1,492 research outputs found

    Structure of the two-component S-layer of the archaeon Sulfolobus acidocaldarius

    Get PDF
    This is the author accepted manuscript. The final version is available from eLife Sciences Publications via the DOI in this recordData availability: The atomic coordinates of SlaA were deposited in the Protein Data Bank (https://www.rcsb.org/) with accession numbers PDB-7ZCX, PDDB-8AN3, and PDB-8AN3 for pH 4, 7 and 10, respectively. The electron density maps were deposited in the EM DataResource (https://www.emdataresource.org/) with accession numbers EMD-14635, EMD-15531 and EMD-15531 for pH 4, 7 and 10, respectively. Sub-tomogram averaging map of the S-layer has been deposited in the EMDB (EMD-18127) and models of the hexameric and trimeric pores in the Protein Databank under accession codes PDB-8QP0 and PDB-8QOX, respectivelyOther structural data used in this study are: H. volcanii csg (PDB ID: 7PTR, http://dx.doi.org/10.2210/pdb7ptr/pdb), and C. crescentus RsaA ((N-terminus PDB ID: 6T72, http://dx.doi.org/10.2210/pdb6t72/pdb, C-terminus PDB ID: 5N8P, http://dx.doi.org/10.2210/pdb5n8p/pdb).Surface layers (S-layers) are resilient two-dimensional protein lattices that encapsulate many bacteria and most archaea. In archaea, S-layers usually form the only structural component of the cell wall and thus act as the final frontier between the cell and its environment. Therefore, S-layers are crucial for supporting microbial life. Notwithstanding their importance, little is known about archaeal S-layers at the atomic level. Here, we combined single particle cryo electron microscopy (cryoEM), cryo electron tomography (cryoET) and Alphafold2 predictions to generate an atomic model of the two-component S-layer of Sulfolobus acidocaldarius. The outer component of this S-layer (SlaA) is a flexible, highly glycosylated, and stable protein. Together with the inner and membrane-bound component (SlaB), they assemble into a porous and interwoven lattice. We hypothesise that jackknife-like conformational changes, changes play important roles in S-layer assembly.European Research CouncilWellcome TrustWellcome TrustAgence Nationale de la RechercheAgence Nationale de la RechercheLeverhulme TrustBiotechnology and Biological Sciences Research Council (BBSRC

    Dissecting structural and biochemical features of DNA methyltransferase 1

    Get PDF
    DNA methylation is an epigenetic modification found in every branch of life. An essential enzyme for the maintenance of DNA methylation patterns in mammals is DNA methyltransferase 1 (DNMT1). Its recruitment is regulated through its large N-terminus, which contains six annotated domains. Although most of these have been assigned a function, we are still lacking a holistic understanding of the enzyme's spatio-temporal regulation. Interestingly, a large segment of the N-terminus is devoid of any known domain and appears to be disordered in its sequence. Over the past years, such disordered sequences have increasingly gained attention, due to their role in forming biomolecular condensates through liquid-liquid phase separation (LLPS). These liquid compartments offer specific environmental conditions distinct from the surrounding that can enhance protein recruitment and function. In this work, we explore a potential role for the intrinsically disordered domain (IDR) in the recruitment of DNMT1. Taking an evolutionary approach, we uncover that structural features of the region that are key for IDR function are highly conserved. Moreover, we find conserved biochemical signatures compatible with a role in LLPS. Using a reconstitution assay and an opto-genetic approach in cells, we for the first time show that the DNMT1 IDR is capable of undergoing LLPS in vitro and in vivo. In addition, we define a novel region of interest (ROI) of about 120 amino acids in the IDR that appears to have been inserted in the ancestor of eutherian mammals. Although the ROI has a distinct biochemical signature, we find no effect on the LLPS behavior of the IDR. Therefore, we discuss other potential roles of the ROI related to DNA methylation, for example, imprinting. Finally, we lay the foundation for investigating a biological function of the IDR and establish a system for screening DNMT1 mutant phenotypes in mouse embryonic stem cells. Swift depletion of the endogenous protein is enabled by degron-mediated degradation, while our optimized construct design and efficient derivation strategy ensure the robust expression of the large transgenes. In combination with different methods for DNA methylation read-out, this system can now be used to study the role of the IDR and ROI in maintaining the steady-state level of DNA methylation against mechanisms of passive and active demethylation, but also for studying phenotypes affecting the efficiency of DNMT1 recruitment in the future

