93,546 research outputs found

    A goal-oriented approach for safety requirements specification

    Get PDF
    Robotic systems are developed to execute tasks with several types of risks associated. The possible damages that can affect both the working environment and the self-system lead us to consider that these systems are safety critical, i.e., systems where the strict management of safety aspects is vital. In this work, we introduce our proposal for the consideration of safety related requirements and their consequent trace to the desired final system architecture. For this reason, this paper gives a procedure for the identification and specification of safety requirements based on a goal oriented framework. Moreover, in this work other approaches have been considered and integrated to deal with well known safety standard recommendations. By means of an industrial case study, we show how this proposal can be used to consider safety requirements in tele-operated robotic systems and, by extrapolation, in other critical domainsThis work has been validated in the context of the EFTCoR project funded by the European Union

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Declarative Specification

    Get PDF
    Deriving formal specifications from informal requirements is extremely difficult since one has to overcome the conceptual gap between an application domain and the domain of formal specification methods. To reduce this gap we introduce application-specific specification languages, i.e., graphical and textual notations that can be unambiguously mapped to formal specifications in a logic language. We describe a number of realised approaches based on this idea, and evaluate them with respect to their domain specificity vs. generalit

    Deriving Specifications of Dependable Systems: toward a Method

    Get PDF
    This paper proposes a method for deriving formal specifications of systems. To accomplish this task we pass through a non trivial number of steps, concepts and tools where the first one, the most important, is the concept of method itself, since we realized that computer science has a proliferation of languages but very few methods. We also propose the idea of Layered Fault Tolerant Specification (LFTS) to make the method extensible to dependable systems. The principle is layering the specification, for the sake of clarity, in (at least) two different levels, the first one for the normal behavior and the others (if more than one) for the abnormal. The abnormal behavior is described in terms of an Error Injector (EI) which represents a model of the erroneous interference coming from the environment. This structure has been inspired by the notion of idealized fault tolerant component but the combination of LFTS and EI using rely guarantee thinking to describe interference can be considered one of the main contributions of this work. The progress toward this method and the way to layer specifications has been made experimenting on the Transportation and the Automotive Case Studies of the DEPLOY project.Comment: Published in "12th European Workshop on Dependable Computing, EWDC 2009, Toulouse : France (2009)

    Arguing security: validating security requirements using structured argumentation

    Get PDF
    This paper proposes using both formal and structured informal arguments to show that an eventual realized system can satisfy its security requirements. These arguments, called 'satisfaction arguments', consist of two parts: a formal argument based upon claims about domain properties, and a set of informal arguments that justify the claims. Building on our earlier work on trust assumptions and security requirements, we show how using satisfaction arguments assists in clarifying how a system satisfies its security requirements, in the process identifying those properties of domains that are critical to the requirements
    corecore