6 research outputs found

    Conception of control paradigms for teleoperated driving tasks in urban environments

    Get PDF
    Development of concepts and computationally efficient motion planning methods for teleoperated drivingEntwicklung von Konzepten und recheneffizienten Bewegungsplanungsmethoden für teleoperiertes Fahre

    Transport coopératif d'un objet par deux robots humanoïdes dans un environnement encombré

    Get PDF
    Il y a présentement de la demande dans plusieurs milieux cherchant à utiliser des robots afin d'accomplir des tâches complexes, par exemple l'industrie de la construction désire des travailleurs pouvant travailler 24/7 ou encore effectuer des operation de sauvetage dans des zones compromises et dangereuses pour l'humain. Dans ces situations, il devient très important de pouvoir transporter des charges dans des environnements encombrés. Bien que ces dernières années il y a eu quelques études destinées à la navigation de robots dans ce type d'environnements, seulement quelques-unes d'entre elles ont abordé le problème de robots pouvant naviguer en déplaçant un objet volumineux ou lourd. Ceci est particulièrement utile pour transporter des charges ayant de poids et de formes variables, sans avoir à modifier physiquement le robot. Un robot humanoïde est une des plateformes disponibles afin d'effectuer efficacement ce type de transport. Celui-ci a, entre autres, l'avantage d'avoir des bras et ils peuvent donc les utiliser afin de manipuler précisément les objets à transporter. Dans ce mémoire de maîtrise, deux différentes techniques sont présentées. Dans la première partie, nous présentons un système inspiré par l'utilisation répandue de chariots de fortune par les humains. Celle-ci répond au problème d'un robot humanoïde naviguant dans un environnement encombré tout en déplaçant une charge lourde qui se trouve sur un chariot de fortune. Nous présentons un système de navigation complet, de la construction incrémentale d'une carte de l'environnement et du calcul des trajectoires sans collision à la commande pour exécuter ces trajectoires. Les principaux points présentés sont : 1) le contrôle de tout le corps permettant au robot humanoïde d'utiliser ses mains et ses bras pour contrôler les mouvements du système à chariot (par exemple, lors de virages serrés) ; 2) une approche sans capteur pour automatiquement sélectionner le jeu approprié de primitives en fonction du poids de la charge ; 3) un algorithme de planification de mouvement qui génère une trajectoire sans collisions en utilisant le jeu de primitive approprié et la carte construite de l'environnement ; 4) une technique de filtrage efficace permettant d'ignorer le chariot et le poids situés dans le champ de vue du robot tout en améliorant les performances générales des algorithmes de SLAM (Simultaneous Localization and Mapping) défini ; et 5) un processus continu et cohérent d'odométrie formés en fusionnant les informations visuelles et celles de l'odométrie du robot. Finalement, nous présentons des expériences menées sur un robot Nao, équipé d'un capteur RGB-D monté sur sa tête, poussant un chariot avec différentes masses. Nos expériences montrent que la charge utile peut être significativement augmentée sans changer physiquement le robot, et donc qu'il est possible d'augmenter la capacité du robot humanoïde dans des situations réelles. Dans la seconde partie, nous abordons le problème de faire naviguer deux robots humanoïdes dans un environnement encombré tout en transportant un très grand objet qui ne peut tout simplement pas être déplacé par un seul robot. Dans cette partie, plusieurs algorithmes et concepts présentés dans la partie précédente sont réutilisés et modifiés afin de convenir à un système comportant deux robot humanoides. Entre autres, nous avons un algorithme de planification de mouvement multi-robots utilisant un espace d'états à faible dimension afin de trouver une trajectoire sans obstacle en utilisant la carte construite de l'environnement, ainsi qu'un contrôle en temps réel efficace de tout le corps pour contrôler les mouvements du système robot-objet-robot en boucle fermée. Aussi, plusieurs systèmes ont été ajoutés, tels que la synchronisation utilisant le décalage relatif des robots, la projection des robots sur la base de leur position des mains ainsi que l'erreur de rétroaction visuelle calculée à partir de la caméra frontale du robot. Encore une fois, nous présentons des expériences faites sur des robots Nao équipés de capteurs RGB-D montés sur leurs têtes, se déplaçant avec un objet tout en contournant d'obstacles. Nos expériences montrent qu'un objet de taille non négligeable peut être transporté sans changer physiquement le robot

    A Control Architecture for Unmanned Aerial Vehicles Operating in Human-Robot Team for Service Robotic Tasks

    Get PDF
    In this thesis a Control architecture for an Unmanned Aerial Vehicle (UAV) is presented. The aim of the thesis is to address the problem of control a flying robot operating in human robot team at different level of abstraction. For this purpose, three different layers in the design of the architecture were considered, namely, the high level, the middle level and the low level layers. The special case of an UAV operating in service robotics tasks and in particular in Search&Rescue mission in alpine scenario is considered. Different methodologies for each layer are presented with simulated or real-world experimental validation

