 < 0  

                 THEN = 0 

                C2 = C2+ 1   

            ELSE  unchanged. 

Step-6. IF flag = 0,  

                  THEN,  flag =1;   

           ELSE  

            flag = 0;    
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Fig. 3.11 Flowchart for noise detection 
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Step-6. Check the count C2: 

            IF count C2≠ 0,  

                THEN, reset count C2 = 0;  GO TO Step-2, 

            ELSE   

            END the iteration. 

If the centre pixel  lies between minimum and maximum values of a window, 

then the current pixel is non-impulsive which can be retained at the output image, and 

the flag at that position is reset to 0 and C2 is incremented by one. Here the pixel 

 is replaced with minimum or maximum value of the current window according 

to a flag value which switches to 0 or 1 alternatively so as to propagate the impulse or 

impulse like noise throughout the entire image. This replacement of with 

minimum or maximum value will prevent the other pixels surrounding being 

wrongly identified as an impulse. This process is continued for all the pixels in the 

image. The value of variable C2 at the end of current iteration will give the number of 

pixels newly detected as valid pixels which can be used for checking whether to stop 

or continue the iteration process. The algorithm will continue the iteration process 

until the value of the variable C2 converges to zero. 

3.7.2 Impulse noise correction 

The output filtered image is estimated by following relation:    

                                                                              (3.18) 

An adaptive window is used for the estimation of . Fig 3.12 shows the 

flowchart for the noise suppression which is self explanatory. The size of filtering 

window is incremented by two, based on the local information of the filtering 

window. The minimum filtering size is determined by, 

                                                                                                     (3.19) 

   where, ,   value is given by (3.17)                                          

The procedure for calculation of  is explained completely in the proposed 

algorithm, Adaptive Switching Filter-I (ASF-I), in Section-3.5.1. 
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Fig. 3.12 Flowchart for restoration 

This algorithm presents the best and simple technique to remove impulse noise 

from images at wide range of noise density. An advantage of this method is that it 

doesn‟t require any external threshold parameter; it is generated in the filtering 

window itself. Thus, no tuning or training is required. The simulation results are 

presented in Section-3.8.  
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3.8. Simulation Results 

It is very important to test the performance of proposed algorithms. The simulations 

are carried out on a MATLAB-7.4 platform that sits over a Windows-XP operating 

system. 

The performances of proposed filters are tested on difference test images. 

There are various standard test images which are used in literature for testing purpose. 

The test images employed here are Lena, Boat, and Pepper. All of them are 8-bit gray 

scale images of size 512×512.   

Image metrics: PSNR, MSE, UQI and IEF and TE are evaluated for 

performance-evaluation of filters.  

 The PSNR values of different filters are given in the tables: Table-3.3-       

Table-3.5. MSE values are tabulated in the tables: Table-3.6 through Table-3.8 

whereas UQI values are shown in the tables: Table-3.9 through Table 3.11. Further 

the tables: Table-3.12 through Table 3.14 demonstrate the filters‟ performances in 

terms of IEF. Table-3.15 tabulates execution time of proposed and existing filters. 

The best results are highlighted for quick analysis in the tables. 

The graphical representation of PSNR, MSE, UQI, and IEF of proposed filters 

and some high performing filters are illustrated in the figures: Fig. 3.13 through Fig. 

3.16 for easy analysis. 

For subjective evaluation, the output images of different filters are shown in 

the figures: Fig. 3.17 through Fig. 3.22.To show some samples of restored images, for 

subjective evaluation, only Lena and Pepper images are considered with 40%, 60% 

and 80% SPN noise densities.   

 

Conclusions are drawn in the next section. 
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Table-3.3: Filtering performance of various filters in terms of PSNR (dB) for SPN  

Test image: Lena  
 

Sl. No Filters 
% of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 33.74 27.28 21.75 17.38 14.12 11.59 9.6 7.94 6.54 

2 MF [5×5] 31.44 30.67 29.11 26.22 20.32 16.75 12.88 9.66 7.29 

3 MF [7×7] 29.41 28.99 28.49 27.66 25.91 22.06 16.54 11.80 8.09 

4 MF [9×9] 28.13 27.86 27.53 26.97 26.25 24.88 19.91 14.00 8.97 

5 MF [11×11] 27.18 27.02 26.76 26.38 25.83 25.15 22.32 16.21 9.90 

6 MF [15×15] 26.37 26.23 26.02 25.27 25.41 24.66 23.44 18.45 10.64 

7 MF [17×17] 27.71 25.53 25.41 25.02 24.98 24.35 23.46 20.33 11.74 

8 ATM[3×3] 31.99 27.72 23.06 19.17 15.97 13.36 11.31 9.70 8.45 

9 ATM[5×5] 29.11 27.61 25.96 23.89 20.68 17.33 14.57 12.48 10.92 

10 ATM[7×7] 29.2 28.88 28.46 28.00 27.11 24.73 18.92 13.30 8.62 

11 ATM[9×9] 25.96 24.55 23.45 22.47 21.62 20.50 17.26 14.56 12.78 

12 ATM[11×11] 25.01 23.65 22.59 21.70 20.87 19.75 17.66 15.15 13.41 

13 ATM[15×15] 24.42 22.83 21.81 20.99 20.17 19.28 17.49 15.28 13.60 

14 ATM[17×17] 23.48 22.15 21.07 20.26 19.54 18.76 17.24 15.35 13.85 

15 CWM 34.49 30.11 24.01 19.21 15.55 12.48 10.03 8.19 6.69 

16 TSM 35.49 29.31 23.48 18.83 15.02 12.02 9.58 7.62 6.27 

17 AMF 33.76 29.51 24.65 19.99 16.37 13.44 10.87 8.73 6.92 

18 PSM 37.27 32.81 29.21 24.83 20.55 12.26 9.95 8.11 6.61 

19 SMF 29.24 27.51 25.94 24.04 21.12 17.25 13.38 9.92 7.36 

20 BDND 39.09 36.53 34.22 31.71 29.66 28.84 26.62 23.83 17.81 

21 ANDS[P1] 42.84 35.91 30.05 24.16 20.11 16.63 13.42 10.28 7.62 

22 REIR[P2] 41.48 38.80 37.22 33.03 31.11 29.45 27.48 25.68 23.68 

23 IDPSM[P3] 40.78 37.44 34.14 30.90 29.14 27.55 26.14 24.78 21.74 

24 IRIC[P4] 41.98 37.41 37.53 32.24 30.41 28.41 26.40 23.87 20.31 

25 ASF-I[P5] 41.62 37.96 35.37 33.89 32.48 30.93 27.41 27.64 25.35 

26 ASF-II[P6] 42.96 39.05 36.34 33.77 31.85 29.46 28.33 27.24 25.06 

27 IASF[P7] 41.67 37.64 35.64 33.78 32.45 31.01 29.28 27.75 24.07 

Table-3.4:  Filtering performance of various filters in terms of PSNR (dB) for SPN  

Test image: Pepper  
 

Sl. No Filters 
% of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 32.97 27.04 21.40 17.42 13.93 11.43 9.41 7,72 6.43 

2 MF [5×5] 32.21 31.18 29.44 26.20 21.28 16.67 12.72 9.62 7.14 

3 MF [7×7] 30.88 30.18 29.28 28.25 26.13 21.90 16.57 11.57 7.94 

4 MF [9×9] 29.70 29.08 28.56 27.70 26.61 24.93 20.24 13.75 8.92 

5 MF [11×11] 28.57 28.24 27.77 27.08 26.35 25.00 22.50 16.29 9.72 

6 MF [15×15] 27.65 27.27 26.92 26.46 25.72 24.78 23.21 18.03 10.66 

7 MF [17×17] 26.27 26.44 26.22 25.84 25.28 24.58 23.44 20.17 11.58 

8 ATM[3×3] 31.99 27.72 23.03 19.17 15.97 13.36 11.31 9.70 8.45 

9 ATM[5×5] 29.49 27.56 25.88 23.49 20.46 17.26 14.56 12.19 10.51 

10 ATM[7×7] 29.20 28.88 28.46 28.00 27.11 24.73 18.92 13.30 8.62 

11 ATM[9×9] 26.39 24.95 23.68 22.59 21.61 19.92 17.20 14.41 12.39 

12 ATM[11×11] 26.31 24.58 23.30 22.30 21.40 20.20 17.88 15.17 13.44 

13 ATM[15×15] 24.47 22.84 21.85 20.85 20.08 19.17 17.31 15.03 13.18 

14 ATM[17×17] 23.69 22.23 21.11 20.15 19.40 18.54 17.01 1508 13.11 

15 CWM 33.37 29.11 23.66 19.02 15.21 12.26 9.97 8.01 6.51 

16 TSM 35.92 29.43 23.60 18.79 15.02 11.83 9.50 7.5 6.12 

17 AMF 37.91 31.97 25.90 20.53 16.46 13.29 10.74 8.58 6.81 

18 PSM 37.27 32.21 28.93 25.20 20.88 12.11 9.84 8.00 6.47 

19 SMF 29.79 27.58 25.82 23.76 20.89 17.00 13.16 9.76 7.20 

20 BDND 39.43 37.07 34.26 32.69 31.16 30.40 27.06 25.07 19.51 

21 ANDS[P1] 42.58 35.41 29.59 24.02 20.07 16.57 13.44 10.21 7.54 

22 REIR[P2] 41.17 37.24 34.28 32.52 31.01 29.02 27.41 25.53 23.26 

23 IDPSM[P3] 38.35 35.40 32.74 30.82 29.22 27.82 25.72 23.94 21.73 

24 IRIC[P4] 40.65 36.43 33.74 31.33 29.75 27.69 26.00 23.47 19.70 

25 ASF-I[P5] 41.63 37.96 35.37 33.89 32.48 30.92 29.40 27.64 25.34 

26 ASF-II[P6] 42.43 38.77 36.21 34.16 32.57 30.31 29.14 27.55 25.28 

27 IASF[P7] 42.00 38.34 36.08 34.33 32.86 31.25 29.63 28.22 24.05 
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Table-3.5: Filtering performance of various filters in terms of PSNR (dB) for SPN  

Test image: Boat  
 

Sl. No Filters 
% of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 29.86 25.80 21.20 17.21 14.00 11.59 9.53 7.92 6.59 

2 MF [5×5] 27.33 26.78 25.82 24.01 20.39 16.30 12.68 9.71 7.3 

3 MF [7×7] 25.38 25.13 24.81 23.32 23.25 20.54 16.10 11.63 8.06 

4 MF [9×9] 24.15 24.02 23.80 23.46 23.15 22.17 19.05 13.50 8.97 

5 MF [11×11] 29.58 29.27 28.85 28.41 27.78 26.57 23.50 16.35 10.01 

6 MF [15×15] 22.84 22.74 22.67 22.54 22.34 21.93 21.18 17.49 10.80 

7 MF [17×17] 22.51 22.41 22.37 22.25 22.07 21.79 21.27 19.05 11.73 

8 ATM[3×3] 28.94 26.01 22.27 18.70 15.81 13.37 11.34 9.68 8.46 

9 ATM[5×5] 26.16 25.16 24.10 22.42 19.85 17.12 14.44 12.35 10.83 

10 ATM[7×7] 31.40 27.66 22.80 18.44 14.85 11.96 9.58 7.67 6.30 

11 ATM[9×9] 23.13 22.43 21.75 21.14 20.47 19.07 16.82 14.51 12.77 

12 ATM[11×11] 22.34 21.58 20.96 20.33 19.82 18.92 17.08 14.85 13.39 

13 ATM[15×15] 21.76 21.01 20.33 19.71 19.21 18.55 17.07 15.12 13.51 

14 ATM[17×17] 21.31 20.54 19.90 19.25 18.70 18.10 16.80 15.12 13.68 

15 CWM 25.17 24.91 24.76 24.46 23.90 22.53 18.42 13.03 8.56 

16 TSM 31.42 27.72 22.95 18.67 14.99 11.94 9.57 7.68 6.29 

17 AMF 33.76 29.51 24.65 19.99 16.36 13.44 10.87 8.75 6.92 

18 PSM 32.06 29.49 26.61 23.74 20.28 16.29 9.94 8.14 6.66 

19 SMF 26.19 25.11  24.03 22.60 20.45 16.93 13.22 9.87 7.33 

20 BDND 33.86 32.35 30.31 28.52 26.94 25.26 23.29 22.03 17.85 

21 ANDS[P1] 38.32 33.33 29.32 23.29 19.59 16.09 13.10 10.00 7.45 

22 REIR[P2] 35.33 32.54 30.66 28.88 27.48 25.72 24.21 22.56 20.74 

23 IDPSM[P3] 33.15 31.27 28.95 26.50 25.17 24.05 23.09 21.95 19.76 

24 IRIC[P4] 37.72 33.46 30.90 29.01 27.25 25.68 24.13 22.47 20.47 

25 ASF-I[P5] 37.30 33.67 31.62 30.04 28.78 27.44 25.98 24.52 22.83 

26 ASF-II[P6] 38.54 34.90 32.16 30.01 28.03 25.97 24.95 24.08 22.37 

27 IASF[P7] 37.36 33.68 31.60 30.01 28.63 27.32 26.05 24.62 22.03 

 

 

Table-3.6:  Filtering performance of various filters in terms of MSE for SPN  

Test image: Lena  
 

Sl. 