    Biomedical and Pharmacological Applications of Marine Collagen

    Get PDF
    Biomimetic polymers and materials have been widely used in a variety of biomedical and pharmacological applications. Particularly, collagen-based biomaterials have been extensively applied in various biomedical fields, such as scaffolds in tissue engineering. However, there are many challenges associated with the use of mammalian collagen, including the issues of religious constrains, allergic or autoimmune reactions, and the spread of animal diseases. Over the past few decades, marine collagen (MC) has emerged as a promising biomaterial for biomedical and pharmacological applications. Marine organisms are a rich source of structurally novel and biologically active compounds, and to date, many biological components have been isolated from various marine resources. MC offers advantages over mammalian collagen due to its water solubility, low immunogenicity, safety, biocompatibility, antimicrobial activity, functionality, and low production costs. Due to its characteristics and physicobiochemical properties, it has tremendous potential for use as a scaffold biomaterial in tissue engineering and regenerative medicine, in drug delivery systems, and as a therapeutic. In this Special Issue, we encourage submissions related to the recent developments, advancements, trends, challenges, and future perspectives in this new research field. We expect to receive contributions from different areas of multidisciplinary research, including—but not restricted to—extraction, purification, characterization, fabrication, and experimentation of MC, with a particular focus on their biotechnological, biomedical and pharmacological uses

    Synthesis of multifunctional glyco-pseudodendrimers and glyco-dendrimers and their investigation as anti-Alzheimer agents

