39 research outputs found

    Resource Allocation in SDN/NFV-Enabled Core Networks

    Get PDF
    For next generation core networks, it is anticipated to integrate communication, storage and computing resources into one unified, programmable and flexible infrastructure. Software-defined networking (SDN) and network function virtualization (NFV) become two enablers. SDN decouples the network control and forwarding functions, which facilitates network management and enables network programmability. NFV allows the network functions to be virtualized and placed on high capacity servers located anywhere in the network, not only on dedicated devices in current networks. Driven by SDN and NFV platforms, the future network architecture is expected to feature centralized network management, virtualized function chaining, reduced capital and operational costs, and enhanced service quality. The combination of SDN and NFV provides a potential technical route to promote the future communication networks. It is imperative to efficiently manage, allocate and optimize the heterogeneous resources, including computing, storage, and communication resources, to the customized services to achieve better quality-of-service (QoS) provisioning. This thesis makes some in-depth researches on efficient resource allocation for SDN/NFV-enabled core networks in multiple aspects and dimensionality. Typically, the resource allocation task is implemented in three aspects. Given the traffic metrics, QoS requirements, and resource constraints of the substrate network, we first need to compose a virtual network function (VNF) chain to form a virtual network (VN) topology. Then, virtual resources allocated to each VNF or virtual link need to be optimized in order to minimize the provisioning cost while satisfying the QoS requirements. Next, we need to embed the virtual network (i.e., VNF chain) onto the substrate network, in which we need to assign the physical resources in an economical way to meet the resource demands of VNFs and links. This involves determining the locations of NFV nodes to host the VNFs and the routing from source to destination. Finally, we need to schedule the VNFs for multiple services to minimize the service completion time and maximize the network performance. In this thesis, we study resource allocation in SDN/NFV-enabled core networks from the aforementioned three aspects. First, we jointly study how to design the topology of a VN and embed the resultant VN onto a substrate network with the objective of minimizing the embedding cost while satisfying the QoS requirements. In VN topology design, optimizing the resource requirement for each virtual node and link is necessary. Without topology optimization, the resources assigned to the virtual network may be insufficient or redundant, leading to degraded service quality or increased embedding cost. The joint problem is formulated as a Mixed Integer Nonlinear Programming (MINLP), where queueing theory is utilized as the methodology to analyze the network delay and help to define the optimal set of physical resource requirements at network elements. Two algorithms are proposed to obtain the optimal/near-optimal solutions of the MINLP model. Second, we address the multi-SFC embedding problem by a game theoretical approach, considering the heterogeneity of NFV nodes, the effect of processing-resource sharing among various VNFs, and the capacity constraints of NFV nodes. In the proposed resource constrained multi-SFC embedding game (RC-MSEG), each SFC is treated as a player whose objective is to minimize the overall latency experienced by the supported service flow, while satisfying the capacity constraints of all its NFV nodes. Due to processing-resource sharing, additional delay is incurred and integrated into the overall latency for each SFC. The capacity constraints of NFV nodes are considered by adding a penalty term into the cost function of each player, and are guaranteed by a prioritized admission control mechanism. We first prove that the proposed game RC-MSEG is an exact potential game admitting at least one pure Nash Equilibrium (NE) and has the finite improvement property (FIP). Then, we design two iterative algorithms, namely, the best response (BR) algorithm with fast convergence and the spatial adaptive play (SAP) algorithm with great potential to obtain the best NE of the proposed game. Third, the VNF scheduling problem is investigated to minimize the makespan (i.e., overall completion time) of all services, while satisfying their different end-to-end (E2E) delay requirements. The problem is formulated as a mixed integer linear program (MILP) which is NP-hard with exponentially increasing computational complexity as the network size expands. To solve the MILP with high efficiency and accuracy, the original problem is reformulated as a Markov decision process (MDP) problem with variable action set. Then, a reinforcement learning (RL) algorithm is developed to learn the best scheduling policy by continuously interacting with the network environment. The proposed learning algorithm determines the variable action set at each decision-making state and accommodates different execution time of the actions. The reward function in the proposed algorithm is carefully designed to realize delay-aware VNF scheduling. To sum up, it is of great importance to integrate SDN and NFV in the same network to accelerate the evolution toward software-enabled network services. We have studied VN topology design, multi-VNF chain embedding, and delay-aware VNF scheduling to achieve efficient resource allocation in different dimensions. The proposed approaches pave the way for exploiting network slicing to improve resource utilization and facilitate QoS-guaranteed service provisioning in SDN/NFV-enabled networks

    Allocation des ressources dans les environnements informatiques en périphérie des réseaux mobiles