No 

Filters % of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 27.43 121 432 1180 2510 4510 7130 10400 14421 

2 MF [5×5] 46.66 56 80 155 480 1383 33505 7017 12156 

3 MF [7×7] 74.48 82 92 111 168 405 1440 4290 8080 

4 MF [9×9] 99.79 106.2 114.7 130.5 153.9 210.9 663.1 2584 8230 

5 MF [11×11] 124.4 128.8 136.9 149.4 169.6 198.4 381.1 1554 6649 

6 MF [15×15] 149.6 154.6 162.5 171.1 186.8 222.1 294.2 927.3 5610 

7 MF [17×17] 174.4 181.9 187.0 196.2 206.1 238.5 292.5 601.4 4355 

8 ATM[3×3] 41.08 109.9 320.8 786.3 1644 2994 4805 6960 9281 

9 ATM[5×5] 79.7 112.6 164.6 265.4 554.9 1184 2265 3670 5261 

10 ATM[7×7] 17.73 71.37 264 835 2045 7009 7120 11090 15076 

11 ATM[9×9] 164.9 228.0 293.1 367.9 447.1 638.3 1221 2278 3415 

12 ATM[11×11] 204.7 280.1 357.6 439.4 531.9 687.7 1113 1984 2961 

13 ATM[15×15] 251.2 338.2 428.2 517.5 623.9 767.0 1157 1926 2833 

14 ATM[17×17] 291.2 395.2 507.8 611.9 711.8 663.8 1227 1896 2677 

15 CWM 23 63 259 789 1803 3661 6450 9855 13967 

16 TSM 18.33 76.16 291.7 850.3 2047 4066 7162 11235 15324 

17 AMF 27.30 72.76 222.8 650.8 1502 2943 5316 8702 13196 

18 PSM 12.17 33.98 78.18 209 571 3856 6573 10035 14164 

19 SMF 77.38 115.3 165.5 255.8 501.5 1223 2982 6609 11934 

20 BDND 7.03 13.10 18.50 30.67 48.32 67.10 129.2 155.1 698.8 

21 ANDS[P1] 3.37 16.66 64.25 249 648 1412 2955 6096 11236 

22 REIR[P2] 4.56 9.13 16.47 29 46.34 73.1 116 184 299 

23 IDPSM[P3] 5.43 11.71 25.00 52.9 79.26 114.4 158.2 216.5 895.5 

24 IRIC[P4] 4.12 11.77 22.92 38.80 59.15 93.77 148.9 266.7 604.8 

25 ASF-I[P5] 4.47 10.40 18.90 26.54 36.71 52.5 76.56 111.8 189 

26 ASF-II[P6] 3.28 8.08 15.09 27.32 42.48 73.57 95.6 112.5 203 

27 IASF[P7] 4.41 11.19 17.74 27.23 36.97 51.68 74.68 108.9 255.2 
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Table-3.7: Filtering performance of various filters in terms of MSE for SPN  

Test image: Pepper  
 

Sl. No Filters 
% of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 47 120 352 841 1724 3082 4973 7325 9658 

2 MF [5×5] 36 49.5 74 156 485 1408 3484 7098 12660 

3 MF [7×7] 74.4 82 92 111 167 404 1445 4290 8086 

4 MF [9×9] 69.61 80.24 90.42 110.2 141.9 208.9 615.2 2738 8325 

5 MF [11×11] 90.28 97.30 108.5 127.2 150.4 205.5 365.2 152 6928 

6 MF [15×15] 111.5 121.6 131.8 146.4 173.9 215.9 310.1 1023 5578 

7 MF [17×17] 137.6 147.5 155.1 169.1 192.2 226.3 294.4 626.6 4537 

8 ATM[3×3] 33.8 124 462 1201 2571 4696 10720 14700 14864 

9 ATM[5×5] 73 114 168 292 584 1221 2275 3921 5773 

10 ATM[7×7] 58.49 62.57 74.5 91 115 205 797 3220 9052 

11 ATM [9×9] 149.2 207.7 278.2 357.7 448.6 661.8 1238 2350 3743 

12 ATM[11×11] 190.6 274.8 354.8 445.5 548.5 689.5 1194 2154 3423 

13 ATM[15×15] 232.1 337.6 427.1 533.9 638.3 786.8 1207 2040 3126 

14 ATM[17×17] 277.7 388.4 503.2 626.8 745.1 908.7 1292 2015 3174 

15 CWM 29.9 79.7 280 815 1950 3863 6581 10245 14509 

16 TSM 16.6 74.1 284 860 2043 4266 7281 11481 15870 

17 AMF 10.5 41.2 167 575 1466 3044 5482 9014 13544 

18 PSM 12.1 39 84 196 531 3997 6738 10283 14650 

19 SMF 68.2 114 170 274 529 1297 3138 6859 12372 

20 BDND 6.42 10.12 15.3 26 40 60 81 128 724 

21 ANDS[P1] 3.5 18.6 71 257 639 1429 2943 6182 11448 

22 REIR[P2] 10.18 16 27.3 39.85 61 91.7 137 198 306 

23 IDPSM[P3] 9.9 21.6 41 65 90 131 175 263 979 

24 IRIC[P4] 5.5 14.8 28 48 68 110 163 293 696 

25 ASF-I[P5] 4.06 9.6 15.7 23.3 34 45.4 68.4 98.6 175 

26 ASF-II[P6] 3.7 8.6 15.5 25 36 60 79 114 193 

27 IASF[P7] 4.09 9.5 16 24 33.6 49 71 98 251 

 

Table-3.8: Filtering performance of various filters in terms of MSE for SPN  

Test image: Boat  
 

Sl. No Filters 
% of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 67 171 494 1247 2580 4513 7239 10538 14368 

2 MF [5×5] 120 136 170 258 504 1524 3508 6930 12059 

3 MF [7×7] 188 199 215 302 308 574 1597 4452 10140 

4 MF [9×9] 249.6 257.6 270.6 292.5 314.9 394.5 808.9 2902 8323 

5 MF [11×11] 71.5 76.77 84.58 93.56 108.3 143.1 290.3 1506 6481 

6 MF [15×15] 337.7 345.5 351.3 361.9 378.6 416.3 494.5 1157 5399 

7 MF [17×17] 364.5 373.1 375.9 386.5 403.5 430.3 485.1 808.4 4364 

8 ATM[3×3] 82 163 385 877 1707 2990 4767 6988 9254 

9 ATM[5×5] 157 198 253 372 672 1259 2336 3780 5369 

10 ATM[7×7] 198 210 217 233 265 363 934 3231 9057 

11 ATM [9×9] 316.1 371.1 434.5 500.0 582.2 804.3 1351 2299 3431 

12 ATM[11×11] 379.1 451.2 521.2 602.1 676.6 833.4 1272 2126 2972 

13 ATM[15×15] 432.9 514.2 601.8 795.8 779.4 906.4 1272 1997 2896 

14 ATM[17×17] 480.5 574.2 665.1 772.4 876.1 1006 1358 1997 2784 

15 CWM 67 124 342 887 1928 3753 6368 9825 13947 

16 TSM 47 109 330 890 2061 4158 7183 11091 15260 

17 AMF 27.3 73 222 650 1501 2942 5315 8702 13196 

18 PSM 40 73 141 274 609 1527 6599 9988 14008 

19 SMF 156 200 257 357 584 1318 3095 6691 12080 

20 BDND 17 30 48 73 104 153 191 256 845 

21 ANDS[P1] 9.5 30 96 304 714 1598 3180 6501 11692 

22 REIR[P2] 24 36 56 84 116 174 246 358 548 

23 IDPSM[P3] 31.4 49 83 145 197 256 318 415 1345 

24 IRIC[P4] 11 30 53 84 122 175 250 368 582 

25 ASF-I[P5] 12 28 45 65 86 117 165 225 340 

26 ASF-II[P6] 9 21 40 66 102 164 208 253 376 

27 IASF[P7] 11.9 28 45 65 90 120 162 224 416 

 

 



 

 
Development of Novel Filters for Suppression of Salt-and-Pepper Noise 

 

 Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise                         69 
 

 

 

Table-3.9: Filtering performance of various filters in terms of UQI for SPN  

Test image: Lena  
 

Sl. No Filters 
% of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 0.994 0.973 0.907 0.788 0.612 0.432 0.268 0.153 0.068 

2 MF [5×5] 0.994 0.973 0.910 0.780 0.605 0.428 0.279 0 .161 0.061 

3 MF [7×7] 0.983 0.981 0.979 0.975 0.963 0.913 0.735 0.437 0.158 

4 MF [9×9] 0.977 0.976 0.974 0.970 0.965 0.953 0.861 0.591 0.220 

5 MF [11×11] 0.972 0.971 0.969 0.966 0.961 0.955 0.916 0.715 0.285 

6 MF [15×15] 0.966 0.964 0.963 0.961 0.957 0.949 0.933 0.809 0.337 

7 MF [17×17] 0.960 0.958 0.957 0.955 0.952 0.945 0.933 0.869 0.412 

8 ATM[3×3] 0.990 0.976 0.931 0.840 0.698 0.522 0.352 0.204 0.096 

9 ATM[5×5] 0.982 0.975 0.963 0.941 0.880 0.753 0.568 0.371 0.177 

10 ATM[7×7] 0.987 0.986 0.985 0.984 0.981 0.976 0.958 0.901 0.767 

11 ATM [9×9] 0.963 0.949 0.935 0.919 0.902 0.862 0.737 0.513 0.277 

12 ATM[11×11] 0.953 0.937 0.921 0.904 0.884 0.850 0.758 0.561 0.306 

13 ATM[15×15] 0.943 0.924 0.905 0.886 0.865 0.835 0.748 0.563 0.306 

14 ATM[17×17] 0.933 0.911 0.888 0.866 0.844 0.813 0.731 0.561 0.316 

15 CWM 0.996 0.993 0.986 0.972 0.946 0.901 0.831 0.745 0.657 

16 TSM 0.995 0.983 0.938 0.835 0.662 0.466 0.274 0.132 0.050 

17 AMF 0.993 0.983 0.950 0.863 0.722 0.550 0.364 0.201 0.076 

18 PSM 0.997 0.992 0.983 0.956 0.890 0.501 0.326 0.192 0.078 

19 SMF 0.982 0.974 0.964 0.944 0.896 0.771 0.556 0.298 0.120 

20 BDND 0.999 0.9981 0.9962 0.993 0.990 0.985 0.980 0.970 0.863 

21 ANDS[P1] 0.9992 0.996 0.986 0.947 0.872 0.753 0.569 0.337 0.120 

22 REIR[P2] 0.998 0.997 0.994 0.992 0.987 0.981 0.971 0.958 0.933 

23 IDPSM[P3] 0.998 0.997 0.994 0.988 0.982 0.974 0.964 0.952 0.792 

24 IRIC[P4] 0.9990 0.997 0.994 0.991 0.987 0.979 0.967 0.941 0.867 

25 ASF-I[P5] 0.9990 0.997 0.995 0.9941 0.9919 0.9884 0.9836 0.9754 0.9581 

26 ASF-II[P6] 0.9993 0.9982 0.9967 0.9940 0.990 0.983 0.978 0.972 0.954 

27 IASF[P7] 0.9990 0.997 0.9961 0.9940 0.9919 0.9886 0.9831 0.9760 0.9445 

 

Table-3.10: Filtering performance of various filters in terms of UQI for SPN  

Test image: Pepper  
 

Sl. No Filters 
% of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 0.994 0.978 0.922 0.814 0.651 0.479 0.322 0.185 0.087 

2 MF [5×5] 0.993 0.991 0.987 0.973 0.919 0.789 0.571 0.338 0.135 

3 MF [7×7] 0.990 0.989 0.986 0.983 0.972 0.929 0.784 0.485 0.194 

4 MF [9×9] 0.987 0.985 0.984 0.980 0.975 0.963 0.878 0.633 0.282 

5 MF [11×11] 0.984 0.982 0.980 0.977 0.973 0.963 0.936 0.766 0.319 

6 MF [15×15] 0.980 0.978 0.976 0.973 0.969 0.961 0.945 0.832 0.408 

7 MF [17×17] 0.975 0.973 0.972 0.969 0.965 0.959 0.946 0.892 0.471 

8 ATM[3×3] 0.991 0.979 0.940 0.862 0.736 0.574 0.400 0.241 0.122 

9 ATM[5×5] 0.987 0.980 0.970 0.949 0.899 0.793 0.633 0.407 0.191 

10 ATM[7×7] 0.992 0.990 0.990 0.988 0.985 0.981 0.962 0.894 0.757 

11 ATM [9×9] 0.973 0.963 0.951 0.938 0.922 0.884 0.784 0.581 0.318 

12 ATM[11×11] 0.966 0.951 938 0.922 0.905 0.880 0.788 0.595 0.312 

13 ATM[15×15] 0.958 0.940 0.925 0.907 0.889 0.863 0.783 0.613 0.345 

14 ATM[17×17] 0.950 0.931 0.911 0.890 0.870 0.842 0.769 0.603 0.314 

15 CWM 0.995 0.993 0.986 0.971 0.940 0.891 0.822 0.730 0.625 

16 TSM 0.997 0.987 0.952 0.865 0.717 0.512 0.330 0.170 0.060 

17 AMF 0.998 0.992 0.971 0.906 0.783 0.612 0.427 0.253 0.113 

18 PSM 0.997 0.993 0.985 0.967 0.915 0.541 0.367 0.218 0.088 

19 SMF 0.988 0.980 0.970 0.953 0.912 0.803 0.599 0.343 0.144 

20 BDND 0.998 0.997 0.996 0.995 0.993 0.989 0.985 0.977 0.880 

21 ANDS[P1] 0.9994 0.996 0.987 0.957 0.898 0.791 0.626 0.380 0.135 

22 REIR[P2] 0.998 0.997 0.995 0.992 0.990 0.984 0.977 0.964 0.938 

23 IDPSM[P3] 0.997 0.995 0.992 0.988 0.982 0.976 0.969 0.954 0.927 

24 IRIC[P4] 0.9990 0.997 0.995 0.991 0.988 0.980 0.971 0.949 0.880 

25 ASF-I[P5] 0.9991 0.998 0.9972 0.9958 0.9942 0.9921 0.9881 0.9829 0.9694 

26 ASF-II[P6] 0.9994 0.9985 0.9973 0.9956 0.993 0.989 0.986 0.980 0.965 

27 IASF[P7] 0.9990 0.9983 0.9972 0.9957 0.9941 0.991 0.9877 0.9829 0.956 
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Table-3.11: Filtering performance of various filters in terms of UQI for SPN  

