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Advances in graphics and robotics have increased the importance of tools

for synthesizing humanoid movements to control animated characters and physical

robots. There is also an increasing need for analyzing human movements for clinical

diagnosis and rehabilitation. Existing tools can be expensive, inefficient, or difficult

to use.

Using simulated physics and motion capture to develop an interactive virtual

reality environment, we capture natural human movements in response to controlled

stimuli. This research then applies insights into the mathematics underlying physics

simulation to adapt the physics solver to support many important tasks involved in

analyzing and synthesizing humanoid movement. These tasks include fitting an artic-

ulated physical model to motion capture data, modifying the model pose to achieve a

desired configuration (inverse kinematics), inferring internal torques consistent with

changing pose data (inverse dynamics), and transferring a movement from one model
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to another model (retargeting). The result is a powerful and intuitive process for

analyzing and synthesizing movement in a single unified framework.
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Chapter 1

Introduction

This dissertation presents research into capturing, analyzing, and simulating

bipedal humanoid movements. A virtual reality environment developed as part of

this research supports controlled experiments for systematically recording human be-

haviors. Specifically, we use virtual reality in combination with multiple sensors to

record human behaviors in response to natural situations under scientifically con-

trolled conditions. After capturing behavior data, we leverage numerical simulation,

using robust, open source software libraries to process the data. The objective of

this dissertation is to develop a method for using physical simulation software as

a tool for analyzing and synthesizing humanoid movement with sufficient speed and

accuracy to allow the analysis and synthesis to be used for real-time interactive appli-

cations such as psychophysics experiments using virtual reality or human-in-the-loop

teleoperation of a simulated robotic system. Achieving this objective requires that

our techniques be fast and robust while still providing results sufficiently accurate to

be used to believably animate a humanoid character, control a simulated system, or

estimate internal joint forces used during a movement for creating effort-contingent

experimental stimuli.

The simulation libraries used in this research, originally designed to provide
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physical simulation for game worlds, serve as a powerful tool, not only for modeling the

movement of a simulated character, but also for analyzing recorded movement data

and creating new, goal-directed movements based on human data. Although other

tools and approaches exist for analyzing and synthesizing movement, the techniques

developed as part of this research provide a unified approach for solving a multitude

of tasks in a way that is fast, intuitive, robust, and free.

The novel, simulation-based approach to analyzing and synthesizing move-

ment presented in this dissertation uses forward-dynamics simulation to extract use-

ful kinematic and dynamic measurements from human data. The unifying theme of

this dissertation is to capture behavioral data directly from humans and then use the

Open Dynamics Engine (ODE), a software library designed for simulating physical

systems, to (1) fit a physical model to captured data, (2) extract model pose from

the data, (3) adapt the model pose to satisfy new constraints, and (4) quickly com-

pute force/torque estimates that produce a given pose sequence in a simulated model.

These tasks are play prominent roles in animation, robotics, and biomechanics.

1.1 Motivation

Human-like characters are used extensively in games, movies, and other do-

mains employing animation. Creating believable, task-directed movement in human-

like characters is typically a labor-intensive process and often still results in move-

ments with unpleasant visual artifacts. Forward physical simulation for animation

has become increasingly possible as a preferred alternative to hand-crafted keyframe

methods. Data-driven methods using motion capture data[38] or model-based meth-
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ods projecting a low-dimensional controller onto a high-dimensional character[74] can

be used to convincingly animate humanoid characters, but several steps are required

to integrate these approaches with forward physical simulation. Adapting the software

used for forward simulation to handle many of the steps necessary to analyze motion

capture data or project movement from a low-dimensional model up to full-humanoid

character simplifies the integration process.

Much like simulated characters, humanoid robots are becoming increasingly

commonplace. Many of the techniques used to animate graphical characters can be

applied to control physical robots. Intelligent but simple methods for simulating,

understanding, and controlling robots are growing in relevance. For example, rapid

inverse dynamics computations may facilitate the use of advanced control techniques

such as impedance control [47] where a mechanism responds to external forces as

though it had physical properties different from its actual dynamics. Impedance

control requires evaluating the effects that external forces would have on a system

with the desired dynamic properties and then computing appropriate control signals

for realizing those effects in the actual robot. A physics-based approach naturally

lends itself to this type of application where analysis and synthesis of movement

operate alongside real-time forward simulation. With the right tools for analysis

and synthesis, it is possible to leverage human learning and insight to solve complex

control problems. Increased understanding of the computation underlying human

movements can inspire the control algorithms driving robotic agents.

In addition to graphics and robotics applications, measurements of human

activity are useful for studying the neural computations underlying human behav-
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ior. Dynamic models of human behavior also support clinical efforts to analyze,

rehabilitate, and predict movements. Dynamic models are used in biomechanics to

understand and diagnose motor pathologies, to find new motor strategies that de-

crease the risk of injury, and to predict potential problems that might arise from a

particular procedure[88]. Although for many clinical applications, measurement ac-

curacy is more important than speed, real-time analysis of human joint torques can

be used for biofeedback-based treatments. Rapid and robust analysis of movement

also makes it possible to conduct interactive experiments that rely on an estimate of

the forces underlying a movement as an approximation of human effort or ‘movement

cost’.

Many methods exist for finding pose based on motion capture marker data or

computing torques and forces from pose data. However, standard approaches can be

difficult to integrate into a real-time application. Commercial packages may be ex-

pensive, inflexible, or confusing. Specialized approaches for dealing with the various

stages of movement analysis may be difficult to combine, making use of different mod-

els, standards, and formats. Some movement analysis tasks, such as inverse dynamics,

are notoriously slow processes. An inexpensive, efficient, and robust approach built

into a single framework can facilitate movement research and improve the process of

synthesizing movements for robots or animated characters. This research represents

a significant advance toward that goal.

The research in this dissertation uses virtual reality with motion capture to

acquire data on human behavior and then adapts physical simulation software to

accomplish important kinematic and dynamic analysis. Virtual reality with motion
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capture serves as a method for capturing full-body movements during natural tasks

while providing powerful experimental control over stimuli perceived by a human

subject. Direct control over a simulated environment allows researchers to manipulate

the reality perceived by a human subject as necessary to study the human response.

Virtual reality also increases the number of experimental trials possible in a limited

amount of time by making it possible to automatically reset experimental conditions

as soon as the subject is ready to continue.

Interactive experiments require that visual stimuli change in real time in re-

sponse to the human movements. The optical motion capture system used in this

work provides the 3d spatial coordinates for a set of active markers attached to a

suit worn by the human subject. The marker coordinates provide information about

the subject’s pose and viewpoint within the world. Analyzing marker information in

order to match the human pose with a simulated model is a key step in using virtual

reality to study human movement. A real-time method for finding human pose from

motion capture data allows a researcher to design experiments with pose-contingent

stimuli and can provide a human subject with an avatar, a representation of his or

her body within the virtual environment.

A physics-based approach to analyzing marker data makes it simple to extract

character pose from marker data and then use that pose to control a simulated char-

acter in real-time in a virtual reality experiment. Employing a single physics-based

framework for forward simulation as well as movement analysis and synthesis in a

virtual world means that less code is involved and there are fewer potential conflicts

involved in going from captured data to an animated result.

5



1.2 System Complexity

Although humanoid systems are extremely complex, humans are capable of

controlling their own movements flexibly and dynamically to accomplish many differ-

ent tasks. Precisely how humans accomplish what they do is poorly understood but

is interesting to many disciplines from biomechanics and neuropsychology to robotics

and animation. Understanding the kinetics and kinematics of humanoid systems is de-

sirable for many reasons but is challenging because it is a domain of high-dimensional

spaces with non-linear interactions.

Virtual reality provides the opportunity to study human movements in con-

ditions that are more natural than traditional laboratory settings. Full-body motion

capture supports the study of free and natural movement, but this freedom brings

complications. Studying different features of natural behaviors can involve many

different types of input and output devices for generating appropriate stimuli and

capturing responses. Integrating multiple devices and software libraries to create an

immersive experience for scientific inquiry is non-trivial.

Tools for analyzing and synthesizing human movement must deal with the

complexity of the underlying system. A crushing number of variables are involved,

even for brief behaviors. Applying computational methods to the problem of studying

behavior requires discretizing continuous temporal data into a sequence of T frames

over time. Handling discretized data introduces some challenges. More challenging

still is the variability of the human body. Humans have many bones, joints, and mus-

cles that provide hundreds of degrees of freedom. The various human body segments

vary in size and mass. The space of possible body poses is incredibly large. Even
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our simplified model still uses 54 degrees of freedom in order to capture important

features of movement.

This complexity comes into play when trying to find a model pose the matches

the data at a specific point in time. Optimization approaches in this space are rather

costly in terms of time and computation. The problem is aggravated by the fact that

optical markers attached to the skin tend to shift around relative to the bones and ar-

ticulation points, violating assumptions of rigidity. Moreover, tendons and ligaments

allow bones to move and separate slightly during movement, causing problems for a

simplified model that assumes fixed centers of articulation.

Finally, the problem of finding forces and torques that move a character model

from one pose to another is generally an ill-posed, two-point boundary value problem.

Human data become particularly useful in addressing this challenge. The non-linear

humanoid model would be very difficult to analyze and control over large windows

of time, but the human data give critical information that enable a relatively simple

linear system to recover the dynamics on a per-frame basis.

1.3 Principal Contributions

This dissertation touches on multiple disciplines and has produced several

useful software applications and computational techniques. The overall goal of this

work is to provide a real-time, physics-based mechanism for obtaining, analyzing,

and synthesizing humanoid movement data in a unified framework using intuitive

parameters and fast, computationally efficient methods. We accomplish this goal by

adapting freely available software libraries—designed for robust, real time physical
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simulation—to solve multiple problems associated with modeling human movement,

eventually producing estimates of joint torques and forces that can be applied to

animate simulated characters, control physical robots, or estimate joint strain. This

mechanism leverages code already needed for forward simulation to accomplish these

tasks. The principal contributions of this work are summarized here:

• The virtual reality interface developed during the course of this work integrates

multiple sensors and devices and is being used for interactive experiments ex-

ploring human behavior in simulated natural environments.

• A clear explanation of how the equations of motion are applied in physical

simulation leads to several insights on how the robust solver for constrained

dynamical systems can be used for multiple purposes such as fitting a character

model to real-world marker data, adjusting model pose to satisfy positional

constraints (inverse kinematics), and computing torques necessary to achieve a

target pose (inverse dynamics).

• Methods for accomplishing these different tasks are described and validated

using an example implementation.

• The process of applying these methods involved deriving and implementing

multiple useful additions to the freely available Open Dynamics Engine (ODE)

project to improve stability and add flexibility. This physics simulation software

is used in multiple communities as a research tool and improvements to it can

have a broad impact.
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These novel contributions are useful for animation, robotics, biomechanics,

and psychophysical experiments.

1.4 Organization

The organization of the remainder of this dissertation is as follows:

Chapter 2 presents a general sampling of topics and recent research relevant

to the contributions in this paper.

Chapter 3 covers our work in creating a virtual reality environment that in-

corporates multiple types of sensors and provides real-time audio-visual feedback for

an immersive experience. This work is useful for producing controlled conditions that

allow systematic capture of human movements and associated data, conditioned on

a specific task. This chapter also includes a brief discussion of experiments made

possible by this virtual reality system.

Chapter 4 gives an overview of physical simulation. We discuss the use of

different numerical representations of constraints used in physical simulation. We

present a detailed discussion of the algorithms and mathematics underlying the sim-

ulated physics at the core of this research. This understanding is then leveraged to

apply the constraint solver to other purposes such as inverse kinematics and inverse

dynamics computations.

Chapter 5 focuses on using simulation software to analyze motion capture

data. We demonstrate how to use the physics engine to extract useful information

from data recorded from motion capture and other sensors. This chapter includes
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methods for fitting a model to the data and then finding control signals (torques)

that produce the observed data.

Chapter 6 presents several ways to employ the simulation software to facilitate

common tasks in movement synthesis and control for animation and robotics. Among

these tasks are methods for retargeting captured data to a new model and applying

novel constraints to achieve desired movement properties.

Finally, in Chapter 7, we summarize the contributions of this research and

present directions for future work.

10



Chapter 2

Related Work

This dissertation combines virtual reality with numerical simulation techniques

to accomplish a number of different goals that are relevant to many different fields.

Consequently, the body of related research is particularly large and multidisciplinary

by nature. One of the principal contributions of this work is a fast, robust method

that takes motion-capture marker data and eventually produces internal joint torques.

Along the way to computing torques, we must find a physical model that fits the

data along with a mapping that associates markers with corresponding points on

the model. Fitting the model to a particular frame of marker data gives a target

pose. Finally, with that information we can compute the joint torques that take the

model from one pose to a target pose over a short time step. The result is a single,

multi-purpose, physics-based tool for accomplishing many important tasks related to

movement analysis and synthesis.

We are unaware of any other demonstration of a single framework being used

for all the different tasks covered by physics-based analysis and synthesis. The dif-

ferent sub-tasks in this process, each with its own body of literature, have various

applications for the fields of animation, robotics, and biomechanics. In some cases,

the different fields use conflicting terminology. In this chapter, we will touch on liter-
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ature from these different fields as it relates to virtual reality, constrained rigid-body

dynamics, movement analysis, and movement synthesis.

2.1 Virtual reality

Our work constructing a virtual environment as a testbed for psychophysical

experiments is not especially novel, but remains worthwhile contribution. It is also

the first place that we employ physics-simulation as a tool. However, in this case,

we primarily use it as it was intended to be used. Virtual reality has been used

extensively for entertainment, training, and rehabilitation[14]. It is somewhat less

common to use it for studying human movement, but some examples do exist[41, 82].

We present our work developing a virtual environment for studying human movement

here because of its usefulness to the overall physics-based technique that is the core

of our research.

2.2 Rigid-body dynamics

There are two main approaches for modeling the equations of motion of an

articulated model: generalized (or reduced) coordinates and maximal (or Cartesian)

coordinates[59]. These two approaches are complementary, in a way. At a high-level,

the distinction between these two approaches is that generalized coordinates methods

add degrees of freedom to a system by introducing articulations while maximal coordi-

nates methods take away degrees of freedom by applying constraints. When animating

or analyzing humanoid characters, it is common to use generalized coordinates[71].

General purpose rigid body simulation typically employs maximal coordinates. We
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use maximal coordinates as implemented in ODE to simulate and analyze articulated

humanoid characters.

Generalized coordinates represent an articulated body only by its degrees of

freedom. For example two bodies connected by a hinge can be represented by the

position and orientation of the first body and the hinge angle because the orientation

and position of the second body are fully determined by that information. The state

of the second body is implicit from the hinge state. In this way, degrees of freedom

are explicitly added to a system. Typically, a character model using generalized

coordinates is constructed hierarchically with one body defined relative to the world

and all other bodies defined by a chain of linkages to this root node[36]. Generalized

coordinates typically result in a low dimensional representation. However, it must be

possible to describe the full state of the body as a function of generalized coordinate

space. This requirement also makes it difficult to represent “kinematic loops” such as

when both feet are on the ground and for large systems, the equations of motion in

nested, rotating reference frames become very complex, making them more difficult

to approximate well.

In contrast, maximal coordinates place each rigid body in the global frame

with six degrees of freedom. Constraints removing degrees of freedom from the sys-

tem are added explicitly, leaving the bodies to move freely where unconstrained. Al-

though for character animation and biomechanics research, generalized coordinates

seem to be more common[71, 116], simulation in this research occurs in maximal co-

ordinates. We use the Open Dynamics Engine (ODE)[99] which came out of Smith’s

doctoral work[98]. The physics computations in this library are based on early work
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by Baraff[8], but have been augmented by a community of interested programmers

and hobbyists.

Rather than represent the body state as a function of generalized degrees of

freedom, we must be able to represent constraint state as a function of the body

state. Because the joints connecting body parts are not implicit, numerical errors

and other factors can allow connected body segments to separate. Though it may

seem advantageous to keep body parts rigidly connected, in real human bodies, joints,

tendons, and ligaments stretch. Describing a system with maximal coordinates also

makes models easier to build because the constraint state typically only relies on the

the state of one or two bodies, whereas a computing the position of a from a set of

joint angles along the arm requires describing all relationships up the chain. Framing

joint constraints this way can decrease problems with error propagation on long chains

of bodies, allows kinematic loops, and has other strengths. Taking advantage of these

strengths is key to this dissertation.

As we have worked to augment the constraints available in the physics simu-

lation code, uncontrolled manifold (UCM) theory[91] inspires much of our approach.

This theory observes that multiple trajectories may accomplish a task equally well.

Rather than choose a single trajectory and fixedly try to follow it, people will take no

corrective movement if a perturbation leaves the movement on an acceptable path.

Many experiments supporting this hypothesis are presented in [68] and [95]. It is

interesting to look at these results from human data as potential inspiration for our

system. A much more thorough review specifically focused on computational motor

control is available in [55]. We have created a novel set of partial constraints that can
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be used to imitate this type of control.

2.3 Movement analysis

The principal tasks we are interested in when analyzing movement data are

fitting a humanoid model to capture marker trajectories (finding the appropriate body

dimensions and pose) and then finding joint torques that produce the appropriate

movements.

Related work for building a model automatically constructs a kinematic skele-

ton completely from marker data[26, 58]. Although convenient, such approaches may

not find the desired segments and linkages. In particular, automatic methods can-

not find body segments that do not have any markers on them. For example, we

do not place any markers on the neck still treat it as a separate segment because

doing so allows the head to move with five degrees of freedom relative to the torso.