    Get PDF
    As the world population is aging, the cases of Alzheimer’s Disease (AD) are increasing. AD is a disorder of the brain which is characterized by the aggregation of amyloid beta (Aβ) plaques. This leads to the death of numerous brain cells thus affecting the cognitive and motor functions of the individual. Till date, no cure for the disease is available. Aβ are peptides with 40/42 amino acid residues but, their exact mechanism(s) of action in AD is under debate. Having different amino acid residues makes them susceptible to form hydrogen bonds. Dendrimers with sugar units are often referred to as glycopolymers and have been shown to have potential anti-amyloidogenic activity. However, they also have drawbacks, the synthesis involves multiple tedious steps, and dendrimers themselves offer only a limited number of functional units. Pseudodendrimers are another class of branched polymers based on hyperbranched polymers. Unlike the dendrimers, they are easy to synthesize with a dense shell of functional units on the surface. One of the main goals in this dissertation is the synthesis and characterization of pseudodendrimers and dendrimers based on 2,2-bis(hydroxymethyl)-propionic acid (bis-MPA), an aliphatic polyester scaffold, as it offers biocompatibility and easy degradability. Furthermore, they are decorated with mannose units on the surface using a ‘click’ reaction forming glyco-pseudodendrimers and glyco-dendrimers. A detailed characterization of their structures and physical properties was undertaken using techniques such as size exclusion chromatography, asymmetric flow field flow fractionation (AF4), and dynamic light scattering. The second main focus of this work has been to investigate the interaction of synthesized glyco-pseudodendrimers and glyco-dendrimers with Aβ 40 peptides. For this task, five different concentrations of the synthesized glycopolymers were tested with Aβ 40 using the Thioflavin T assay. The results of the synthesized polymers which produced the best results of showing maximum anti-aggregation behavior against Aβ 40 were confirmed with circular dichroism spectroscopy. AF4 was also used to investigate Aβ 40-glycopolymer aggregates, which has never been done before and constitutes the highlight of this dissertation. Atomic force microscopy was used to image Aβ 40-glycopseudodenrimer aggregates. A basic but important step in the development of drug delivery platforms is to evaluate the toxicity of the drugs synthesized. In this work, preliminary studies of the cytotoxicity of glyco-pseudodendrimers were performed in two different cell lines. Thus, this study comprises a preliminary investigation of the anti-amyloidogenic activity of glyco-pseudodendrimers synthesized on an aliphatic polyester backbone.:Abstract List of Tables List of Figures Abbreviations 1 Introduction 1.1 Objectives of the work 1.2 Thesis overview 2 Fundamentals and Literature 2.1 Alzheimer’s Disease and its impact 2.1.1 Neurological diagnosis of AD 2.1.2 Histopathology of AD 2.1.3 Amyloid precursor protein (APP) and its role in AD 2.2. Amyloid Beta (Aβ) peptide 2.2.1 Aβ peptide 2.2.2. Location and function 2.2.3 Amyloid hypothesis 2.2.4 The mechanism of Aβ aggregation 2.2.5 Amyloid fibrils 2.2.6 Toxicity of Aβ 2.3 Research methods to study Aβ aggregates 2.3.1 Models to study the mode of action of aggregates 2.3.2 Endogenous Aβ aggregates and synthetic aggregates 2.3.3 Strategies to alter aggregation of amyloids 2.4 Treatment and therapeutics 2.4.1 Current therapeutics 2.4.2 Current therapeutic research 2.4.2.1 Reduction of Aβ production 2.4.2.2 Reduction of Aβ plaque accumulation 2.4.2.2.1 Anti-amyloid aggregation agents 2.4.2.2.2 Metals 2.4.2.2.3 Immunotherapy 2.4.2.2.4 Dendrimers as potential anti-amyloidogenic agent 2.6 Dendrimers 2.6.1 Definition 2.6.2 Structure Table of Contents 2.6.3 Synthesis 2.6.4 Properties 2.7 Pseudodendrimers - a sub-class of hyperbranched polymer 2.7.1 Definition 2.7.2 Structure 2.7.3 Synthesis 3 Analytical Techniques 3.1 Size Exclusion Chromatography Coupled to Light Scattering (SEC-MALS) 3.2 Asymmetric Flow Field Flow Fractionation (AF4) 3.3 Dynamic Light Scattering 3.4 Molecular Dynamics Simulation 3.5 Nuclear Magnetic Resonance