Test image: Boat  
 

Sl. No Filters 
% of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 0.984 0.960 0.892 0.760 0.581 0.411 0.256 0.145 0.061 

2 MF [5×5] 0.971 0.967 0.959 0.940 0.869 0.709 0.481 0.267 0.102 

3 MF [7×7] 0.955 0.952 0.948 0.928 0.927 0.870 0.693 0.400 0.143 

4 MF [9×9] 0.940 0.938 0.934 0.929 0.924 0.906 0.820 0.512 0.195 

5 MF [11×11] 0.982 0.981 0.979 0.977 0.973 0.965 0.931 0.704 0.283 

6 MF [15×15] 0.918 0.916 0.914 0.911 0.907 0.899 0.881 0.750 0.318 

7 MF [17×17] 0.911 0.908 0.908 0.905 0.901 0.894 0.881 0.811 0.369 

8 ATM[3×3] 0.980 0.962 0.913 0.814 0.675 0.508 0.341 0.193 0.086 

9 ATM[5×5] 0.9962 0.953 0.940 0.913 0.846 0.727 0.540 0.332 0.135 

10 ATM[7×7] 0.973 0.972 0.971 0.970 0.966 0.960 0.944 0.899 0.792 

11 ATM [9×9] 0.923 0.911 0.897 0.882 0.864 0.813 0.694 0.488 0.256 

12 ATM[11×11] 0.908 0.892 0.876 0.859 0.842 0.807 0.712 0.506 0.292 

13 ATM[15×15] 0.894 0.876 0.857 0.838 0.819 0.792 0.706 0.522 0.261 

14 ATM[17×17] 0.882 0.862 0.843 0.820 0.798 0.769 0.681 0.509 0.265 

15 CWM 0.991 0.987 0.981 0.968 0.946 0.912 0.864 0.797 0.722 

16 TSM 0.989 0.974 0.927 0.820 0.645 0.439 0.264 0.136 0.049 

17 AMF 0.993 0.983 0.950 0.863 0.722 0.550 0.364 0.201 0.076 

18 PSM 0.990 0.983 0.968 0.940 0.876 0.732 0.304 0.171 0.075 

19 SMF 0.963 0.953 0.940 0.918 0.871 0.741 0.523 0.280 0.099 

20 BDND 0.996 0.993 0.988 0.983 0.975 0.963 0.954 0.939 0.817 

21 ANDS[P1] 0.9977 0.993 0.978 0.932 0.853 0.712 0.531 0.302 0.113 

22 REIR[P2] 0.994 0.991 0.987 0.980 0.973 0.960 0.944 0.920 0.879 

23 IDPSM[P3] 0.992 0.988 0.980 0.966 0.953 0.939 0.925 0.903 0.732 

24 IRIC[P4] 0.997 0.993 0.987 0.980 0.971 0.959 0.942 0.915 0.865 

25 ASF-I[P5] 0.997 0.993 0.989 0.9849 0.9798 0.9726 0.9610 0.9465 0.9186 

26 ASF-II[P6] 0.9979 0.9951 0.9908 0.9846 0.976 0.961 0.950 0.939 0.908 

27 IASF[P7] 0.997 0.993 0.989 0.9849 0.9792 0.9718 0.9620 0.9468 0.903 

 

Table-3.12: Filtering performance of various filters in terms of IEF for SPN  

Test image: Lena  
 

Sl. No Filters 
% of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 68.38 30.47 12.86 6.25 3.70 2.47 1.82 1.42 1.16 

2 MF [5×5] 40.07 65.85 71.29 48.45 20.87 8.25 3.75 2.12 1.38 

3 MF [7×7] 24.93 44.71 59.73 66.68 55.71 27.49 9.00 3.46 1.65 

4 MF[9×9] 18.48 34.86 48.58 56.85 60.13 52.73 19.63 5.74 2.07 

5 MF[11×11] 14.83 28.75 40.67 49.67 54.58 56.05 34.16 9.55 2.51 

6 MF [15×15] 12.46 23.99 34.32 43.09 49.49 49.99 44.21 15.98 2.97 

7 MF [17×17] 10.61 20.30 29.89 37.90 45.10 46.72 44.26 24.61 3.83 

8 ATM[3×3] 45.14 33.89 17.3 9.45 5.62 3.72 2.70 2.13 1.79 

9 ATM[5×5] 23.34 32.86 33.82 28.09 16.74 9.42 5.73 4.04 3.17 

10 ATM[7×7] 23.76 43.67 59.49 72.34 73.23 50.76 15.60 4.88 1.87 

11 ATM[9×9] 15.01 20.39 22.25 23.53 23.85 19.12 10.98 6.94 4.95 

12 ATM[11×11] 9.02 13.25 15.49 16.82 17.48 16.21 11.62 7.46 5.63 

13 ATM[15×15] 7.38 10.85 12.85 14.37 14.88 14.47 11.21 7.69 5.90 

14 ATM[17×17] 6.38 9.35 10.97 12.18 12.85 12.90 10.58 7.81 6.23 

15 CWM 79.78 58.42 21.59 9.53 5.10 3.03 2.01 1.50 1.19 

16 TSM 100.7 48.85 19.1 8.72 4.53 2.73 1.81 1.32 1.08 

17 AMF 67.25 50.83 24.87 11.34 6.15 3.74 2.42 1.69 1.26 

18 PSM 151.8 109.1 71.36 35.55 16.28 2.88 1.97 1.47 1.18 

19 SMF 23.88 32.37 33.79 29.01 18.43 9.11 4.34 2.24 1.39 

20 BDND 465.3 407.9 358.2 266.4 209.2 166.1 145.5 109.8 25.06 

21 ANDS[P1] 552.9 222.7 86.45 29.60 14.32 7.89 4.39 2.42 1.48 

22 REIR[P2] 233.4 269.8 239.3 207.5 160.3 127.1 99.22 74.79 52.31 

23 IDPSM[P3] 341.9 313.4 219.5 140.5 116.8 97.10 82.09 68.50 15.26 

24 IRIC[P4] 450.9 316.0 242.2 191.3 157.0 119.0 87.28 55.56 27.57 

25 ASF-I[P5] 411.6 357.9 205.8 279.7 253.7 211.9 173.8 132.7 88.03 

26 ASF-II[P6] 567.7 462.1 365.4 271.1 218.5 151.8 135.9 121.0 82.59 

27 IASF[P7] 420.1 330.8 313.9 273.5 251.2 215.7 169.7 136.1 65.40 
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Table-3.13: Filtering performance of various filters in terms of IEF for SPN  

Test image: Pepper  
 

Sl. No Filters 
% of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 57.91 39.86 12.3 6.27 3.66 2.47 1.81 1.41 1.16 

2 MF [5×5] 50.22 77.37 77.06 48.92 20.86 7.87 3.87 2.14 1.38 

3 MF [7×7] 36.5 61.58 75.48 79.41 60.90 27.48 9.40 3.42 1.65 

4 MF[9×9] 27.72 47.39 63.86 69.68 67.69 55.33 21.88 5.60 2.06 

5 MF[11×11] 21.25 39.26 53.04 60.72 63.76 56.14 36.81 10.06 2.50 

6 MF [15×15] 17.50 31.82 43.97 52.67 55.16 53.54 43.43 15.02 3.09 

7 MF [17×17] 14.02 26.25 37.21 45.52 49.84 50.94 45.55 24.64 3.80 

8 ATM[3×3] 41.03 31.84 16.41 9.41 5.57 3.75 2.70 2.09 1.78 

9 ATM[5×5] 26.39 33.73 34.47 26.49 16.49 9.42 5.88 3.92 2.99 

10 ATM[7×7] 32.83 57.27 77.36 84.53 83.23 56.16 16.88 4.64 1.90 

11 ATM[9×9] 12.82 18.47 20.62 21.51 21.43 17.47 10.87 6.53 4.61 

12 ATM[11×11] 10.04 14.00 16.25 17.28 17.57 16.75 11.26 7.13 5.05 

13 ATM[15×15] 8.32 11.34 13.61 14.37 15.05 14.68 11.20 7.53 5.52 

14 ATM[17×17] 6.96 9.93 11.45 12.29 12.96 12.74 10.41 7.61 5.45 

15 CWM 64.47 48.52 20.66 9.42 4.91 2.98 2.03 1.50 1.19 

16 TSM 115.2 51.85 20.32 8.91 4.68 2.71 1.84 1.33 1.09 

17 AMF 181 92.61 34.19 13.34 6.56 3.78 2.44 1.70 1.27 

18 PSM 158.2 98.03 69.39 39.08 18.06 2.89 1.99 1.49 1.18 

19 SMF 28.02 34.00 34.18 28 18.22 8.88 4.28 2.24 1.39 

20 BDND 409.6 381 375.1 296.7 243 195 167 120.3 24 

21 ANDS[P1] 533.2 206.8 80.62 29.90 15.02 8.08 4.57 2.48 1.52 

22 REIR[P2] 178.9 229.1 212 183.3 168.3 127.1 100.3 73.45 46.44 

23 IDPSM[P3] 162 162.2 131.5 113.2 98 85.1 77.20 58.66 15.71 

24 IRIC[P4] 343.2 255.9 208.8 160.4 140.1 104.3 82.4 52.48 24.77 

25 ASF-I[P5] 473.8 400.5 366 315.3 286.6 253.8 196 156.2 99.13 

26 ASF-II[P6] 513.7 446.2 370 308.7 266.6 190.6 169.1 134.7 89.62 

27 IASF[P7] 468.7 405.5 360 320.6 284.1 235.5 190.1 157.5 67.64 

 

 

Table-3.14: Filtering performance of various filters in terms of IEF for SPN  

Test image: Boat  
 

Sl. No Filters 
% of Noise (Salt-and-Pepper) 

10 20 30 40 50 60 70 80 90 

1 MF [3×3] 27.46 21.62 11.21 5.97 3.56 2.44 1.79 1.40 1.16 

2 MF [5×5] 15.31 26.92 32.34 28.47 15.55 7.26 3.69 2.12 1.37 

3 MF [7×7] 9.69 18.55 25.74 30.6 30.07 19.32 8.09 3.3 1.63 

4 MF[9×9] 7.37 14.28 20.41 25.30 29.28 27.90 15.98 5.09 1.99 

5 MF[11×11] 26.08 47.94 65.56 78.79 85.31 77.37 44.48 9.81 2.55 

6 MF [15×15] 5.43 10.71 15.79 20.38 24.32 26.51 26.06 12.74 3.07 

7 MF [17×17] 5.03 9.91 14.74 19.09 22.89 25.63 26.57 18.24 3.81 

8 ATM[3×3] 22.17 22.62 14.32 8.45 5.39 3.38 2.78 2.11 1.79 

9 ATM[5×5] 11.67 18.67 21.96 19.82 13.73 8.75 5.51 3.90 3.10 

10 ATM[7×7] 9.28 17.65 25.53 31.71 34.94 30.41 13.8 4.56 1.84 

11 ATM[9×9] 5.80 9.93 12.74 14.71 15.84 13.84 9.53 6.41 4.83 

12 ATM[11×11] 4.85 8.20 10.57 12.27 13.63 13.27 10.10 6.93 5.57 

13 ATM[15×15] 4.23 7.18 9.25 10.61 11.85 12.19 10.12 7.39 5.74 

14 ATM[17×17] 3.81 6.43 8.25 9.53 10.50 11.01 9.53 7.38 5.96 

15 CWM 27.77 30 16,12 8.42 4.78 2.94 2.02 1.5 1.19 

16 TSM 39.32 33.63 16.70 8.25 4.48 2.66 1.70 1.33 1.08 

17 AMF 67.27 50.82 24.87 11.34 6.15 3.74 2.42 1.69 1.26 

18 PSM 46.13 50.32 39.05 26.80 15.12 7.22 1.95 1.47 1.18 

19 NSMF 11.73 18.49 21.58 20.67 15.74 8.37 4.16 2.20 1.37 

20 BDND 109.8 123.2 115.1 101 88.51 72.35 67.32 57.28 19.57 

21 ANDS[P1] 193.1 122.6 57.80 24.13 12.91 6.94 4.06 2.26 1.41 

22 REIR[P2] 76.92 101.6 98.94 87.98 79.26 63.08 52.43 41.18 30.32 

23 IDPSM[P3] 58.93 76.98 66.61 50.32 46.70 43.03 40.50 35.52 12.16 

24 IRIC[P4] 167.2 125.9 105.8 87.35 75.58 63.40 51.55 40.07 28.41 

25 ASF-I[P5] 150.36 131.67 123.6 114.1 106.7 94.77 78.41 65.34 48.67 

26 ASF-II[P6] 202.3 175.6 140.1 111.6 90 67.6 62.1 58.11 44.13 

27 IASF[P7] 153.1 132.7 123.6 113.9 104.4 91.50 80.1 65.80 40.01 
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Table-3.15: Execution time (seconds), TE taken by various filters for Lena image at 10% 

noise density 

Sl. 