Model building approaches frequently find the size and pose of the skeleton simulta-

neously by using non-linear optimization to minimize disagreement between markers

and model segments. We propose a similar approach that uses the physics engine to

handle a major part of the work.

Zordan and Horst presented the technique which is most similar to at least part

of our work[125]. Their work situates motion capture markers in the simulated space

and assigns them to attachment points on a character model. They then compute

spring/PD forces that they apply to the model, pulling the body toward the markers.

The principal difference between this method and our approach for fitting a model to

marker data is that we allow the physics engine to handle the springs as constraints,
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making the process faster and more stable. The idea of dragging simulated bodies

into place with constraints was actually proposed long ago by Barzel and Barr[9].

However, the technique was challenging in practice because of singular constraint

systems. Softened constraints that behave like springs get around this problem and

make it possible to still solve over-constrained systems and pull a model toward a set

of kinematic targets. The same approach also works for finding internal joint forces

and torques (inverse dynamics).

Standard approaches for computing inverse dynamics in the literature describe

a humanoid model using generalized coordinates and then compute the forces by in-

verting the effective mass (or finding a pseudo-inverse if ground-reaction forces are

known)[64]. Generalized coordinates represent a character model with a hierarchy of

joint angles, treating joint constraints themselves as implicitly satisfied (holonomic).

There are a few problems with this approach. The first problem is that the tree

representation dictates that exactly one foot (the “root node”) is assumed to be sta-

tionary (rigidly attached to the ground). Having more than one foot on the ground

results in a kinematic loop. Having no feet on the ground leaves the model underac-

tuated. Closed kinematic loops cause problems for physics formulated in generalized

coordinates as do underactuated degrees for freedom. This fixed foot can typically

produce constraint forces in both directions (rather than only away from the surface).

Another problem with the generalized formulation is that human joints are not holo-

nomic. Tendons flex and give as the body moves as does the body surface to which

markers are attached. Dealing with these “soft tissue artifacts” is a significant issue in

biomechanical analysis of movement[69]. Working in maximal coordinates with soft
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constraints provides a natural way for allowing some natural stretching and flexing

to happen.

The creators of OpenSim recently described a process taking from several days

to several months to produce a reasonable simulation[86]. This computational cost

serves as ample justification for employing a faster method. OpenSim, a free software

package aimed at biomechanical analysis, models movement in generalized coordinates

which typically involves creating subject-specific simulation code. The same paper

laments the lack of open-source tools for modeling and simulation biomechanical

systems. We seek to help fill this niche.

Standard biomechanics methods use an abundance of markers to track each

rigid body, rendering models largely unnecessary. Soft tissue artifacts deform the

“rigid” arrangement of markers, making it so that model fitting techniques must

minimize “fit-error”. In one study, adding knee joint constraints did not reduce

error[3]. Our technique works with far fewer markers. With few markers, modeling

joint limits and stiffness contributes significantly.

Remy and Thelen[88] describe what is approximately the state of the art in

inverse dynamics computation for biomechanics analysis. This method aims to con-

strain the system to balance body accelerations with measured ground forces, grav-

itational forces, and gyroscopic forces. Although the paper asserts that the method

eliminates the need for residual forces, one of the key steps is to allow “small vari-

ations” in the generalized accelerations as well as the ground forces and torques.

Although this approach shifts the residual forces from the waist to the feet, they are

still there. It seems that no steps have been taken to ensure that the ground does
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not “pull” the body unrealistically downward. Because the method changes body ac-

celerations, the pose that results from numerically integrating the accelerations will

differ from the measured pose obtained through motion capture and inverse kinemat-

ics. The authors use numerical optimization to find initial conditions (generalized

positions and velocities) that lead to the best agreement with the final conditions

when coupled with the new accelerations. The method presents two error metrics:

agreement of pose and agreement of marker position (optionally weighted). The goal

of the process, then, is to minimize the integrated error of the combined metrics over

an entire movement. We will employ a similar metric in analyzing our approach in

Chapter 5. The approach is very good, but runs slowly and still stands to introduce

certain inaccuracies in the results. In particular, low-pass filtering and spline fitting

risk smoothing away the high frequencies that accompany ground collisions. This

optimization approach also reports computation times of approximately 100 minutes

for processing a single gait cycle. The inverse dynamics technique described in this

dissertation accepts residual forces as part of the computation and sacrifices some

accuracy in return for speed; however, we also present, as future work, methods for

reducing residual forces and improving accuracy without adding excessive computa-

tional cost. Our technique runs in real-time and can even process multiple models

simultaneously, making it suitable for applications requiring analysis at interactive

rates.
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2.4 Movement synthesis

Early use of physical simulation for creating new movements was largely lim-

ited to rag-doll effects. Under this paradigm, kinematic trajectories completely define

the behavior of a simulated character until an impact or significant event occurs. Typ-

ically that event involved the character’s death because responsibility for animating

the character would be passed to the simulation engine which would then fling the

now-floppy character around according to physical laws. Because of the difficulties

involved in controlling humanoid characters. Early work in this area controlled the

lower body kinematically while tracking reference motion for the upper body with

proportional-derivative (PD) control (cf. [122]). This type of system was used to

generate animated boxing and table-tennis agents[123, 124]. This same strategy is

available in the framework we describe, but it is possible to do much more.

Motions graphs[6, 62] are common structures used to store and synthesize

movements. This structure formalized the use of motion capture data by showing

how to break it up into small clips and blend clips together to produce desired ef-

fects at the appropriate times. However, it is often impossible to build a database

that accounts for all the movements that should be made, particularly in response

to external perturbations. To deal with this problem, several researchers introduced

brief periods of dynamic simulation in response to collisions and then searched for

the nearest recorded clip to the resulting pose in order to resume kinematic playback

of behaviors[7, 124]. Heck and Gleicher[46] proposed a method for combining families

of movement clips into parametrized descriptions that can be used to create novel

movements. Motion graphs provide a convenient way for organizing motion capture
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data. Our techniques can be used in a complementary fashion.

A problem with kinematically reproducing movements through blending is that

it tends to look bad under certain conditions. Humans are particularly sensitive to

problems between contact areas (e.g., foot-skate on the ground). One way to deal with

foot-skate is to ensure that the blending happens using the contact point as a frame

of reference (as opposed the more commonly used waist segment)[110]. The search

problem for finding appropriate clips can also be time-consuming in large graphs, but

small graphs may not provide enough flexibility. Machine learning approaches trained

offline, such as support vector machines[124] and reinforcement learners[110], can be

used to create mappings between conditions and clips to speed up the search during

online animation. Using physics-based approaches to follow kinematic data can help

to clean-up some of the problems caused by blending.

Constrained space-time optimization, first presented by Witkin[117] is still the

most common approach used to generate stable dynamics trajectories for achieving

arbitrary movement goals. The chief method employed in constructing physically

driven humanoid movements is multi-objective optimization (cf., [28, 70, 89]. Using

a prioritized or weighted set of cost functions, optimization approaches select opti-

mal motion graph clips or optimal joint actuations. Unfortunately, because of the

complexity, optimization is usually offline and not suitable for interactive work.

Optimization-based approaches involve defining a cost-function for a move-

ment over time. The cost function can incorporate many objectives, such as mini-

mizing torque while remaining close to a reference trajectory, but it can be difficult

to balance the different objectives (see, e.g., [70]). Optimization produces remarkable
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results but is complex and computationally expensive. This dissertation focuses pri-

marily on real-time techniques with minimum planning. Instead we take advantage

of captured human behavior to take care of the planning problem.

More recent methods employ offline optimization to plan controllers instead

of trajectories. Ye and Liu[119] describe a method for using offline optimization to

find an abstract reference trajectory and a feedback policy for following it. These

methods typically use the principal of abstraction by optimizing over some feature

such as maintaining Center of Mass (COM) over support or minimizing angular mo-

mentum[74]. It is also common to use some sort of abstract low-dimensional model

such as a spring-loaded inverted pendulum[74] to approximate the movement of the

larger system. We show, in Chapter 6 how our approach can take advantage of these

low-dimensional models to easily synthesize movement.

In robotics, as in animation, it is common to use simplified models for gener-

ating behaviors and treating the differences between the simple model and the full

system as noise[115]. We have built off of work by Raibert[85], who built a piston-

driven hopping robot by building a body with a mass sufficiently large that it can

ignore the inertia of the leg. It chooses foot placement according to the forces nec-

essary to move the center of mass while in the air and rotates its mass while on the

ground to counteract angular momentum. With just a few simple feedback rules, it

produces dynamic locomotion. We make direct use of this model as an abstraction

for more complicated movements.

Other important abstractions such as the linear inverted pendulum[54], zero-

moment point (ZMP)[53], and capture point[81] offer additional insights into where
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and when to apply force to the ground to achieve stable humanoid balance. We do

not directly address these models. We rather use the Raibert hopper as an example

to illustrate how a physics-based approach to controlling a character model makes

it straightforward to generate movement trajectories with a low-dimensional model

in simulation, map those trajectories on to a high-dimensional character model, and

then kinematically and dynamically reproduce the movements described by the simple

model. A single example of the hopper serves to illustrate the viability and ease of

this process.

Real-time techniques for synthesizing kinematic movement without an explicit

low-dimensional model typically involve using the pseudo-inverse Jacobian of an end-

effector in generalized coordinates to move closer to a target. This process is well-

known and covered in many sources, e.g., [36, 102]. Other approaches avoid the

challenge of inverting the Jacobian by instead randomly exploring generalized coor-

dinate space for a state that is closer to the target and then interpolating between

states[114].

The physics engine used in this research, ODE, is used extensively for anima-

tion and robotics research. The popular Robot Operating System (ROS)[83] incor-

porates ODE for simulating robotic systems. Integrating simulation into ROS allows

robotics researchers to test controllers in simulation and then transition to controlling

a physical robot without significant cost. This dissertation shows how the built-in

physics engine can be successfully employed for additional purposes. Likewise, the

SimSpark[76] library uses ODE for collision detection and constrained dynamics sim-

ulation for robot soccer in the simulation league of the RoboCup competition. A
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lot of research has gone into learning effective humanoid movements in this platform

(e.g., [24, 72]). This research into generating humanoid movement for simulated soc-

cer agents mostly uses learning and optimization to build up complex and coordinated

behaviors. Our research is complementary to these approaches, making it easier and

more stable to do the frame-by-frame tasks of solving inverse kinematics and inverse

dynamics.

Simulated approaches are far less constrained than physical robotic systems

and can more closely model physical properties of human bodies. They are also free

to fall without fear of breaking expensive equipment. These features make it much

easier to take advantage of human data and to experiment with highly dynamic move-

ments. This work builds on research from animation and graphics communities. In

particular, we focus on physically based character animation. This body of work

seeks to generate natural appearing animation by using physically simulated char-

acters driven by forces and torques instead of using purely kinematic methods. An

entirely kinematic humanoid will continue walking uninterrupted, even through the

air, while projectiles simply pass through its pixels. Physically simulated characters

can respond appropriately to unexpected collisions and changing surface properties

(see review in [38]).

Forming a bridge from robots to humans, Vona[112] demonstrated that it is

easier to use few rather than more degrees of freedom to control a robot (he also pro-

vided a kinematic method for simplifying complex systems). Simultaneously control-

ling many independent degrees of freedom in an effort to manipulate the end-effector

of a jointed arm along a specific path is challenging for a human. However, if the
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mechanical system can be placed in a mode where the joints are restricted to the

manifold that moves the end-effector along the desired path, then the human only

needs to control the temporal advancement through that manifold–a much simpler

task.

2.5 Summary

We have discussed literature from numerous different areas related to the re-

search and innovations presented in this document. Using interactive virtual reality

allows us to capture movement data for natural tasks under tightly controlled con-

ditions. We then use physics-based tools to analyze and then synthesize movement

in simulated model. As far as we know, no other work has explored using a physics

engine as a single tool for accomplishing the many different tasks addressed by this

work; so we have discussed innovations and approaches for handling physics simula-

tion and then separate research for fitting a model to marker data and computing

inverse dynamics for a model. An enormous body of techniques exist for controlling

and creating movement in robots and animated characters.

We have only been able to scratch the surface in all of these areas. This

dissertation takes inspiration from this work and builds on related techniques to

create a unified method that is fast, free, and easy to use. The techniques presented

in the remainder of this document complement this related work and can help make

some activities much easier for programmers, animators, and perhaps, for clinical

work and research studying human movement.
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Chapter 3

Virtual Reality

Casting intelligence as an embodied phenomenon adds constraints and affor-

dances that can simplify the computations necessary for accomplishing intelligent

behavior. Recent technological breakthroughs allow us to use virtual reality to ac-

quire and process large amounts of human movement data under controlled condi-

tions. These data, properly analyzed, can provide insights into how the brain takes

advantage of the body’s natural dynamics to accomplish everyday tasks.

Motion capture and virtual reality play a key role in recording the human

movement during execution of specific tasks under scientifically controlled conditions.

We can view each execution of a task as a sample from a probabilistic distribution

conditioned on the task parameters and the state of the brain and body. Computa-

tional models fit to these data attempt to produce appropriate movements in physical

simulation under novel test conditions. This research has significant application to

generating realistic character animation and promises to eventually be applied to

robotics and clinical scenarios. The first step to achieving these purposes is develop-

ing tools capable of gathering the necessary data. This chapter presents our work in

developing an interactive virtual environment for studying human behavior. Although

virtual reality is an old idea, our implementation represents a novel software engi-
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neering effort that includes useful new methods for visualizing data and interesting

3d human-machine interface elements.

A low-latency virtual reality environment supports gathering task-specific move-

ment data under controlled conditions. Producing a usable virtual environment re-

quires incorporating multiple cues that support depth perception in the head-mounted

display without adding excessive latency. An interactive virtual environment com-

bines multiple hardware and software systems into a cohesive chunk. Our project

incorporates many different sensors for gathering data during a task and combines

them with physical simulation and real-time graphics and audio. Sensor data and sim-

ulation results influence the virtual environment in real-time. Programmatic scripts

define the behavior of the environment in response to significant events to produce

controlled experiments. The software produced as part of this research represents a

useful artifact for controlled, psychophysical experiments as well as for subsequent

analysis and synthesis of movement.

The virtual reality environment consists of several different modules handling

different tasks. Figure 3.1 provides an abstract view of the project architecture. The

overall design has three large divisions: input, output, and logic.

3.1 Input

We incorporate data from multiple sources. Many resources for producing the

environment, such as images and textures for visual detail and sound files for audio

feedback, are loaded and organized for rapid access when the program begins. Other

input sources provide data continuously. The program core interacts with specific
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Figure 3.1: Multiple code modules handle the various responsibilities necessary to
produce a compelling, interactive, virtual environment and record appropriate exper-
imental data.
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libraries to initialize and synchronize the many different sensors and devices used.

Some specific devices are covered here:

3.1.1 Motion Capture

Real-time motion capture data allow a human participant to move his or her

body to interact with the virtual environment. For motion data, we use a 16 camera

Phasespace Impulse motion capture system1. This system uses powered LED markers

actively pulsing at a high frequency. The cameras identify each marker by its pulse-

pattern and triangulate its position within the capture volume. A central server

aggregates and processes the camera data. A library provided with the capture system

communicates with the server over a local network to receive marker position data

in real-time. The server collects data at 480 Hz or less. Each report from the server

provides a full frame of data. That is, all of the marker locations at a particular

point in time, along with an estimate of the accuracy of each marker’s position. The

positions are reported in millimeters relative to a reference frame established during

calibration of the capture system. our experience has shown that, when calibrated

well, the system tracks stationary markers with sub-millimeter precision.

Along with triangulating individual marker positions, the Phasespace server

can also take three or more markers rigidly attached to an object and use their posi-

tions to compute the object’s position and orientation. A Kalman filter smooths these

computations slightly. Our module handling motion capture data interacts with the

capture system library, directing it to treat the markers attached to the head-mounted

1http://www.phasespace.com/
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display as a rigid body. It then stores the data, transforming the positions into the

virtual world’s frame of reference. This module allows other program components to

access the most recent position of each marker and the position and orientation of any

rigid bodies (such as the head). It also performs some minor filtering and provides a

finite-differences approximation of the marker velocities.

3.1.2 Electromyogram

When it is useful to record or respond to muscle data, we use a 32-channel

Myopac Wireless electromyogram (EMG) system2. With this system, electrode pairs

placed on the skin record the voltage potentials that result from ions flowing in and

out of contracting muscles. These analog measurements are transmitted wirelessly

to a base station. A Measurement Computing USB-1616HS device3 digitizes and

provides access to the data. Our module interacts with the appropriate drivers to

capture, and filter the data, making them available to other modules.

Data from the EMG provide information on muscle activity. Incorporating

EMG into our experimental environment allows muscle activity to be recorded, visu-

alized, and correlated with other sensor data. Muscle data can also produce real-time

side-effects in the virtual environment. For example, an experiment may require sub-

jects to maintain a certain level of muscle activity (i.e., co-contraction) while executing

a task.

2http://www.konigsberginc.com/
3http://www.mccdaq.com/
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3.1.3 Wii Peripherals

Some experiments require inertial measurements or force measurements. Con-

sumer grade peripherals designed for Nintendo Wii video game consoles provide inex-

pensive, robust devices that can be easily integrated into a VR environment. The bal-

ance board peripheral provides data comparable in quality to lab-grade, medical-use

force plates [18], costs a comparatively trivial amount, and communicates wirelessly

using known protocols. The balance boards do not provide information on tangent

forces (friction), but can still be used to produce useful ground-force measurements

for experimental analysis or as input controlling the virtual environment. For exam-

ple, in a large environment, we employed the force plate as a virtual skate-board,

allowing a participant to traverse the environment by leaning in the direction he or

she desired to move.

