4,183 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Evaluation and Analysis of Node Localization Power Cost in Ad-Hoc Wireless Sensor Networks with Mobility

    Get PDF
    One of the key concerns with location-aware Ad-hoc Wireless Sensor Networks (AWSNs) is how sensor nodes determine their position. The inherent power limitations of an AWSN along with the requirement for long network lifetimes makes achieving fast and power-efficient localization vital. This research examines the cost (in terms of power) of network irregularities on communications and localization in an AWSN. The number of data bits transmitted and received are significantly affected by varying levels of mobility, node degree, and network shape. The concurrent localization approach, used by the APS-Euclidean algorithm, has significantly more accurate position estimates with a higher percentage of nodes localized, while requiring 50% less data communications overhead, than the Map-Growing algorithm. Analytical power models capable of estimating the power required to localize are derived. The average amount of data communications required by either of these algorithms in a highly mobile network with a relatively high degree consumes less than 2.0% of the power capacity of an average 560mA-hr battery. This is less than expected and contrary to the common perception that localization algorithms consume a significant amount of a node\u27s power
    corecore