Spectroscopy 3.6 Thioflavin T fluorescence 3.6.1 Kinetic analysis 3.7 Circular Dichroism Spectroscopy 3.8 Atomic Force Microscopy 3.9 Cytotoxic assay 3.9.1 MTT assay 3.9.2 Determining the level of reactive oxygen species 3.9.3 Changes in mitochondrial transmembrane potential 3.9.4 Flow cytometric detection of phosphatidyl serine exposure 4 Experimental Details and Methodology 4.1 Details of chemicals/components used 4.1.1 Other materials 4.1.2 Peptide preparation 4.1.3 Buffer preparation 4.1.4 Fibril growth conditions 4.2 Synthesis and characterization of polymers 4.2.1 Synthesis and characterization of pseudodendrimers and dendrimers 4.2.1.1 Synthesis of hyperbranched polymer (1) 4.2.1.2 Synthesis of protected monomer 4.2.1.2.1 bis-MPA acetonide (2) 4.2.1.2.2 bis-MPA-acetonide anhydride (3) 4.2.1.3 Synthesis of protected pseudodendrimers (4, 6 and 8) and protected dendrimers (10, 12, and 14) 4.2.1.4 Deprotection of pseudodendrimers (5,7, and 9) and dendrimers (11,13 and 15) 4.2.2 Synthesis of glyco-pseudodendrimers and glyco-dendrimers 4.2.2.1 Pentynoic anhydride (16) 4.2.2.2 Synthesis of pentinate modified pseudodendrimers (17, 18 and 19) and dendrimers (20, 21 and 22) 4.2.2.3 3-Azido-1-propanol (23) 4.2.2.4 Mannose propyl azide tetraacetate (24) Table of Contents 4.2.2.5 Mannosepropylazide (25) 4.2.2.6 Glyco-pseudodendrimers (Gl-P) (26, 27 and 28) and glyco- dendrimers (Gl-D) (29, 30 and 31) 4.3 Analytical techniques and their general details 4.3.1 SEC-MALS - Instrumentation, software and analysis 4.3.2 AF4 - Instrumentation, software and analysis 4.3.2.1 Sample preparation 4.3.2.2 Method development for analysis of Gl-P and Gl-D 4.3.2.3 Method development for analysis of Aβ 40 and its interaction with Gl-P and Gl-D 4.3.3 Batch DLS - Instrumentation, software and analysis 4.3.3.1 Sample preparation 4.3.4 Theoretical calculations and molecular dynamics simulations 4.3.4.1 Ab-initio calculations 4.3.4.2 Modelling of the polymer structures 4.3.4.2.1 Pseudodendrimers 4.3.4.2.2 Dendrimers 4.3.4.2.3 Modification of the polymers with special end groups 4.3.4.2.4 Preparing of the THF solvent box 4.3.4.2.5 Solvation of the polymer structures 4.3.4.3 Molecular dynamics simulations 4.3.4.3.1 Evaluation of the simulation trajectories 4.4 Investigation of interaction of Gl-P and Gl-D with amyloid beta (Aβ 40) 4.4.1 ThT Assay - Instrumentation and software 4.4.1.1 Sample preparation 4.4.1.2 Kinetics based on ThT assay- software and data analysis 4.4.2 CD spectroscopy - Instrumentation and software 4.4.2.1 Sample preparation 4.4.3 AFM - Instrumentation and software 4.4.3.1 Substrate and sample preparation 4.4.3.2 Height determination and counting procedures 4.4.3.3 Topography and diameter 4.5 Cytotoxicity 4.5.1 Zeta potential 4.5.2 Cell culturing 4.5.3 Sample preparation 4.5.4 MTT assay 4.5.5 Changes in mitochondrial transmembrane potential (JC-1 method) 4.5.6 Flow cytometric detection of phosphatidyl serine exposure (Annexin V and PI method) 5 Results and Discussion 5.1 Synthesis and characterization of glyco-pseudodendrimers and glyco- dendrimers 5.1.1 Synthesis and characterization of hyperbranched polyester Table of Contents 5.1.2 Synthesis and characterization of pseudodendrimers P-G1-OH, P-G2-OH and P-G3-OH 5.1.3 Synthesis and characterization of dendrimers D-G4-OH, D-G5-OH and D-G6-OH 5.1.4 Synthesis and characterization of Gl-P and Gl-D 5.1.4.1 Molecular size determination of Gl-P and Gl-D using SEC 5.1.4.2 Particle size determination using batch DLS 5.1.4.3 Apparent densities 5.1.4.4 Molecular size determination of Gl-P and Gl-D using AF4 ..... 5.1.5 Molecular dynamics simulation 5.2 Investigation of interaction of Gl-P and Gl-D with amyloid beta (Aβ 40) ...... 5.2.1 ThT Assay 5.2.1.1 Kinetics based on ThT assay 5.2.2 CD spectroscopy 5.2.3 Time dependent AF4 5.3.2.1 Separation of Aβ 40 by AF4 5.3.2.2 Aβ 40 amyloid aggregation in the presence of Gl-P and Gl-D 5.2.4 AFM 5.2.4.1 Height 5.2.4.2 Topography and diameter 5.2.4.3 Length 5.2.4.4 Morphology 5.2.5 Cytotoxicity 5.2.5.1 MTT assay 5.2.5.2 Changes in mitochondrial transmembrane potential 5.2.5.3 Flow cytometric detection of phosphatidyl serine exposure 6 Conclusions and Outlook 7 Bibliography Appendix Acknowledgement

