6,571 research outputs found

    A Graph Algorithmic Approach to Separate Direct from Indirect Neural Interactions

    Full text link
    Network graphs have become a popular tool to represent complex systems composed of many interacting subunits; especially in neuroscience, network graphs are increasingly used to represent and analyze functional interactions between neural sources. Interactions are often reconstructed using pairwise bivariate analyses, overlooking their multivariate nature: it is neglected that investigating the effect of one source on a target necessitates to take all other sources as potential nuisance variables into account; also combinations of sources may act jointly on a given target. Bivariate analyses produce networks that may contain spurious interactions, which reduce the interpretability of the network and its graph metrics. A truly multivariate reconstruction, however, is computationally intractable due to combinatorial explosion in the number of potential interactions. Thus, we have to resort to approximative methods to handle the intractability of multivariate interaction reconstruction, and thereby enable the use of networks in neuroscience. Here, we suggest such an approximative approach in the form of an algorithm that extends fast bivariate interaction reconstruction by identifying potentially spurious interactions post-hoc: the algorithm flags potentially spurious edges, which may then be pruned from the network. This produces a statistically conservative network approximation that is guaranteed to contain non-spurious interactions only. We describe the algorithm and present a reference implementation to test its performance. We discuss the algorithm in relation to other approximative multivariate methods and highlight suitable application scenarios. Our approach is a tractable and data-efficient way of reconstructing approximative networks of multivariate interactions. It is preferable if available data are limited or if fully multivariate approaches are computationally infeasible.Comment: 24 pages, 8 figures, published in PLOS On

    Model-free reconstruction of neuronal network connectivity from calcium imaging signals

    Get PDF
    A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically unfeasible even in dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct approximations to network structural connectivities from network activity monitored through calcium fluorescence imaging. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time-series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the effective network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (e.g., bursting or non-bursting). We thus demonstrate how conditioning with respect to the global mean activity improves the performance of our method. [...] Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good reconstruction of the network clustering coefficient, allowing to discriminate between weakly or strongly clustered topologies, whereas on the other hand an approach based on cross-correlations would invariantly detect artificially high levels of clustering. Finally, we present the applicability of our method to real recordings of in vitro cortical cultures. We demonstrate that these networks are characterized by an elevated level of clustering compared to a random graph (although not extreme) and by a markedly non-local connectivity.Comment: 54 pages, 8 figures (+9 supplementary figures), 1 table; submitted for publicatio

    Distinguishing Cause and Effect via Second Order Exponential Models

    Full text link
    We propose a method to infer causal structures containing both discrete and continuous variables. The idea is to select causal hypotheses for which the conditional density of every variable, given its causes, becomes smooth. We define a family of smooth densities and conditional densities by second order exponential models, i.e., by maximizing conditional entropy subject to first and second statistical moments. If some of the variables take only values in proper subsets of R^n, these conditionals can induce different families of joint distributions even for Markov-equivalent graphs. We consider the case of one binary and one real-valued variable where the method can distinguish between cause and effect. Using this example, we describe that sometimes a causal hypothesis must be rejected because P(effect|cause) and P(cause) share algorithmic information (which is untypical if they are chosen independently). This way, our method is in the same spirit as faithfulness-based causal inference because it also rejects non-generic mutual adjustments among DAG-parameters.Comment: 36 pages, 8 figure

    Deep learning systems as complex networks

    Full text link
    Thanks to the availability of large scale digital datasets and massive amounts of computational power, deep learning algorithms can learn representations of data by exploiting multiple levels of abstraction. These machine learning methods have greatly improved the state-of-the-art in many challenging cognitive tasks, such as visual object recognition, speech processing, natural language understanding and automatic translation. In particular, one class of deep learning models, known as deep belief networks, can discover intricate statistical structure in large data sets in a completely unsupervised fashion, by learning a generative model of the data using Hebbian-like learning mechanisms. Although these self-organizing systems can be conveniently formalized within the framework of statistical mechanics, their internal functioning remains opaque, because their emergent dynamics cannot be solved analytically. In this article we propose to study deep belief networks using techniques commonly employed in the study of complex networks, in order to gain some insights into the structural and functional properties of the computational graph resulting from the learning process.Comment: 20 pages, 9 figure

    Synergetic and redundant information flow detected by unnormalized Granger causality: application to resting state fMRI

    Full text link
    Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficult to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state fMRI data from the Human Connectome Project, showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, whilst synergy occurs mainly between non-homologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits.Comment: 6 figures. arXiv admin note: text overlap with arXiv:1403.515
    • …
    corecore