No. 
Filters 

Execution time (seconds) in three different hardware 

platforms 

SYSTEM-1 SYSTEM-2 SYSTEM-3 

1 MF [3×3] 22.13 7.27 8.22 

2 MF [5×5] 22.18 7.24 8.23 

3 MF [7×7] 22.35 7.41 8.27 

4 MF[9×9] 22.60 7.52 8.30 

5 MF[11×11] 23.04 7.68 8.32 

6 MF [15×15] 24.23 8.38 8.50 

7 MF [17×17] 25.27 8.97 8.55 

8 ATM[3×3] 7.64 2.71 2.43 

9 ATM[5×5] 8.32 2.78 2.45 

10 ATM[7×7] 8.76 3.04 2.58 

11 ATM[9×9] 9.4 3.33 2.68 

12 ATM[11×11] 10.55 3.74 2.77 

13 ATM[15×15] 14.38 4.74 2.89 

14 ATM[17×17] 15.41 5.24 3.01 

15 CWM 20.51 6.74 7.44 

16 TSM 19.62 6.23 6.45 

17 AMF 4.84 1.35 3.36 

18 PSM 3.00 1.74 1.72 

19 NSMF 14.95 5.14 4.75 

20 BDND 24.62 7.92 8.60 

21 ANDS[P1] 22.14 7.82 7.20 

22 REIR[P2] 42.29 14.30 15.20 

23 IDPSM[P3] 77.66 25.01 27.12 

24 IRIC[P4] 6.87 2.15 2.14 

25 ASF-I[P5] 2.87 1.02 1.08 

26 ASF-II[P6] 2.47 0.85 1.01 

27 IASF[P7] 17.7 6.02 5.60 
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Fig. 3.13 Performance of various filters in terms of PSNR (dB) for SPN at different noise 

densities on the images: 

(a) Lena 

(b) Pepper 

(c) Boat 
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Fig. 3.14 Performance comparison of various filters in terms of MSE for SPN at different noise 

densities on the images: 

(a) Lena 

(b) Pepper 

(c) Boat 

 

 

 

(a) 

(b) (c) 



 

 
Development of Novel Filters for Suppression of Salt-and-Pepper Noise 

 

 Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise                         75 
 

 

 

 

 

 

 

 

 

 

Fig. 3.15 Performance comparison of various filters in terms of UQI for SPN at different noise 

densities on the images: 

(a) Lena 

(b) Pepper 

(c) Boat 
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Fig. 3.16 Performance comparison of various filters in terms of IEF for SPN at different noise 

densities on the images: 

(a) Lena 

(b) Pepper 

(c) Boat 
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Fig.3.17 Performance of various filters for Lena image with noise density 40% (SPN) 

(a) Original image  (b) Noisy image; Filtered output of: (c) MF  (d) ATM  (e) CWM  (f) TSM  

(g) AMF(h) PSM  (i) SMF  (j) BDND  (k) ANDS  (l) REIR  (m) IDPSM  (n) IRIC  (o) ASF-I   

(p) ASF-II (q) IASF 
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Fig. 3.18 Performance of various filters for Pepper image with noise density 40% (SPN) 

(a) Original image  (b) Noisy image; Filtered output of: (c) MF  (d) ATM  (e) CWM  (f) TSM  

(g) AMF (h) PSM  (i) SMF  (j) BDND  (k) ANDS  (l) REIR  (m) IDPSM  (n) IRIC  (o) ASF-I  

(p) ASF-II (q) IASF 
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Fig. 3.19 Performance of various filters for Lena image with noise density 60% (SPN) 

(a) Original image  (b) Noisy image; Filtered output of: (c) MF  (d) ATM  (e) CWM  (f) TSM  

(g) AMF(h) PSM  (i) SMF  (j) BDND  (k) ANDS  (l) REIR  (m) IDPSM  (n) IRIC  (o) ASF-I  

(p) ASF-II (q) IASF 
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Fig. 3.20 Performance of various filters for Pepper image with noise density 60% (SPN) 

(a) Original image  (b) Noisy image; Filtered output of: (c) MF  (d) ATM  (e) CWM  (f) TSM   

(g) AMF (h) PSM  (i) SMF  (j) BDND  (k) ANDS  (l) REIR  (m) IDPSM  (n) IRIC  (o) ASF-I        

(p) ASF-II (q) IASF 
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Fig. 3.21 Performance of various filters for Lena image with noise density 80% (SPN) 

(a) Original image  (b) Noisy image; Filtered output of: (c) MF  (d) ATM  (e) CWM  (f) TSM  

(g) AMF(h) PSM  (i) SMF  (j) BDND  (k) ANDS  (l) REIR  (m) IDPSM  (n) IRIC  (o) ASF-I  

(p) ASF-II (q) IASF 
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Fig. 3.22  Performance of various filters for Pepper image with noise density 80% (SPN)      

(a) Original image  (b) Noisy image; Filtered output of: (c) MF  (d) ATM  (e) CWM  (f) TSM     

(g) AMF(h) PSM  (i) SMF  (j) BDND  (k) ANDS  (l) REIR  (m) IDPSM  (n) IRIC  (o) ASF-I     

(p) ASF-II (q) IASF 
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3.9. Conclusion 

It is observed from simulation results that the proposed filters perform better than the 

existing methods for suppression of SPN. The proposed methods: ASF-I, ASF-II and 

IASF exhibit quite superior performance compared to other methods as they yield 

high PSNR, MSE, UQI and IEF. ASF-I shows its better performance in 40% noise 

density, ASF-II shows high performance up to 30% noise densities and whereas IASF 

perform better up 80% of noise densities. The performance of a filter depends on its 

ability to identify a noisy pixel and replace it with an efficient estimation. The IASF 

algorithm is iterative in nature which makes it more efficient in proper noise 

detection. Further, in both the algorithms, adaptive filtering window helps to retain 

the edges and fine details of an image. Hence, these two filters show better noise 

suppressing capability without yielding any appreciable distortion and blur. ANDS 

and ASF-II shows their best performance only under low density (10%).  

 It is also observed that the ASF-I, ASF-II and IASF preserve the edges and 

fine details of an image very well, as observed from Fig. 3.17-3.22, compared to other 

filters. 

Fig. 3.13 shows the graphical representation of PSNR values. The filters      

ASF-I, ASF-II and IASF show the better performance.  

In one or two occasions the IEF value of BDND filter shows good results (for 

Boat and Pepper images) for medium noise density, but it fails to perform well under 

high noise density.  

For online and real-time applications the system must have small execute time 

TE with less complexity. Table-3.15 indicates that the filters ASF-I and ASF-II show 

its best performance along with good filtering operation. 

 They are having the following advantages: 

i. Less computational complexity compared to any other methods 

ii. The noise suppressing capacity is good in all types of test images. 

iii. They retain the detailed information very well as compared to other filters. 

 

Thus, the proposed filters: ASF-I, ASF-II and IASF are observed to be very good 

special-domain image denoising filters for efficient suppression of salt-and-pepper 

impulse noise.  
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Filtering a random-valued impulse noise (RVIN) is also accomplished in two stages: 

detection of noisy pixels and replacement of these pixels with the help of an 

estimator. The difference in gray level between a noisy pixel and a noise-free 

neighbor is not always appreciable when an image is corrupted with RVIN. Filtering a 

random-valued impulse noise is far more difficult than filtering a fixed-valued 

impulse noise. With the basic Classifier-Filter proposition (depicted in Section-3.1) 

and employing median estimator for filtration, some novel algorithms are developed 

to suppress RVIN of low to medium densities quite efficiently.  

In the next section, two important statistical parameters: median of the 

absolute deviations from the median (MAD) and pixel-wise MAD (PWMAD) are 

described. Some novel filters are developed, in section-4.2 and 4.3, based on MAD 

and PWMAD employing the basic BCF and ICF-II classifier-filter structures.  

The following topics are covered in this chapter. 

 MAD and PWMAD 

 Adaptive Window based Pixel Wise MAD (AW-PWMAD) Algorithm  

 Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm  

 Simulation Results 

 Conclusion  

4 
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4.1 MAD and PWMAD 

In this section, some statistical parameters that are important and useful in image 

processing are described. These parameters are employed to develop some novel 

image denoising algorithms to suppress RVIN as well as SPN very efficiently. 

Median of Absolute Deviations from the Median (MAD) and Pixel-Wise 

MAD (PWMAD): 

A robust statistical estimation parameter, median of absolute deviation from 

median (MAD) [112], is defined by: 

                                                      (4.1) 

where,    

MAD considers deviation from the median of whole image, i.e., it takes a global 

statistical parameter that may or may not represent a truth in a local framework. To 

overcome this limitation, a new statistical parameter: pixel-wise MAD (PWMAD) is 

defined that considers deviation from median of local samples. This is expected to be 

a robust estimator of a random variable. 

PWMAD [122],   is defined by: 

                                                 (4.2) 

where,      ,  

For simplicity, new symbols  and  are introduced to represent MAD and PWMAD 

respectively, i.e., 

                                                                                               (4.3) 

                                               (4.4) 

4.2 Adaptive Window based Pixel-Wise MAD (AW-PWMAD) 

Algorithm [P8] 

Under the Classifier-Filter paradigm, an iterative classifier-filter: ICF-2 paradigm was 

introduced in Section 3.1. A novel adaptive-window filtering scheme is developed 

under this ICF-2 framework, shown in Fig.3.1(d), that employs fixed window for 

decision making.  

4.2.1 Noise Detection Algorithm 

The decision is based on robust estimators like MAD, PWMAD and their difference. 

A modified MAD is computed, under iterative framework, given by: 
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                                                                      (4.5) 

n = 0,1,2,3,.....,N-1 

After N iterations, the modified MAD, , is expected to contain noise only. To 

classify the input data as corrupted (noisy) or uncorrupted (noise-free), the following 

hypothesis (noise-detection algorithm) is made to generate a binary flag image, 

.  

IF  

             THEN  

 ELSE   

where T is a threshold whose optimum value is evaluated by searching for best 

performance in terms of PSNR in a separate experiment, discussed in Section 4.2.3.  

Fig. 4.1 shows the flowchart for this noise detection algorithm. 

4.2.2 Estimation Algorithm 

Fig. 4.2 shows the flowchart for estimation algorithm. The binary image  

controls the filtering operation. Based on binary flag, no filtering is applied to the 

uncorrupted pixels (i.e., ), while the switching median filter with an 

adaptively determined window size is applied to each corrupted pixel                      

(i.e., ).       

  Starting with (3×3) filtering window iteratively extends outward by one pixel 

in all the four sides of the window, provided that the number of uncorrupted pixels,   

Cw2, is less than half of the total number of pixels within the filtering window. The 

maximum filtering window size is limited to (7×7) to avoid undesired distortion and 

blurring. Since the central pixel has been detected as noisy, it will not participate in 

the filtering process. Only the pixels, which are classified as noise-free in filtering 

window, will participate in median filtering process. This will, in turn, yield a better 

filtering result with less distortion. 
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4.2.3 Optimizing the Threshold 

In order to optimize the value of threshold, various simulation experiments are 

conducted on standard test images, corrupted with RVIN of different noise densities. 

The performance is evaluated in terms of PSNR. The simulated results of Lena test 

image is tabulated in table Table-4.1. It is observed that the proposed system yields 

high performance, in terms of PSNR, for the threshold, T  [2, 5].Thus, an optimized 

value of threshold, T, i.e., Toptimal is taken as 3. 

 

 

 

 

 

 

 

 

 

 

Table-4.1: Performance of AW-PWMAD filter in terms of PSNR for different Threshold T, 

operated on Lena image corrupted with RVIN under varies noise densities 

 

Sl. No Threshold T 
RVIN Noise (in%) 

5 10 15 

1 1 41.01 33.45 28.03 

2 2 41.06 33.32 28.04 

3 3 41.06 34.23 28.19 

4 4 41.01 33.72 28.19 

5 5 41.22 34.57 27.93 

6 10 41.67 34.17 27.98 

7 15 41.93 34.22 27.98 

8 20 41.90 33.01 27.75 

9 25 41.54 33.06 27.48 

10 30 40.48 33.66 27.70 

11 35 40.68 33.41 27.52 

12 40 40.22 33.80 27.52 

13 50 36.07 31.20 26.08 
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4.3 Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm 

[P9] 

Another proposed method for denoising the random-valued and fixed-valued impulse 

noise employs BCF framework shown in Fig. 3.1(b) in Section 3.1. A modified MAD 

based algorithm along with a local adaptive threshold is exploited for pixel 

classification. The noisy pixel is replaced with median of uncorrupted pixels in the 

filtering window of adaptively varied size.  