Related devices, such as the wiimote, have accelerometers and gyros for mea-

suring linear and angular accelerations. Buttons and triggers on the devices provide

additional input modalities for human subjects using the VR system. An Open

Source project, WiiUse4, provides an API that initializes and communicates with

these Bluetooth devices. We encapsulate this functionality to allow other modules

continuous access to the state of the force plates or inertial devices. We recognize

button presses and forward them to the program’s event-handling mechanism, mak-

ing it simple to design an experiment that requires the subject to push a button in

response to a specific event. Convenient portable devices of this sort are often more

4https://github.com/rpavlik/wiiuse
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reliable for capturing human subject responses than gesture detection that relies on

the motion-capture system because the devices do not suffer from marker occlusion.

In the course of this research, we have made some minor contributions to the

WiiUse library. In particular, we added code making it possible to record data from

more than one balance board at a time. The original code blocked on a single balance

board when polling for data, adding unacceptable delay into the system. We adapted

the code to use a non-blocking check to see if new balance board data are available,

allowing the library to continue processing other data if nothing new has happened.

This modification made it possible for us to measure ground force magnitude and

location from two feet at once or lay out multiple boards like stepping stones for

measuring gait.

3.1.4 Other Inputs

Other sensors are incorporated as needed for different experiments. Although

head-tracking gives some sense of the subject’s focus of attention. Eye-tracking sen-

sors are useful for pin-pointing where a subject is looking within the environment

(Figure 3.2).

We have also incorporated real-time video and audio from external cameras

and microphones. Capturing real-time video depends on functionality provided by

the DirectShow library. Each frame of video pulled from the camera is written into a

buffer and converted into a graphical texture that is available for immediate display
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Figure 3.2: A virtual racquetball court with overlaid data from an eye-tracker attached
to the head-mounted display[31].
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in the virtual environment. We used OpenAL5 to interact with audio devices and

capture microphone data. The library writes audio data samples into small buffers

that can be written to file or processed as needed.

We have not made extensive use of microphones in our own experiments. There

are, however, many interesting potential uses for captured audio. For example, it

would be very interesting to study the correlation of utterances with motor behaviors.

For example, a subject could be instructed to walk through and describe a scene.

Time-synchronized movement data, eye-tracker data, and spoken data could provide

insight into how visual information drives behavior and how behavior adapts based

on attention and task. Real-time signal processing could also allow a subject to

vocally interact with the virtual environment. Combining microphone data with

head-tracking would allow a participant to shout in a particular direction to push

objects in the simulated world.

3.2 Output

The responsibility for producing appropriate sound and imagery for the subject

lies with the various output modules. These modules interact with system drivers

and libraries to generate the audiovisual stimuli necessary for creating an immersive

environment. The largest and most complicated of these is the graphics module,

which produces real-time video output. Other modules handle audio output, haptic

feedback, and recording experimental data.

5http://connect.creativelabs.com/openal/
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3.2.1 Graphics

We present rendered 3d imagery within a head-mounted display for immersive

VR. Our current system uses an nVisor SX111 display6. Although the weight of this

display becomes uncomfortable after extended use, it provides a high resolution of

1280 × 1024 pixels to each eye with 102◦ of horizontal and 64◦ of vertical field-of-

view. The wide field-of-view provides peripheral information that can be very useful

in psychophysical experiments.

Multiple issues arise when producing stereo imagery for a head-mounted dis-

play. A phenomenon known as simulator sickness[60] is largely inevitable but can

be reduced with careful attention to detail. Slight delays and mis-alignments mean

that visual data may not exactly match head-movement. Most current head-mounted

displays require the eyes to focus on a screen at a fixed distance from the head. These

and other issues that are difficult to fully eliminate with current technology lead to

conflicting information that contributes to simulator sickness[60].

Depth cues are particularly important for virtual reality. Our first efforts to

build an experimental system used a black world with a checkerboard floor and simple

colored geometric objects such as cubes and spheres. Touching an object inside the

virtual space proved to be very difficult. Although the head-mounted display pro-

vided stereopsis and motion parallax, there was not enough information available to

accurately localize objects in the virtual world. The brain combines information from

multiple sources to understand the spatial configuration of the external world[66]. To

6http://www.nvisinc.com/
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support scene understanding, we integrated several additional depth cues: reference

objects, detailed textures, and projected shadows[48].

Geometric objects such as spheres and cubes can be any size; consequently,

seeing and recognizing an object provides little information about how far away the

object it. Familiar objects introduced into the space support visual comparison.

An object’s size can be judged in comparison to an object of known size, providing

information about depth based on perspective and foreshortening. Detailed textures

applied to objects in the world break up otherwise flat surfaces, making it easier to

correctly match stereo correspondences. Textures also look more detailed from up-

close than from far away. Semi-realistic projected shadows[48] provided strong visual

information communicating 3d structure. It is much easier to judge when your finger

will touch an object if your finger projects a shadow onto the object because the

shadow and the finger-tip meet at the contact point. Although we have not done any

formal validation of the influence of these contributions, we can confidently say that

people could not interact with the virtual world before additional depth cues were

introduced. These various graphical cues made the world much more immersive,

making it possible to actually use the virtual space.

3.2.2 Other Outputs

Auditory cues complement visual cues, providing a compelling experience

within the virtual environment. Auditory cues are particularly useful for commu-

nicating impact events that occur outside of the field of view. Sound clips served

primarily to give auditory cues indicating collisions. Experience using this system for
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an experiment involving ball-interception showed that audio was a more compelling

collision cue than haptic vibration.

File output is naturally important because the project is used to capture and

analyze human data. It is therefore necessary to synchronize and record the data for

analysis. Because the virtual environment doubles as a tool for partial analysis, a

full trace of data can be written to file and then replayed later, showing the world

as experienced by the subject or from an external perspective. The ability to replay

data can be a valuable tool for analysis, allowing a researcher to enter the virtual

world and observe the subject’s captured behavior within that environment after an

experiment has ended.

3.3 Logic

Logical modules manage the flow of data and define interactions between in-

puts and outputs. Our virtual environment uses looping iterations to coordinate the

sensor inputs with the audio-visual data presented to the subject. The program core

takes data and events coming from one source and uses them to trigger appropri-

ate responses in other modules. The core also handles the responsibility of properly

initializing all other modules and integrating them as necessary for a particular ex-

periment. Other logical modules work under the direction of the core to process and

transform data internally before they are passed to output modules.
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3.3.1 Core

The core module organizes all other modules and interfaces with the computer

operating system. To handle windowing (opening a graphical interface) we use the

Simple DirectMedia Layer (SDL) libraries7. These libraries provide cross-platform

compatibility and make it relatively painless to connect some of the output modules,

such as the display and audio, to the appropriate hardware for them to function

correctly. These also provide basic event loops to capture keyboard and mouse input.

The primary purpose of the core module is to initialize, update, and terminate

all other modules. During program execution, the core module follows a set of rules

to distribute information between modules and activate modules as needed. The

processing order of these rules is important for maintaining up-to-date data and

minimizing latency.

3.3.2 Physics

We use the Open Dynamics Engine (ODE) to simulate constrained physical

dynamics. After updating the sensor input channels, the core logic converts relevant

data to physical quantities such as forces and velocities for use in the simulation

engine. For example the latest motion capture marker positions inform their coun-

terparts in the simulation so that the simulated markers go to the correct place. We

discuss the physical simulation at length in Chapter 4.
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Figure 3.3: Virtual buttons, labeled with 3d text, make it easy to manipulate system
properties without leaving the virtual world. Small golden spheres near the bottom
of the figure follow motion capture markers on the hand, making it possible to detect
collisions between the fingers and virtual interface elements.

3.3.3 Internal processing

After the physics engine simulates dynamics forward in time, interesting events

such as a collisions can be reported as events to other modules and the new state of

the virtual world is available for the display module. In this way, the physics engine

makes interaction possible between virtual objects and a human subject. When a

subject touches a virtual object, the physics module detects a collision and reports

it as an event. The core module can then pass this information to scripted logic that

may create a contact constraint forcing the object away from the subject.

Alternatively, the core logic may treat the object as a “virtual button” that

triggers a sound or turns off gravity (Figure 3.3). Other user interface elements are

easily implemented. Detecting where motion capture markers on the hand intersect

7http://www.libsdl.org/
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with virtual interface elements makes it simple to control continuous variables. For

example, the red-green-blue “sliders” on the right side of Figure 3.3 comprise a “color-

picker’. Touching the boxes at different places changes the amount of each component

in the “active color” used with other elements in the virtual world.

Using 3d graphical user interface elements in this way proves very useful when

designing or testing an experiment. Rather than go back and forth between the

motion capture space and a desktop keyboard, a researcher can employ a “virtual

console” that manipulates important variables while pilot testing an experimental

idea. In a way, the virtual console allows you to program within the virtual environ-

ment, making the design and test process considerably easier. We are not aware of

virtual reality literature exploiting physical simulation to create these types of virtual

buttons and sliders as human-interface elements for controlling the environment.

3.4 Capturing Behavior

Psychophysical experiments reveal computational principles underlying be-

havior. The virtual environment currently serves as a tool for eliciting and capturing

task-specific behaviors to better understand low-level functions of the brain in a nat-

ural task and environment[32, 33].

Using our virtual racquetball court and humanoid model, we can systemat-

ically produce controlled ball trajectories and observe how a human accomplishes

the goal of hitting the ball to a particular location[32]. We also record locomo-

tion sequences and other relevant movements. Recording data to file produces large

sequences of marker trajectories through 3D space, possibly associated with the envi-
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Figure 3.4: An example virtual reality environment used for experimentation.

ronmental conditions under which they were recorded. Visualizing and analyzing the

data can provide some insights into the movement features underlying the generation

of the task-specific movement.

Figure 3.5 illustrates a task in which a human attempted to swing, with the

right hand, at a ball launched repeatedly along an identical trajectory. Although the

ball path was constant, the movement used to swing at it demonstrated significant

variance, providing some insight into the manifold of acceptable swinging movements

for that particular set of conditions. The data also suggested that for that particular

task, the human adopted a strategy that involved moving the hand along a parabolic

path indicating prediction of the ball’s future path. By so doing, the human could

increase the probability of hitting the ball because it did not matter when the hand
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Figure 3.5: Novel visualization of swinging to hit a ball in virtual reality. Grayscale
values show the human data and ball over time. Lighter values are more recent. The
final trajectory of the human hand suggests that it is following the predicted parabolic
curve of the ball, increasing the chances of intersection.
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Figure 3.6: Green lines show ball paths resulting from swings at 1m, 1.5m, and 2m
height. Red lines show the mean trajectory taken by the center of the racquet for
back-hand swings at balls of the different heights.

42



hit the ball.

Figure 3.6 compares the mean path of swings under three different conditions:

an unmoving ball placed 1m, 1.5m, or 2m above the ground. The first and last parts

of the trajectories are very similar, but the middle part differs drastically, suggesting

three phases to this type of swing. The first and last phases are possibly based on a

body-relative feature, while the middle phase must use the ball location as a reference

frame in order to properly connect and produce the desired outcome.

Figures 3.5 and 3.6 are just a few examples of the power of virtual reality

for capturing and analyzing movement. Plotting the experimental data within the

virtual environment used to capture it provides incredibly useful context information.

These novel visualizations and the ability to explore the data in 3d communicates

information that might not otherwise be available.

3.5 Summary

Virtual reality is a very useful tool for behavioral experiments. Building such a

platform represents a non-trivial amount of software engineering, integrating multiple

independent hardware and software elements into a cohesive, real-time system. Sim-

ulated physics plays an important role in the virtual environment, computing forward

dynamics for the simulated world as well as making it simple to interact with virtual

interface elements. We will see in future chapters how the same physics simulation

library also facilitates analysis of the movement.

There are many interesting avenues open additional research for the virtual
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environment. The possibilities for different psychophysical experiments are endless.

There are also numerous interesting paths for artistic application of virtual reality.

One might produce visual representations of audio recorded from microphones and

leave them positioned within the virtual environment to be played again when a par-

ticipant returns to the point. The audio could generate a particle effect that cascades

through the virtual environment, colliding and interacting with other elements. It

may be possible to simulate appropriate audio based on material and collision prop-

erties for more compelling VR (see [120]). Virtual and augmented reality technologies

are growing at a rapid pace, emphasizing the importance of tools such as those we

have developed and making the future in this area very exciting.
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Chapter 4

Physical Simulation

The principal contribution of this dissertation is a method for taking advantage

of robust numerical simulation code to accomplish several important tasks related to

analyzing and synthesizing humanoid movement. This chapter covers the mathemat-

ics underlying the rigid body simulation software used in this work with a focus on

the details that make it possible to adapt the numerical simulation for other purposes.

The bulk of this chapter presents equations already incorporated into simulation li-

braries before we began working on it. Although our specific derivation explaining

the equations may be somewhat novel, most of the work implementing the fast and

robust rigid-body simulation provided by ODE was done by others.

The principal insight in this chapter is that ODE can be used as an effec-

tive controller. We present a derivation of the mathematics underlying the physics

simulation. The derivation comes from directly analyzing the ODE codebase and

it consequently differs from other derivations using Lagrange multipliers to arrive

at the same final result (e.g., [36]). We present another derivation illustrating the

equivalence between softened constraints in ODE and implicit springs. Once again,

the derivation is something we have worked through ourselves and differs from other

methods for arriving at the same conclusion (e.g., [17]). These explanations serve to
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show how our particular innovations fit into the overall system and how the system

makes it possible to use simulation as a multi-purpose tool for movement analy-

sis. Because constraints in ODE are mathematically equivalent to implicitly stable

damped springs (a known fact) and damped springs are mathematically equivalent to

proportional-derivative (PD) controllers (another known fact), we arrive at the obvi-

ous but currently under-appreciated conclusion that ODE can be used as a powerful

tool for controlling humanoid models and that this control approach can be used to

analyze and synthesize humanoid movement in a single robust framework that in-

tegrates seamlessly with software systems already using ODE for forward dynamics

simulation.

Our efforts to explain the mathematical and programmatic details that make

it possible to use ODE as a stable controller also led to several improvements of the

public codebase. Some of these contributions take the form of bug fixes submitted

to correct simple errors that have persisted in the project. For example, we repaired

some basic problems with matrix inversion code and collision detection code. Other

contributions added flexibility or stability to existing constraints. We fixed logical

errors in certain angular constraints. We incorporated optional rolling and spinning

friction computations into contact constraints that occur between two colliding sur-

faces. These friction computations can be used to improve interactions between a

character’s feet and the ground. We also implemented an implicit computation of

gyroscopic torques to improve the stable simulation of rotating bodies. We created

new generalized joint-types that, for example, allow you to constrain the foot to

move toward a certain height without constraining its horizontal position. We only
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mention these contributions briefly here. The details of their implementation have

been submitted and are freely available through the ODE public repository[99]. This

chapter does, however, cover a particular insight gained from studying the constraint

mechanism that allows us to significantly increase the types of constraints that can be

created in ODE. This insight recognizes that constraints in ODE can be represented,

generally, as piecewise linear manifolds through force-acceleration space with up to

three linear segments, but the limitation to three segments is unnecessary. Adding

additional linear segments to a constraint manifold results in constraints (and conse-

quently controllers) with powerful properties. These properties are discussed at the

end of the chapter.

4.1 Constrained Simulation

Constrained physical simulation involves mathematically modeling multiple

physical entities with physical properties that determine the entities’ temporal evo-

lution. These entities, each called a rigid body, have dynamic state such as position,

velocity, orientation, and angular velocity. They also have properties that are gener-

ally constant over time, such as mass and volume. The dynamic state of each body

changes according to equations of motion and constraints. The equations of motion

capture physical laws such as conservation of energy and momentum while constraints

describe relationships between the bodies.

Systems of multiple rigid bodies constrained to move together in specific ways,

such as through hinge or ball-and-socket joints, are known as articulated models.

The dynamic state of an articulated model evolves according to differential equa-
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tions that can be difficult or impossible to solve analytically as a function of time.

Simulation software libraries, such as ODE[99], typically use numerical integration

to approximate the solution. Discrete physical simulation numerically approximates

the solution to the equations of motion of an articulated body by iterating over time

in small steps. Each step consists of multiple phases: collision detection, constraint

construction, constraint solving, and then integration. These steps are described in

detail below.

4.2 Collision Detection

Rigid bodies are represented as logical entities with collision geometry that

maintains a constant position and orientation relative to the body’s frame of refer-

ence. A collision occurs when the geometries of two bodies touch or overlap. Colli-

sions between rigid bodies represent sharp discontinuities in the differential equations

describing their state. Because physics simulation occurs over discrete time steps, col-

lisions occur with varying degrees of overlap. Collision detection routines find bodies

that are touching or overlapping so that the temporal dynamics can be constrained

to prevent further interpenetration.

The position and orientation of bodies update in discrete steps. If the relative

velocity of two bodies over a single timestep is greater than the magnitude of their

dimensions, they can pass through each other without ever registering a collision.