    Get PDF
    Abstract: The evolution of information technology is increasing the diversity of connected devices and leading to the expansion of new application areas. These applications require ultra-low latency, which cannot be achieved by legacy cloud infrastructures given their distance from users. By placing resources closer to users, the recently developed edge computing paradigm aims to meet the needs of these applications. Edge computing is inspired by cloud computing and extends it to the edge of the network, in proximity to where the data is generated. This paradigm leverages the proximity between the processing infrastructure and the users to ensure ultra-low latency and high data throughput. The aim of this thesis is to improve resource allocation at the network edge to provide an improved quality of service and experience for low-latency applications. For better resource allocation, it is necessary to have reliable knowledge about the resources available at any moment. The first contribution of this thesis is to propose a resource representation to allow the supervisory xentity to acquire information about the resources available to each device. This information is then used by the resource allocation scheme to allocate resources appropriately for the different services. The resource allocation scheme is based on Lyapunov optimization, and it is executed only when resource allocation is required, which reduces the latency and resource consumption on each edge device. The second contribution of this thesis focuses on resource allocation for edge services. The services are created by chaining a set of virtual network functions. Resource allocation for services consists of finding an adequate placement for, routing, and scheduling these virtual network functions. We propose a solution based on game theory and machine learning to find a suitable location and routing for as well as an appropriate scheduling of these functions at the network edge. Finding the location and routing of network functions is formulated as a mean field game solved by iterative Ishikawa-Mann learning. In addition, the scheduling of the network functions on the different edge nodes is formulated as a matching set, which is solved using an improved version of the deferred acceleration algorithm we propose. The third contribution of this thesis is the resource allocation for vehicular services at the edge of the network. In this contribution, the services are migrated and moved to the different infrastructures at the edge to ensure service continuity. Vehicular services are particularly delay sensitive and related mainly to road safety and security. Therefore, the migration of vehicular services is a complex operation. We propose an approach based on deep reinforcement learning to proactively migrate the different services while ensuring their continuity under high mobility constraints.L'évolution des technologies de l'information entraîne la prolifération des dispositifs connectés qui mène à l'exploration de nouveaux champs d'application. Ces applications demandent une latence ultra-faible, qui ne peut être atteinte par les infrastructures en nuage traditionnelles étant donné la distance qui les sépare des utilisateurs. En rapprochant les ressources aux utilisateurs, le paradigme de l'informatique en périphérie, récemment apparu, vise à répondre aux besoins de ces applications. L’informatique en périphérie s'inspire de l’informatique en nuage, en l'étendant à la périphérie du réseau, à proximité de l'endroit où les données sont générées. Ce paradigme tire parti de la proximité entre l'infrastructure de traitement et les utilisateurs pour garantir une latence ultra-faible et un débit élevé des données. L'objectif de cette thèse est l'amélioration de l'allocation des ressources à la périphérie du réseau pour offrir une meilleure qualité de service et expérience pour les applications à faible latence. Pour une meilleure allocation des ressources, il est nécessaire d'avoir une bonne connaissance sur les ressources disponibles à tout moment. La première contribution de cette thèse consiste en la proposition d'une représentation des ressources pour permettre à l'entité de supervision d'acquérir des informations sur les ressources disponibles à chaque dispositif. Ces informations sont ensuite exploitées par le schéma d'allocation des ressources afin d'allouer les ressources de manière appropriée pour les différents services. Le schéma d'allocation des ressources est basé sur l'optimisation de Lyapunov, et il n'est exécuté que lorsque l'allocation des ressources est requise, ce qui réduit la latence et la consommation en ressources sur chaque équipement de périphérie. La deuxième contribution de cette thèse porte sur l'allocation des ressources pour les services en périphérie. Les services sont composés par le chaînage d'un ensemble de fonctions réseau virtuelles. L'allocation des ressources pour les services consiste en la recherche d'un placement, d'un routage et d'un ordonnancement adéquat de ces fonctions réseau virtuelles. Nous proposons une solution basée sur la théorie des jeux et sur l'apprentissage automatique pour trouver un emplacement et routage convenable ainsi qu'un ordonnancement approprié de ces fonctions en périphérie du réseau. La troisième contribution de cette thèse consiste en l'allocation des ressources pour les services véhiculaires en périphérie du réseau. Dans cette contribution, les services sont migrés et déplacés sur les différentes infrastructures en périphérie pour assurer la continuité des services. Les services véhiculaires sont en particulier sensibles à la latence et liés principalement à la sûreté et à la sécurité routière. En conséquence, la migration des services véhiculaires constitue une opération complexe. Nous proposons une approche basée sur l'apprentissage par renforcement profond pour migrer de manière proactive les différents services tout en assurant leur continuité sous les contraintes de mobilité élevée

