465 research outputs found

    Adaptive, fast walking in a biped robot under neuronal control and learning

    Get PDF
    Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (> 3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks

    Rob’s Robot: Current and Future Challenges for Humanoid Robots

    Get PDF

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Service Robots in Catering Applications: A Review and Future Challenges.

    Get PDF
    “Hello, I’m the TERMINATOR, and I’ll be your server today”. Diners might soon be feeling this greeting, with Optimus Prime in the kitchen and Wall-E then sending your order to C-3PO. In our daily lives, a version of that future is already showing up. Robotics companies are designing robots to handle tasks, including serving, interacting, collaborating, and helping. These service robots are intended to coexist with humans and engage in relationships that lead them to a better quality of life in our society. Their constant evolution and the arising of new challenges lead to an update of the existing systems. This update provides a generic vision of two questions: the advance of service robots, and more importantly, how these robots are applied in society (professional and personal) based on the market application. In this update, a new category is proposed: catering robotics. This proposal is based on the technological advances that generate new multidisciplinary application fields and challenges. Waiter robots is an example of the catering robotics. These robotic platforms might have social capacities to interact with the consumer and other robots, and at the same time, might have physical skills to perform complex tasks in professional environments such as restaurants. This paper explains the guidelines to develop a waiter robot, considering aspects such as architecture, interaction, planning, and executionpost-print13305 K

    Open motion control architecture for humanoid robots

    Get PDF
    This Ph.D. thesis contributes to the development of control architecture for robots. It provides a complex study of a control systems design and makes a proposal for generalized open motion control architecture for humanoid robots. Generally speaking, the development of humanoid robots is a very complex engineering and scientific task that requires new approaches in mechanical design, electronics, software engineering and control. First of all, taking into account all these considerations, this thesis tries to answer the question of why we need the development of such robots. Further, it provides a study of the evolution of humanoid robots, as well as an analysis of modern trends. A complex study of motion, that for humanoid robots, means first of all the biped locomotion is addressed. Requirements for the design of open motion control architecture are posed. This work stresses the motion control algorithms for humanoid robots. The implementation of only servo control for some types of robots (especially for walking systems) is not sufficient. Even having stable motion pattern and well tuned joint control, a humanoid robot can fall down while walking. Therefore, these robots need the implementation of another, upper control loop which will provide the stabilization of their motion. This Ph.D. thesis proposes the study of a joint motion control problem and a new solution to walking stability problem for humanoids. A new original walking stabilization controller based on decoupled double inverted pendulum dynamical model is developed. This Ph.D. thesis proposes novel motion control software and hardware architecture for humanoid robots. The main advantage of this architecture is that it was designed by an open systems approach allowing the development of high-quality humanoid robotics platforms that are technologically up-to-date. The Rh-1 prototype of the humanoid robot was constructed and used as a test platform for implementing the concepts described in this Ph.D. thesis. Also, the implementation of walking stabilization control algorithms was made with OpenHRP platform and HRP-2 humanoid robot. The simulations and walking experiments showed favourable results not only in forward walking but also in turning and backwards walking gaits. It proved the applicability and reliability of designed open motion control architecture for humanoid robots. Finally, it should be noted that this Ph.D. thesis considers the motion control system of a humanoid robot as a whole, stresses the entire concept-design-implementation chain and develops basic guidelines for the design of open motion control architecture that can be easily implemented in other biped platforms

    Scaled Autonomy for Networked Humanoids

    Get PDF
    Humanoid robots have been developed with the intention of aiding in environments designed for humans. As such, the control of humanoid morphology and effectiveness of human robot interaction form the two principal research issues for deploying these robots in the real world. In this thesis work, the issue of humanoid control is coupled with human robot interaction under the framework of scaled autonomy, where the human and robot exchange levels of control depending on the environment and task at hand. This scaled autonomy is approached with control algorithms for reactive stabilization of human commands and planned trajectories that encode semantically meaningful motion preferences in a sequential convex optimization framework. The control and planning algorithms have been extensively tested in the field for robustness and system verification. The RoboCup competition provides a benchmark competition for autonomous agents that are trained with a human supervisor. The kid-sized and adult-sized humanoid robots coordinate over a noisy network in a known environment with adversarial opponents, and the software and routines in this work allowed for five consecutive championships. Furthermore, the motion planning and user interfaces developed in the work have been tested in the noisy network of the DARPA Robotics Challenge (DRC) Trials and Finals in an unknown environment. Overall, the ability to extend simplified locomotion models to aid in semi-autonomous manipulation allows untrained humans to operate complex, high dimensional robots. This represents another step in the path to deploying humanoids in the real world, based on the low dimensional motion abstractions and proven performance in real world tasks like RoboCup and the DRC

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study
    corecore