This phenomenon is known as tunneling. This work does not focus on collisions,

but there are different methods for dealing with this possibility. Moving collision

geometries can be stretched out in the direction of their velocities so that all possible
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collisions will be found. The easiest thing to do is ensure that the size of the discrete

time step is sufficiently small relative to the fastest moving bodies so that tunneling

is not a problem. However, if a specific non-penetration condition is particularly

important, it can be added as an inequality constraint bounding the relative velocity

of two points so that the bodies cannot move fast enough to interpenetrate. This

method is not scalable because it involves adding a velocity constraint between every

potentially colliding pair of bodies, but it could be used to enforce a small number

of safety constraints to keep a system from colliding with people or other equipment.

The work in this document always employs the collision behavior of allowing bodies

to penetrate slightly and then applying constraints that prevent further penetration

and force the bodies to move apart.

Collision detection happens in two phases: broad and narrow. The purpose

of broad-phase collision detection is to organize the geometry of the different bodies

into data structures that cull most potential collisions thereby avoiding the worst

case of O(n2) comparisons. These methods involve sorting objects into bounding

volumes such as axis-aligned bounding boxes. These bounding volumes, organized

hierarchically, facilitate rapid comparison between multiple geometries. If outer vol-

umes do not intersect, then there is no need for running the computationally intensive

narrow-phase collision tests.

In narrow-phase collision detection, specialized algorithms test pairs of bodies

for overlapping. The collision tests typically involve using closed-form equations of

the geometry to analytically determine the intersection of two surfaces. For some

geometries, analytic equations for computing intersection are intractable or unknown.
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When closed-form collision computation is not possible, there are general-purpose

algorithms for finding approximate collision information[39]. When surfaces intersect,

the collision algorithms compute penetration depth and produce a set of collision

points and direction vectors that can be used to prevent the bodies from moving

closer together.

This dissertation makes very little use of collision detection. The virtual reality

environment processes collision between different objects, a key element in creating

realistic tasks in natural environments. When modeling human movements, how-

ever, we assume that the human body does not collide significantly with itself and so

typically only process collisions between the model and the ground. Analyzing move-

ments where this assumption is violated, such as when one limb rests on another

(crossing one’s legs while sitting) would necessitate internal collisions. These types of

movements and poses are not addressed in this dissertation. Collisions between the

model and the ground, however, play an important role in analyzing and synthesizing

movement data such as walking.

4.3 Dynamics

Once collisions are found, the programmer needs to decide how the collisions

should affect the simulation. Generally, collision handling involves creating a con-

straint between the colliding bodies. We will return to the subject of creating con-

straints later. At this point we will discuss the simulation itself after introducing a

table of necessary symbols.
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4.3.1 Notation

Physical simulation involves an annoyingly large number of different variables

to represent constraints and relevant physical quantities. Scalars are represented with

lower-case, un-bolded symbols: x. Bold lower-case symbols represent column vectors,

x =

[
x1
x2

]
We use bold, upper-case symbols to represent matrices:

X =
[
x1 x2

]
=

[
x11 x12
x21 x22

]
We use dot-notation to indicate time derivative: ẋ = dx

dt
. The circumflex accent

indicates a 3d vector being used as a skew-symmetric matrix representing a cross-

product operation:

x̂y =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

y1y2
y3

 = x× y

Coordinates are typically relative to a “global reference frame” established

arbitrarily and used for consistency. Discussing physics requires understanding mul-

tiple frames of reference and their relationships. Full treatment of this subject is

beyond the scope of this document. Additional information is available in [31]. A

tilde, x̃, indicates a quantity that uses a local reference frame, e.g., a body-relative

frame, rather than the global frame. We abuse subscripts to indicate that a quantity

refers to a specific dimension, a particular rigid body, a point in time, and in other

cases that warrant extra information to distinguish related symbols. We attempt to

clarify the subscripts when necessary to remove ambiguity. We attempt to introduce
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Symbol Meaning
x position or state of one or more rigid bodies
ẋ velocity (usu. linear and angular)
ẍ acceleration (usu. linear and angular)
R rotation matrix representing orientation of a body
ω angular velocity
q quaternion representation of an orientation or rotation
m mass of a single rigid body
M mass matrix
I identity matrix
I moment of inertia tensor

nb, nc number of bodies, number of constraints
α,β stabilizing parameters added to the equations of motion
φ() error or energy function for a single constraint
J matrix of partial derivatives of constraint error functions
h timestep
f forces (and torques)
τ torques
λ constraint forces

Table 4.1: Meanings of specific symbols used to discuss dynamic simulation

new symbols within the text, however, Table 4.1 presents specific symbols and their

meanings for reference.

For conciseness in notation, we will typically combine angular and linear quan-

tities as a single symbol. This representation is used loosely for position and orien-

tation because orientation does not conveniently fit into a 3× 1 vector. Fortunately,

angular velocity and angular acceleration do combine well with linear velocity and

acceleration, and it is these quantities, ẋ and ẍ that feature primarily when dealing

with a constrained system. We will also represent the state of multiple bodies using

a single symbol when convenient. For example, for a system with two bodies, we will
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represent the combined linear and angular accelerations (a 12d vector) as ẍt. For

this same 2-body system, Newton’s law relating force, mass, and acceleration is as

follows: 
f 1t

τ 1t

f 2t

τ 2t

 =


m1I 0 0 0
0 I1t 0 0
0 0 m2I 0
0 0 0 I1t



ẍ1t

ω̇1t

ẍ2t

ω̇1t

⇒ f t = M tẍt

where I and Iit are 3× 3 block matrices.

4.3.2 Dynamic State

Coordinates in the simulation world are defined relative to an arbitrary origin

and basis set of directions. We refer to this inertial frame as the “global frame”.

Each rigid body also has its own point of reference and set of directions. Any point

in the global frame can also be described relative to a body’s frame of reference. It

is convenient to define the point of reference of a body as its center of mass and use

its principal inertial axes of symmetry as directions.

The position of the center of mass and orientation of a body within the global

frame are here defined as x and R respectively. In 3d space, x is a 3× 1 vector:

x =

xy
z


where x, y, and z are the distance from the origin along each of the three directions

that establish the global frame of reference. For consistency, we deal with these

distances in meters and assign “up” to the positive z axis. The orientation R of a

body is a 3 × 3 orthonormal matrix whose columns give the body’s local direction
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frame relative to the global frame:

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33


Conservation of momentum makes it necessary to keep track of the time deriva-

tive of these quantities: ẋ and Ṙ. Instead of explicitly representing Ṙ, it is convenient

to keep track of the angular velocity:

ω =

ωxωy
ωz


The relationship between these quantities is

Ṙ = ω̂R

Representing orientation as a 3 × 3 matrix can be unwieldy. To properly

represent an orientation (or pure rotation) it must be an orthonormal matrix. An or-

thonormal matrix uses nine elements to represent a property with only three degrees

of freedom. Unfortunately, any three-element representation of orientation suffers

from singularities[42]. We make use of unit-length quaternions to represent orienta-

tions and changes in orientation. Quaternions are convenient because of their close

relationship to angular velocities. Quaternions are similar to an axis-angle represen-

tation of a rotation. A quaternion q represents a rotation by θ around unit vector v

with four elements:

q =


qw
qx
qy
qz

 =


cos θ

2

vx sin θ
2

vy sin θ
2

vz sin θ
2
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From an arbitrary angular velocity ω, we can make a quaternion that repre-

sents the change in rotation that would occur during a timestep of h. After finding

the amount of rotation θt = h‖ωt‖, one might naively find a “rotation quaternion” by

normalizing ωt and then re-scaling by sin θt
2

for a final quaternion: qt =

[
cos θt

2
ωt

θt
sin θt

2

]
.

However, the normalization step becomes unstable as θt approaches zero. To avoid

that instability, we use the “sinc” function where sinc θ = sin θ
θ

. The sinc function

allows us to remove the discontinuity that would result from division by zero and

adds numerical stability. When θ is small, sinc (θ) can be approximated to within

machine precision using the first two non-zero terms of its Taylor expansion (see [42]).

The result is a discrete-time “rotation quaternion”:

qt =

[
cos θt

2
h
2
sinc θt

2
ωt

]
(4.1)

Given nb bodies, the dynamic state of the ith body at time t is its position,

orientation, linear velocity, and angular velocity:
{
xit Rit ẋit ωit

}
. We will

assume that all of these values are framed in the global coordinate system unless

specified otherwise. The body dynamics are also affected by the body’s constant

mass mi and inertia tensor Iit. The moment of inertia tensor, I, is indexed by time

because the body’s orientation changes how the the mass is distributed relative to the

world frame: Iit = RitĨiR
T
it. We assume that the inertia tensor is constant relative

to the body-local frame of reference (i.e., bodies are rigid).

In simulation, the forces f applied to the rigid bodies come from three general

sources. These are constraint forces (fc), gravitational and gyroscopic forces (fg),

and user/control forces (fu): f = fc + fg + fu.
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4.3.3 Integration Step

When a force is applied to a body, it translates into acceleration that is in-

versely proportional to the mass. Velocity is the time integral of acceleration, ẋt =

ẋi0 +
∫ t
0
M−1

i f tdt, and position is the time integral of velocity, xit = xi0 +
∫ t
0
ẋitdt.

Because f t may depend on xt and ẋt as well as on discontinuous collisions and control

inputs, analytic descriptions of body state are not usually possible. Instead we dis-

cretize the equations of motion and use a small, discrete timestep, h, to numerically

approximate system dynamics. The most obvious thing to do is to linearize the force

function, f t, and then take all the quantities from time t and use them to find the

state at time t+ h:

ẋt+h = ẋt + hM−1f t

xt+h = xt + hẋt

This equation is known as explicit Euler integration[44]. Unfortunately, the delay

between the time that forces are applied and the time that the position changes

makes this method unstable for most purposes.

Just as simple, but much more stable is “semi-implicit Euler” integration (also

called “symplectic Euler” integration). Integrating this way involves using the future

velocity for computing position. In this way, a force applied at time t is observed

immediately as a change in position at time t+ h:

ẋt+h = ẋt + hM−1f t (4.2)

xt+h = xt + hẋt+h (4.3)
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Although we lump orientation and position together as a single symbol, in

practice there are a few distinctions that need mentioning. For example, gravity

only applies to the linear state, while gyroscopic torques only apply to angular state.

Gravitational forces are very straightforward, fgrav = Mg, where g indicates the

direction and magnitude of gravitational acceleration and is often very simple; e.g.,

for a single rigid body g =
[
0 0 −9.8 0 0 0

]T
.

Rotation is a non-linear phenomenon. However, we can approximate the mo-

tion of a rotating body by adding torques that imitate gyroscopic effects (for more

information, see [15]). Gyroscopic torques are applied to maintain conservation of

angular momentum. Explicitly applying gyroscopic torques to bodies allows us to

treat the rest of the system as though it conserved angular velocity rather than an-

gular momentum. Thereafter, we can deal with the combined linear and angular

quantities as a linear system (since conservation of linear velocity is the same thing

as conservation of linear momentum).

The gyroscopic torques for each body are linearly approximated by

f gyro =

[
0 0
0 ω̂t

] [
0 0
0 It

] [
0
ωt

]
These forces are zero if the three principal moments of the inertia tensor are equal.

Otherwise, they represent the forces necessary for conservation of angular momentum.

Unfortunately, this approximation tends to introduce energy into the system. We

have done some work to reduce this problem in ODE by adding in additional terms

as described in [15], but that work is largely outside of the scope of this dissertation.

The constrained system is solved using mostly accelerations and velocities. At

57



the end, however, it is necessary to integrate the velocities into new positions and

orientations. Position and orientation are updated differently. For position, it is

sufficient to multiply the linear velocity by the timestep and add it to the current

position. Adding angular velocity to orientation is not as straightforward. We inte-

grate angular velocity into orientation by converting ωi(t+h) into a quaternion using

Eq. 4.1. We then use the quaternion to rotate the current orientation forward in time

following [42].

4.4 Constraint Equation

When a rigid body is moving or spinning freely through space, the integra-

tion equations are sufficient to simulate dynamics. Adding constraints modifies the

bodies’ movements. Maintaining a relationship between two bodies requires forming

a constraint on the state of the bodies. The integration equations tell us how to go

from force to velocity and from there to position and orientation. To simulate an ar-

ticulated model using maximal coordinates, we need to know what forces constraints

apply to the bodies in the system.

In order to find the constraint forces, we must be able to mathematically de-

scribe the constraint. We will define a multi-dimensional function over the combined

position and orientation of all bodies in the system, φ(xt), that produces a vector of

size nc specifying how much each constraint is violated, where nc is the number of

constraints acting on the system. For example, if the ith constraint keeps body b2 a

distance d above body b1 in the z direction, we would have φi(x) = x2z−x1z−d. If b2

is not separated from b1 by a distance of d in the z direction, φi(x) reports the signed
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magnitude of that constraint error. For additional information on forming constraint

equations, see [36, 100].

In general, the error for a constraint is non-zero. Given a measure of the error

for a given state, we seek to find constraint forces, fc, that reduce the error over

subsequent time steps[11]. Specifically, over the timestep h, we seek a force to reduce

the magnitude of the constraint error by a fraction α. That is

φ(xt+h) = (I −α)φ(xt) (4.4)

where α is a k × k diagonal matrix with each αi ∈ [0, 1] representing the fraction

of error reduction over a time step. In ODE, the α value is controlled through the

error reduction parameter (ERP) which can be set independently for each constrained

degree of freedom. In practice, it is not possible to remove constraint error completely

(α = 1) when using maximal coordinates because of error introduced by the various

approximations employed to make the simulation linear and fast. Values of α typically

fall within [0.2, 0.8]. Manipulating this value results in useful elastic and damping

effects discussed later.

We use the symbol J t to represent the nc×6nb matrix of partial derivatives of

φ(xt). This matrix is a linear approximation of how the constraint error for each of

the nc constraints changes when the positions and orientations of the bodies change:

J t = ∇φ(xt) =


∂φ1
∂x1t

· · · ∂φ1
∂x(6nb)t

...
. . .

...
∂φk
∂x1t

· · · ∂φk
∂x(6nb)t


Find the constraint forces that satisfy Eq. 4.4 involves removing all references to

unknown future quantities. The Taylor expansion of φ(xt+h) at xt, truncated after

59



the first order term, approximates the future constraint error:

(I −α)φ(xt) = φ(xt+h) ≈ φ(xt) + J t(xt+h − xt) (4.5)

This truncation has the effect of treating all constraints as linear. Many constraints

used to simulate various joints only have linear terms. Others, however, contain

higher-order terms and this truncation is one potential source of error in simulation.

Combining the two integrator equations, Eqs. 4.2 and 4.3, gives the future

position/orientation in terms of the present position, velocity, and forces:

xt+h = xt + hẋt + h2M−1
t

(
f ct + f gt + fut

)
(4.6)

Equations 4.4, 4.5, and 4.6 combine to substitute away all references to future quan-

tities:

(I −α)φ(xt) = φ(xt) + J t
(
xt + hẋt + h2M−1

t

(
f ct + f gt + fut

)
− xt

)
(4.7)

This leaves one unknown vector at time t: the constraint forces f ct. Rearranging and

simplifying, we get

J tM
−1
t f ct = − 1

h2
αφ(xt)−

1

h
J tẋt − J tM−1

t

(
f gt + fut

)
(4.8)

Note that in rearranging the terms this way, we divided both sides by the squared

timestep, h2, effectively changing the problem from one dealing with positions to one

dealing with accelerations. This conversion is possible because of the relationship

established between acceleration and position by the semi-implicit Euler integrator.

Equation 4.8 is almost the equation that ODE solves when simulating physics.

The right hand side is a desired acceleration. The first term on the right is the
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acceleration that would result in a velocity that would remove a fraction (α) of the

constraint error. The second and third terms account for the effects of momentum

(current velocity), gravity, and other forces (e.g., user control forces) applied to the

bodies. Each constraint becomes its own dimension in a “constraint space”. The

Jacobian matrix J projects accelerations from global forces into constraint space.

In general, the matrix on the left hand side of Eq. 4.8 is not square, making the

problem under-constrained (or in some cases, potentially over-constrained). However,

we can use d’Alembert’s principle[65] to restrict the constraint forces to lie in the

constraint space. Another method for arriving at the constraint equation is through

the use of Lagrange multiplies. Consequently, the constraint-space forces are typically

denoted with λ. The Jacobian transpose gives the relationship between a force applied

in constraint space and force/torque applied in the full coordinate space: f ct = JT
t λt.

The vector, λt, holds the generalized forces applied by each constraint on all

the bodies involved in that constraint, whereas f ct holds the sum of the constraint

forces applied to each individual degree of freedom of each rigid body. The LHS of

Eq. 4.8 can then be rewritten as J tM
−1
t J

T
t λt, where J tM

−1
t J

T
t is now a nc × nc

positive semi-definite matrix.

It is informative to compare this equation,

J tM
−1
t J

T
t λt = − 1

h2
αφ(xt)−

1

h
J tẋt − J tM−1

t

(
f gt + fut

)
(4.9)

with the equation used when satisfying a system using generalized coordinates (adapted

from [51]):

JT
tM tJtθ̈t = −JT

tM tJ̇tθ̇t + Jt
(
fut + f gt

)
(4.10)
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The derivation for the generalized form is beyond the scope of this dissertation

(see [36] or [51] for details). Equation 4.10 serves to show how the two methods

are parallel and complementary. In this formulation, the Jacobian, J, gives a lin-

earization of how the bodies change when degrees of freedom change: Jij = ∂xi
∂θj

. In

the generalized formulation, the constraining forces are implicit and the constraints

cannot be violated by construction. Instead of computing gyroscopic forces, it is

necessary to compute coriolis and centrifugal forces. The comparison between the

methods is interesting and helps highlight some advantages presented by using max-

imal coordinates.