Fig. 4.2 Flowchart for estimation algorithm 
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 The proposed method is a modified version of the AW-PWMAD algorithm 

described in Section-4.2. The modifications are: (i) No iteration is used for noise 

detection so as to reduce computational complexity, and (ii) Use of adaptive local 

threshold for better classification of pixels. 

 The selection of threshold T is important in pixel-classification. If the value of 

T is set too high, it omits certain portion of noisy pixels from the noise map. On the 

other hand, if T is set too low, image details will be treated as noise, and the overall 

image quality will be degraded. To overcome this problem a locally adaptive 

threshold, based on MAD value of the window, is proposed. Hence, the performance 

of the proposed method is better than the previous method i.e., AW-PWMAD.  

 Three threshold functions are suggested and employed in this algorithm. Thus, 

three different versions, namely, ALT-MAD-1, ALT-MAD-2 and ALT-MAD-3 are 

developed. They are observed to be quite efficient in noise detection and filtering.   

Proposed functions: 

 

ALT-MAD-1 

 

                  (4.6) 

 

ALT-MAD-2 

 

 

                                                                                                                                  (4.7) 

 

ALT-MAD-3 

 

 

 

                                                                                                                                  (4.8) 

 

4.3.1 Optimizing Parameters 

Simulation experiments are conducted on standard test images corrupted with RVIN 

of different noise densities to find optimal values for the parameters: a, b and λ. The 

performance is evaluated in terms of PSNR. The simulated results for Lena test image 

are tabulated in Table-4.2, 4.3 and 4.4. It is observed that the proposed filter        

ALT-MAD-1 yields high performance, in terms of PSNR, for the parameter-values: 
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a=10 and b=40, for ALT-MAD-2, a=10, b=40 and λ = 3.3 and for ALT-MAD-3, 

a=10, b=40 and λ =0.3.   

 

Table-4.2: Performance of ALT-MAD-1 filter in terms of PSNR for different a and b 

values, operated on Lena image corrupted with RVIN under various noise densities 

 

Sl. No a b 
RVIN Noise (%) 

10 20 30 

1 5 

30 

35.21 23.72 17.24 

2 10 35.57 23.81 17.56 

3 20 35.41 23.56 17.33 

4 30 35.33 23.11 17.41 

5 5 

40 

35.30 24.00 17.80 

6 10 36.22 24.76 18.40 

7 20 34.84 23.71 17.75 

8 30 34.51 23.01 17.26 

9 5 

50 

36.01 23.74 17.76 

10 10 36.55 24.10 17.96 

11 20 35.71 24.07 18.00 

13 30 34.65 24.00 17.57 

14 5 

60 

32.48 22.41 16.86 

15 10 33.05 22.63 16.99 

16 20 33.71 23.00 17.09 

17 30 33.75 23.18 17.03 

 

Table-4.3: Performance of ALT-MAD-2 filter in terms of PSNR for different λ, a=10 and 

b=40 values, operated on Lena image corrupted with RVIN under various noise densities 

 

Sl. No % of 

Noise 

λ 

2 3 4 5 3.1 3.2 3.3 3.4 3.5 

1 10 35.78 36.01 36.11 35.57 36.01 36.11 35.90 35.31 35.11 

2 20 24.00 24.40 23.91 23.47 24.86 24.84 25.02 24.71 24.70 

3 30 17.87 18.21 17.79 17.22 18.49 18.55 18.78 18.72 18.41 

 

 

 

 

 

 

 

Extensive simulations are conducted on different gray scale test images and results are 

presented in Section-4.4.  

 

Table-4.4: Performance of ALT-MAD-3 filter in terms of PSNR for different λ, a=10 and 

b=40 values, operated on Lena image corrupted with RVIN under various noise densities 

 

Sl. No % of Noise 
λ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

1 10 36.26 37.23 37.39 36.92 36.21 35.11 34.51 34.02 

2 20 25.44 25.13 25.33 25.00 24.72 24.23 23.72 22.89 

3 30 19.29 19.18 19.05 19.11 18.71 18.13 17.78 17.44 
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4.4 Simulation Results 

All the simulation experiments are carried out on a MATLAB-7.4 platform that sits 

over a Windows-XP operating system. 

The performances of proposed and existing filters are tested on different test 

images. The test images employed for simulations are: Lena, Boat, and Pepper. All of 

them are 8-bit gray scale images of size 512×512.   

Image metrics: PSNR, MSE, UQI and IEF are evaluated for                  

performance-evaluation of filters. 

The PSNR values of different filters are tabulated in the tables:                 

Table-4.5 through Table-4.7. The MSE values are presented in tables: Table-4.8 

through Table-4.10 whereas UQI results are presented in tables: Table-4.11 through 

Table-4.13. Further, the tables: Table-4.14 through Table-4.16 demonstrate the 

performance of filters in terms of IEF. The best results are highlighted in bold font for 

quick analysis in the tables. 

The proposed filters works better even for the images corrupted by salt and 

pepper noise. The Table 4.17 shows the performance of filters both in salt-and-pepper 

and random-valued impulse noise. The PSNR value is used as a performance 

measuring metrics. The best results are highlighted for quick analysis.  

The graphical representation of PSNR, MSE, UQI, and IEF of proposed filters 

and some existing filters are illustrated in figures: Fig.4.3 through Fig. 4.6 for easy 

analysis. For subjective evaluation, the images are corrupted with noise density 10% 

and 20% are applied to different filters and the resulted output images are shown in 

figures: Fig. 4.7 through Fig. 4.10. The test images: Lena and Pepper are used for 

subjective evaluation.  

Conclusions are drawn in the next section. 
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Table-4.5: Filtering performance of various filters in terms of PSNR (dB) for RVIN  

Test Image: Lena 

 

Sl. 

No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 33.95 29.86 24.56 20.57 17.31 14.85 

2 ATM[3×3] 33.66 30.02 25.81 22.22 18.86 16.15 

3 TSM 34.86 30.10 24.23 21.22 17.63 15.10 

4 PSM 34.93 31.55 28.13 24.19 20.89 17.36 

5 PWMAD 33.52 28.28 22.28 19.01 15.84 15.84 

6 AMAD 36.01 31.94 27.01 24.22 21.05 17.56 

7 AW-PWMAD[P8] 41.56 33.54 27.84 23.37 20.07 17.02 

8 ALT-MAD-1 48.52 36.88 30.77 25.01 21.21 18.54 

9 ALT-MAD-2 48.18 36.21 30.21 24.71 20.98 18.13 

10 ALT-MAD-3 49.42 37.02 30.89 25.22 21.78 18.98 

Table-4.6:  Filtering performance of various filters in terms of PSNR (dB) for RVIN  

Test Image: Pepper 

 

Sl. No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 34.22 29.88 24.66 20.37 17.18 14.72 

2 ATM[3×3] 33.11 29.76 26.04 22.32 19.09 16.39 

3 TSM 36.73 30.98 26.65 22.46 18.68 15.83 

4 PSM 37.75 32.53 28.17 23.19 18.88 17.45 

5 PWMAD 36.12 29.85 23.97 19.95 16.63 14.11 

6 AMAD 39.02 32.94 28.01 23.22 19.05 18.06 

7 AW-PWMAD[P8] 42.08 33.69 28.17 23.43 19.49 17.22 

8 ALT-MAD-1 44.65 35.08 28.24 23.15 19.69 16.78 

9 ALT-MAD-2 49.24 35.78 28.07 23.32 19.40 16.73 

10 ALT-MAD-3 47.72 35.76 28.49 23.63 19.72 18.24 

Table-4.7:  Filtering performance of various filters in terms of PSNR (dB) for RVIN  

Test Image: Boat 

 

Sl. No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 30.48 27.75 23.37 19.68 16.75 14.35 

2 ATM[3×3] 29.81 27.49 24.49 21.08 18.23 15.73 

3 TSM 32.15 29.46 25.25 21.48 17.19 15.23 

4 PSM 32.35 30.17 26.97 22.85 18.65 16.79 

5 PWMAD 31.78 27.63 23.40 19.26 16.13 13.65 

6 AMAD 34.37 31.16 27.04 23.01 19.12 16.38 

7 AW-PWMAD[P8] 38.86 32.42 27.34 23.06 19.49 16.66 

8 ALT-MAD-1 46.31 34.92 27.77 22.77 19.49 16.76 

9 ALT-MAD-2 48.61 34.91 27.33 23.00 19.37 16.63 

10 ALT-MAD-3 47.91 35.35 28.31 23.24 19.92 17.00 
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Table-4.8:  Filtering performance of various filters in terms of MSE for RVIN  

Test Image: Lena 

 

Sl. No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 20.75 66.57 227 569.3 1207 2125 

2 ATM[3×3] 27.97 64.62 170.4 389.1 825.5 1524 

3 TSM 19.86 48.2 159.8 392.4 891.4 1709 

4 PSM 10.46 28.66 79.41 260 495 948.4 

5 PWMAD 18.93 72.19 254.1 687 1420 2515 

6 AMAD 7.91 24.59 73.53 254 501 958 

7 AW-PWMAD[P8] 4.52 28.73 106.8 299 639 1288 

8 ALT-MAD-1 1.06 15.77 67.59 215.1 503.76 939.23 

9 ALT-MAD-2 1.15 13.72 66.68 227.36 520.32 999.78 

10 ALT-MAD-3 0.98 13.47 66.43 211.67 486.2 898.45 

Table-4.9:  Filtering performance of various filters in terms of MSE for RVIN  

Test Image: Pepper 

 

Sl. No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 24.55 66.74 222.2 597 1244 2189 

2 ATM[3×3] 31.73 68.6 161.7 380.9 800 1491 

3 TSM 13.81 51.88 140.5 368.5 880 1698 

4 PSM 10.89 36.25 99.04 315.5 802 1250 

5 PWMAD 15.89 67.19 260.4 656.9 1411 2518 

6 AMAD 8.15 33 102.7 295.6 680.3 1251 

7 AW-PWMAD[P8] 4.02 27.77 98.91 291.7 751.1 1231 

8 ALT-MAD-1 2.24 19.19 98.06 314.40 708.22 1381 

9 ALT-MAD-2 0.98 17.24 95.43 302.64 745.38 1380 

10 ALT-MAD-3 1.09 18.05 93.26 281.5 697.31 1211 

Table-4.10:  Filtering performance of various filters in terms of MSE for RVIN  

Test Image: Boat 

 

Sl. No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 58.15 111.7 298.7 672.8 1371 2383 

2 ATM[3×3] 67.89 115.8 230.7 506.5 975.3 1735 

3 TSM 39.56 73.48 193.9 462.3 1050 1948 

4 PSM 37.80 62.44 130.6 367.6 764 1351 

5 PWMAD 15.88 67.19 260.4 656 1412 2519 

6 AMAD 23.77 49.75 128.5 282.8 776 944 

7 AW-PWMAD[P8] 8.44 37.24 120 324 730 1403 

8 ALT-MAD-1 1.69 20.89 109.01 343.44 731.12 1377 

9 ALT-MAD-2 1.01 21.03 115.43 321.1 745 1380 

10 ALT-MAD-3 1.25 17.23 92.23 320.32 717 1322 
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Table-4.11:  Filtering performance of various filters in terms of UQI for RVIN  

Test Image: Lena 

 

Sl. No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 0.995 0.985 0.953 0.890 0.791 0.679 

2 ATM[3×3] 0.993 0.986 0.965 0.925 0.855 0.762 

3 TSM 0.996 0.988 0.967 0.921 0.836 0.725 

4 PSM 0.997 0.993 0.983 0.952 0.886 0.810 

5 PWMAD 0.995 0.984 0.947 0.869 0.760 0.635 

6 AMAD 0.998 0.994 0.984 0.953 0.8927 0.829 

7 AW-PWMAD[P8] 0.9994 0.993 0.977 0.938 0.877 0.776 

8 ALT-MAD-1 0.9998 0.9970 0.9858 0.9552 0.9006 0.8278 

9 ALT-MAD-2 0.9997 0.9966 0.9854 0.9545 0.8974 0.8173 

10 ALT-MAD-3 0.9998 0.9970 0.9896 0.9578 0.9039 0.8344 

Table-4.12:  Filtering performance of various filters in terms of UQI for RVIN  

Test Image: Pepper 

 

Sl. No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 0.995 0.988 0.963 0.907 0.821 0.718 

2 ATM[3×3] 0.994 0.988 0.973 0.941 0.884 0.787 

3 TSM 0.997 0.991 0.976 0.940 0.867 0.769 

4 PSM 0.998 0.993 0.983 0.946 0.833 0.801 

5 PWMAD 0.997 0.988 0.956 0.897 0.799 0.683 

6 AMAD 0.998 0.994 0.982 0.949 0.888 0.761 

7 AW-PWMAD[P8] 0.9995 0.995 0.983 0.943 0.887 0.801 

8 ALT-MAD-1 0.9996 0.9965 0.9834 0.9485 0.8805 0.8043 

9 ALT-MAD-2 0.9998 0.9970 0.9823 0.9504 0.8850 0.8037 

10 ALT-MAD-3 0.9998 0.9965 0.9842 0.9536 0.8928 0.8150 

Table-4.13:  Filtering performance of various filters in terms of UQI for RVIN  

Test Image: Boat 

 