    Recombinant spidroins from infinite circRNA translation

    Get PDF
    Spidroins are a diverse family of peptides and the main components of spider silk. They can be used to produce sustainable, lightweight and durable materials for a large variety of medical and engineering applications. Spiders’ territorial behaviour and cannibalism precludes farming them for silk. Recombinant protein synthesis is the most promising way of producing these peptides. However, many approaches have been unsuccessful in obtaining large titres of recombinant spidroins or ones of sufficient molecular weight. The work described here is focused on expressing high molecular weight spidroins from short circular RNA molecules. Mammalian host cells were transfected with designed circular-RNA-producing plasmid vectors. A backsplicing approach was implemented to successfully circularise RNA in a variety of mammalian cell types. This approach could not express any recombinant spidroins based on a variety of qualitative protein assays. Further experiments investigated the reasons behind this. Additionally, due to the diversity of spidroins in a large number of spider lineages, there are potentially many spidroin sequences left to be discovered. A bioinformatic pipeline was developed that accepts transcriptome datasets from RNA sequencing and uses tandem repeat detection and profile HMM annotation to identify novel sequences. This pipeline was specifically designed for the identification of repeat domains in expressed sequences. 21 transcriptomes from 17 different species, encompassing a wide selection of basal and derived spider lineages, were investigated using this pipeline. Six previously undescribed spidroin sequences were discovered. This pipeline was additionally tested in the context of the suckerin protein family. These proteins have recently been investigated for their potential properties in medicine and engineering including adhesion in wet environments. The computational pipeline was able to double the number of suckerins known to date. Further phylogenetic analysis was implemented to expand on the knowledge of suckerins. This pipeline enables the identification of transcripts that may have been overlooked by more mainstream analysis methods such as pairwise homology searches. The spidroins and suckerins discovered by this pipeline may contribute to the large repertoire of potentially useful properties characteristic of this diverse peptide family

    Structural basis of bacterial glyeans biosynthesis and processing: ímpact in human health and disease

    Get PDF
    181 p.El objetivo a largo plazo de nuestro grupo es estudiar a nivel molecular la estructura, la especificidad por sustrato y el mecanismo de acción de diferentes enzimas bacterianas involucradas en el reconocimiento o modificación de carbohidratos que sean relevantes en la interacción, tanto beneficiosa como patogénica, con el ser humano como hospedador.En este contexto, durante mi tesis, he trabajado en la comprensión a nivel estructural de la catálisis, así como del mecanismo de reconocimiento del sustrato de enzimas de bacterias tanto beneficiosas (Akkermansia muciniphila) como perjudiciales (Mycobacterium tuberculosis) para la salud del hospedador. Siguiendo este criterio, la tesis ha sido dividida en dos secciones; el estudio de la maquinaria enzimática que Akkermansia muciniphila, bacteria que forman parte de la microbiota intestinal, presenta para la digestión de los azúcares presentes en las mucinas por un lado, y el estudio de la biosíntesis de los glucolípidos (fosfatidil-myo-inositol mannósidos; PIMs, lipomannanos; LM y lipoarabinomannanos; LAM) presentes en la compleja envoltura celular de M. tuberculosis, por otro lado

    Computational Approaches to Drug Profiling and Drug-Protein Interactions

    Get PDF
    Despite substantial increases in R&D spending within the pharmaceutical industry, denovo drug design has become a time-consuming endeavour. High attrition rates led to a long period of stagnation in drug approvals. Due to the extreme costs associated with introducing a drug to the market, locating and understanding the reasons for clinical failure is key to future productivity. As part of this PhD, three main contributions were made in this respect. First, the web platform, LigNFam enables users to interactively explore similarity relationships between ‘drug like’ molecules and the proteins they bind. Secondly, two deep-learning-based binding site comparison tools were developed, competing with the state-of-the-art over benchmark datasets. The models have the ability to predict offtarget interactions and potential candidates for target-based drug repurposing. Finally, the open-source ScaffoldGraph software was presented for the analysis of hierarchical scaffold relationships and has already been used in multiple projects, including integration into a virtual screening pipeline to increase the tractability of ultra-large screening experiments. Together, and with existing tools, the contributions made will aid in the understanding of drug-protein relationships, particularly in the fields of off-target prediction and drug repurposing, helping to design better drugs faster

    Characterization of the SAM-key – a conserved regulatory domain of the Fun30 nucleosome remodeler