For our purposes, the biggest advantage of maximal coordinates is that the

constrained degrees of freedom can be setup to be conflicting so there is no way to

eliminate constraint error. Conflicting constraints might seem like a bad thing, but

we make use of them in the next section to accomplish our goals. Because generalized

coordinates require a function that converts from generalized space to Cartesian space,

an equivalent approach to the one described below is not immediately obvious.

Returning to maximal coordinates, we will compress Eq. 4.9 down to

JM−1JTλ = w (4.11)

In general, the matrix JM−1JT may be singular. It is very easy to end up with

redundant or conflicting constraints. For example, a box resting on the ground may

get a contact constraint at each corner. If each contact prevents interpenetration

and sliding (i.e., applies friction) then the contacts constrain a total of 12 degrees

of freedom on a single rigid body with only 6 degrees of freedom to be constrained.
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Conflicting or redundant constraints can break the solver if not dealt with beforehand.

The means for dealing with the conflict is clever. The physics engine softens the

constraint, allowing it to “slip” proportional to the amount of force necessary to

maintain it.

Because mass is always positive, the force, λ, applied to a particular constraint

and the resulting constraint-space acceleration will have the same sign. Softening the

constraint is therefore a matter of subtracting a scaled copy of λ from the desired

acceleration (the right hand side): JM−1JTλ = w − βλ, where β is an nc × nc

diagonal matrix of (typically small) non-negative values. This subtraction, of course,

is equivalent to adding β to the LHS. Adding these small values to the diagonal of

the effective inverse-mass-matrix makes the constraints seem lighter to the solver and

moves the matrix away from singularity:

(
J tM

−1
t J

T
t + β

)
λt = − 1

h2
αφ(xt)−

1

h
J tẋt + J tM

−1
t

(
f gt + fut

)
(4.12)

The original programmers built soft constraints into the ODE simulation code.

The variable, β, tunable for each constraint, is known in ODE as the constraint force

mixing parameter (CFM). At first glance, the addition of these parameters may

seem loose and unprincipled. However, correctly setting the parameters, α and β,

changes a hard constraint into a simulated implicit spring with first order integration

(see [34]). The significance of this innovation seems to be largely overlooked by the

physics-based animation community, although Erin Catto recently gave a presentation

pointing out some of the advantages of these stabilization parameters[17]. It is well-

known that the formula for ideal damped spring force is identical to the formula for
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PD control. However, connecting these two facts, namely that (1) ODE’s constraints

are mathematically equivalent to implicit damped springs and (2) damped springs are

equivalent to PD controllers, has not been exploited, to our knowledge. This insight

is key to the success of the methods presented here. One contribution of this work is

to present a clear derivation showing that ODE’s constraints are, in fact, stable PD

controllers along with examples of how to take advantage of this fact. We proceed by

discussing proportional-derivative control and the mass-spring-damper equation.

4.5 Implicit Simulated Springs

Proportional-derivative (PD) control is a common method used to compute

forces that drive a system toward a target state. The PD control equation is the

same as a mass-spring-damper system. There are two parameters, kp and kd, that

determine what force should be applied to a degree of freedom at any point in time.

The stiffness, also called proportional gain (kp), specifies a force driving a degree of

freedom toward its setpoint, x̄ with strength proportional to the distance from the

setpoint. The damping, also known as derivative gain (kd), counteracts the current

velocity, slowing the system down to avoid overshooting. When a system uses PD

control to encourage a degree of freedom to move toward a target state, the control

force fut at any instant in time is a function of the current position and velocity of

the effective mass being controlled relative to its target:

fut = −kpxt − kdẋt (4.13)

In a continuous time system, this controller is guaranteed to be stable as long
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as kd and kp are non-negative. With zero damping (kd = 0) the system oscillates in a

sinusoidal wave pattern whose frequency is determined by the stiffness and mass and

whose magnitude is determined by the initial conditions. With zero stiffness and pos-

itive damping, the velocity of the system decays exponentially with higher damping

converging to zero more steeply. Discrete sampling of these forces, however, ruins the

stability conditions. The potential for instability is apparent if we consider a mass

m that only experiences damping forces. Using the semi-implicit Euler integrator,

Eq. 4.2, we plug in the damping forces from Eq. 4.13 to get

ẋt+h = ẋt −
hkd
m
ẋt =

(
1− hkd

m

)
ẋt (4.14)

Time (t), mass (m), and damping (kd) should all be non-negative values. It is clear,

then, from this equation, that if hkd
m

> 2, the velocity will oscillate between positive

and negative values and grow in magnitude. This oscillation rapidly causes the sim-

ulation to “explode” and is annoyingly common when using PD control. Overly stiff

springs hit a similar limit with explicit discrete integration that causes them to gain

energy and explode. Consequently, explicit PD control gains are tricky to tune. They

must fall within certain limits that depend on the timestep and the effective mass

experienced by the system.

The cause for this instability lies in the discrete integration which is similar

to approximating the area under a curve as the sum of multiple rectangles computed

forward from the present (Fig. 4.1). One solution is to solve for the forces implicitly.

Implicit integration is similar to approximating the area under a curve with fixed-

width rectangles that end rather than begin on the curve. Rather than overestimate,
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Figure 4.1: Explicit integration of damping forces is similar to the forward-method for
approximating the area under a curve as a sum of rectangles. In this case it severely
overestimates, leading to instability.

this method tends to underestimate the area under an exponential curve. The re-

sulting system does not explode, although it tends to dissipate rather than conserve

energy. The implicit form of the damped-spring-law depends on the integrator it is

applied to. Being ‘implicit’, in this case, specifies that spring forces are computed

from the future state of the system. Consequently, Eq. 4.13 becomes the following,

(note the changed temporal indices):

fut = −kpxt+h − kdẋt+h (4.15)

We do not know the future position or velocity, but using the integrator equations,

Eqs. 4.3 and 4.2, we reframe Eq. 4.15 in terms of the current quantities and then

solve for fut to get

fut = − kdẋt + kpxt + hkpẋt
1 +m−1hkd +m−1h2kp

(4.16)

If we analyze a pure damped system as before but using Eq. 4.16, we end up

with

ẋt+h = ẋt −
hkdẋt
m+ hkd

=
m

m+ hkd
ẋt
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With kd now in the denominator, even an infinite damping gain is stable, correspond-

ing to the damping force that completely eliminates the current velocity in a single

timestep. This stability allows us to make PD controllers with extremely stiff gains.

Stability is a nice property for a controller or simulator to have. We now show

that the α and β terms added to the constraint equation change them into implicit

springs. To see the correspondence between Eq. 4.12 and Eq. 4.16, we consider a

constraint that keeps a point mass at the origin along a single dimension: φ(xt) = xt.

The displacement function for this system has a trivial Jacobian: J = 1, meaning

that λ = fc. Assuming that external forces are zero, fg = fu = 0, Eq. 4.12 simplifies

to

(m−1 + β)fct = − α
h2
xt −

1

h
ẋt (4.17)

Assigning the α and β parameters1 to be, α = hkp
hkp+kd

and β = 1
h2kp+hkd

, and

isolating fct, Eq. 4.17 reduces to the implicit spring equation Eq: 4.16:

fct = −

(
hkp

hkp+kd

)
xt + hẋt

h2m−1 + h2
(

1
h2kp+hkd

) = − kdẋt + kpxt + hkpẋt
1 +m−1hkd +m−1h2kp

The consequence of this relationship is that every constraint in ODE can be thought

of as an implicit spring. An important feature of this formulation is that the equations

are solved simultaneously. To see the advantage of simultaneously computing spring

forces, consider two springs both pulling on the same body in the same direction.

If implicit spring forces are computed independently (i.e., using Eq. 4.16) and then

1These values are presented without derivation in the ODE user-manual: http://ode-wiki.

org/wiki/index.php?title=Manual:_All#How_To_Use_ERP_and_CFM. Note that our formulation
of β has an extra h in the denominator which is added automatically by ODE.
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applied together, they pull too hard and become prone to overshoot. The system be-

comes unstable. When the implicit springs are solved simultaneously in the physics

framework, the forces account for each other. Without this change the system would

be very fragile. Softening the constraints to springs makes it so that we can solve a

system that would otherwise be over constrained. We can add more constraints than

there are degrees of freedom. It is not obvious how one might similarly soften con-

straints when using generalized coordinates, making it advantageous to use maximal

coordinates for many tasks described in Chapters 5 and 6.

4.6 Solving with Complementarity Conditions

For simplicity, we compress Eq. 4.12 down to Aλ = w. When A is non-

singular, we can solve for λ by inverting, or preferentially, using a fast, numerically-

stable solver such as a Cholesky decomposition. Some constraints, however, come

with additional conditions that need to be solved with extra machinery. In simu-

lation literature, these are known as inequality constraints. For example, a contact

constraint keeps two bodies from moving towards each other by defining an error

function that is the separation of the contacting surfaces in the direction of one of

the surface normals. If the surfaces are overlapping, then the error function has a

negative value and a positive constraint force will accelerate the surfaces apart. This

acceleration is as it should be. However, the linear system also applies forces to

correct positive error; so the same constraint would also prevent the surfaces from

separating.

The solution to this problem is to limit the amount of force available for
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satisfying the constraint. A contact constraint, in particular, limits the force to be

non-negative. Contact friction constraints are limited on both sides to be proportional

to the contact normal force. This limitation places upper and lower bounds on the

constraint force variable: λlo ≤ λ ≤ λhi, allowing constrained bodies to accelerate

without bounds if the force necessary to hit the acceleration target falls outside of

the limits. In ODE, the result is three possible conditions to satisfy a constraint:

1. aiλ = wi with λi ∈ [λilo, λihi],

2. aiλ > wi with λi = λilo, or

3. aiλ < wi with λi = λihi

where −∞ ≤ λilo ≤ 0 ≤ λihi ≤ ∞.

A linear solver cannot handle these extra conditions on the constraint forces.

To solve this type of system, physics engines employ a mixed Linear Complemen-

tarity Problem (mLCP) solver. ODE offers two different solving methods for satis-

fying constraints under limited-force conditions. One method, known as Projected-

Gauss-Seidel, solves constraints iteratively and accumulates the effects[16]. Iterative

methods tend to be faster, but also tend to be inaccurate when the system is near-

singular or ill-conditioned. Simulated humanoid systems, particularly with two feet

on the ground, tend to behave badly with this faster solver. The slower, pivot-based

method, follows the algorithm presented by Baraff[8]. Baraff’s method is still easily

fast enough for our purposes.
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Each row in matrix A represents a constraint. The corresponding values of

w and λ represent a “target” acceleration along the degree of freedom constrained

by that row and the generalized force used to achieve it. For the ith row of A, the

diagonal element, aii, behaves like the inverse mass of the constraint. A force, λi,

imposes an acceleration of aiiλi = wi within the constraint error-space. The rest of

the elements in a row of A encode the force’s effects on other constraint dimensions.

A change in the ith constraint force λi affects the jth constraint space by accelerating

it according to δwj = aijδλi. The order of the constraints is arbitrary and they

can be rearranged as long as every row-swap is accompanied by the corresponding

column-swap that maintains the proper symmetry.

Baraff’s solving algorithm (based on Dantzig’s simplex method) takes advan-

tage of this arbitrary ordering by dividing constraints into different sets: a satisfied

set S, a limited set N , and an unaddressed set U . All constraints fit into one of

these categories. The first step in finding a solution is to reorder and satisfy all the

unlimited constraints, without considering the rest, using a basic linear solver. The

resulting system looks like [
A11 A12

AT
12 A22

] [
λ1

0

]
=

[
w1

AT
12λ1

]
(4.18)

Set S holds the rows of A1i. Set U holds the rest. At this point it helps to look

at some figures to see what is going on. Each constraint’s target conditions can be

represented as a piecewise line through force-acceleration space (Fig 4.2). We will call

this multi-segmented line the target manifold for each constraint. Viewing constraints

this way is another contribution of this work. The diagonal element of A associated
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(a) Holonomic: a rigid constraint de-
mands the relative acceleration be-
tween two bodies be zero.

(b) Motor: an unlimited motor con-
strains the relative acceleration to take
on some value.

(c) Contact: a contact constraint pre-
vents bodies from accelerating toward
each other, but applies no force to pre-
vent them from separating.

(d) Friction: a friction constraint pre-
vents relative acceleration until a force
limit is reached.

Figure 4.2: Each constraint on a single degree of freedom can be thought of as a
monotonically decreasing, piece-wise linear target manifold through acceleration-force
space.
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with the constraint gives the slope of a line through the origin that represents the

relationship between force (λ) and actual acceleration (Aii is the effective inverse-

mass of the ith constraint). The solver seeks to find a joint solution so that, for all

rows of A, the pairs of (λi, wi) fall on the acceptable manifold. Forces from other

constraints move the entire manifold up or down relative to the origin.

The β parameter takes the horizontal portion of the target manifold and tilts

it so that when bigger forces are used, there is a lower target acceleration. Hence

the constraint is spring-like. The vertical portions of the constraint represent places

where the constraint has hit its force limits. No additional force can be applied by

that constraint; so the acceleration must be allowed to increase freely. Otherwise, the

constraint would be “obligated” to apply more force to try to get closer to its target

acceleration.

Constraints are addressed one-at-a-time. When dealing with ground contact

force without softened constraints, once the solver found a sufficient force to keep a

body from penetrating the ground, any remaining ground contact constraints would

have nothing to do, resulting in inappropriate distribution of ground forces. With

spring-like constraints, if one contact constraint supporting a body reaches its target

force/acceleration, a second, redundant contact constraint will see whatever distance

remains between the current acceleration and the target. Forces applied by the sec-

ond constraint attempting to reach its target push the target manifold of the first

constraint toward the origin. The force required to achieve the first constraint’s tar-

get decreases until the forces balance appropriately. The balancing forces make it

possible to more accurately compute inverse dynamics forces.
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(a) Elastic: when β is non-zero for
a constraint row, the target acceler-
ation decreases proportional to the
force necessary to achieve it.

(b) Deadzone: using the same mech-
anism, we can introduce constraints
that keep the relative acceleration of
two bodies within a range.

(c) Complex: we can combine multi-
ple linear pieces to create novel, com-
plex constraints.

Figure 4.3: Adding a small value to the diagonal elements of the projected inverse
mass matrix turns the constraint into a spring. Viewing constraints as piecewise linear
targets provides insights into how to make more complicated constraints consisting
of additional piecewise segments.
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The algorithm for solving the mLCP progresses through each unaddressed

constraint, one at a time, and finds the change in forces that will satisfy the new

constraint without moving any of the current constraints off their piecewise target.

Each iteration of the algorithm draws a new constraint from the unaddressed set U

and addresses the change in force, λ, that will satisfy the new row without pushing

any previously addressed rows off their manifold, until the new row can be added to

S or N . In the process other rows may change between sets S and N , but each row

remains on its target manifold in acceleration/force space.

Consider this partitioned matrix:A11 A12 a13

AT
12 A22 a23

aT
13 a23 a33

λ1

λ2

0

 =

w1

v2
v3

 (4.19)

Adding a new force, λ3, will change the accelerations of the other constraints. Accel-

erations of constraints at their limit are allowed to change, but those in set S must

remain at their target. So we find the δλ3 that moves v3 toward w3 and find the

simultaneous δλ1 that keeps constraints in S satisfied. The constraint force takes the

largest step that will not push any row out of its set. This step will either satisfy

the constraint or move another constraint to an intersection point on its manifold.

We then pivot the sets around and continue until all of our rows are in S or N . For

additional detail, see [8].

Recognizing that the solver deals with each constraint target as a piecewise

linear manifold provides useful insight into how the simulation mechanism can be

improved. One obvious extension is to increase the number of linear segments in

the target manifold beyond three (Fig. 4.3). This innovation becomes obvious when
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constraints are considered as target manifolds rather than Lagrange multipliers. With

a multi-segment target manifold, it is possible to create a spring-like constraint that

is loose near its setpoint, but then becomes stiffer.

We can make spring constraints that get more or less stiff as additional force

is required. We can also introduce constraints with “deadzones” in their PD control

(Fig. 4.3). This type of constraint is particularly interesting because it allows us to

introduce controllers that only come into play when a dimension of interest drifts

out of an acceptable range. This type of controller takes inspiration from the idea

of “uncontrolled manifolds” in human motor control theory[91]. With this constraint

acting as a controller, if a perturbation will not hurt performance, the controller does

nothing.

From deadzone controllers, we can introduce novel constraints with secondary

targets. A constraint whose forces and accelerations fall within acceptable tolerances

has flexibility to “help” another constraint that has reached its limit. For example,

we can specify a target range for the knee, hip, and ankle joints of a simulated char-

acter. When these leg joints fall within their stated ranges, they can be allowed to

pursue a secondary goal such as keeping the torso upright or at a given height. This

type of constraint can serve as a method for reducing the need for unrealistic resid-

ual forces. Removing residual forces implies deviating from original kinematic data.

Constraints with secondary targets make it intuitive and clear how this deviation

will occur can be extremely beneficial when using the simulation engine for analyzing

or synthesizing movement data. We have created and submitted code for allowing

controller constraints with a deadzone in acceleration space. Full implementation
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of secondary targets for constraints is still in progress. It promises to be useful for

creating intelligent constraint-based controllers.