Sl. No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 0.986 0.974 0.935 0.865 0.757 0.639 

2 ATM[3×3] 0.984 0.974 0.950 0.899 0.825 0.726 

3 TSM 0.990 0.983 0.957 0.903 0.804 0.684 

4 PSM 0.991 0.985 0.971 0.943 0.857 0.744 

5 PWMAD 0.990 0.974 0.935 0.849 0.730 0.597 

6 AMAD 0.994 0.988 0.971 0.938 0.849 0.717 

7 AW-PWMAD[P8] 0.998 0.991 0.973 0.931 0.840 0.751 

8 ALT-MAD-1 0.9996 0.9956 0.9756 0.9267 0.8558 0.7574 

9 ALT-MAD-2 0.9998 0.9951 0.9745 0.9304 0.8524 0.7523 

10 ALT-MAD-3 0.9997 0.9960 0.9782 0.9389 0.8582 0.7649 
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Table-4.14:  Filtering performance of various filters in terms of IEF for RVIN  

Test Image: Lena 

 

Sl. No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 42.08 26.38 11.78 6.13 3.63 2.46 

2 ATM[3×3] 31.49 24.26 15.44 8.98 5.29 3.47 

3 TSM 51.40 34.79 17.10 9.01 4.92 3.07 

4 PSM 83.45 61.03 26.13 12.59 7.49 4.08 

5 PWMAD 46.26 24.35 10.43 5.11 3.07 2.09 

6 AMAD 78.05 48.48 24.67 10.86 6.14 5.96 

7 AW-PWMAD[P8] 191.8 62.10 24.62 11.77 6.82 4.09 

8 ALT-MAD-1 1020 87.73 26.56 11.21 5.99 3.87 

9 ALT-MAD-2 604 77.46 25.51 11.15 5.80 3.64 

10 ALT-MAD-3 1020 87.83 27.50 11.43 6.21 4.10 

Table-4.15:  Filtering performance of various filters in terms of IEF for RVIN  

Test Image: Pepper 

 

Sl. No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 35.35 25.86 11.63 5.80 3.48 2.37 

2 ATM[3×3] 27.13 25.15 15.81 8.96 5.35 3.47 

3 TSM 61.98 33.69 18.28 9.32 4.89 3.04 

4 PSM 78.41 47.15 26.20 10.68 7.09 4.00 

5 PWMAD 53.70 25.72 9.94 5.19 3.03 2.04 

6 AMAD 108.8 52.21 25.29 14.00 8.42 5.69 

7 AW-PWMAD[P8] 215.7 62.00 26.03 12.20 6.55 4.17 

8 ALT-MAD-1 380.29 85.86 26.45 10.97 6.04 3.74 

9 ALT-MAD-2 1300 99.33 28.03 11.40 5.82 3.75 

10 ALT-MAD-3 781 85.31 27.63 12.81 6.21 4.01 

Table-4.16:  Filtering performance of various filters in terms of IEF for RVIN  

Test Image: Boat 

 

Sl. 

No 

 

Filters 

          % of Noise (Random-valued Impulse Noise) 

5 10 15 20 25 30 

1 MF [3×3] 16.24 16.87 9.51 5.61 3.46 2.37 

2 ATM[3×3] 14.18 16.40 12.27 7.50 4.85 3.27 

3 TSM 23.55 25.79 14.69 8.12 4.49 2.89 

4 PSM 24.77 30.40 21.72 10.13 6.41 4.14 

5 PWMAD 22.38 16.85 9.62 4.89 2.98 2.02 

6 AMAD 40.01 38.05 21.84 10.30 8.20 5.99 

7 AW-PWMAD[P8] 111.0 50.35 23.68 11.68 6.50 4.03 

8 ALT-MAD-1 615.58 89.68 26.19 11.03 6.41 4.09 

9 ALT-MAD-2 1052 89.53 29.38 11.61 6.28 4.01 

10 ALT-MAD-3 890.26 98.88 24.74 11.39 6.58 4.29 
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Table-4.17:  Comparison of Filtering performance of various filters in terms of PSNR (dB) for both 

SPN and RVIN. Test image: Lena 

Sl. No Filters % Noise (SPN) % Noise (RVIN) 

10 20 30 10 20 30 

1 MF [3×3] 33.74  27.28  21.75  29.86  20.57  14.85  

4 ATM[3×3] 31.99  27.72  23.06  30.02  25.57  21.16  

7 TSM 35.49  29.31  23.48  30.10  21.22  15.10  

8 PSM 37.27  32.71  29.21  31.55  24.19  17.36  

9 PWMAD 32.11  23.56  17.91  28.28  19.01  15.84  

10 AMAD 37.13  30.32  24.27  31.94  24.22  17.56  

11 AW-PWMAD 38.77 30.77  24.28  33.54  23.37  17.02  

12 ALT-MAD-1 43.48 30.89 22.14 36.88 25.01 18.54 

13 ALT-MAD-2 43.21 30.44 21.63 36.21 24.71 18.13 

14  ALT-MAD-3 44.50 32.75 25.11 37.02 25.22 18.98 
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Fig. 4.3 Performance comparison of various filters in terms of PSNR (dB) for RVIN at different 

noise densities on the images: 

(a) Lena 

(b) Pepper 

(c) Boat 
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Fig. 4.4 Performance comparison of various filters in terms of MSE for RVIN at different noise 

densities on the images: 

(a) Lena 

(b) Pepper 

(c) Boat 
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Fig. 4.5 Performance comparison of various filters in terms of UQI for RVIN at different noise 

densities on the images: 

(a) Lena 

(b) Pepper 

(c) Boat 
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Fig. 4.6 Performance comparison of various filters in terms of IEF for RVIN at different noise 

densities on the images: 

(a) Lena 

(b) Pepper 

(c) Boat 
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Fig. 4.7  Performance of various filters for Lena image with noise density 10% (RVIN) 

 (a) Original image  (b) Noisy image; Filtered output of: (c) MF  (d) ATM  (e) TSM (f) PSM  (g) PWMAD         

(h) AMAD (i) AW-PWMAD (j) ALT-MAD-1(k) ALT-MAD-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Fig. 4.8 Performance of various filters for Pepper image with noise density 10% (RVIN)             

(a) Original image  (b) Noisy image; Filtered output of: (c) MF  (d) ATM  (e) TSM (f) PSM  (g) PWMAD          

(h) AMAD (i) AW-PWMAD(j) ALT-MAD-1(k) ALT-MAD-3 
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Fig. 4.9  Performance of various filters for Lena image with noise density 20% (RVIN)                  

(a) Original image  (b) Noisy image; Filtered output of: (c) MF  (d) ATM  (e) TSM (f) PSM  (g) PWMAD(h) 

AMAD (i) AW-PWMAD(j) ALT-MAD-1(k) ALT-MAD-3 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Fig. 4.10  Performance of various filters for Pepper image with noise density 20% (RVIN)            

(a) Original image  (b) Noisy image; Filtered output of: (c) MF  (d) ATM  (e) TSM (f) PSM  (g) PWMAD(h) 

AMAD (i) AW-PWMAD(j) ALT-MAD-1(k) ALT-MAD-3 
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4.5 Conclusion 

It is observed from the simulation results that the proposed filters are quite effective in 

suppressing both salt-and-pepper and random-valued impulse noise.   

The PSNR tables clearly indicate that the proposed filter ALT-MAD-3 

outperform the other existing filters. The filter ALT-MAD-2 shows better 

performance for low-noise density for pepper image, whereas the filter ALT-MAD-1 

is the second best filter. Even the MSE table justifies the same analysis.  

From Figs. 4.7 through 4.10 it is observed that the proposed filters are very 

good in persevering the edges and fine details of an image as compared to other 

filters. The image quality is evaluated in terms of UQI. From the tables it is observed 

that the proposed filters show better UQI values than the existing filtering techniques. 

Figs. 4.3 through 4.6 show the graphical representation of PSNR, MSE, UQI 

and IEF. The graphs quickly review the results. They show the performance of filters 

at various levels of noise densities.  

From the results tabulated in Table 4.17, it can be concluded that the proposed 

filters are very effective in suppression of SPN and RVIN. 

The performance of a filter depends on its ability to identify a noisy pixel and 

replace it with an accurate estimation. It is observed that the proposed filter ALT-

MAD-3 shows superior ability to identify a noisy pixel and replace it with quite an 

accurate estimated value. This is so because this algorithm yields very high PSNR i.e., 

the error in estimation is very low which indicates high accuracy of the estimation 

technique. 
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Recently, some color image denoising filters are reported in literature [34,132-

137].They don‟t exhibit very high performance in suppressing implosive noise. 

Hence, there is sufficient scope for developing a good color image denoising filter. 

Efforts are made, in this research work to develop some high-performance color 

image filters for filtering SPN and RVIN. 

 In the proposed methods, the switching median filtering scheme can be 

extended to denoise corrupted color image using the scalar median filtering approach 

as well as the vector median filtering approach. In scalar approach each color 

component is treated as an independent entity and filtering is applied to each channel 

in different color spaces (e.g., RGB, YCbCr, etc.).  The output signals of independent 

channels will then be combined to form the recovered color image. H.Zhou, et al [34] 

have shown that the RGB and YCbCr color spaces are found to be quite  effective 

color representation spaces for images (2-D) and video (3-D) denoising applications. 

Since the performance of denoising filters degrades in other color spaces, efforts are 

made to develop color image denoising filters in RGB color space only in this 

research work. Further, RGB filters are simple and hence easy to implement. There 

would be no need of transformation of an image from RGB to any other color space. 

This is so because image signals generated from cameras are in RGB color space. 
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 In this chapter three filters are proposed for denoising SPN noise and one filter 

for RVIN. 

 The organization of this chapter is given below. 

 Color Image Filters 

 Multi-Channel Robust Estimator based Impulse-Noise Reduction       

(MC-REIR) Algorithm  

 Multi-Channel Impulse-Noise Removal by Impulse Classification       

(MC-IRIC) 

 Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) 

 Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-MAD) 

Algorithm 

 Simulation Results 

 Conclusion 

5.1 Color Image Filters 

Though color image filters may be of any color space, only RGB color image filters 

are discussed here as they exhibit high performance. Fig. 5.1 illustrates the structures 

of RGB scalar and vector filters. In essence, an RGB scalar filter processes a gray 

image (single-channel signal) in an iterative paradigm to process a color image. On 

the other hand, a vector image filter, shown in Fig. 5.1 (b), takes the whole color (all 

the three channels) information. Though these two types of filters differ from each 

other by their structure, their resultant operations are identical. Therefore, only RGB 

scalar filters are developed and depicted in this chapter.   
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Fig.5.1 Color Image Filters 
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5.2 Multi-Channel Robust Estimator based Impulse-Noise Reduction 

(MC-REIR) Algorithm 

The Robust Estimator based Impulse-Noise Reduction (REIR) Algorithm is a filter 

that suppresses the SPN from extremely corrupted images. The algorithm is explained 

in Section 3.2.  The filtering performance of this filter is already tested in and it shows 

better performance. The extension of this filter is presented for suppressing the       

salt-and-pepper impulse noise in color images. Hence in this chapter algorithm is not 

explained. The RGB scalar filter structure shown in Fig. 5.1(a) is used for developing 

of filter. The algorithm is applied separately to R-channel, G- channel and B- channel 

of noisy image and filtered output of each filter is combined to generate filtered color 

image.  

The performance of this filter is examined by extensive simulation work, and 

the results are presented in Section-5.6. 

5.3 Multi-Channel Impulse-Noise Removal by Impulse Classification 

(MC-IRIC) 

Under high noise density condition, Impulse-Noise Removal by Impulse 

Classification (IRIC) is a simple and less computational complexity filter that 

performs very well for suppressing SPN from gray-scale image. The operation of the 

algorithm is explained in Section 3.4.The performance of the proposed method with 

gray-scale image is already tested and found to be very promising for all gray-scale 

test images. Therefore, the application of this method is extended to filter the color 

images.   

The proposed filter is developed by using the RGB scalar filter structure 

shown in Fig. 5.1(a), where each channel (i.e., R-, G- and B- channel) is filtered 

separately. The filtered image is restored by combining the filtered output of each 

channel.  

The performance of the filter is tested by extensive simulation and the results 

are presented in Section-5.6. 

5.4 Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) 

Iterative Adaptive Switching Filter (IASF) is a high performing filter in suppressing 

SPN from gray-scale image. The operation of the IASF algorithm is explained in 

Section 3.6. Due to its iterative structure, the performance of this filter is better than 

existing order-statistic filters. The performance of this method with gray-scale image 
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is already tested and the filter is observed to be exhibit very high performance in 

suppressing SPN under high noise densities. Therefore, the application of this method 

is extended to filter the color images.   

The proposed filter is developed in RGB scalar filters, where each channel is 

filtered separately. The filtered image is restored by combining the filtered output of 

each channel.  

The performance of filter is tested by extensive simulation and the results are 

presented in Section 5.6. 