    Orchestration and Scheduling of Resources in Softwarized Networks

    Get PDF
    The Fifth Generation (5G) era is touted as the next generation of mobile networks that will unleash new services and network capabilities, opening up a whole new line of businesses recognized by a top-notch Quality of Service (QoS) and Quality of Experience (QoE) empowered by many recent advancements in network softwarization and providing an innovative on-demand service provisioning on a shared underlying network infrastructure. 5G networks will support the immerse explosion of the Internet of Things (IoT) incurring an expected growth of billions of connected IoT devices by 2020, providing a wide range of services spanning from low-cost sensor-based metering services to low-latency communication services touching health, education and automotive sectors among others. Mobile operators are striving to find a cost effective network solution that will enable them to continuously and automatically upgrade their networks based on their ever growing customers demands in the quest of fulfilling the new rising opportunities of offering novel services empowered by the many emerging IoT devices. Thus, departing from the shortfalls of legacy hardware (i.e., high cost, difficult management and update, etc.) and learning from the different advantages of virtualization technologies which enabled the sharing of computing resources in a cloud environment, mobile operators started to leverage the idea of network softwarization through several emerging technologies. Network Function Virtualization (NFV) promises an ultimate Capital Expenditures (CAPEX) reduction and high flexibility in resource provisioning and service delivery through replacing hardware equipment by software. Software Defined Network (SDN) offers network and mobile operators programmable traffic management and delivery. These technologies will enable the launch of Multi-Access Edge Computing (MEC) paradigm that promises to complete the 5G networks requirements in providing low-latency services by bringing the computing resources to the edge of the network, in close vicinity of the users, hence, assisting the limited capabilities of their IoT devices in delivering their needed services. By leveraging network softwarization, these technologies will initiate a tremendous re-design of current networks that will be transformed to self-managed, software-based networks exploiting multiple benefits ranging from flexibility, programmability, automation, elasticity among others. This dissertation attempts to elaborate and address key challenges related to enabling the re-design of current networks to support a smooth integration of the NFV and MEC technologies. This thesis provides a profound understanding and novel contributions in resource and service provisioning and scheduling towards enabling efficient resource and network utilization of the underlying infrastructure by leveraging several optimization and game theoretic techniques. In particular, we first, investigate the interplay existing between network function mapping, traffic routing and Network Service (NS) scheduling in NFV-based networks and present a Column Generation (CG) decomposition method to solve the problem with considerable runtime improvement over mathematical-based formulations. Given the increasing interest in providing low-latency services and the correlation existing between this objective and the goal of network operators in maximizing their network admissibility through efficiently utilizing their network resources, we revisit the latter problem and tackle it under different assumptions and objectives. Given its complexity, we present a novel game theoretic approach that is able to provide a bounded solution of the problem. Further, we extend our work to the network edge where we promote network elasticity and alleviate virtualization technologies by addressing the problem of task offloading and scheduling along with the IoT application resource allocation problem. Given the complexity of the problem, we propose a Logic-Based Benders (LBBD) decomposition method to efficiently solve it to optimality

    Control co-design and resource allocation in edge computing and dynamic networks (Tutorial Session Proposal)

    Get PDF
    Tutorial at European Control Conference (ECC)The tutorial session brings together researchers in control, as well as networks and communications, with the aim of presenting recent advances, and leading open problems, in modeling and decision making for network optimisation, resource allocation and management in distributed computing, wireless sensor and actuator networks, and control co-design

    Virtual network function placement in satellite edge computing with a potential game approach

    Get PDF
    Satellite networks, as a supplement to terrestrial networks, can provide effective computing services for Internet of Things (IoT) users in remote areas. Due to the resource limitation of satellites, such as in computing, storage, and energy, a computation task from a IoT user can be divided into several parts and cooperatively accomplished by multiple satellites to improve the overall operational efficiency of satellite networks. Network function virtualization (NFV) is viewed as a new paradigm in allocating network resources on-demand. Satellite edge computing combined with the NFV technology is becoming an emerging topic. In this paper, we propose a potential game approach for virtual network function (VNF) placement in satellite edge computing. The VNF placement problem aims to maximize the number of allocated IoT users, while minimizing the overall deployment cost. We formulate the VNF placement problem with maximum network payoff as a potential game and analyze the problem by a game-theoretical approach. We implement a decentralized resource allocation algorithm based on a potential game (PGRA) to tackle the VNF placement problem by finding a Nash equilibrium. Finally, we conduct the experiments to evaluate the performance of the proposed PGRA algorithm. The simulation results show that the proposed PGRA algorithm can effectively address the VNF placement problem in satellite edge computing