4.7 Summary

Significant programming effort has made ODE a fast, robust system for simu-

lating constrained, physical systems. We have presented details on how it works and

how it differs from other approaches using generalized coordinates and shown a useful

derivation for the equations of motion. Treating every constraint as a spring helps

stabilize complex systems such as simulated humanoids. Understanding the ODE

solver and the mLCP system it works on allows us to build novel constraints with

useful properties for controlling humanoid systems. In the course of this research, we

have implemented and contributed several new types of joint constraints in the ODE

code base. These can be used to simulate systems that were previously unavailable.

We have also identified and fixed certain bugs in the ODE codebase and made other

contributions designed to improve the stability of the solver in various conditions that

arise when simulating humanoid characters.

Along the way, we have seen additional potential contributions to ODE that

deserve attention in the future. Partial implementation of constraints with additional

piecewise linear segments has been submitted to the ODE codebase. Full implemen-

tation of secondary-target constraints remains an outstanding project that can allow

underconstrained joints to “help” overconstrained joints achieve target accelerations.

These new joints can potentially make it possible to make an underconstrained hu-

manoid model remain upright and stable without using non-realistic forces. Other
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future contributions to the ODE codebase may include methods for handling dis-

parate mass ratios between constrained bodies. In current simulation software, rigid

bodies, held together by constraints, must have relatively similar masses or else the

constraint matrix becomes ill-conditioned and unstable. The interpretation of the

equations of motion presented here suggests that it might be possible to condition

the constraint matrix by using different “scaled units” to represent the positions and

velocities of bodies of different mass.

The field of numerical simulation has been fascinating to study, and we intend

to continue working to develop this tool. Forward dynamics simulation software

already can perform many impressive feats. The insights derived from our analysis

of ODE and minor improvements made to the code allow us to accomplish several

important tasks presented in the next two chapters. Principally, combining the known

fact that ODE constraints are equivalent to implict springs with the fact that damped

springs are equivalent to PD controllers allows us to deliberately use ODE’s constraint

solver as a controller instead of just for forward dynamics. Because the springs are

implicit and all the constraints are solved simultaneously, the solver makes a very

stable controller, even with stiff gains.
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Chapter 5

Simulation-based Movement Analysis

Understanding the mathematics underlying physical simulation allows us to

take advantage of its strengths. In particular, recognizing that constraints behave

like implicit springs is extremely useful. The parameters that soften constraints into

springs stabilize simulation, pushing a constrained system away from singularity and

reducing constraint error. This chapter shows how the same mechanism can be useful

for analyzing movement data. Using the constraint solver as a controller makes it

extremely easy to integrate inverse kinematics and inverse dynamics analysis into

real-time applications such as games or behavioral experiments that already need

physics computations for forward simulation. The solution is robust, fast, free, and

allows you to work with a single character model rather than needing to use a specific

model provided by a commercial package.

Movement data, as captured during an experiment in virtual reality (Chap-

ter 3) or a standard motion capture session, requires further analysis transforming

it from trajectories of points through space to descriptions of character kinematics

and dynamics to be useful. The initial output of marker-based motion capture is the

position of the markers over time. These points are the locations of optical markers

attached to clothing or skin. We can figure out the human’s pose, the relative position
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and orientation of his or her body parts in space, by fitting a model to the marker

data.

We begin by combining the physics engine with a gradient-based learning

approach to find where captured markers sit on the different body parts of a character

as well as where body parts attach to each other. With this information we can find

the model pose (or joint angles) over time by constraining a physically simulated

model to satisfy marker constraints, joint constraints, and other relevant constraints

such as non-penetration with the ground. Provided with a sequence of poses, it is

straightforward to then constrain the model to transition through the pose sequence

using internal joint torques. This process is known as “inverse dynamics”.

Scientific literature covers these cases separately with different algorithms to

handle each. In our approach, all of these tasks are accomplished using the simulation

engine. Our method has several advantages. First it can be easily implemented

in a single robust framework of the physics engine. Using the physics engine for

multiple tasks allows a single character model to be used from start to finish, rather

than being forced to use the model built in to a commercial package. Second, the

method is fast. The simulation engine is designed for performance, making it possible

to analyze movement in real-time and create interactive experiments with stimuli

dependent on the feedback results. Third, the software is free. Freely accessible

code, such as ODE, is useful because it facilitates comparison and collaboration in

research. Fourth, the method easily deals with multiple ground contacts and noisy

data that can be challenging to related approaches. Kinematic loops do not require

any special treatment. The method is robust even to large perturbations making data
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dynamically inconsistent. Finally, the tunable parameters, couched in the physics

framework, are intuitive. It is more straightforward to specify the importance of a

constraint in terms of force and mass rather than arbitrary gains and weightings. We

illustrate these advantages by using ODE analyze and reproduce movement recorded

from optical motion capture.

We have produced an example implementation using the physics engine as a

multi-purpose tool for analyzing movement data captured through interaction with

the virtual environment (Figure 5.1). Using this tool, it is possible to interactively fit

a model to marker data, scrub through data, dynamically adjust parameters to test

different effects, and visualize the results of kinematic and dynamic analysis.

5.1 Model Construction

Our techniques use a simulated model of the human whose movement is ana-

lyzed. The first order of business is to build a physical model capable of representing

human movements. The accuracy of the model influences the outcome of the analysis.

The humanoid model is a collection of rigid bodies connected by joint constraints.

We present here a method for using marker data to help determine the dimensions of

the model segments and where markers attach to the model.

The technique for fitting a model to data begins with a character model that

serves as a template, Fig. 5.2, providing the number of body segments and topology

of the model. We further require that labeled markers be assigned to specific model

segments. It may be straightforward to derive these using a technique such as in

[26, 58]. However, it is also not difficult to do by hand. It would become tedious if
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Figure 5.1: Our analysis tools use the physics engine to compute inverse kinematics
and inverse dynamics. They also support various visualizations of relevant data and
control for analyzing and producing physically-based movements.
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Figure 5.2: Starting template for fitting a model to marker data. This template
describes which joint segments attach to others and also specifies some limits on
angular degrees of freedom.
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one had to go through the process for many different models. Fortunately, the motion

capture suit typically puts the markers on the same body segments, even if they are

in slightly different places and the body segments have different dimensions.

The model consists of nb rigid bodies connected by nj joints. In this case, each

joint consists of three to five constraints. Each joint connects two rigid bodies with

anchor points (center of rotation) defined in the reference frame of both bodies. The

joint constraints keep the anchor points relative to the two bodies together in the

global frame. If bodies bj and bk are connected, a joint constrains them together at

a common point. The joint anchor relative to body bj is c̃jk. The anchor for body bk

is c̃kj. The joint constraint drives these points together in the global frame, creating

three constraint rows:

φjk = Rj c̃jk + xj −Rkc̃kj + xk

The locations of these anchor points determine the segment dimensions (bone lengths)

of the character model.

Markers, each assigned to a specific rigid segment, represent a point on the

human’s body. We seek anchor points that allow markers to remain approximately

stationary relative to their assigned body segment. It is generally impossible to

find such a configuration exactly (without creating an unreasonable number of body

segments) because of soft-tissue artifacts (STAs). Skin and joints are not actually

rigid. They stretch and give as muscles pull the bones. Modeling the body in maximal

coordinates provides a way to model STAs explicitly.

Given a pre-defined model topology and markers assigned to specific model
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segments, we seek to find the joint anchor points between segments and the marker

attachment points relative to the model segments. If the ith marker is assigned to the

jth rigid body (pi → bj) at relative point s̃ij, we model the marker’s attachment as a

three dof constraint:

φij = pi −Rj s̃ij − xj

The process models markers from an arbitrary point in time as infinite point masses.

As bodies of infinite mass, constraint forces do not affect the markers’ trajectories but

only the bodies they are anchored to. Initially, markers are anchored at s̃ij =

0
0
0

.

This mapping attaches the marker to body bj’s center of mass.

Clearly, this mapping is a very rough estimate of the marker attachment points

on the model segments, but it is sufficient because of the flexible nature of constraints

in the simulation software. Setting the CFM parameter of the marker constraints to

β = 10−3 and setting the model joint constraint CFM to β = 10−5 makes the body

segments hold together tightly, while still allowing the markers to pull the body into

shape. Several timesteps of simulation allow the model to relax to a fixed pose.

We then take the markers in their current configuration and reattach them to their

respective segments. Relaxing the marker attachments this way greatly improves

the fit for this particular frame of marker data. Iteratively repeating this process

with multiple frames of marker data, we therafter update the marker attachment

points by some learning rate, ηm: s̃′ij = (1 − ηm)s̃ij + ηmR
T
j (pi − xj). Gradually

updating attachment points, using different frames of data, effectively descends the
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error gradient of the marker positions relative to the body:

min
s̃

T∑
t=1

nm∑
i=1

‖pi −Rj s̃ij − xj‖

The decrease in marker error affected by model dimension error. Conveniently,

joint anchor constraints behave the same as the marker attachment constraints. With

an arbitrary frame of marker data and using a marker CFM of β = 10−4, if the

markers constraints cannot be satisfied, they will pull the joint anchors apart slightly.

For each joint we find a new common anchor point in the global frame by taking the

average between the two unsatisfied anchor points that the joint constraint is trying

to pull together. We then move the anchor points toward that point according to

learning rate ηl:

c̃′jk = (1− ηl)c̃jk + ηlR
T
j (Rkc̃kj + xk − xj)

For any one frame, errors will cause the markers to stretch from their at-

tachment points and joint anchor points to stretch apart from each other. Both the

marker attachment points and the joint anchors can be updated simultaneously to

decrease the error for that frame. However, the local solution that perfectly satisfies

one frame, may make another frame worse. This presents an obvious gradient descent

approach to finding the joint anchors and marker attachments: using several frames,

compute an average adjustment to the marker attachments and joint anchors that

reduces the error. Make the adjustment to both anchors and attachments and then

iterate. It may be advisable to employ the standard machine learning practice of a

validation set to ensure that the error continues decrease and avoid over fitting. This
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technique relies on spring-like constraints made possible in maximal coordinates as

provided by the derivation in Chapter 4.

Although this method could easily be automated, that is left for future work.

In practice, the research did not rely on very many different models and so we added a

mechanism for relaxing the marker attachment points and joint anchors with the click

of a button in the graphical user interface (Fig. 5.1). With a new data set, a handful

of iterations proved sufficient to produce a reasonable model with marker attachments

that fit the data well-enough to be used for further analysis. This algorithm does not

address joint limits on range of motion. These can also be learned[109], but in our

case, the range of motion for each joint is set a priori. After determining segment

lengths, we set other segment dimensions as appropriate to fit against the markers.

Mass properties for each segment assume uniform density by volume.

For the data presented here, the model is fit to the subject’s dimensions and

joint-range-of-motion is constrained to approximate the subject’s flexibility. Although

the task of finding body pose is normally considered a purely kinematic pursuit, the

model segments have mass properties that influence the outcome in our approach. We

assign mass to each segment by assuming a uniform density of water (1000 kg
m3 ) for the

volume associated with each rigid body. In our data, this constant density assumption

produces a model with a total mass of approximately 80kg, roughly matching that

of the subject. For increased fidelity, as required for clinical biomechanics research,

we would employ more sophisticated techniques for a better approximation of mass

distribution in the model. Interestingly, however, even this low fidelity model is

sufficient to produce high-quality data that compares favorably with data gathered
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Figure 5.3: Our humanoid model has 48 internal degrees of freedom. All joints are
constrained to stay within semi-plausible joint limits and use limited torque. We
adjust limb dimensions and articulation points to fit marker data.
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from other sensors.

Our model consists of 21 separate rigid bodies connected by 20 joints (Fig. 5.3).

The unconstrained bodies have 6 × 21 = 126 total degrees of freedom. The joint

anchors, constraining pairs of bodies to share a common center of rotation, remove

3 × 20 = 60 degrees of freedom. It is important to remember, however, that we do

not treat joint connections as holonomic (perfectly rigid) constraints, but rather as

very stiff springs that hold body parts together like tendons and muscles. We further

constrain the relative orientation of some bodies by using universal joints for the

elbows, wrists, knees, and ankles and hinge joints to connect the toes to the heels.

Universal joints restrict one angular degree of freedom; e.g., when the arm is bent

at the elbow, the forearm cannot rotate around the principal axis of the upper arm

unless the upper arm itself rotates. However, the forearm can rotate at the elbow

around its own principal axis (modeling the twisting movement of the radius and ulnar

bones). These constraints on relative orientation remove an additional 12 degrees of

freedom. All other joints are left as ball-and-socket joints with three angular degrees

of freedom: hips, shoulders, collar-bones, upper-neck, lower-neck, upper spine, and

lower spine. This arrangement of joints leaves a total of 48 unconstrained internal

degrees of freedom and 6 external degrees of freedom. We add stiffness constraints to

all of these so that the body is not floppy.

5.2 Pose Fitting

Although various commercial packages provide different methods for convert-

ing marker trajectories into sequences of character poses, they come with various
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Figure 5.4: Markers pull a simulated character model into place.

inconveniences. They can be time-consuming, expensive, or confusing to use, may

require a specific character model, or produce unintuitive results. We present an ap-

proach related to [30] and [125] that is free, fast, uses intuitive parameters, and allows

the user to fit markers to whatever model they wish.

Our method uses the physics engine to constrain a character model to fit

marker data and other constraints. As above, we model markers as infinitely massed

points attached to the character model. We also program each joint to pursue a “tar-

get” orientation by creating a joint constraint with weak, limited torque. Balancing

internal joint targets and external marker data can be seen as a type of “Bayesian”

approach where markers serve as evidence for what the current pose should be while

internal joint stiffnesses bias the model toward a “prior” pose. The purpose is to

find the position and orientation of all body segments, given a frame of marker data.
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From the global position and orientation of the different body segments, it becomes

a simple matter to compute relative orientations (joint angles).

The internal degrees of freedom are limited by range of motion constraints.

The elbows and knees cannot bend backwards. All other joints have similar range-

of-motion limitations based on the subject’s flexibility. Furthermore, we assume that

each joint has a “target state”, a preferred relative orientation between its connected

bodies. These preferences can be thought of as “muscle stiffnesses” and are modeled

as weak constraints with limited force. Joint limits and stiffnesses serve as a prior

over possible poses so that in the absence of any marker data at all, the model still

takes on a pose. Consequently, every internal degree of freedom is constrained to

some degree. The joints in the model shown in Fig. 5.2 result in 120 constraints on

the full system.

These constraints hold the model together and give it a default pose. Marker

data pull the model from the default pose into a new pose (Fig. 5.4). Each marker

is associated with a body segment and has an associated attachment point. For a

given frame of marker data, we model each marker as an infinite mass at point pi.

We then connect the attachment point, s̃ij of each body marker to its associated

body segment with a ball-and-socket joint constraint. A total of 36 markers, which

do not contribute any degrees of freedom because of their infinite mass, attach to the

character model, adding an additional 3× 36 = 108 constraint dimensions.

Finally, collisions between the ground and the feet also influence the model

pose. Each foot can form up to three contact points with the ground. Inequality

constraints at these points prevent penetration with the ground. When both feet
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are firmly on the ground, all markers are actively pulling the body into a pose, all

joints are holding the body together, and joint limits and stiffnesses are biasing the

relative orientation of the bodies, there are 234 active constraints in our model, even

though there are only enough rigid bodies for 126 degrees of freedom. Conventional

wisdom states that having twice as many constraints as degrees of freedom is a bad

idea. However, our experiments show that the overconstrained system is easily han-

dled in real-time with 60 fps data. The majority of the system is sparse and solved

very quickly with a Cholesky decomposition, leaving only a few iterations and pivots

necessary to solve the inequality portions of the system (see Chapter 4). The key is

that the system is designed to be fast and robust.

This approach is simple intuitive: attach markers to the model with springs

and then drag the body along. Compared to solutions minimizing squared marker

error this solution can be more robust. Squared error makes noisy markers are a

big problem. A blip in the motion capture that causes a marker location to jump

results in a big squared error, kinking the skeleton. A spring, on the other hand

increases its pull linearly with distance. All of the other springs pulling on the body,

along with the body’s own inertia, tend to neutralize a single noisy point. Other pose

estimation approaches require an abundance of markers to fully specify the position

and orientation of each body segment. The ability to bias the skeleton solution with

a stiffness prior allows far fewer markers. A disadvantage of this approach is a slight

decrease in overall accuracy caused by the springs lagging behind the markers. This

problem can be reduced by allowing multiple iterations for convergence. However,

our goal was real-time processing sufficient for use in virtual reality experiments and
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other interactive applications. A single pass provided sufficiently accurate analysis

in our tests to be used for interactively animating an avatar or computing pose to

satisfy end-effector constraints.

Figure 5.5: Simulated markers attach to the humanoid model through ball-and-socket
joints and pull the body parts into place, subject to model joint constraints.

When the markers move, the constraints drag the character along with them

(Figure 5.5). The CFM term allows a constraint to slip proportional to the amount

of force that would be required to maintain the constraint. For the regular internal

body joints and contact constraints, we use a CFM value of 1×10−5 while for the

constraints between markers and body parts we use 1×10−4. Both of these values

represent very stiff springs although they are different by an order of magnitude. This

stiffness stabilizes the simulation by allowing the markers to stretch slightly from their

mapped locations in the event that the marker constraints are not compatible with

the character model.

In tests, we found that for many movements, with suitable internal stiffness,

it is only necessary to control location of the head, hands, and feet. Figure 5.6 shows
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(a) Body configuration using all
marker constraints. Note the
similarity to the sparsely con-
strained pose.

(b) Body configuration using
constraints on only the head,
hands, and feet.