5.5 Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-

MAD) Algorithm 

The filter, Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm, has 

better RVIN suppression capability. The operation and performance of the filter is 

already tested in Section 4.3 of Chapter 4. Hence, this method is extended to filter the 

random-valued impulse noise in color images. The filter is developed by using RGB 

scalar filter structure shown in Fig 5.1(a). The algorithm is applied separately to       

R- channel, G- channel and B- channel and the filtered output of each channel is 

combined to construct the filtered color image. 

 The performance of this filter is examined by extensive simulation work. The 

simulation results are presented in next section. 

 

5.6 Simulation Results 

The performance of proposed filters is tested on MATLAB-7.4 platform that sits over 

a Windows-XP operating system.  

The algorithms are tested with different test images. The test images employed 

here are Lena, Pepper and Tiffany of size 512×512×3, 24-bit color images. These 

filters are compared with some standard filters. The image metrics: CPSNR, MSE, 

UQI and IEF are used for performance-evaluation of filters. 

The CPSNR values of different filters are presented in tables:                   

Table-5.1throughTable-5.3. MSE values are tabulated in table Table-5.4 through 

Table-5.6, whereas UQI values are shown in table Table-5.7 through Table-5.9. 

Tables: Table-5.10 through Table-5.12 present the IEF performance of the filters. The 

best results are highlighted in bold font for quick analysis in the tables.  
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The graphical representation of PSNR, MSE, UQI and IEF of the proposed 

filters and some high performing filters are illustrated in the figures: Fig. 5.2 through 

Fig. 5.5 for easy analysis. For subjective evaluation, the output images of the 

proposed and some commonly used filters are shown in the figures: Fig. 5.6 through 

Fig. 5.9. To show some samples of restored image, for subject evaluation, only Lena 

and Pepper images corrupted with SPN of noise density 10% and 20% are presented. 

Conclusions are drawn in next section. 

 

 

 

 

 

 

 

Table-5.1: Performance of various colour image filters in RGB-colour space, in terms of    

CPSNR (dB) at various noise densities. Test Image: Lena 
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Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 31.26 26.56 21.20 17.09 13.82 11.13 

MF [5×5] 31.78 31.32 30.14 26.11 21.11 16.05 

MF [7×7] 28.38 28.06 27.60 26.91 25.19 21.64 

ATM 28.23 28.00 27.72 27.28 26.47 24.38 
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ro
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 F
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MC-REIR 35.03 34.10 32.67 31.11 29.65 27.99 

MC-IRIC 44.41 40.83 38.31 36.20 34.30 32.34 

MC-IASF 34.04 33.05 31.89 30.96 29.78 27.88 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
31.63 26.98 19.53 13.80 10.60 9.07 

Table-5.2: Performance of various colour image filters in RGB-colour space, in terms of         

CPSNR (dB) at various noise densities. Test Image: Pepper 
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Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 31.28 26.39 21.04 16.87 13.65 11.05 

MF [5×5] 30.90 29.99 28.84 25.54 20.87 16.28 

MF [7×7] 29.76 29.19 28.48 27.50 25.75 21.58 

ATM 29.43 28.99 28.50 27.82 26.85 24.57 

P
ro

p
o

se
d

 F
il

te
rs

 

MC-REIR 34.68 33.45 31.99 30.13 29.01 27.28 

MC-IRIC 35.13 34.17 33.64 32.17 31.60 30.28 

MC-IASF 34.04 33.05 31.89 29.96 28.78 27.88 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
30.91 26.72 19.20 13.45 10.32 8.90 
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Table-5.3: Performance of various colour image filters in RGB-colour space, in terms of    

CPSNR (dB) at various noise densities. Test Image: Tiffany 

 

E
x

is
ti

n
g

 F
il

te
rs

  

Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 32.94 26.54 20.69 16.47 13.19 10.60 

MF [5×5] 31.78 31.32 30.14 26.46 21.11 16.05 

MF [7×7] 30.41 30.16 29.90 29.42 27.05 22.24 

ATM 30.31 30.18 29.96 29.73 29.07 25.80 

P
ro

p
o
se

d
 F

il
te

rs
 

MC-REIR 37.80 36.60 35.10 33.66 32.19 30.63 

MC-IRIC 35.46 35.20 34.73 34.11 33.34 32.44 

MC-IASF 37.09 35.69 34.25 32.60 30.60 30.45 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
32.49 25.30 15.35 9.18 5.95 4.48 

Table-5.4: Performance of various colour image filters in RGB-colour space, in terms of MSE at 

various noise densities. Test Image: Lena 

 

E
x
is

ti
n
g
 F

il
te

rs
  

Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 48.59 143.5 492.9 1267 2696 4771 

MF [5×5] 67.54 78.41 101 188.7 508.6 1468 

MF [7×7] 94.22 101.5 112.8 132.2 183.6 445 

ATM 97.61 102.9 109.7 121.5 146.5 136.8 

P
ro

p
o

se
d
 F

il
te

rs
 

MC-REIR 20.39 25.26 35.16 50.26 70.39 103.2 

MC-IRIC 2.35 5.36 9.58 15.57 24.11 37.89 

MC-IASF 20.89 38.81 45.36 75.05 95.1 118.8 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
44.67 130.1 723.1 2709 5652 8050 
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Table-5.5: Performance of various colour image filters in RGB-colour space, in terms of MSE at 

various noise densities. Test Image: Pepper 

 

E
x

is
ti

n
g

 F
il

te
rs

  

Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 48.35 150.1 511.4 1335 2799 5103 

MF [5×5] 52.76 65.02 90.80 185.1 531.1 1529 

MF [7×7] 68.67 78.28 92.11 115.6 173.1 451.7 

ATM 73.99 81.94 91.70 107.1 134.2 226.8 

P
ro

p
o
se

d
 F

il
te

rs
 

MC-REIR 22.09 29.32 41.06 62.97 81.63 111.6 

MC-IRIC 19.93 22.68 28.08 34.79 44.90 60.94 

MC-IASF 24.26 33.49 52.91 65.53 85.97 125.9 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
52.63 138.1 780.6 2932 6038 8375 

Table-5.6: Performance of various colour image filters in RGB-colour space, in terms of MSE at 

various noise densities. Test Image: Tiffany 

 

E
x
is

ti
n
g
 F

il
te

rs
  

Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 33.03 143.9 554.1 1463 3114 5662 

MF [5×5] 43.13 47.89 62.89 146.7 503.5 1614 

MF [7×7] 59.09 62.61 66.53 74.19 128.1 387.9 

ATM 60.50 62.25 65.56 69.08 80.40 107.9 

P
ro

p
o

se
d

 F
il

te
rs

 

MC-REIR 10.76 14.15 20.07 27.99 39.22 56.22 

MC-IRIC 18.02 19.62 21.86 25.22 30.10 37.06 

MC-IASF 12.00 18.15 34.05 38.92 59.30 77.17 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
36.64 204.0 1895 7837 16549 23144 
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Table-5.7: Performance of various colour image filters in RGB-colour space, in terms of UQI at 

various noise densities. Test Image: Lena 

 

E
x

is
ti

n
g

 F
il

te
rs

  

Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 0.986 0.961 0.880 0.736 0.555 0.387 

MF [5×5] 0.980 0.978 0.972 0.950 0.874 0.702 

MF [7×7] 0.973 0.971 0.969 0.964 0.951 0.889 

ATM 0.972 0.971 0.969 0.966 0.960 0.938 

P
ro

p
o
se

d
 F

il
te

rs
 

MC-REIR 0.647 0.456 0.340 0.254 0.192 0.141 

MC-IRIC 0.653 0.462 0.346 0.265 0.203 0.157 

MC-IASF 0.982 0.979 0.976 0.973 0.966 0.963 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
0.706 0.692 0.612 0.483 0.4001 0.350 

Table-5.8: Performance of various colour image filters in RGB-colour space, in terms of UQI at 

various noise densities. Test Image: Pepper 

 

E
x
is

ti
n
g
 F

il
te

rs
  

Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 0.990 0.971 0.908 0.787 0.626 0.455 

MF [5×5] 0.989 0.987 0.983 0.965 0.903 0.760 

MF [7×7] 0.986 0.985 0.982 0.978 0.968 0.919 

ATM 0.985 0.984 0.982 0.980 0.975 0.958 

P
ro

p
o

se
d

 F
il

te
rs

 

MC-REIR 0.702 0.523 0.399 0.307 0.235 0.174 

MC-IRIC 0.699 0.524 0.403 0.313 0.245 0.189 

MC-IASF 0.994 0.993 0.991 0.987 0.985 0.982 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
0.387 0.380 0.385 0.250 0.184 0.153 
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Table-5.9: Performance of various colour image filters in RGB-colour space, in terms of UQI at 

various noise densities. Test Image: Tiffany 

 

E
x

is
ti

n
g

 F
il

te
rs

  

Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 0.979 0.917 0.734 0.517 0.322 0.190 

MF [5×5] 0.972 0.969 0.960 0.913 0.755 0.484 

MF [7×7] 0.962 0.960 0.957 0.953 0.922 0.796 

ATM 0.961 0.960 0.958 0.956 0.949 0.899 

P
ro

p
o
se

d
 F

il
te

rs
 

MC-REIR 0.401 0.238 0.159 0.113 0.083 0.059 

MC-IRIC 0.390 0.232 0.161 0.118 0.091 0.073 

MC-IASF 0.938 0.932 0.924 0.912 0.892 0.864 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
0.660 0.612 0.459 0.374 0.331 0.306 

Table-5.10: Performance of various colour image filters in RGB-colour space, in terms of IEF at 

various noise densities. Test Image: Lena 

 

E
x
is

ti
n
g
 F

il
te

rs
  

Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 40.69 27.48 12.08 6.24 3.63 2.48 

MF [5×5] 29.37 50.21 58.71 41.92 19.46 8.07 

MF [7×7] 20.98 38.08 52.52 59.98 53.90 26.69 

ATM 20.23 38.51 54.15 65.15 67.66 50.09 

P
ro

p
o

se
d

  

F
il

te
rs

 

MC-REIR 96.74 157.8 168.7 157.7 140.6 115.0 

MC-IRIC 278.9 246.9 206.7 168.8 136.7 104.7 

MC-IASF 94.76 144.00 157.07 160.60 127.58 111.03 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
20.96 17.31 5.24 2.01 1.26 1.08 
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Table-5.11: Performance of various colour image filters in RGB-colour space, in terms of IEF at 

various noise densities. Test Image: Pepper 

 

 

E
x

is
ti

n
g

 F
il

te
rs

  

Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 43.00 27.92 12.28 6.26 3.73 2.46 

MF [5×5] 39.65 64.38 69.10 45.37 19.71 8.20 

MF [7×7] 30.61 53.45 67.76 72.12 60.23 27.77 

ATM 28.10 51.27 68.51 77.97 77.70 55.32 

P
ro

p
o

se
d

 F
il

te
rs

 

MC-REIR 94.10 142.9 153.1 132.9 128.1 103.4 

MC-IRIC 34.89 61.43 74.43 80.36 77.65 68.75 

MC-IASF 64.57 103.2 119.2 127.9 121.7 118.5 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
15.85 14.74 4.50 1.75 1.123 0.988 

Table-5.12: Performance of various colour image filters in RGB-colour space, in terms of IEF at 

various noise density conditions. Test Image: Tiffany 

 

E
x
is

ti
n
g
 F

il
te

rs
  

Filters 
          % of Noise (Salt-and-pepper  Impulse Noise) 

5 10 15 20 25 30 

MF [3×3] 70.86 32.68 12.74 6.43 3.77 2.49 

MF [5×5] 54.14 97.87 111.8 64.04 23.27 8.72 

MF [7×7] 39.48 74.86 105.5 126.5 91.71 36.35 

ATM 38.78 75.53 107.3 136.5 145.9 82.40 

P
ro

p
o

se
d

 F
il

te
rs

 

MC-REIR 96.74 157.7 168.6 157.6 140.5 115.0 

MC-IRIC 43.41 80.01 107.0 123.7 130.1 127.1 

MC-IASF 88.40 133.59 145.83 152.62 128.92 105.91 

Random-valued Impulse Noise 

MC-ALT-

MAD-3 
57.30 25.98 4.89 1.74 1.08 0.954 
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Fig. 5.2 Performance comparison of various filters in terms of CPSNR (dB) at different noise 

densities on the images: 

 (a) Lena 

               (b) Pepper 

               (c) Tiffany 

 

 

 

 

 

(a) 

(b) (c) 
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Fig. 5.3 Performance comparison of various filters in terms of MSE under different noise density 

on the images: 

(a) Lena 

(b) Pepper 

(c) Tiffany 

 

(c) 

(a) 

(b) 



 

 
Development of Some Color Image Denoising Filters for Suppression of Impulse Noise 

 

 Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise                         119 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

Fig. 5.4 Performance comparison of various filters in terms of UQI under different noise density 

on the images: 

(a) Lena 

(b) Pepper 

(c) Tiffany 

 

 

 

(c) 

(a) 

(b) 
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Fig. 5.5 Performance comparison of various filters in terms of IEF under different noise density 

on the images: 

(a) Lena 

(b) Pepper 

(c) Tiffany 

 

 

 

(c) 

(a) 

(b) 
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Fig. 5.6  Performance of various filters for Lena image with noise density 10% (a) Original image    

(b) Noisy image(SPN); Filtered output of: (c) MF  (d) ATM  (e) MC-REIR (f) MC-IRIC(g) MC-IASF    

(h) Noisy image(RVIN) ; Filtered output of (i) MC-ALT-MAD-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7  Performance of various filters for Pepper image with noise density 10% (a) Original image  

(b) Noisy image(SPN); Filtered output of: (c) MF  (d) ATM  (e) MC-REIR (f) MC-IRIC(g) MC-IASF    

(h) Noisy image (RVIN) ; Filtered output of (i) MC-ALT-MAD-3 
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Fig. 5.8  Performance of various filters for Lena image with noise density 20% (a) Original image     

(b) Noisy image(SPN); Filtered output of: (c) MF  (d) ATM  (e) MC-REIR (f) MC-IRIC(g) MC-IASF    

(h) Noisy image(RVIN) ; Filtered output of (i) MC-ALT-MAD-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9  Performance of various filters for Pepper image with noise density 20% (a) Original image  

(b) Noisy image(SPN); Filtered output of: (c) MF  (d) ATM  (e) MC-REIR (f) MC-IRIC(g) MC-IASF    

(h) Noisy image(RVIN) ; Filtered output of (i) MC-ALT-MAD-3 
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5.7 Conclusion 

It is observed from the tables: Table-5.1 through Table-5.3 and tables: Table-5.4 

through Table-5.6  that the proposed filter, MC-IRIC yields  very high CPSNR and 

very low MSE values under varying noise densities. Therefore, it is really an efficient 

filter to suppress impulsive noise from color images. 