    Mapping in uncertain environments for mobile robots

    Get PDF
    Um dos problemas fundamentais em robótica móvel é o problema da localização e mapeamento, no qual um robô se deve localizar ao mesmo tempo que constrói um mapa do ambiente. Existem diversas técnicas para abordar este problema. Neste trabalho propõem-se abordagens novas para a construção do mapa em ambientes estáticos e dinâmicos, assumindo pose conhecida. As abordagens propostas baseiam-se em campos aleatórios de Markov (Markov random fields - MRF) e em campos aleatórios Gaussianos (Gaussian random fields - GRF), seguindo um ponto de vista Bayesiano, onde as distribuições de probabilidade a priori são usadas como regularizadores. Num ambiente estático, cada ponto do espaço é descrito pela sua probabilidade de ocupação. O primeiro método proposto é um filtro baseado nos MRF, que se centra no ruído das medidas e que pode ser implementado em linha (tempo real). O segundo método é um método preditivo baseado nos MRF que permite também estimar a probabilidade de ocupação do espaço não observado. Em ambos os métodos, os mapas são construídos numa grelha de células. Outra abordagem baseia-se num espaço contínuo, baseado em GRF onde se propõe um método recursivo de modo a reduzir a complexidade computacional. No caso de ambientes dinâmicos, a probabilidade de ocupação é substituída pelas probabilidade de transição duma cadeia de Markov para descrever o comportamento dinâmico de cada ponto. Nesta abordagem são propostos dois métodos para os ambientes dinâmicos, igualmente baseados nos MRF e nos GRF. No método com MRF todos os parâmetros são estimados em conjunto. Pelo contrário, com os GRF os parâmetros são divididos em dois sub-conjuntos de modo a reduzir a complexidade computacional. Todos os métodos propostos são testados e apresentam-se resultados em simulação nos respetivos capítulos. Finalmente estes algoritmos são também validados em ambiente experimental. Nestas experiências, as poses não podem ser medidas com precisão e é tida em consideração a incerteza na pose do robô. Quando comparados com o estado da arte, os métodos propostos resolvem as inconsistências nos mapas tendo em consideração a dependência entre pontos vizinhos. Este processo é realizado usando MRF e GRF em vez de assumir independência. As simulações e os resultados experimentais demonstram que os métodos propostos podem, não apenas lidar com as inconsistências nos mapas construídos, mas também tirar proveito da correlação espacial para prever o espaço não observado; Abstract: Mapping in Uncertain Environments for Mobile Robots One of the fundamental problems in robotics is the localization and mapping problem, where a robot has to localize itself while building a map of the environment. Several techniques exist to tackle this problem. This work proposes novel mapping approaches with known robot poses for static and dynamic environments. The proposed techniques are based on Markov random fields (MRFs) and Gaussian random fields (GRFs), following a Bayesian viewpoint where prior distributions are provided as regularizers. In static environments, every point is described by its occupancy probability. The first proposed method is an MRF-based filter, which focuses on the measurement noise and can be implemented online (realtime). The second one is an MRF-based prediction method, which can also be used to estimate the occupancy probability for unobserved space. In both methods, the maps are organized as a grid. Another approach, which works in continuous space, is based on a GRF prediction method, and a recursive algorithm is proposed to reduce the computational complexity. In the case of dynamic environments, the occupancy probability is replaced by transition probabilities of a Markov chain that describe the dynamic behaviour of each point. Two methods for dynamic environments are proposed, also based on MRFs and GRFs. In the MRF-based method, all the parameters are jointly estimated. In contrast, in the GRF-based method, the parameters are divided into two subsets to reduce the computational complexity. All the proposed methods are tested in simulations in the corresponding chapters. Finally, these algorithms are also validated on an experimental platform. In the experimental environments, robot poses cannot be measured precisely, and so the uncertainty of robot poses is also considered. When compared with the state of the art for dynamic environments, the proposed methods tackle the inconsistencies in the maps by considering dependence between neighbour points. This is done using MRFs and GRFs instead of assuming independence. The simulations and the experimental results demonstrate that the proposed methods can, not only deal with the inconsistency in the built maps, but also take advantage of the spatial correlation to predict unobserved space

    Forum Bildverarbeitung 2020

    Get PDF
    Image processing plays a key role for fast and contact-free data acquisition in many technical areas, e.g., in quality control or robotics. These conference proceedings of the “Forum Bildverarbeitung”, which took place on 26.-27.11.202 in Karlsruhe as a common event of the Karlsruhe Institute of Technology and the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, contain the articles of the contributions
    corecore