Figure 5.6: In many cases, the pose found using a full set of marker constraints is
quite close to that found by a sparse set of constraints. These two images show almost
no differences between using a full or a sparse set of marker constraints.
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a qualitative comparison between a pose found using the whole marker set and one

found using only head, hands, and feet. We set all joints to attempt to use a small

torque to move toward a default pose (arms and legs straight down). Joint limits on

the knees and elbows and general joint stiffness naturally bias the physics engine to

find a pose that is very close to the fully constrained pose. Body inertia and joint

stiffness naturally clean up minor noise and occlusions in the captured marker data.

We can use the resulting joint angles to then solve the inverse dynamics.

5.3 Inverse Dynamics

It can be useful to know how much effort is required to accomplish a particular

movement. Robot control may rely on knowing torques to apply at each joint. In

clinical or experimental settings, a measure of effort exerted during a particular action

can be useful for medical reasons. Given a kinematic sequence of body poses, the

physics engine once again accomplishes our desired purposes with minimal effort.

The engine must compute constraint forces as a matter of course. We simply need to

frame the constraints correctly to compute the desired measurements.

This process is straightforward. Given the current joint angle and the desired

joint angle for the next frame, we constrain the relative angular velocity of the body

parts as necessary to achieve the target orientation on the next frame. Contact

constraints are again necessary to prevent ground surface penetration. The ODE

physics library handles the constraints by solving Eq. 4.12. The torques and forces,

λ, used to satisfy each constraint are solved in the process and made available by the

software library.
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When computing inverse dynamics, we initialize the character model an start-

ing dynamic state. The initial state can be found from two consecutive frames of

kinematic pose data. We set the model pose using the second frame of data, and set

the linear and angular velocity of each body by taking the finite difference between

the two frames (and dividing by the timestep). Computing velocity through finite

differences is appropriate for a physics engine using first-order semi-implicit Euler

integration.

We find the torques between the second and third frames of pose data by once

again using the finite difference between poses to compute angular velocities that

will move the model from the second to third pose. Differentiating again, this time

between the current and future velocity gives a target acceleration that becomes a

constraint on the model. The primary difference between this step and the previously

discussed method for finding pose from marker data is that there are no marker

constraints dragging the body into place and the internal muscle stiffness drives the

model toward a target pose on each frame instead of toward a ‘default’ pose. Because

there are fewer constraints in play, we can use stiffer muscles (β = 10−8) but limit the

absolute forces the muscles can apply. Force limits prevent muscle forces from being

unreasonably large.

Again, in this case, we can use the relative spring stiffnesses to express our

confidence in our measurements. We use very stiff springs (β = 10−10) to keep the

model segments together. We use looser constraints to keep the feet from penetrating

the ground (β = 10−5) and to constrain the model to adopt the appropriate pose

(β = 10−8).
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Figure 5.7: A jump sequence reproduced with physics-engine-based inverse dynam-
ics. The jump height is achieved completely from ground forces, with small residual
torques (≤ 100Nm) keeping the model from tipping over.

Discrepancies between the model and human that created the data necessitate

non-realistic “residual” forces to keep the model from falling over when dynamically

reproducing most movements. A 6 dof joint between the waist segment and the

global frame generate the external forces. A weak, limited spring constrains the

waist segment to achieve its recorded pose relative to the global frame. We also

experimented with attaching the external constraint to the head segment or the feet

with little noticeable difference. The non-realistic external forces (residuals) account

for noise as well as discrepancies between the model and the human generating the

data. In particular, differences in how the feet interact with the ground cause errors

in our analysis. We found that, in most cases, it is only necessary to constrain two

angular degrees of freedom (pitch and roll), leaving the other four external degrees

of freedom un-powered. The two angular constraints keep the body from falling over

but allow it to move about through simulated ground interactions. The simulation

can reproduce highly dynamic motions (Figure 5.7).

If the joint springs use anything less than infinite stiffness, the joint forces

will not be sufficient to exactly duplicate the input kinematic pose sequence. Al-

though, without the marker constraints, the simulated model is somewhat less-likely
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to be singular, it is still generally necessary to allow the constraints some slippage

for stability. Although this slippage might make our method slightly less accurate

than optimization-based methods, it has several advantages. The principal features

of this method are that it is very fast, it is free, and it easily handles ground contact

constraints, even under bipedal stance (closed kinematic loops).

5.4 Experimental Results

Several experiments provide qualitative and quantitative validation of the

physics-based movement analysis techniques described here. These experiments ei-

ther use synthesized motion data as ground truth measurements or extra sensors for

validating results.

5.4.1 Synthesized treadmill walking

Inverse dynamics computations rely on first finding the model’s pose. We

tested both steps by studying eight steps of marker data captured from treadmill

walking. For this computation we used data sampled at 60 hz. The movement lasts

a little longer than 4 seconds, giving us 260 frames of data. The aim of this study

was to assess the effect of sensor noise on the results and compare the joint angles

and torques found with our method to those used to generate marker data. We used

an experimental process similar to that employed in [88].

We used a preliminary pass through the data to generate synthesized “ground

truth” marker, pose, and torque data. After using the physics-based inverse kine-

matics to compute joint angles, we constrained the body to use forward dynamics
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(a) Marker noise stdev = 0.1mm (b) Marker noise stdev = 8mm

(c) Marker noise stdev = 64mm

Figure 5.8: Poses generated by forward dynamics using forces obtained from inverse
dynamics based on Gaussian perturbed walking data. Although at very high levels
of noise, the model follows the reference motion poorly, the movement still looks,
qualitatively, like walking.
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to reproduce the joint angles with internal torques (and residual forces at the waist

segment). As the model performed the movement, we recorded the global position

of the marker attachment points. We also recorded the forces used and the resulting

joint angles. Thus we had synthetic “ground truth” data directly from the model.

Using the synthetic marker data, we then analyzed the process described in

this dissertation by perturbing all marker positions at each frame in time along all

three axes with mean-centered Gaussian noise of a controlled standard deviation.

Applying physics-based pose-fitting followed by inverse dynamics produced a new set

of virtual marker positions, joint angles, and torques. We repeated the process twenty

times for each noise-level at nine different standard-deviations. Standard-deviations,

in mm, were (0.1, 0.5, 1, 2, 4, 8, 16, 32, 64). Example poses from the 0.1mm, 8mm,

and 64mm noise levels are shown in Fig. 5.8.

Gaussian perturbations render the marker data dynamically inconsistent. This

dynamic inconsistency also pushes a constrained system toward singularity, making

it more difficult to solve numerically. We tested with very high levels of noise to see

if they would slow the system down, or prevent it from finding any solution at all. In

all cases, the system analyzed the perturbed data in real-time, finding pose data and

dynamics data to fit the marker data.

After running through an inverse kinematics pass, an inverse dynamics pass,

and a forward dynamics pass for each trial run, we compared the marker attachment

points, joint angles, and joint torques from the forward dynamics pass to the syn-

thetic ground truth data. Figure 5.9 shows the mean error for across all degrees of

freedom and frames of time for each quantity measured. Although the perturbations
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(c) Torque error

Figure 5.9: Error of marker attachment points, joint angles, and internal torques
resulting from physics-based inverse kinematics and inverse dynamics used to analyze
perturbed marker data. Error bars show standard error of the mean.
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(a) Selected joint angles (b) Selected joint torques

Figure 5.10: Trajectories of selected degrees of freedom from the perturbation study.
Solid lines show ground truth. Dashed lines show computed data. Simulated spring
forces make the computed data lag behind and smooth the ground truth.

make the marker data dynamically inconsistent, our results show that small amounts

of noise have very little effect on the computed measurements. There is a systematic

error in both the marker positions and joint angles caused by the fact that the con-

straints behave like springs. The spring-like behavior causes the marker positions and

joint angles to lag behind their targets by a small amount and dampens the overall

movement. This lag and damping are apparent in Fig. 5.10 comparing individual

trajectories for selected dimensions of the joint angles and torques.

As shown in Fig. 5.10, the data follow ground truth very well under low noise

conditions. It worth noting here that, for forward dynamics to work, we had to be

very careful to exactly recreate the initial conditions from which the inverse dynamics

were computed. Even the smallest amount of floating point variation would result in

chaotic destabilization after half-a-second or less of forward dynamics. The inverted
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pendulum nature of a humanoid character is inherently unstable. Small errors in

body pose mean that the measured forces become increasingly wrong for the current

conditions, pushing the body into strange places. This chaos comes as no surprise

because it is well-known that completely open-loop control is very unstable.

5.4.2 Weighted and unweighted reaching with EMG

Physics-based inverse dynamics computes net-torque at the joint anchor. This

computation cannot measure muscle co-contraction of opposing muscle pairs which

gives stability to a movement under external perturbation. Using electromyogram

sensors incorporated into the virtual reality environment (Chap. 3) to measure trapez-

ius muscle activation, we compared physics-based torque measurements to integrated

muscle activity. We placed EMG electrodes on the shoulder (trapezius) muscles to

simultaneously measure muscle activity and motion capture during a reaching exper-

iment. A subject reached to high and low virtual targets over multiple trials. The

experiment measured the responses to both unweighted and weighted conditions. In

the latter the subject had a four kilogram weight attached to the wrist of the reaching

arm. The high correlation (r=0.88) suggests that the computed torques are directly

related to actual muscle activations (Fig. 5.11).

5.4.3 Ground force comparison from standing data

Discrepancies between the model and reality make it so that the dynamic

model falls over unless action is taken to stabilize it. Adjustments to internal joint

torques can be used to stabilize the body, but cause the body pose to deviate from its
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Figure 5.11: Subject reached forward to a 1.5m height or 2m height under unburdened
conditions or wearing 4kg weight.

Figure 5.12: Using balance boards to measure ground forces, a subject transitions
from balancing on one leg to balancing on the other.
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Figure 5.13: Ground reaction forces measured by Wii balance boards closely match
those found by our inverse dynamics computations, even during bipedal stance. Resid-
ual torques, affecting only two rotational degrees of freedom (pitch and roll) are lim-
ited to 30 N m of torque, but are sufficient to maintain balance.
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intended pose. In this work, we simply used non-realistic external forces. We attached

a joint to the model’s waist that would constrain it to reproduce the global orientations

found during the pose-fitting pass. To minimize the effect of these external forces, we

used torque limits on the amount of stabilizing torque available.

To test how much residual force torque is necessary relative to the internal

joint torques, we obtained movement data together with ground force data from a

pair of balance boards. For a simple movement such as transitioning from standing on

one foot to the other (Fig. 5.12), residual angular torques of 30Nm were sufficient to

keep the dynamic model quite close to its target trajectory. Figure 5.13 compares the

sensor-measured ground forces for the right and left feet (red and green lines) to the

computed ground forces found through physics-based inverse dynamics (blue and pink

lines). Even during bipedal stance, the forces come surprisingly close. The largest

discrepancies come during transition from one foot to the other. These discrepancies

can be blamed largely on poor collision detection resulting from an abstract model of

the foot.

5.5 Summary

With these tools provided by robust physics simulation, we can easily pro-

duce sequences of movement with accompanying torques and forces associated with

a given set of conditions. Trajectory sequences, stored in a database, can be interac-

tively modified and replayed from any point in time under different torque and body

conditions. Although our method for computing inverse dynamics requires residual

forces, a few changes to the physics code would allow us to account for these residual
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forces with internal degrees of freedom as described in Chapter 4.

It should be possible to extend this method to use approximations of actual

muscles instead of raw joint torques. Muscles and tendons are springy. A natural

extension of this analysis work is to create constraints modeling individual muscles

or muscle pairs attached at appropriate insertion points on the model’s “bones”. An

important future step in movement analysis is to find relationships between human

movements and the tasks they are executing. We suspect that movement trajectories

found through our method can be sparsely fit with a dictionary of basis functions and

that these dictionaries can be tuned for general-purpose motor control. Using the

virtual environments and analysis techniques developed in this dissertation, future

research will be able to explore these ideas and many more.
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Chapter 6

Simulation-based Movement Synthesis

General purpose dynamic control of humanoid characters to achieve long term

goals is complicated and beyond the scope of this work. We are able to synthesize

some interesting movements on a frame-by-frame basis and adapt recorded movements

to achieve new purposes using real-time, simulation-based techniques similar to those

used for analysis in Chapter 5. This research uses constrained forward dynamics to

solve inverse kinematics and manipulate the model end-effectors. Unlike computing

the Jacobian in generalized coordinates, a physics-based approach makes it simple to

apply multiple constraints to a model. It is also easy to apply partial constraints.

For example, one might constrain an end effector to achieve a given height above

the ground without constraining side-to-side movement at all. The general method

presented in Chapter 5. This chapter discusses different ways we use the method

create new movements.

Adapting a movement to meet a positional constraint can be as simple as

creating a synthetic “marker” that then drags the model into place. It is also a

simple matter to adapt data computed through movement analysis using one model

to make a second model move. A limiting factor in using physical simulation as a

tool for synthesizing movement is that it works best as a per-frame technique. We
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must be able to specify a proper behavior for each computed moment of time. Even

so, the physics engine can be a powerful tool for synthesizing movement.

6.1 Inverse Kinematics

In animation literature, inverse kinematics typically involves adapting a model

pose so that an end effector satisfies some constraint. Just as when fitting a model to

motion capture data, we attach a marker pi with a ball-and-socket joint to some point

on a corresponding body bj. In this work, we assigned the point by hand and defined

a trajectory for it to follow. To the physics engine, since pi is kinematic, the joint

essentially defines a constraint on bi, stating that the point the marker is attached to

must match the marker’s velocity over time.

Figure 6.1: A simple, five-segment arm with eight degrees of freedom modeled using
the Open Dynamics Engine physics simulation library (ODE).

We illustrate the physics-based method for synthesizing movement for an ar-

ticulated body using a simplified arm model. Using a five-segment arm with four

108



universal joints (8 degrees of freedom, see Fig. 6.1), we first rigidly attach one end of

the arm to the environment. We connect the other end of the model (the end-effector)

to a “control marker” using a ball-and-socket joint. The control marker kinematically

follows a cubic spline trajectory from its initial state to a target position and velocity,

dragging the arm along behind it. The physics engine finds joint angles that satisfy

the system of constraints as described in Chapter 4.

Figure 6.2: The control marker follows a cubic-spline trajectory lasting one second
from its initial position and velocity to its target position and velocity, bringing the
arm along with it. Time increases from left to right.

The spline path describes a trajectory lasting one second from start to finish.

After the control marker reaches the target state, the arm joints return the arm near

to its starting state. Time restarts and the arm reproduces its original trajectory

using constraints on the internal joint angles. Finally, the arm returns to the start

state and replays the torques computed during the second pass. During each pass we

recorded the joint angles and end-point position for the arm (Fig. 6.3).

The joint angles and end-point position very closely matched the original tra-

jectory. Figure 6.3 shows that the replayed torque sequence also closely tracks the

original values. This method is prone to break down if the spline trajectory forces

the joint angles against their limits or beyond the reach of the articulated charac-
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ter. Higher-level planning, a subject for future work, is necessary to reach around

singularities. This fact highlights an advantage of using human data to synthesize

movement. The human solves these harder problems. Using our method, adding

additional constraints to movements described by human behavior data is relatively

painless.

The simulation finds a body pose that does a good job satisfying the marker

constraints. Once we have that body pose, we can use it as a new resting pose and

modify the movement using the same technique. If we want the hand to reach a little

farther, we can constrain it to do so and the physics engine finds a solution. It is

important, however, to balance the springs. Working with a full humanoid model, if

we try to move the hand but the arm joints are too stiff, we might end up dragging the

entire body instead of just extending our reach. The nice thing is that this method

provides an intuitive way to control the result that you will get. Weakening the springs

or modifying the setpoints controlling the arms biases the movement to selected joints.

It is also simple to add additional constraints to keep the waist in place or the feet

planted. An underactuated model will require additional constraints or planning to

ensure that the movements generated through physics-based inverse kinematics satisfy

balance constraints and other criteria necessary to keep the model from falling over.

The usefulness of this approach is that it works quickly and integrates seamlessly into

systems already using ODE for forward dynamics. Adding an arbitrary number of

constraints to a character model makes it possible for an animator or robot operator

to achieve desired outcomes to make an animation look good or to find a model pose

sequence that places an end-effector where it is needed.
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Figure 6.3: (a) Endpoint trajectory and (b) joint angles of the arm are almost iden-
tical through the duration of the movement for all three control cases: kinematic,
built-in joint motors, and replayed torques. (c) The joint torques used to drive the
disembodied arm along the spline trajectory show a discontinuity that occurs around
the point where the shoulder passes near its joint limit when the shoulder rolls back
slightly during the reaching movement.
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Figure 6.4: The endpoint of a four-joint arm (8 degrees of freedom) with slightly stiff
joints is forced to follow a spline trajectory. The physics engine performs the inverse
kinematics without any additional programming effort.

6.2 Retargeting

The method works well, in real-time, even when the simulated model dimen-

sions and mass are changed drastically, allowing us to quickly retarget the markers

to another body model. Simply changing the model without any other changes will

not do great retargeting, of course. Unfortunately, there cannot exist a perfect way

to automatically accomplish high-quality, general-purpose retargeting without a firm

understanding of the purpose of the movement. If the movement is clapping hands,

you need to constrain the hands to meet at the right time. If the movement is loco-

motion, you need to constrain the limbs to produce the appropriate ground forces at

the right times and you need to decide if a larger body should walk faster because

of its longer legs or if it should use a short stride to match the original movement.