    Innovative Applications of Constraint Programming

    Get PDF
    Constraint programming (CP) is a declarative paradigm that enables us to model a problem in the form of constraints to be satisfied. It offers powerful constraint solvers which, by implementing general-purpose search techniques, are fast and robust to address complex constraint models automatically. Constraint programming has attracted the attention of people from various domains. By separating the definition of a problem from its solution, it is more natural for people to implement the program directly from the problem specification, reducing the cost of development and future maintenance significantly. Furthermore, CP provides the flexibility of choosing a suitable solver for a problem of a given nature, which overcomes the limitations of a unique solver. Thanks to this, CP has allowed many non-domain experts to solve emerging problems efficiently. This thesis studies the innovative applications of CP by examining two topics: constraint modeling for several novel problems, and automatic solver selection. For the modeling, we explored two case studies, namely the (sub)group activity optimization problem, and the service function chaining deployment problem that comes from the Software Defined Network (SDN) domain. Concerning the solver selection, we improved an algorithm selection technique called “SUNNY”, which generates a schedule of solvers for a given problem instance. In this work, we demonstrate with empirical experiments that the procedure we have designed to configure SUNNY parameters is effective, and it makes SUNNY scalable to an even broader range of algorithm selection problems not restricted to CP

    Enabling Scalable and Sustainable Softwarized 5G Environments

    Get PDF
    The fifth generation of telecommunication systems (5G) is foreseen to play a fundamental role in our socio-economic growth by supporting various and radically new vertical applications (such as Industry 4.0, eHealth, Smart Cities/Electrical Grids, to name a few), as a one-fits-all technology that is enabled by emerging softwarization solutions \u2013 specifically, the Fog, Multi-access Edge Computing (MEC), Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) paradigms. Notwithstanding the notable potential of the aforementioned technologies, a number of open issues still need to be addressed to ensure their complete rollout. This thesis is particularly developed towards addressing the scalability and sustainability issues in softwarized 5G environments through contributions in three research axes: a) Infrastructure Modeling and Analytics, b) Network Slicing and Mobility Management, and c) Network/Services Management and Control. The main contributions include a model-based analytics approach for real-time workload profiling and estimation of network key performance indicators (KPIs) in NFV infrastructures (NFVIs), as well as a SDN-based multi-clustering approach to scale geo-distributed virtual tenant networks (VTNs) and to support seamless user/service mobility; building on these, solutions to the problems of resource consolidation, service migration, and load balancing are also developed in the context of 5G. All in all, this generally entails the adoption of Stochastic Models, Mathematical Programming, Queueing Theory, Graph Theory and Team Theory principles, in the context of Green Networking, NFV and SDN

    Scalable Orchestration of Service Function Chains in NFV-Enabled Networks: A Federated Reinforcement Learning Approach

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordNetwork function virtualization (NFV) is critical to the scalability and flexibility of various network services in the form of service function chains (SFCs), which refer to a set of Virtual Network Functions (VNFs) chained in a specific order. However, the NFV performance is hard to fulfill the ever-increasing requirements of network services mainly due to the static orchestrations of SFCs. To tackle this issue, a novel Scalable SFC Orchestration (SSCO) scheme is proposed in this paper for NFV-enabled networks via federated reinforcement learning. SSCO has three remarkable characteristics distinguishing from the previous work: (1) A federated-learning-based framework is designed to train a global learning model, with time-variant local model explorations, for scalable SFC orchestration, while avoiding data sharing among stakeholders; (2) SSCO allows for parameter update among local clients and the cloud server just at the first and last epochs of each episode to ensure that distributed clients can make model optimization at a low communication cost; (3) SSCO introduces an efficient deep reinforcement learning (DRL) approach, with the local learning knowledge of available resources and instantiation cost, to map VNFs into networks flexibly. Furthermore, a loss-weight-based mechanism is proposed to generate and exploit reference samples in replay buffers for future training, avoiding the strong relevance of samples. Simulation results obtained from different working scenarios demonstrate that SSCO can significantly reduce placement errors and improve resource utilization ratio to place time-variant VNFs compared with the state-of-the-art mechanisms. Furthermore, the results show that the proposed approach can achieve desirable scalability

    A Service-Defined Approach for Orchestration of Heterogeneous Applications in Cloud/Edge Platforms

    Get PDF
    Edge Computing is moving resources toward the network borders, thus enabling the deployment of a pool of new applications that benefit from the new distributed infrastructure. However, due to the heterogeneity of such applications, specific orchestration strategies need to be adopted for each deployment request. Each application can potentially require different optimization criteria and may prefer particular reactions upon the occurrence of the same event. This paper presents a Service- Defined approach for orchestrating cloud/edge services in a distributed fashion, where each application can define its own orchestration strategy by means of declarative statements, which are parsed into a Service-Defined Orchestrator (SDO). Moreover, to coordinate the coexistence of a variety of SDOs on the same infrastructure while preserving the resource assignment optimality, we present DRAGON, a Distributed Resource AssiGnment and OrchestratioN algorithm that seeks optimal partitioning of shared resources between different actors. We evaluate the advantages of our novel Service-Defined orchestration approach over some representative edge use cases, as well as measure convergence and performance of DRAGON on a prototype implementation, assessing the benefits compared to conventional orchestration approaches
    corecore