 It is observed from the UQI performance tables that for Lena image at low 

density MF is found to be more effective, whereas for other noise densities the 

proposed filter, MC-IASF shows better UQI values. For Pepper image, MC-IASF 

shows better results. Another important observation from UQI table for Tiffany image 

is that the MF exhibits better results for 5% and 15% of noise and ATM yields better 

results for higher noise densities. 

 Further, it is observed from IEF results that, for Lena image, the filter MC-

IRIC shows better performance under 5% - 20% noise densities and the filter MC-

REIR shows better performance for noise of density more than 25%. For Tiffany 

image, MC-REIR filter outperforms the other filters; whereas the filter MC-REIR 

gives the best performance for Pepper image up to 25% of noise densities and MC-

IASF shows good results at 30% noise density.   

 The subjective evaluation should also be taken into consideration to judge the 

filtering performance. From the figures: Fig. 5.6 through Fig. 5.9 it is observed that 

for low noise density almost all filters show good image quality. But for 20% noise 

density MC-IRIC and MC-IASF filters show better quality images with sharp edges. 

At the same time, MF and ATM filters yield blurring effect which is undesirable. 

 Thus, it is concluded that: 

 MC-MF and MC-ATM are poor performers. 

 MC-IASF and MC-REIR exhibit high performance. 

 MC-IRIC exhibits the overall best performance. 
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Preview 

  

The research work in this thesis primarily focuses on impulse noise. Various spatial-

domain filters are proposed to suppress the impulse noise, both SPN and RVIN, at 

very high noise densities. The performances of these filters are compared with the 

existing filters which are available in literature. Some of them are designed for 

suppressing SPN while others are meant for RVIN. In addition, some novel filters are 

developed to suppress impulsive noise from color image.  The metrics which are used 

for performance-analysis are: peak-signal-to-noise ratio (PSNR), universal quality 

index (UQI) and image enhancement factor (IEF). 

The following topics are covered in this chapter. 

 Comparative Analysis 

 Conclusion 

 Scope for Feature Work 

6 
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6.1 Comparative Analysis 

In the first part of this section the performances of filters which are proposed for 

suppressing impulse noise from gray scale images are analyzed. In the next part, 

performances of color image filters are analyzed. 

6.1.1 Comparative analysis of proposed filters for denoising salt-and-pepper 

impulse noise in gray-scale images 

It is important to test the performance of the filters. The filtered output images are 

used for analysis purpose. All the filters (existing and proposed) are simulated on 

MATLAB-7.4 running on a windows-XP operating system.  

All the filters are simulated on different test images: Lena, Pepper and Boat. 

All test images are of size 512×512 pixels, 8-bit gray-scale images, which are 

corrupted with salt-and-pepper impulse noise at different noise densities ranging from 

10% to 90%.The SPN noise density is categorized as low if it is less than 20%, 

medium if noise density is between 20% and 40%, high if the noise density is 

between 40% and 60% and very high if noise density more than 60%. Similarly for 

RVIN noise density is categorized as low if the noise density is less than 10%, 

medium if the noise density is between 10% and 20% and high if the noise density 

more than 20%.  

 The image metrics: PSNR, MSE, UQI, IEF and execution time TE are used for 

analysis of filters. To perform the precise comparative study, brief simulation results 

of all proposed as well as some high-performing existing filters are presented in 

Table-6.1 for test image Lena. Only PSNR, UQI and IEF are used for quick analysis 

purpose. The results are presented for 40%, 60% and 80% noise density taking Lena 

as test image. The best performing filter for each parameter is highlighted in bold 

font. 

It is observed from the table that the proposed filters are performing better in 

all test parameters (PSNR, UQI and IEF) in all range of noise densities, except the 

ANDS filter. As it is already analyzed in Chapter-3, ANDS shows good performances 

only under low noise density conditions. 

 At noise density of 40%, ASF-I filter shows best result; whereas at a noise 

density of 60% and above, IASF filter shows its dominating performance.   
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From Table-3.15, it is clear that the proposed filter ASF-I and ASF-II are 

much more suited for online and real time applications, because of small execution 

time 1.02 and 0.85 sec. respectively.  

6.1.2 Comparative Analysis of Proposed filters for denoising random-valued 

impulse noise in gray-scale images 

In this case also Lena image is used as test image for analysis purpose and PSNR, 

UQI and IEF are used as image metric. For quick analysis purpose proposed and some 

existing filters are tested with 10%, 20% and 30% random-valued impulse noise 

densities. Table-6.2 shows the simulated results. The high performing filters for each 

parameter is highlighted for quick reference. The overall performances of proposed 

filters are good in suppressing random-valued impulse noise. From Table-4.17 it is 

already clear that these filters perform better even in salt-and-pepper impulse noise 

also. 

 

Table-6.1: Filtering performance of various filters in terms of PSNR (dB), UQI and IEF for SPN    

Test image: Lena  

 

E
x
is

ti
n

g
 f

il
te

rs
 

Noise 

Densities 
40% 60% 80% 

Filters PSNR UQI IEF PSNR UQI IEF PSNR UQI IEF 

MF 27.66 0.975 66.68 25.15 0.955 56.05 20.33 0.869 24.61 

ATM 28.00 0.984 72.34 24.73 0.976 50.76 15.35 0.901 7.81 

CWM 19.21 0.972 9.53 12.48 0.901 3.03 8.19 0.745 1.50 

TSM 18.83 0.835 8.72 12.02 0.466 2.73 7.62 0.132 1.32 

AMF 19.99 0.863 11.34 13.44 0.550 3.74 8.73 0.201 1.69 

PSM 24.83 0.956 35.55 12.26 0.501 2.88 8.11 0.192 1.47 

SMF 24.04 0.944 29.01 17.25 0.771 9.11 9.92 0.298 2.24 

BDND 31.71 0.993 266.4 28.84 0.985 166.1 23.83 0.970 109.8 

P
ro

p
o
se

d
 f

il
te

rs
 

ANDS 24.16 0.947 29.60 16.63 0.753 7.89 10.28 0.337 2.42 

REIRA 33.03 0.992 207.5 29.45 0.981 127.1 25.68 0.958 74.79 

IDPSM 30.90 0.988 140.5 27.55 0.974 97.10 24.78 0.952 68.50 

IRIC 32.24 0.991 191.3 28.41 0.979 119.0 23.87 0.941 55.56 

ASF-I 33.89 0.9942 279.7 30.93 0.9885 211.9 27.64 0.9754 132.7 

ASF-II 33.77 0.9940 271.1 29.46 0.9837 151.8 27.24 0.9728 121.0 

IASF 33.78 0.9940 273.5 31.01 0.9887 215.7 27.75 0.9760 136.1 
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6.1.3 Comparative Analysis of Proposed filters for denoising salt-and-pepper 

impulse noise in color images 

The simulation of color filter is also performed on the similar condition as stated in 

Section-6.1.1. The test images: Lena, Pepper and Tiffany of size (512×512×3) are 

used. They are simulated in RGB color space. The performances of these filters are 

compared with some commonly used filters. Table-6.3 shows the results for analysis 

purpose. Here color Lena image corrupted with 10%, 20% and 30% SPN is used to 

test the filtering performance of filters. The best performing filter with parameters are 

highlighted for reference. It is clear from Table-6.3 that the proposed filters perform 

better. Out of these, MC-IRIC filter shows its better performance in terms of CPSNR 

and IEF and at the same time the filter: MC-IASF shows its better performance in 

terms of UQI only. This indicates that the proposed scheme: MC-IASF yields very 

low distortion. So, it is clear from the results that the proposed filters suppress noise 

quite well in color images. 

 

 

Table-6.2: Filtering performance of various filters in terms of PSNR (dB), UQI and IEF for RVIN  

Test image: Lena 

 

E
x
is

ti
n

g
 f

il
te

rs
 

Noise 

Densities 10% 20% 30% 

Filters PSNR UQI IEF PSNR UQI IEF PSNR UQI IEF 

MF[3×3] 29.86 0.985 26.38 20.57 0.890 6.13 14.85 0.679 2.46 

ATM 

[3×3] 
30.02 0.986 24.26 22.22 0.925 8.98 16.15 0.762 3.47 

TSM 30.10 0.988 34.79 21.22 0.921 9.01 15.10 0.725 3.07 

PSM 31.55 0.993 61.03 24.19 0.952 12.59 17.36 0.810 4.08 

PWMAD 28.28 0.984 24.35 19.01 0.869 5.11 15.84 0.635 2.09 

AMAD 31.94 0.994 48.48 24.22 0.953 10.86 17.56 0.829 5.96 

P
ro

p
o
se

d
 f

il
te

rs
 AW-

PWMAD 
33.54 0.993 62.10 23.37 0.938 11.77 17.02 0.776 4.09 

ALT-

MAD-1 
36.88 0.9970 87.73 25.01 0.9552 11.21 18.54 0.8278 3.87 

ALT-

MAD-2 
36.21 0.9966 77.46 24.71 0.9545 11.15 18.13 0.8173 3.64 

ALT-

MAD-3 
37.02 0.9970 87.83 25.22 0.9578 11.43 18.98 0.8344 4.10 
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6.2 Conclusion 

The simulated results show that the proposed filters suppress the impulse noise better 

than the existing filters, both in gray-scale as well as in color images.  

 It is observed from Table-6.1 that the proposed filters perform better than the 

existing methods for suppression of SPN. The proposed methods: ASF-1 and IASF 

exhibit quite superior performance compared to other methods as they yield high 

PSNR, UQI and IEF values. The performance of a filter depends on its ability to 

identify a noisy pixel and replace it with an efficient estimation. The IASF algorithm 

is iterative in nature which makes it more efficient in proper noise detection. Further, 

in both the algorithms, adaptive filtering window helps to retain the edges and fine 

details of an image. Hence, these two filters show better noise suppressing capability 

without yielding any appreciable distortion and blur.  

For online and real-time applications the system must have small execute time 

with less complexity. Table-3.21 shows the filter ASF-I and ASF-II shows its best 

performance along with good filtering operation. 

 Similarly, from Table-6.2, it is observed that the proposed methods are 

efficient in suppressing RVIN. Out of all, ALT-MAD-3 exhibits much better 

performance in terms of PSNR, UQI and IEF compared to other proposed and 

existing methods. 

Table-6.3: Filtering performance of various filters in terms of CPSNR (dB), UQI and IEF for 

SPN. Test image: Lena (color)  

 

E
x

is
ti

n
g

 F
il

te
rs

 Noise 

Densities 10% 20% 30% 

Filters CPSNR UQI IEF CPSNR UQI IEF CPSNR UQI IEF 

MF 31.32 0.978 50.21 26.91 0.964 59.98 21.64 0.889 26.69 

ATM 28.00 0.971 38.51 27.28 0.966 65.15 24.38 0.938 50.09 

P
ro

p
o

se
d

 

F
il

te
rs

 

MC-

REIR 
34.10 0.456 157.8 31.11 0.254 157.7 27.99 0.141 115.0 

MC-IRIC 40.83 0.462 246.9 36.20 0.265 168.8 32.34 0.157 104.7 

MC-

IASF 
33.05 0.979 144.0 30.96 0.973 160.6 27.88 0.963 111 
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In color filtering, the proposed filter MC-IRIC shows its best performance. 

 

Finally, it may be concluded that ASF-I and IASF excel in suppressing high 

density SPN whereas ALT-MAD-3 yields excellent performance in filtering 

RVIN of low and medium densities. The proposed filter MC-IRIC is the best 

candidate for color image denoising.  

 

6.3 Scope for Future Work 

There are some new directions of research in the field of image denoising which are 

yet to explore completely. So, there is sufficient scope to develop very efficient filters 

in the direction mentioned below. 

i) Fuzzy logic and neural network may be used for perfect classification 

of noisy pixels which can improve the filtering performance. 

ii) The window size and shape of filter can be made adaptive for different 

or multiple parameters. 
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