    Get PDF
    Cells need to constantly access their genetic material. However, in eukaryotic cells, DNA is compactly wrapped around nucleosomes and their presence poses a barrier for DNA transactions. To facilitate access, eukaryotes use ATP-driven molecular machines that dynamically shape chromatin structure, called nucleosome remodelers. Budding yeast Fun30 is the prototype member of the Fun30-SMARCAD1-ETL sub-family of nucleosome remodelers important for DNA repair and gene silencing. While the catalytic mechanism has been elucidated for several remodelers, for this family of single-subunit remodelers we lack mechanistic understanding. Here we report the discovery of the SAM-key, an evolutionary conserved domain with a sterile alpha motif (SAM)-like fold with one characteristic, long, protruding helix, using structure prediction, multiple sequence alignment and biochemical characterization. The SAM-key is crucial for Fun30 function, as deletion of the SAM-key from FUN30 in budding yeast leads to DNA repair and gene silencing defects similar to a deletion of FUN30. Biochemical and biophysical characterization of the SAM-key mutant in vitro showed similar folding and stability as wildtype Fun30 as well as wildtype-level binding to DNA and nucleosomes. However, the mutant is deficient in DNA-stimulated ATP hydrolysis as well as nucleosome sliding and eviction. Structure prediction using AlphaFold2 models interaction of the long helix of the SAM-key with protrusion I, a structural element of the conserved 2-lobed ATPase domain that controls catalytic activity in other remodelers. We verified the model and the interaction by crosslinking-mass spectrometry and mutation of the interface with a double point mutant Fun30-ICRR, which phenocopies the SAM-key deletion with defective ATPase activity and nucleosome remodeling. This confirms a regulatory role for the interaction of the SAM-key helix with protrusion I. Our data thereby demonstrate a central role of the SAM-key domain in mediating the activation of Fun30 catalytic activity, a new insight into the biology of this protein and highlighting the importance of allosteric activation for nucleosome remodelers

    The Influence of Allostery Governing the Changes in Protein Dynamics Upon Substitution

    Get PDF
    The focus of this research is to investigate the effects of allostery on the function/activity of an enzyme, human immunodeficiency virus type 1 (HIV-1) protease, using well-defined statistical analyses of the dynamic changes of the protein and variants with unique single point substitutions 1. The experimental data1 evaluated here only characterized HIV-1 protease with one of its potential target substrates. Probing the dynamic interactions of the residues of an enzyme and its variants can offer insight of the developmental importance for allosteric signaling and their connection to a protein’s function. The realignment of the secondary structure elements can modulate the mobility along with the frequency of residue contacts as well as which residues are making contact together2-5. We postulate that if there are more contacts occurring within a structure the mobility is being constrained and therefore gaining novel contacts can negatively influence the function of a protein. The evolutionary importance of protein dynamics is probed by analyzing the residue positions possessing significant correlations and the relationship between experimental information1 (variant activities). We propose that the correlated dynamics of residues observed to have considerable correlations, if disrupted, can be used to infer the function of HIV-1 protease and its variants. Given the robustness of HIV-1 protease the identification of any significant constraint imposed on the dynamics from a potential allosteric site found to disrupt the catalytic activity of the variant is not plainly evident. We also develop machine learning (ML) algorithms to predict the protein function/activity change caused by a single point substitution by using the DCC of each residue pair. Recognition of any substantial association between the dynamics of specific residues and allosteric communication or mechanism requires detailed examination of the dynamics of HIV-1 protease and its variants. We also explore the non-linear dependency between each pair of residues using Mutual Information (MI) and how it can influence the dynamics of HIV-1 protease and its variants. We suggest that if the residues of a protein receive more or less information than that of the WT it will adversely impact the function of the protein and can be used to support the classification of a variant structure. Furthermore, using the MI of residues obtained from the MD simulations for the HIV-1 protease structure, we build a ML model to predict a protein’s change in function caused by a single point substitution. Effectively the mobility, dynamics, and non-linear features tested in these studies are found to be useful towards the prediction of potentially drug resistant substitutions related to the catalytic efficiency of HIV-1 protease and the variants
    • …
    corecore