These decisions cannot, in general, be made automatically because there are situa-

tions where an animator might want either. It falls on the animator or operator to

determine which constraints, internal joint angle control or exocentric target-based

control, are most appropriate to satisfy higher-level constraints such as traversing a

sequence of stepping stones. Interesting work toward capturing what constitutes an
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“action” is available in [52]. Future work on retargeting can build on this work to

represent “actions” as constraints on the global and relative positions and orienta-

tions of body segments and then take advantage of our physics-based approach to

synthesize new movements directly with the physics engine.

6.3 Abstract Models

To synthesize dynamic movements with the physics engine we employ abstract

models that describe movement trajectories for key model elements. One strategy

for controlling a humanoid agent is to first develop a control strategy for a low-

dimensional system and map the controls onto a higher dimensional system. The

spring-loaded inverted pendulum is one such model for locomotion [74, 85].

Figure 6.5: Raibert’s 2d hopper[85], essentially a massive cross-piece hinged on a
piston-driven spring. The machine is rigidly tethered to a center pole to constrain its
movement to two dimensions.
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The purpose of an abstract model is to provide a low dimensional control space

that admits an effective control strategy. Given a control strategy for driving a simple

physical model, the physics engine can be employed to project that strategy onto a

more complex model. For example, we reproduced Raibert’s 2d hopping model[85]

(see Figure 6.5). This design is based on a spring-loaded inverted pendulum. The

controller functions according to two discrete states: while the foot is on the ground,

it attempts to stabilize the “torso” segment and control angular momentum. While

the hopper is in the air, it attempts to place the foot (based on forward velocity) so

that the center of mass spends an equal amount of time on either side of the foot-

plant. This model assumes that the mass of the leg is trivial in comparison to the

body. Although the assumption is not quite true, the feedback loops controlling the

system are sufficiently forgiving that it still works very well. The system is simple,

well-described in Raibert’s book[85], and easy to reproduce (Figure 6.6). This basic

model can serve as an abstraction for where to place feet while walking or jumping

to maintain stability.

Mapping the hopper’s controller onto a humanoid is simple using our physics-

based technique. The hopper’s center of mass and orientation provide a constraint on

the model’s upper body. The hopper’s foot serves as a constraint on the humanoid’s

feet. The physics engine then solves, first the kinematics for a hopping humanoid and

then the dynamics (Fig. 6.6). The physics engine software makes this approach easy

to implement.

The hopper abstraction cannot stop hopping or it will fall over. It requires a

ballistic phase in order to place the foot and correct gradual tipping that invariably oc-
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Figure 6.6: Top: Our reproduction of Raibert’s 2d hopper. Bottom: The hopper
model can be an abstract dynamic model for a hopping human.
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Figure 6.7: Top: Three plots showing the effect of stiffness and foot size on stability
of an inverted pendulum with a foot. A larger base and a stiffer ankle resist tipping.
Bottom: Abstraction with foot: Loose ankle, Big foot, Stiff ankle.
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curs. Although the hopper is never instantaneously stable, the sequence of foot-plants

it produces creates an abstract base with the center of mass stably centered when

observed at the right temporal scope. We added a simulated foot to the hopper model

and experimented with the effect of ankle size and stiffness on stability (Figure 6.7).

This experiment showed that it is necessary to keep the ankle moderately stiff while

on the ground to avoid falling over. When the system is perturbed in any direction,

the center of pressure naturally shifts in the same direction to counteract the force

and restore stability. Higher level control abstractions can rely on this phenomenon

and begin hopping when perturbations exceed the lower level’s tolerance. Building

up from this abstract model is interesting future work. Using the current system,

human data can provide necessary trajectories to synthesize interesting movements

such as tele-operating a synthesized robot.

The processes of fitting the model pose to marker data and solving the inverse

dynamics with internal forces both run in real-time. Using this process we were able

to create an interface that allowed a human subject to control a simulated humanoid

robot (Figure 6.8). Tele-operating the simulated robot employed two humanoid mod-

els. One model was dragged along by marker data, producing a kinematic pose. The

second model, was constrained to use internal forces to copy the pose of the kinematic

model without any residual forces. In approximately a minute, without any previous

experience, the human was able to control the dynamic model to stand up straight

and balance. Although the “operator” was the creator of the programming mapping

the motion capture markers to kinematic and dynamic models, no particular insight

was necessary to control the dynamic agent. Programming this behavior by hand
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(a) A human subject monitors a kine-
matic model and a dynamic model follow-
ing his movements in real-time.

(b) The kinematic model (right) is con-
strained to duplicate the human pose in
space. The dynamic model (left) uses
forces to reproduce the kinematic pose,
but is free to fall over.

Figure 6.8: Our technique for finding the model pose and computing inverse kine-
matics runs in real-time. Here, a human subject wearing the motion capture suit is
able, after one practice trial, to move his body so that the dynamic model (without
any external forces) goes from lying to stable standing.

would be challenging because of the many degrees of freedom and the inherent insta-

bility of the inverted-pendulum. Working from a human model and taking advantage

of human feedback made it relatively simple.

6.4 Summary

We have described how our physics-based technique makes it possible to syn-

thesize some novel movements. The synthesized movements are largely kinematic,

rather than dynamic, but they are still effective and can be part of a dynamic simu-

lated environment, interacting with other simulated objects for games or other pur-

poses.

Combing these techniques with learning approaches to create intelligent con-
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Figure 6.9: A virtual racquetball opponent could learn appropriate motor behaviors
interactively from a human playing in virtual reality.

trollers presents exciting possibilities. For example, a human engaged in some virtual

activity automatically provides training data that can be used to improve a virtual

agent doing the same activity (Fig. 6.9).

Another interesting way to use physics-based movement synthesis is in creating

an impedance controller for a robotic system. Impedance control involves making a

system respond to forces as though it had different dynamic properties than its actual

mechanics[47]; e.g., a robot arm might act like it weighs less than it actually does

by actively moving in the direction of an externally applied force. Similar to the

use of abstract models to make the control problem tractable, it should be possible

to simultaneously simulate a robot model with the desired impedance and another

model with the robot’s actual impedance. Wrapping these models into a feedback

loop with the actual robot controller and sensors might facilitate implementation of

impedance control.
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Chapter 7

Conclusion and Future Work

The problems addressed and artifacts produced throughout the course of this

research are useful and interesting to the field of computer science and potentially to

other disciplines. The techniques discussed in this document address several notable

problems in capturing, modeling, and synthesizing human movement with easily ap-

plied techniques that leverage robust, freely-available simulation code. We have shown

how physical simulation software, already needed for forward dynamics computations

in a game or experimental virtual environment, can be used to accomplish analysis

and synthesis of movement data at interactive rates. Robust dynamics code, made

freely available through ODE, is easily adapted into a robust controller with intuitive

parameters for driving a simulated model toward a target state. Although the analy-

sis may not be as accurate as needed for some clinical biomechanics applications and

we have not had an opportunity to validate the use of our approach for controlling

genuine, physical robots, the analysis and synthesis techniques are sufficiently fast

and accurate to be used in interactive applications such as games and experiments in

virtual reality.
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7.1 Summary of Contributions

The principal contribution of this research has been to demonstrate how the

constraint solver algorithms used in general-purpose physics simulation code, such as

the Open Dynamics Engine, can be readily adapted to accomplish many useful tasks

besides simulating constrained forward dynamics. These tasks include several steps

in using motion capture data to analyze and synthesize humanoid movements:

1. Fitting a character model to motion-capture data by finding joint pivot positions

and marker attachment points.

2. Modeling marker trajectories as infinite point masses and attaching them to a

character model in a way that constrains the model to reproduce a captured

pose.

3. Computing inverse dynamics forces to reproduce captured movements in a sim-

ulated model and thus gain insight into the effort involved in a specific human

task.

4. Modifying forces and movements for a new model or related goal.

Used for these purposes, the ODE simulation software becomes a fast, robust, intu-

itive, and inexpensive multi-purpose tool for simulating, analyzing, and synthesizing

movement.

The mathematical analysis in this document provides useful insights into what

makes these different tasks possible. In addition to our software interface for inter-

actively analyzing movement data using the techniques presented here, this research
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has produced multiple software contributions for the simulation library used in this

research. Among these software contributions are code patches for increasing stability

and for providing useful general-purpose constraints. These improvements have been

submitted to the ODE open-source code-repository. Some of our contributions have

already been incorporated into the public project and others will be soon. Because

ODE is widely used for research as well as for physics-based animation in games,

these contributions stand to benefit a large population.

Finally, the virtual reality environment code and interactive interface for ap-

plying the above tools have already proven useful for many purposes. Young people

visiting the lab through university sponsored events have expressed their excitement

for pursuing this type of research after having a chance to experience the interac-

tive virtual environment. Multiple psychophysical experiments using the system are

producing insights into human attention and behavior. The example implementation

produced as part of this research has already been used for research measuring human

effort and will be instrumental in supporting future work in better understanding the

computation underlying human movement.

7.2 Future Work

The research involved in this dissertation covers a lot of material, crossing

traditional discipline boundaries. There are many interesting avenues available for

further exploration. Some have come up throughout the course of this document.

We discuss just a few here. These future research efforts relate to improving sim-

ulation/dynamics algorithms, expanding the usefulness of or virtual environment,
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employing the methods described her for additional purposes, and building more

advanced techniques.

The contributions we have made to the simulation platform may be useful

in many ways. General purpose joints may be used to help create new dynamic

systems with interesting properties. A proper exploration of constraint theory and

the relationship between different types of joints seems interesting.

Stability in simulation remains an issue. We have made some contributions

toward making the simulation more accurate without excessively affecting computa-

tional complexity. However, in some cases, a model will still fly apart. This phe-

nomenon needs to be explored systematically to discover exactly what conditions

lead to instabilities so that these can be addressed if possible. One particular open

question is the problem of dealing with disparate mass ratios between bodies that

share a constraint. Large mass-ratios are a problem for multiple reasons. When the

masses are inverted and added together, the lighter-weight body dominates the equa-

tion. High mass and low mass bodies in the same constraint also tend to make the

constraint matrix ill-conditioned. These problems may be addressable with sufficient

insight into how the constraint solver and discrete mathematics work. Our derivation

(Chap. 4) of the constraint system suggests that it might be possible to condition the

effective inverse-mass matrix by modifying the constraint Jacobian in a way that is

equivalent to scaling the distances used to represent the positions of the rigid bodies.

Although we focused primarily on building tools with and expanding the ca-

pabilities of the dynamic simulation code, the virtual reality technology was also fun

to work with. The potential applications and extensions of this work are limitless.
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Research opportunities using VR for artistic installations, entertainment, and educa-

tion abound. Many questions regarding human movement and behavior can also be

readily addressed by systematically controlling conditions in virtual reality. We are in

the process of designing a handful of experiments to explore the characteristics of pre-

planned movements in comparison to planned movements. The ability to precisely

control information presented to human subjects while still presenting a naturalistic

environment promises to support significant research into the computations under-

lying the human brain. Conveniently, the analysis methods presented in Chapter 5

can be applied directly to kinematically controlling an avatar that allows research

subjects to see themselves within the virtual environment and interact with other ob-

jects in the world when appropriate. Furthermore, the inverse dynamics methods can

then be used to rapidly estimate the effort exerted during the experiment, allowing

torque-dependent stimuli.

Because the inverse kinematics and inverse dynamics methods presented here

run in real-time and integrate seamlessly with physical simulation, it is possible to

make a physical model dynamically imitate a human’s behavior at interactive speeds.

A human wearing motion-capture equipment can then ‘teleoperate’ a model while re-

sponding appropriately to the conditions it faces. With a sufficiently accurate model,

this approach could also be applied to real robots, similar to the work done by [94],

but controlling an entire body at once. A human-robot-interaction paradigm of this

sort has the potential to make robot control very intuitive. A direct mapping may

mean that robot operators can easily learn the consequences of their own movements

on the robot system and thus rapidly adapt their human feedback loops to control
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the machine.

The techniques presented in this dissertation work with kinematics and dynam-

ics primarily on a per-frame basis, limiting what they can do. Hierarchical methods

show promise for both analyzing and controlling humanoid movement. It would be

interesting to build a hierarchical dynamics system such that detail movements hap-

pen on a local basis over short periods of time but are abstracted away into coarser

elements over larger periods of time. Some work has already been done exploring ba-

sis functions as representations of movement and general human behaviors. A general

purpose controller for a humanoid robot will need the ability to encapsulate behaviors

as hierarchies of feedback loops. One particular avenue worth additional attention is

the problem of fitting movement data with parametrized functions or distributions

that would enable the production of appropriate movements under novel conditions.

For biomechanics research, it can be important to look at the effects of individ-

ual muscles instead of abstracting them away into aggregate joint torques. We attach

markers to a simulated humanoid model and drag it into position with spring-like

constraints when computing model poise from motion capture data. Future efforts

may directly model muscles with constraints instead of abstracting muscle activity

into joint torques.

Movement analysis and synthesis are exciting areas to be working in. The

research is multi-disciplinary by nature. There are potential applications that can

improve quality of life in many different ways. We hope this research will help animate

characters and robots for entertaining, training, and working to benefit society. We

hope it will be useful for diagnosing motor pathologies, assessing muscle injuries, or
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simply working to better understand human movement.
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Stone. UT Austin Villa 2011: A champion agent in the RoboCup 3D soccer

simulation competition. In Proc. of 11th Int. Conf. on Autonomous Agents

and Multiagent Systems (AAMAS), June 2012.

[73] M. Matsushima, T. Hashimoto, M. Takeuchi, and F. Miyazaki. A learning

approach to robotic table tennis. IEEE Transactions on Robotics, 21(4):767 –

771, Aug. 2005.

[74] Igor Mordatch, Martin de Lasa, and Aaron Hertzmann. Robust physics-based

locomotion using low-dimensional planning. ACM Trans. Graph., 29(4):71:1–

71:8, July 2010.

[75] Karl M. Newell and David E. Vaillancourt. Dimensional change in motor

learning. Human Movement Science, 20(4–5):695 – 715, 2001.

[76] Oliver Obst and Markus Rollmann. Spark-a generic simulator for physi-

cal multi-agent simulations. Computer Systems Science and Engineering,

20(5):347, 2005.

[77] US Government Federal Business Opportunities. Broad agency announcement

DARPA robotics challenge tactical technology office (TTO) DARPA-BAA-12-

39. Technical report, DARPA, April 2012.

137



[78] R. Parasuraman, T.B. Sheridan, and C.D. Wickens. A model for types and

levels of human interaction with automation. Systems, Man and Cybernetics,

Part A: Systems and Humans, IEEE Transactions on, 30(3):286–297, may 2000.

[79] Chunk-Kang Peng, Jeffrey M. Hausdorff, and Ary L. Goldberger. Fractal

mechanisms in neural control: Human heartbeat and gait dynamics in health

and disease. Self-Organized Biological Dynamics and Nonlinear Control, pages

66–96, 2000.
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[96] Marius-CĂlin Silaghi, Ralf Plänkers, Ronan Boulic, Pascal Fua, and Daniel

Thalmann. Local and global skeleton fitting techniques for optical motion cap-

ture. In Modelling and Motion Capture Techniques for Virtual Environments,

pages 26–40. Springer, 1998.

140



[97] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual

conference on Computer graphics and interactive techniques, SIGGRAPH ’94,

pages 15–22, New York, NY, USA, 1994. ACM.

[98] Russell Smith. Intelligent Motion Control with an Artificial Cerebellum. PhD

thesis, University of Auckland, New Zealand, July 1998.

[99] Russell Smith. Open dynamics engine. http://opende.sourceforge.net/,

2002. [This open-source software library is still being actively developed by

multiple authors].

[100] Russell Smith. Constraints in rigid body dynamics. Best of Game Program-

ming Gems, 2008.

[101] Kwang Won Sok, Manmyung Kim, and Jehee Lee. Simulating biped behaviors

from human motion data. ACM Trans. Graph., 26(3), July 2007.

[102] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot Modeling and

Control. John Wiley & Soncs, Inc, 2006.

[103] Yichao Sun, Rong Xiong, Qiuguo Zhu, Jun Wu, and Jian Chu. Balance motion

generation for a humanoid robot playing table tennis. In Humanoid Robots

(Humanoids), 11th IEEE-RAS International Conference on, pages 19–25, oct.

2011.

[104] Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and

semi-mdps: a framework for temporal abstraction in reinforcement learning.

Artif. Intell., 112(1-2):181–211, August 1999.

141



[105] Graham W. Taylor, Geoffrey E. Hinton, and Sam Roweis. Modeling human

motion using binary latent variables. In B. Schoelkopf, editor, Advances in

Neural Information Processing Systems (NIPS), volume 19, pages 1345–1352.

MIT Press, 2007.

[106] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically

deformable models. SIGGRAPH Comput. Graph., 21(4):205–214, August

1987.

[107] Emanuel Todorov and Michael Jordan. Optimal feedback control as a theory

of motor coordination. Nature Neuroscience, 5(11):1226–1225, 2002.

[108] Emanuel Todorov, Weiwei Li, and Xiuchuan Pan. From task parameters to

motor synergies: A hierarchical framework for approximately optimal control

of redundant manipulators. J. Robot. Syst., 22:691–710, November 2005.

[109] M. Tournier, X. Wu, N. Courty, E. Arnaud, and L. Revret. Motion compression

using principal geodesics analysis. Computer Graphics Forum, 28(2):355–364,

2009.

[110] Adrien Treuille, Yongjoon Lee, and Zoran Popović. Near-optimal character
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